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Abstract

It remains unclear to what extent cerebrovascular burden relates to amyloid beta

(Aβ) deposition, neurodegeneration, and cognitive dysfunction in mixed disease pop-

ulations with small vessel disease and Alzheimer’s disease (AD) pathology. In 120

subjects, we investigated the association of vascular burden (whitematter hyperinten-

sity [WMH] volumes) with cognition. Using mediation analyses, we tested the indirect

effects ofWMH on cognition via Aβ deposition (18F-AV45 positron emission tomogra-

phy [PET]) and neurodegeneration (cortical thickness or 18F fluorodeoxyglucose PET)

in AD signature regions. We observed that increased total WMH volume was asso-

ciated with poorer performance in all tested cognitive domains, with the strongest

effects observed for semantic fluency. These relationships were mediated mainly via

cortical thinning, particularly of the temporal lobe, and to a lesser extent serially medi-

ated via Aβ and cortical thinning of AD signature regions.WMH volumes differentially

impacted cognition depending on lobar location and Aβ status. In summary, our study

suggests mainly an amyloid-independent pathway in which vascular burden affects

cognitive function via localized neurodegeneration.

KEYWORDS

Alzheimer’s disease, amyloid, biomarker, cognition, cortical atrophy, glucose metabolism,
neurodegeneration, small vessel disease, vascular, white matter disease, white matter
hyperintensities

Highlights

∙ Alzheimer’s disease often co-exists with vascular pathology.

∙ Westudied a unique cohort enriched for highwhitematter hyperintensities (WMH).

∙ High WMH related to cognitive impairment of semantic fluency and executive

function.

∙ This relationship was mediated via temporo-parietal atrophy rather than

metabolism.

∙ This relationship was, to lesser extent, serially mediated via amyloid beta and

atrophy.

1 NARRATIVE

1.1 Contextual background

Cerebral small vessel disease (SVD) is a group of diseases that affects

small arteries, venules, and capillaries of the brain.1 Magnetic res-

onance imaging (MRI)-based markers of SVD include white matter

hyperintensities (WMH)and lacunesof presumedvascular origin, cere-

bral microbleeds, infarcts, and enlarged perivascular spaces (PVS).

While brain microbleeds and infarcts are associated with a higher risk

of incident stroke and death, both WMH and PVS burden are associ-

ated with an increased risk of stroke, death, and dementia.2 Notably,
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these lesions often co-exist with amyloid beta (Aβ) and tau neurofib-

rillary tangles, the two pathological hallmarks of Alzheimer’s disease

(AD).3,4 In fact,>70%ofADdementia cases at autopsy display vascular

co-pathology.3 Yet, themajority of large cohort studies in AD currently

excluded subjectswith considerable cerebrovascular burden.5 As such,

the AD research field is recognizing the urgent need to investigate

mixed cohorts exhibiting both AD- and SVD-related pathologies.

WMHare themost studiedneuroimagingbiomarker of SVD.1 WMH

are commonly observed in the aging population and are associated

with future cognitive decline.6–8 However, studies assessing the rela-

tionship between WMH and cognition in AD remain conflicted.9,10

This may be related to the heterogeneity in AD cohorts, disease time

course, and the multifactorial etiology of WMH. At a microscopic

(pathological) level, WMH of presumed vascular origin are thought to

largely reflect demyelination, axonal loss, gliosis, and vasogenic edema

in the periventricular regions, and are often linked to arteriolar dis-

ease or venous collagenosis of the deep medullary veins.11,12 At a

macroscopic (neuroimaging) level, WMH are often linked to neuronal

loss/neurodegeneration detected as glucose hypometabolism on 18F

fluorodeoxyglucose (FDG) positron emission tomography (PET)13,14 or

reduced cortical volumes on MRI.15–17 In fact, cortical atrophy in AD-

vulnerable regions has been proposed tomediate the effect ofWMHon

cognition,18–20 suggesting thatWMH lead to cognitive impairment via

their effect on neurodegeneration. However, prior cohorts were lim-

ited in the extent ofWMH burden or did not examine AD pathology as

amediator in themodel.

A potential explanation for the mediating role of neurodegenera-

tion in the WMH–cognition relationship may be that WMH co-exist

and/or interact with Aβ. That is, WMHmay impact neurodegeneration

directly as well as via promoting Aβ accumulation which, in turn, may

drive downstream neurodegeneration and cognitive impairment.21

Accordingly, some have argued that small vessel ischemic damage and

associated impaired oxygen/glucose deliverymay be a starting point of

a cascade leading to Aβ aggregation, resulting in further neurodegen-

eration and cognitive decline, both in humans and animals.22–25 The

Dominantly Inherited Alzheimer Network (DIAN) study further sup-

ported an early WMH–Aβ relationship, with regional WMH increases

>20 years prior to the symptom onset in individuals with definite

preclinical AD.26

Yet, similar to the association between WMH and cognition, the

reported association between WMH and Aβ remains conflicted.27

Some observed no relationship28,29 and others proposed that initial

rises in Aβ or tau contribute toWMdamage rather than the other way

around.30 Indeed, apart from an SVD-related ischemic origin, WMH

may also result from Wallerian-type degeneration or compromised

perfusion secondary toAβ/tau31,32 contributing todifferent study find-
ings. It is more likely, however, that AD and vascular pathologies act

in a vicious circle of which the starting point remains unclear; for

example, hypoperfusion/hypoxia triggers increasedprotein deposition,

in turn promoting inflammatory processes and blood–brain barrier

breakdown, and leading to exacerbated vascular damage.27 Another

interesting school of thought proposes that the WMH–Aβ relation-

ship is region dependent. For instance, in a subacute ischemic stroke

RESEARCH INCONTEXT

1. Systematic Review: Neuroimaging studies involving

white matter hyperintensity (WMH) burden, amyloid

beta (Aβ), neurodegeneration, and cognitive assessments

in Alzheimer’s disease (AD) were reviewed. Despite the

frequent co-existence of cerebrovascular injury and AD,

studies investigating mixed populations with significant

WMHburden and Aβ are scarce.
2. Interpretation: We assessed the relationship between

WMH burden and cognition in a mixed cohort spanning

low to severeWMH and Aβ pathology. We then assessed

whether the WMH–cognition relationship was mediated

by Aβ (18F-AV45 positron emission tomography [PET])

and neurodegeneration (cortical thickness or 18F fluo-

rodeoxyglucose PET). We found that increased WMH

burden negatively affects cognitive performance, which

was mainly mediated via cortical thinning, particularly of

the temporal lobe, and to a lesser extent seriallymediated

via Aβ and cortical thinning of AD signature regions.

3. Future Directions: Future studies that include longi-

tudinal measurements of cerebrovascular burden, Aβ,
neurodegeneration, and cognition are needed to further

establish the directionality of the interplay among these

biomarkers.

study, increased Aβ was detected only in the unilateral peri-infarct

region, suggesting that ischemic injury may relate to focal impaired

Aβ clearance.33 Additionally, locations ofWM injury also matter, as Aβ
was observed to be more closely linked to parietal/posterior-situated

WMH.34

In summary, our understanding of the interrelationship among

WMH, Aβ, neurodegeneration, and cognitive impairment remains lim-

ited. Notably, such research is particularly lacking in subjects with

evidence of significant WMH burden in addition to AD pathology.

Importantly, to our knowledge, no studies have yet comprehensively

studied the potential mediating roles of Aβ, glucose metabolism, and

atrophy in the vascular contributions to cognitive impairment, particu-

larly in subjects with