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Abstract: We conduct an imaging genetics study to explore how effective brain connectivity in the default
mode network (DMN) may be related to genetics within the context of Alzheimer’s disease and mild cognitive
impairment. We develop an analysis of longitudinal resting-state functional magnetic resonance imaging (rs-
fMRI) and genetic data obtained from a sample of 111 subjects with a total of 319 rs-fMRI scans from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. A Dynamic Causal Model (DCM) is fit to the rs-
fMRI scans to estimate effective brain connectivity within the DMN and related to a set of single nucleotide
polymorphisms (SNPs) contained in an empirical disease-constrained set which is obtained out-of-sample
from 663 ADNI subjects having only genome-wide data. We relate longitudinal effective brain connectivity
estimated using spectral DCM to SNPs using both linear mixed effect (LME) models as well as function-on-
scalar regression (FSR). In both cases we implement a parametric bootstrap for testing SNP coefficients and
make comparisons with p-values obtained from asymptotic null distributions. In both networks at an initial
q-value threshold of 0.1 no effects are found. We report on exploratory patterns of associations with relatively
high ranks that exhibit stability to the differing assumptions made by both FSR and LME.

Keywords: effective brain connectivity; function-on-scalar regression; imaging genetics; longitudinal resting-
state fMRI; parametric bootstrap; spectral dynamic causal modeling.

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive
dementia and is thought to be caused by aberrant connections between cerebral regions involved in cognitive
functioning (Li et al. 2013). Imaging genetics is an important area of scientific investigation in the search for
genetic biomarkers of neurodegenerative disease, and in increasing our understanding of the genetic basis of
brain structure and function in health and disease.

The development of analytical methods for the joint analysis of neuroimaging phenotypes and genetic
data is an important area of statistical research with many challenges. Recent reviews are provided in Liu and
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Calhoun (2014) and Nathoo et al. (2019). A great deal of work in imaging genetics has focused onmethods and
analysis for examining the relationship between brain structure and genetics (see e.g., Ge et al. 2012; Greenlaw
et al. 2017; Hibar et al. 2011; Lu et al. 2017; Song et al. 2019; Stein et al. 2010; Szefer et al. 2017; Zhu et al. 2014).
Thompson et al. (2013) give an extensive overview of methods for the analysis of genetic data and brain
connectivity with a broad focus on both diffusion tensor imaging (DTI) and fMRI data. These authors discuss
the heritability of both structural and functional brain connectivity. Methods for the analysis of brain con-
nectivity with an emphasis on structural connectomes is discussed in Zhang et al. (2018, 2019).

Our focus in this article is in exploring potential associations between brain connectivity and genetics
within the context of Alzheimer’s disease and mild cognitive impairment. Effective brain connectivity and
causal inference is discussed in Lindquist and Sobel (2016), and functional connectivity analysis for fMRI data
is reviewed in Cribben and Fiecas (2016). Patel et al. (2006) and Chen et al. (2016) develop Bayesian approaches
formodelling brain connectivity andBowman et al. (2012) consider the analysis of fMRI functional connectivity
using amultimodal approach. Here, effective connectivity refers to a directedmeasure of dependence fromone
brain region to another (see, e.g., Friston 1994), while functional connectivity refers to the correlation between
measured time series over different locations.

In this paper we conduct an analysis examining the relationship between genetics and effective brain
connectivity asmeasured by rs-fMRIwithin the defaultmodenetwork (DMN). TheDMNconsists of a set of brain
regions that tend to be active in resting-state, when a subject is mind wandering with no intended task. In this
state DMN regions will exhibit low frequency signals that tend to couple together. We consider networks
comprised of four (DMN4 – 16 connections) and subsequently six (DMN6 – 36 connections) core regions of the
DMN. The DMN4 analyses are based on network nodes located at the medial prefrontal cortex (MPFC), the
posterior cingulate cortex (PCC), the left and right intraparietal cortex (LIPC and RIPC) with the Montreal
Neurological Institute (MNI) locations for these regions depicted in Figure 1. The DMN6 analyses are based on
six regions whose MNI locations are specified in Table 1. The regions we consider in DMN4 are a subset of the
regions considered in DMN6 which, in addition to the original four regions, have added the left inferior
temporal region (LIT) and right inferior temporal region (RIT).

Our analyses involve examining effective connectivity networks from rs-fMRI data using Dynamic Causal
Modeling (DCM; Friston et al. 2003, 2014, 2017; Li et al. 2011; Razi et al. 2015), a nonlinear state-space

Figure 1: The locations of the four regions within the
default mode network (DMN) examined in our DMN4
study: themedial prefrontal cortex (MPFC), the posterior
cingulate cortex (PCC), the left and right intraparietal
cortex (LIPC and RIPC) with MNI coordinates MPFC (3,
54, −2), the PCC (0, −52, 26), LIPC (−50, −63, 32) and
RIPC (48, −69, 35).
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framework for inferring interaction between latent neuronal states. We apply DCM to rs-fMRI using the SPM12
(v7219) software (Penny et al. 2011). Resting-state fMRI data are examined with the goal of investigating the
potential interaction between different areas of the brain and to explore the potential association between this
neuronal interaction in four (DMN4) and then eight (DMN6) core regions of the DMN and SNPs that are
contained in a disease-constrained set. The DCM framework leads to directed networks and these networks are
related to genetic data using longitudinal rs-fMRI analysis. Previous literature focussing on AD has found
alterations to both effective and functional resting-state connectivity in the DMN (see e.g., Luo et al. 2018; Wu
et al. 2011; Yan et al. 2013). Zhong et al. (2014) conduct an rs-fMRI study and demonstrate changes in directed
functional connectivity in the DMN for subjects with AD,while Dipasquale et al. (2015) apply high-dimensional
independent component analysis (ICA) to an rs-fMRI study and demonstrate changes in functional connec-
tivity in subjects with AD.

Our specific choice of regions which represent the nodes of the network is motivated by existing literature
examining connectivity in the DMN and establishing the heritability of effective connectivity for networks
based on these regions. These regions are a subset of the DMN regions considered in the rs-fMRI study of Wu
et al. (2011), which demonstrated altered DMN functional and effective connectivity in AD, and for DMN4 they
are the same regions considered in the rs-fMRI study of Sharaev et al. (2016), which investigated internal DMN
relationships. Xu et al. (2017) examine effective connectivity in these four regions of the DMN using DCM and
structural equation modelling in a twin study based on a sample of n = 46 pairs of twins with rs-fMRI. These
authors find evidence for the heritability of effective connectivity in this network. We note that this study uses
stochastic DCM rather than spectral DCM and the two approaches are not equivalent. They estimate the
heritability of DMN effective connectivity in these regions to be 0.54 (that is, the proportion of variability in
DMN effective connectivity that can be attributed to genetics is 0.54). Their study provides evidence that there
are genes involved in DMN effective connectivity for the network nodes depicted in Figure 1. This work paves
theway for our study of relationships between effective connectivity and geneticmarkers in the same network.

Glahn et al. (2010) use an extendedpedigree design and rs-fMRI to examine genetic influence on functional
connectivity within the DMN. Their study estimates the heritability of DMN functional connectivity to be
0.424 ± 0.17. That is to say, these authors estimate the proportion of variability of DMN functional connectivity
that can be attributed to genetics to be 0.42 ± 0.17. This estimate is within error bounds of the heritability
estimate of 0.54 obtained byXu et al. (2017) for DMNeffective connectivity. Importantly, Glahn et al. (2010) also
suggest that the genetic factors that influence DMN functional connectivity and the genetic factors that
influence gray matter density in these regions seem to be distinct. This result then motivates the search for
genetic markers associated with DMN connectivity. Stingo et al. (2013) focus on relating brain connectivity to
genetics and develop a Bayesian hierarchical mixture model for studies involving fMRI data. The mixture
components of the proposed model correspond to the classification of the study subjects into subgroups, and
the allocation of subjects to these mixture components is linked to genetic covariates with regression pa-
rameters assigned spike-and-slab priors.

Our strategy for data analysis proceeds as follows. We view both disease and rs-fMRI as measures of the
brain and our fundamental interest is to relate these measures of the brain to genetics. The former is a coarse

Table : The MNI coordinates associated with the regions of interest in our study. The first four rows correspond
to the network DMN while DMN corresponds to all eight rows.

DMN region MNI coordinate

 Posterior cingulate (PCC) , −, 
 Medial prefrontal (MPFC) , , −
 Left intraparietal cortex (LIPC) −, −, 
 Right intraparietal cortex (RIPC) , −, 
 Left inferior temporal (LIT) −, −, −
 Right inferior temporal (RIT) , −, −
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measure with three categories while the latter is a far amore detailedmeasure allowing for the investigation of
statistical dependencies in the temporal rs-fMRI signal at different regions.

We use an out-of-sample genome-wide scan of disease to select a priority subset of SNPs and this serves as
a constraint on the SNPs that we relate to effective brain connectivity in subsequent analysis. We relate
effective brain connectivity as characterized through spectral DCM to the empirical disease-constrained subset
of genetic variables using longitudinal analyses based on both linear mixed effect (LME) models and function-
on-scalar (FSR) regression (Morris 2015). When testing for SNP effects in both models we compare p-values
obtained from standard asymptotic distributions to those obtained from the parametric bootstrap.

The remainder of the paper proceeds as follows. In Section 2we discuss the neuroimaging and genetic data
preprocessing, we present basic summaries and the use of spectral DCM for characterizing effective connec-
tivity. The underlying state-space model and its estimation is discussed briefly. In Section 3 we examine how
the genetic data are related to disease using a GWASwith 1,220,955 SNPs and 663 ADNI subjects not having rs-
fMRI data. In doing so, we obtain an out-of-sample empirical disease-constrained set of SNPs for subsequent
analysis examining the association between effective brain connectivity and genetics. In Section 4.1 we relate
effective connectivity in DMN4 obtained from longitudinal rs-fMRI to genetics using LME and FSR respectively.
In Section 4.2 we apply this same analysis to DMN6 and make comparisons between asymptotic null distri-
butions and parametric bootstrap empirical null distributions. The paper concludes in Section 5 with a
summary of our primary findings, a discussion of our analysis and its limitations, follow-up analyses and
possible new methodological development that is motivated by the current work.

2 Data and preprocessing

Data used in the preparation of this articlewere obtained from theAlzheimer’sDiseaseNeuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public–private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early AD. For up-to-date information, see www.adni-info.org. ADNI is an ongoing,
longitudinal, multicenter study designed to develop clinical, imaging, genetic, and biochemical biomarkers
for the early detection and tracking of AD.

The selection criteria for our sample is as follows. We first begin with ADNI2 subjects (1437 at this stage)
and consider those subjects with genome-wide data (774 left at this stage) and also with at least one resting-
state fMRI scan at 3 T (111). This leads to 111 subjects comprising 36 cognitively normal (CN), 63 MCI and 12 AD
subjects, with these subjects having amean age of 73.8 years with the range being 56.3–95.6 years, 46 of these
subjects being male, 5 being left-handed, and with education measured in years ranging from 11 to 20.

Table 2 presents several summary statistics associated with our sample, including a summary on the
Apolipoprotein E (APOE) gene. The APOE gene is a known genetic determinant of AD risk and individuals
carrying the ϵ4 allele are at an increased risk of AD. Table 2 summarizes the number of APOE ϵ4 alleles for the
subjects in each disease category. In line with expectations from the literature (Genin et al. 2011), a signal from
the APOE gene is present in the data (p-value = 0.0045; Fisher’s Exact Test) with the AD group having a higher
percentage of subjects with at least one ϵ4 allele. In fact, the data summaries in Table 2 indicate that all but one
of the AD subjects have at least one ϵ4 allele of the APOE gene.

Diagnostic classification of AD participants was made by ADNI investigators according to diagnostic
criteria for probable AD established by the National Institute of Neurological and Communicative Disorders
and Stroke and the Alzheimer’s Disease Related Disorders Association (NINCDS-ADRA; McKhann et al. 1984).
Participants in the AD cohort also exhibited abnormal memory function on the Logical Memory II subscale of
the revised Wechsler Memory Scale (WMS II, ≤8 for 16 years education and above), a Mini Mental State Exam
(MMSE) between 20 and 26 (inclusive), and a Clinical Dementia Rating of 0.5 (very mild) or 1 (mild). All control
participants were free ofmemory complaints and deemed cognitively normal based on clinical assessments by
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the site physician showing an absence of significant impairment in cognitive functioning and performance of
daily activities. Participants in the control cohort also exhibited normal memory function on the Logical
Memory II subscale of the revisedWMS (WMS II, ≤9 for 16 years of education andabove), aMMSE score between
24 and 30 (inclusive), and a Clinical Dementia Rating of 0.

As described in Bondi et al. (2014), the ADNI criteria for MCI are: (1) subjective memory complaints
reported by themselves, study partner, or clinician; (2) objective memory loss defined as scoring below an
education-adjusted cut-off score on delayed recall of Story A of the WMS-R Logical Memory Test (score = 8 for
those with = 16 years of education; score = 4 for those with 8–15 years of education; score = 2 for those with 0–7
years of education); (3) global CDR score of 0.5; and (4) general cognitive and functional performance suffi-
ciently preserved such that a diagnosis of dementia could not be made by the site physician at the time of
screening.

Our analysis examines longitudinal rs-fMRI data from 111 subjects with repeated measurements resulting
in a total of 424 rs-fMRI scans to begin with. Each scan leads to a network which has an associated follow-up
time. As the longitudinal data in this study are quite sparse, we apply the Principal Analysis by Conditional
Expectation (PACE; Muller 2008) method which focuses on recovering the entire continuous-time temporal
trajectory of the network edge parameters. As a result of the sparsity of the longitudinal data, it is necessary to
borrow information across subjects to recover the temporal trend of the network edge parameters for individual
subjects. Doing so requires us to restrict the temporal trajectory within a time window (of length 500 days)
covering all subjects. The proportion of subjects with scans outside of the 500 day window is not sufficient to
recover the temporal trajectory outside of thewindow, and thuswe restrict our analysis to the 319 rs-fMRI scans
falling within it. The advantage of doing this is that we are able to use the function-on-scalar regression model
where the response is the temporal profile of the network edge parameters.

The function-on-scalar regression model considers the association of the temporal trend of the network
edge parameterswith genetic variables, while the linearmixed effectsmodel only focuses on the association of
the network edge parameters with the genetic variables. The mixed-effects model simply treats the network
edge parameters at multiple time points as repeatedmeasurements and accounts for clustering, which ignores
the time order and trend of the network edge parameters. We view this as a key aspect of the longitudinal data.
Therefore, the function-on-scalar model may be able to find a stronger association between the network edge
parameters with genetics as it accounts explicitly for time ordering (and not just clustering) in the network
response. Thus after preprocessing the data in this waywe are left with 319 scans obtained from 111 subjects for
the longitudinal analysis.

MRI for these subjects are collected at 3 Tesla (3 T). MRI data are downloaded with permission from the
ADNI. All images were acquired on 3 T Philips MRI scanners across 10 North American acquisitions sites
according to the standardized ADNI protocol. Whole-brain anatomical MRI scans were acquired sagittally,

Table : Distribution of demographic variables (obtained at the baseline visit) across disease groups within our sample of 
subjects. The p-values in the final column are based on a one-way ANOVA for continuous variables and a Fisher’s exact test for
categorical variables.

AD MCI CN p-value

n   

GENDER (% of group) Female  (.)  (.)  (.) .
Male  (.)  (.)  (.)

HAND (% of group) Left  (.)  (.)  (.) .
Right  (.)  (.)  (.)

Age – mean (sd) . (.) . (.) . (.) .
EDUCATION – mean (sd) . (.) . (.) . (.) .
APOE ϵ alleles (% of group) Zero  (.)  (.)  (.) .

One  (.)  (.)  (.)
Two  (.)  (.)  (.)
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with a T1-weighted magnetization-prepared rapid acquisition with gradient echo (MPRAGE) sequence, with
the following parameters: 1.2 mm slice thickness, 256 by 256 by 170 acquisition matrix, echo time (TE) of 3 ms,
in-plane voxel dimension of 1mm2, repetition time (TR) of 7ms, and flip angle of 9°. Functional MRI scanswere
obtained during resting-state; participants were instructed to lay quietly in the scanner with their eyes open.
Resting state fMRI scans were obtained with a T2*-weighted echo-planar imaging sequence with the following
parameters: 140 volumes, 64 by 64 by 48 acquisitionmatrix (voxel size = 3.3mm3), TE of 30ms, TR of 3000ms,
and flip angle of 80°.

The freely available software package PLINK (Purcell et al. 2007) is used for genomic quality control and
preprocessing. The genetic data are SNPs from non-sex chromosomes, i.e., chromosome 1 to chromosome 22.
SNPs with minor allele frequency less than 5% are removed as are SNPs with a Hardy–Weinberg equilibrium
p-value lower than 10−6 or a missing rate greater than 5%. After preprocessing we are left with 1,220,955 SNPs
for each of 111 subjects for relating genetic data to effective connectivity and 1,220,955 SNPs for each of an
additional 663 subjects for selecting a disease-constrained subset of SNPs.

2.1 rs-fMRI data preprocessing and network estimation

The fMRI and anatomical data are pre-processed using a combination of the FSL software (available at http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and the SPM12 software (available at http://www.l.ion.ucl.ac.uk/spm/
software/spm12/). Non-brain tissue in the raw T1 images is removed using the automated Brain Extraction
Tool (Smith 2002), followed by manual verification and optimization for each subject. Blood-Oxygen-Level
Dependent (BOLD) image data preprocessing is performed in FSL’s FEAT as follows: each functional image is
motion corrected and registered to their high-resolution T1 structural image that is linearly registered to
standard stereotaxic space using a 12 degree-of-freedom transformation. A non-linear registration of the
structural image to standard stereotactic space is also applied to account for potential local deformations in
brains of the patient group. Each subject’s imaging data are normalized to a standardized space defined by an
MNI template brain. We conducted manual checking for correct normalization of every image.

Given a set of R brain regions of interest, DCM in the case of fMRImodels the haemodynamic response over
these regions through a nonlinear state-space formulation with a model allowing for interaction between
regions and with model parameters that characterize effective connectivity and, when relevant, how this
connectivity is modulated by experimental inputs. In the case of resting-state fMRI with no experimental
inputs, the model can be expressed as (see, Razi et al. 2017)

ẋ(t) � Ax(t) + v(t)
y(t) � h(x(t), θ) + e(t), (1)

where x(t)=(x1(t), …, xR(t))′ are latent variables used to represent the states of neuronal populations at some
time t and ẋ(t) is a time-derivative defining a differential equation approximating neuronal dynamics, with the
R × R matrix A approximating effective connectivity to first-order; h(x(t), θ) is a nonlinear mapping from
hidden neuronal states to the predicted haemodynamic response also depending on parameters θ (see, e.g.,
Friston 2007, for details on the form of this nonlinear mapping); y(t) = (y1(t), …, yR(t))′ with yj(t) being a
summary of the response obtained from all voxels within region j; v(t) and e(t) represent neuronal state noise
and measurement noise respectively.

For resting-state fMRI, the DCM can be fit in the time-domain using Bayesian filtering based on a mean-
field variational Bayes approximation (see, e.g., Li et al. 2011) which involves inference on both model
parameters and latent states. Alternatively, the model can be fit in the spectral domain using an approach
known as spectral DCM (Friston et al. 2014). The latter approach involves relating the theoretical cross spectra
associated with the dynamic model to the sample cross spectra in order to estimate parameters. Thus, it is
somewhat akin to a method of moments approach. More specifically, Friston et al. (2014) assume a parame-
terized power law form for the spectral densities of the noise terms in the state-space model and then express
the empirical cross spectra as the sumof the theoretical cross spectra andmeasurement error. This formulation
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then yields a likelihood for the observed cross spectra statistic depending on the time-invariant parameters but
not depending on the latent variables x(t). This likelihood for the summary statistic is then combined with a
prior distribution for the model parameters and an approximation to the associated posterior distribution for
these parameters is obtained using variational Bayes. Razi et al. (2015) report simulation results that
demonstrate estimators obtained from spectral DCM having higher accuracy (in the sense of mean-squared
error) than those obtained from stochastic DCM. In addition, the former has a higher computational efficiency
since estimation of the latent states is not required. We use this approach to estimate effective connectivity
networks within the DMN.

The DMN includes the posterior cingulate cortex/precuneus (PCC), medial prefrontal cortex (MPFC),
bilateral inferior parietal lobule (IPL), and other regions including the inferior temporal gyrus. To estimate
effective connectivity within the regions of the DMN depicted in Figure 1 and Table 1, we use spectral DCM as
implemented in SPM12. Blood-oxygen-level-dependent (BOLD) time series from theDMN regions of interest are
obtained by extracting time series from all voxels within an 8mm radius of the associatedMNI coordinate, and
then applying a principle component analysis and extracting the first eigenvariate. For simplicity, the infor-
mation contained in the other eigenvariates is not considered in our analysis so that the result is a single
representative time series for each region of interest. This procedure is repeated to obtain a collection of four
(DMN4) or six (DMN6) time series for each subject. An example of the resulting time-series data for a single
subject over DMN6 is depicted in Figure 2.

A 16-parameter (DMN4) or 36-parameter (DMN6) graph with weights representing effective connectivity
between and within regions is then estimated for each subject. This graph is based on an estimate of the
parameter A, an R × R non-symmetric matrix, in Eq. (1) obtained from spectral DCM. We fit the DCM in SPM12
with the option of one state per region andwith themodelfit to the cross spectral density (which corresponds to
spectral DCM). The imaging preprocessing pipeline is summarized in Figure 3. We note that slice-timing
correction as implemented in SPM12 is applied to all of the functional images. All slices of one volume are
interpolated in time to the reference slice (reference slice = 24 out of 48). Spatial smoothing is performed in
SPM12 where we convolve image volumes with a spatially stationary Gaussian filter (i.e. a Gaussian kernel) of
8 × 8 × 8 mm3 full width half max (FWHM).

Figure 2: An example of the rs-fMRI data used to estimate
the effective connectivity network for a single subject
from the six regions of interest (PCC, MPFC, LIPC, RIPC,
LIT, RIT).
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Figure 3: The neuroimaging data preprocessing pipeline
used in our study. Slice-timing correction as imple-
mented in SPM12 is applied to all of the functional im-
ages. All slices of one volume are interpolated in time to
the reference slice (reference slice = 24 out of 48).
Spatial smoothing is performed in SPM12 where we
convolve image volumes with a spatially stationary
Gaussian filter (i.e. a Gaussian kernel) of 8 × 8 × 8 mm3

full width half max (FWHM).
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3 Selection of the disease-constrained set of SNPs

Beginning with the 1,220,955 SNPs discussed in Section 2, we conduct a genome-wide association study
(GWAS) with the goal of identifying a smaller subset of SNPs that are potentially associated with disease (CN/
MCI/AD). This subset serves as a constraint in subsequent analysis examining effective brain connectivity and
it is selected out-of-sample. That is to say, the selection of the constrained SNP subset does not involve the 111
subjects with rs-fMRI data but rather is obtained from taking the original sample of 774 subjects having
genome-wide data and removing those 111 subjects with rs-fMRI. The remaining 663 ADNI2 subjects have
genome-wide data only andwe conduct the GWAS on the data from these subjects in order to identify a smaller
subset of SNPs that are potentially associated with disease (CN/MCI/AD). This yields a subset of top 100 SNPs
which we then relate to the longitudinal rs-fMRI effective connectivity networks using the 111 subjects with rs-
fMRI data. This approach has two primary advantages in producing amore reliable subset of SNPs thanwithin
sample selection:
(1) The disease-constrained set is based on a larger sample size of 663 subjects compared with 111 subjects.
(2) Selecting the subset out-of-sample avoids double usage of the data in selecting the priority subset of SNPs

and in relating that subset to longitudinal rs-fMRI.

A multinomial logistic regression with disease category as the response is fit for each SNP to assess that SNP’s
marginal association with disease after adjusting for covariates representing age, sex, handedness, and
education. SNPs are included in themodel as the number of a particular allele so that a SNP’s effect on the log-
odds ratio is additive. We sort the SNPs by the resulting p-values from a likelihood ratio test, where the null
hypothesis corresponds to the case where the probability distribution of disease does not depend on the given
SNP. A subset of the top 100 SNPs is selected based on this ranking. The distribution of p-values by chro-
mosome and the cut-off for selecting the best subset of 100 SNPs is depicted in Figure 4. Each of the 100 SNPs in
the selected constrained subset has a p-value below 7.5 × 10−5, which represents the cut-off indicated in
Figure 4.

While Table 1 indicates an APOE signal in our data from the ϵ4 allele of the gene, we note that there are no
APOE related SNPs in our constrained subset of the top 100. The highest ranking APOE related SNP is
rs4802234 which has a p-value of 6.9 × 10−4. Thus our choice to use a p-value threshold of 7.5 × 10−5 in
subsequent analyses eliminates the highest ranking APOE related SNP, even though there appears to be some
evidence of an APOE signal in the data. We note that we have defined APOE related SNPs as those within a 1
million base pair range of APOE and their p-values ranging between 6.9 × 10−4 to 0.999. Despite this, all
subsequent regression models that we use will include a variable representing APOE genotype (coded as
number of ϵ4 alleles) in order to account for its known importance and to adjust for its potential association
with effectivity brain connectivity.

Figure 4: The p-values
associating disease status
with SNPs adjusting for age,
sex, handedness, and
education. The blue line
represents the cutoff used to
obtain the top 100 SNPs which
corresponds to a p-value
threshold of 7.5 × 10−5.
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4 Resting-state effective brain connectivity by genetics

4.1 Longitudinal analysis with four DMN regions

We conduct the longitudinal analysis using both a linear mixed effects model incorporating subject-specific
random effects as well as a function-on-scalar regression. In each case the response is a network connection
between two regions of interest estimated from an rs-fMRI scan using DCM, and we observe a longitudinal
sequence of such connections for each subject with the number of repeated measurements ranging from 1 to 4
with amedian of 3 and a third-quartile of 4. In both networks at an initial q-value threshold of 0.1 no effects are
found. We report on exploratory patterns of associations with relatively high ranks that exhibit stability to the
differing assumptions made by the statistical procedures described below.

For a given connection, we will fit a regression model relating that connection to a single SNP, for each of
the 100 SNPs in the disease-constrained set. These regression models for the time-sequence of connection
values also include covariates representing age, sex, right/left hand, education and APOE ϵ4.With 16 possible
connections a total of 16 × 100 = 1600 models are fit and in each case a test comparing the model with and
without the SNP from the constrained-set is conducted. The resulting set of 1600 p-values arising from this
mass-univariate longitudinal approach are adjusted for multiplicity using an FDR adjustment (Benjamini and
Hochberg 1995) in order to produce for each edge-SNP pair a q-value. If a q-value = α cut-off is selected then
among all rejections based on this cut-off, there are about 100× α%that are falsely rejected. In this exploratory
analysiswe focus primarily on the rank of each edge-SNPpair by the p-value butwe present the q-value aswell.

The linear mixed effect (LME; Kuznetsova et al. 2017) model has the form

Yij � μ + Xiβ + ZT
i α + bi + εij

where Yij is the network edge weight estimated from the jth rs-fMRI scan of the ith subject, i = 1, 2,… , 111, j = 1,
2, … , mi; Xi is the SNP coded additively in the model; Zi contains the remaining covariates with coefficient
vectorα, bi is a subject-specific randomeffect and ϵij is an error termwith the randomeffect and errors assumed
Gaussian and independent. The likelihood ratio test is conducted for the hypothesis test H0 : β � 0 against
H1 : β ≠ 0 and the corresponding p-value obtained.

In addition to obtaining a p-value from the standard χ21 asymptotic null distribution for the likelihood ratio
statistic we also apply a parametric bootstrap. For the linear mixed effects model the parametric bootstrap
procedure proceeds by first fitting both the null (excluding the SNP) and alternative (including the SNP) model
using maximum likelihood and the observed value of the likelihood ratio statistic is obtained. Data are then
generated under the null model and both the null and alternativemodel are fit to each simulation replicate and
a realization of the test statistic under the null hypothesis is obtained. This is repeated for nsim = 300,000
replicates and the bootstrap p-value is obtained as the proportion of null test statistic realizations as large or
larger than the observed test statistic.

We apply the PACE approach for sparse functional data to obtain the estimated trajectories of network

edgeweights over time t, Ŷ i(t). By applying PACE, the estimated trajectory of each network edgeweight can be
obtained and expressed as

Ŷ i(t) � μ(t) + ∑
J

j�1
ξ ijϕj(t),

Ŷ(t) � μ(t) + ξ n×JΦ(t)J×1,
where μ(t) represents the mean function common to all n subjects,

ξ ij � ∫
​
{Yi(t) − μ(t)}ϕj(t)dt

is the jth functional principal component (FPC) score for Yi(t), with ϕj(t) being the corresponding eigen-
function, and J = 3 since three functional principal components explain over 95% of the total of variation.

The function-on-scalar regression model has the form
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Yi(t) � Xiα(t) + ZT
i β(t) + ϵi(t),

where Xi is the SNP with corresponding regression function α(t), Zi is a vector holding covariates representing
age, sex, right/left hand, education and APOE ϵ4 with corresponding regression function β(t) and the error
term ϵi(t) is a random error processes. As the raw data Yi(t) is sparse we replace it in the regression model with
the PACE-estimated trajectory of each network edge weight. We test H0   :  α(t) � 0 corresponding to the model
that excludes the genetic marker using an F-test. As with our use of linear mixed models we apply a mass
univariate approach and apply the model to all 16 × 100 = 1600 possible combinations of network edge and
SNP, and apply an FDR correction for multiplicity. We note that the degrees of freedom for the F-distribution
needs to be carefully computed. In the F-test for FSR the degrees of freedom are setup by applying the idea of
Satterthwaite’s approximation described in Shen and Faraway (2004).

In addition to obtaining p-values from the F-distribution we also apply a parametric bootstrap. To the best
of our knowledge, there is no existing package or function in R that can be used for simulation with the
function-on-scalar regression (FSR) model. We therefore propose the following procedure to generate func-
tional data for bootstrapping the test statistics under the null and its corresponding p-value for hypothesis
testing the SNP regression function in FSR models.

The two FSR models considered in the hypothesis test for the SNP effect are:
(1) Null model: Yi(t) � ∑​P

j�1  Zijβj(t) + εi(t), where the SNP regression function α(t) � 0.
(2) Alternative hypothesis: Yi(t) � Xiα(t) + ∑​P

j�1  Zijβj(t) + εi(t), where α(t) ≠ 0.

For each bootstrap sample we simulate the residual function ϵi(t) with the empirical mean and covariance
functions of the estimated residual function ϵ̂i(t) of the FSR model under the null. We note that in the FSR
model, each residual term ϵi(t) is assumed to arise from a Gaussian process with mean zero and covariance
function r(s, t) � COV[ϵi(t), ϵi(s)]. We then generate the functional response Yi(t) using the null FSR model

with the original scalar covariates Zij, their corresponding estimated functional coefficients β̂j(t), and the

simulated residual functions from the previous step. We then re-fit the two FSR models from the null and
alternative hypotheses to the functional responses simulated under the null and compute the F-statistic as a
realization under the null. This procedure is repeated to obtain nsim = 10, 000 replicates and the bootstrap
p-value is obtained as the proportion of null test statistic realizations as large or larger than the observed test
statistic.

The LME assumes that the effective-connectivity is time-invariant and all of the session-specific fluctua-
tions are captured by the noise term in the LME. The FSR model on the other hand allows for session-specific
fluctuations through the time-varying regression functions. This allows the FSR analysis to be potentiallymore

Table : Results of the linear mixed effects model longitudinal analysis of pairs of network edges with SNPs that are relatively
highly ranked based on the p-values, parametric-bootstrap p-values (B-p-value) and q-values (after adjusting for  tests)
performed using the DMN PACE data.

Rank Network edge SNP p-value B-p-value q-value Chromosome

 LIPC → PCC kgp_G . . . 

 LIPC → PCC rs_A . . . 

 PCC → PCC rs_G . . . 

 LIPC → RIPC rs_A . . . 

 LIPC → PCC kgp_C . . . 

 PCC → PCC kgp_G . . . 

 PCC → PCC rs_T . . . 

 PCC → MPFC kgp_A . . . 

 LIPC → RIPC kgp_C . . . 

 LIPC → LIPC rs_G . . . 
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powerful since all of the fluctuations are not allocated to the noise term. An important point is that LME and
FSR are approaches that make fundamentally different assumptions about the data generating mechanism.

In Tables 3 and 4we display the top 10 ranked edge-SNP associations with the smallest p-values for DMN4
as obtained from both LME and FSR. The bootstrap p-values (B-p-values) as well as the FDR adjusted q-values
are also indicated in tables. As an exploratory analysis of these results we intersect the top 20 edge-SNP
associations out of 1600 (based on the p-value) from LME with the top 20 edge-SNP associations out of 1600
(based on the p-value) from FSR. Our rationale for doing this is that both LME and FSR are based on different
modelling assumptions with different model fitting procedures used in each. Therefore, signals that appear as
highly ranked from both approaches simultaneously may represent genuine signal in the data since it is
unlikely that noise will be stable to the different assumptions and procedures applied to the data. Intersecting
the top 20 associations from both methods produces a very clear pattern of eight associations that are pre-
sented in Table 5. The pattern reveals a potential signal involving connections LIPC→ RIPC, LIPC→ PCC and
PCC → PCC and SNPs from chromosome 9 and 13.

4.2 Longitudinal analysis with six DMN regions

We apply the same approaches to the networks estimated using spectral DCM for the network of six regions
listed in Table 1. In this case the models are applied to 36 × 100 = 3600 possible combinations of network edge
and SNP, and a p-value, B-p-value and FDR corrected q-value are obtained to adjust the p-value for
multiplicity.

Table : Results of the function-on-scalar regression longitudinal analysis of pairs of network edgeswith SNPs that are relatively
highly ranked based on the p-values and q-values after adjusting for  tests performed using the DMN data.

Rank Network edge SNP p-value B-p-value q-value Chromosome

 LIPC → RIPC rs_A . . . 

 RIPC → PCC rs_T . . . 

 RIPC → PCC rs_G . . . 

 MPFC → MPFC kgp_A . . . 

 LIPC → RIPC kgp_G . . . 

 LIPC → RIPC kgp_C . . . 

 RIPC → RIPC kgp_G . . . 

 RIPC → RIPC rs_T . . . 

 MPFC → MPFC rs_G . . . 

 RIPC → RIPC rs_G . . . 

Table : The rank (out of ) of the intersection of the top  DMN connection-SNP pairs for FSR and LME combined. These
associations are highlighted as potential signals as a result of their stability.

Rank LME Rank FSR Network edge SNP Chromosome

  LIPC → RIPC rs_A 

  LIPC → RIPC kgp_C 

  LIPC → RIPC kgp_G 

  LIPC → PCC kgp_G 

  LIPC → PCC rs_A 

  PCC → PCC rs_G 

  PCC → PCC kgp_G 

  PCC → PCC rs_T 
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In Tables 6 and 7 we rank the 10 associations with the smallest p-values for DMN6 as obtained from LME
and FSR. We again conduct an exploratory analysis of these results by intersecting the top 20 edge-SNP
associations out of 3600 (based on the p-value) from LME with the top 20 edge-SNP associations out of 3600
(based on the p-value) from FSR. For DMN6 we see seven intersecting top 20 associations involving self
connections (regionsmodulating their own activity) for MPFC, LIT and RIT involving SNPs on chromosomes 11
and 6. Regions in chromosome six have been previously implicated for Late-Onset AlzheimerDisease (Naj et al.
2010). There are also two intersecting top 20 associations between PCC→ RIPC and SNPs on chromosome 18,
and an intersecting association between LIT → LIPC and SNP rs6021246 on chromosome 20. The stability of
these associations makes them of potential interest as signal between the larger network and disease-
constrained SNPs thoughwe emphasize that these results are exploratory.While we see a non-trivial change in
the results when moving from DMN4 to DMN6 this can be explained simply by noting that many of the higher
ranked SNP-edge pairs in DMN6 involve the two added nodes corresponding to ROIs RIT and LIT.

Tables 3, 4, 6 and 7 make comparisons between the p-values obtained from the χ21 and F-distribution and
theB-p-values obtained from the parametric bootstrap procedures developed for both LMEandFSR. Generally,
the p-values are inlinewith theB-p-values and the comparison from the four tables suggest that the asymptotic
distributions provide an adequate approximation for the case of these data. To investigate this further we plot
in Figures 5 and 6 the histograms of the 3600 (1600 in the case of DMN4) p-values obtained from all of the tests

Table : The results of the linearmixed effectsmodel longitudinal analysis of pairs of network edgeswith SNPs that are relatively
highly ranked based on the p-values, parametric-bootstrap p-values (B-p-value) and q-values (after adjusting for  tests)
performed using the DMN PACE data.

Rank Network edge SNP p-value B-p-value q-value Chromosome

 LIPC → PCC rs_A .e− .e− . 

 LIPC → PCC kgp_G .e− .e− . 

 LIPC → LIT kgp_G .e− .e− . 

 LIPC → LIT rs_A .e− .e− . 

 MPFC → MPFC rs_C .e− .e− . 

 RIPC → RIT kgp_G .e− .e− . 

 LIPC → LIT kgp_C .e− .e− . 

 LIT → LIT kgp_C .e− .e− . 

 LIT → LIT rs_T .e− .e− . 

 LIPC → PCC kgp_C .e− . . 

Table : The results of the function-on-scalar regression longitudinal analysis of pairs of network edges with SNPs that are
relatively highly ranked based on the p-values, parametric-bootstrap p-values (B-p-value) and q-values after adjusting for 
tests performed using the DMN PACE data.

Rank Network edge SNP p-value B-p-value q-value Chromosome

 RIPC → LIT rs_G .e− .e− . 

 LIT → LIT rs_C .e− .e− . 

 RIT → RIT rs_C .e− .e− . 

 LIT → LIT kgp_C .e− .e− . 

 LIT → LIT rs_T .e− .e− . 

 MPFC → MPFC rs_C .e− .e− . 

 RIPC → RIPC kgp_C .e− .e− . 

 MPFC → MPFC kgp_C .e− .e− . 

 RIT → RIPC rs_C .e− .e− . 

 PCC → RIPC rs_T .e− .e− . 

 PCC → RIPC kgp_A .e− .e− . 
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relating SNPs to effective connectivity as obtained from the χ21 and F-distribution. As most SNPs should be
under the null, adequate performance of the asymptotic distributions should be indicated by uniform distri-
butions. In all four cases (DMN4-LME, DMN6-LME, DMN4-FSR, DMN6-FSR) the distributions of the p-values
look reasonably uniform which, in addition to the comparisons between p-values and B-p-values made in
Tables 3, 4, 5 and 6, further suggests that the asymptotic null distributions are preforming adequately in the
cases considered here.

5 Discussion

We have examined the association between longitudinal effective brain connectivity and genetics based on an
empirically derived disease-constrained set of SNPs using LME and FSR, with networks estimated from rs-fMRI
time series using spectral DCM. Our analysis is based on obtaining a disease-constrained subset of SNPs from
the outcome of the out-of-sample GWAS in Section 3, the purpose being to focus attention on potential
associations that are empirically most relevant for disease. We have examined both a 4-region and a 6-region
network depicted in Figure 1 and Table 1.

We have examined both a 4-region and a 6-region network so as to obtain a more complete picture of the
data. Indeed, our results from DMN4 obtained after intersecting the top associations reveal an interesting
pattern thatwould not have beennoticed if only the larger DMN6networkwas analyzedwheremany of the top-
ranked edge-SNP pairs involve LIT and RIT. As part of future work we intend to increase the number of regions
to amuch larger size (e.g. networks where the number of nodes is an order of magnitude greater and spanning

Table : The rank (out of ) of the intersection of the top  DMN connection-SNP pairs for FSR and LME combined. These
associations are highlighted as potential signals as a result of their stability.

Rank LME Rank FSR Network edge SNP Chromosome

  MPFC → MPFC rs_C 

  MPFC → MPFC rs_T 

  MPFC → MPFC kgp_C 

  LIT → LIT kgp_C 

  LIT → LIT rs_T 

  LIT → LIT rs_C 

  RIT → RIT rs_C 

  LIT → LIPC rs_C 

  PCC → RIPC rs_T 

  PCC → RIPC kgp_A 

Figure 5: Distribution of p-values obtained from the χ21
null distribution for LME for DMN4 (left) and DMN6
(right).
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multiple known resting-state networks) and examine measures of network topology as opposed to network
edge values as a potential useful low-dimensional phenotype.

After adjusting for multiple comparisons none of the associations examined have a q-value below 0.1. By
intersecting the top 20 associations and focussing on stability to the assumptionsmade by LME and FSRwe do
observe some patterns that may be of interest from an exploratory point of view. The most interesting patterns
can be summarized as follows:
(1) DMN4: LIPC→ RIPC and three SNPs on chromosome 9 (rs13287994, kgp4931190, kgp9433690) exhibit top

20 associations that are stable under LME and FSR.
(2) DMN4: LIPC→ PCC and two SNPs on chromosome 9 (kgp9433690, rs13287994) exhibit top 20 associations

that are stable under LME and FSR. The large genomic screen conducted by Pericak-Vance et al. (2000)
identified potential AD-related regions on chromosome 9.

(3) DMN4: PCC→ PCC and three SNPs on chromosome 13 (rs9317920, kgp12216228, rs1935110) exhibit top 20
associations that are stable under LME and FSR.

(4) DMN6: PCC→ RIPC and two SNPs on chromosome 18 (rs949200, kgp8588069) exhibit top 20 associations
that are stable under LME and FSR.

(5) DMN6: Several self-connections involving the MPFC, LIT, RIT on chromosomes 6 and 11. Regions in
chromosome six have been previously implicated for Late-Onset Alzheimer Disease (Naj et al. 2010).

Our comparisons of the parametric bootstrap procedures for LME and FSR to the p-values obtained from the χ21
and F-distribution suggest that the asymptotic distributions are performing adequately for the cases consid-
ered here. This is evident both in the comparisons made in Tables 3, 4, 6 and 7 as well as in Figures 5 and 6.
Further investigation of this issue, in particular for testing regression functions in FSR, is an avenue for future
work.

Our current analysis suggests follow-up analyses looking at high resolution anatomical and diffusion
tensor imaging and structural connectivity in a separate sample of subjectswith such an analysis focussed on a
small number of targeted SNPs suggested by the current analysis. From a methodological perspective, our
approach of determining the disease-constrained set first and subsequently examining relationships with
effective brain connectivity motivate the development of a joint model examining both disease and longitu-
dinal effective connectivity simultaneously with a model structure that allows for joint variable (SNP)
selection.

While connectivity may be related to the degeneration of gray matter our regression analyses have not
incorporated gray matter density as a covariate in either the LME or FSRmodels. In future work we will look to
reporting on an analysis that includes gray matter density in the ROIs for each subject as well as examine a
much larger set of ROIs including bilateral hippocampi and the combination of structural and effective
connectivity.

Figure 6: Distribution of
p-values obtained from thenull
F-distribution for FSR for DMN4
(left) and DMN6 (right).
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We note again that our analysis summarizes ROI specific activity by extracting the time series at all voxels
within a sphere having radius 8 mm around an associated MNI coordinate for the ROI. A principal component
analysis is applied to these time series and the first eignenvariate is used as a region-specific summary.
Subsequent analysis may consider additional eigenvariates which may hold useful information representing
effective connectivity.

While our analysis has focussed on hypothesis tests examining individual SNPs, an alternative is to cluster
the SNPs using hierarchical clustering and fit the LME and FSRmodels to the first genetic principal component
scores of each cluster. In supplementary analyses not reported in Section 4we have clustered the top 100 SNPs
into 22 clusters based on hierarchical clustering to facilitate dimension reduction prior to relating genetics to
effective brain connectivity. After applying SNP clustering and relating the first principal component score of
the SNP clusters to effective connectivity network edges both LME and FSR find simultaneously a rank 1
association between a specific cluster of 12 SNPs (rs2465362, kgp9051645, kgp5238984, kgp9055011,
kgp3071374, rs9388153, rs2860410, kgp22784175, rs7335304, rs9317920, kgp12216228, rs1935110) and the self
connection PCC→ PCC (p-value = 3.52 × 10−4, q-value = 0.0502 for LME; p-value = 3.05 × 10−4, q-value = 0.0585
FSR). This potential association between the resting-state activity of the posterior cingulate cortex and genetics
is further supported by our results reported in Table 5where individual associations between three SNPs in this
cluster and PCC→ PCC are also reported in the high ranking intersection set obtained from combining LMEand
FSR.

The neuropathological mechanisms that underly the effective connectivity observed in this study could be
related to the usual hallmarks of AD and MCI. For example, amyloid plaques, neurofibrillary tangles and/or
structural neurodegenerationmayunderly effective connectivity aswell. Therefore, our current results suggest
follow-up studies incorporatingmeasures of amyloid beta and tau (asmeasured in CSF or by PET imaging) and
measures of brain structure (as measured by high resolution anatomical and diffusion tensor imaging) and
examination of the relationship between these measures and the genetic variables suggested by this analysis.
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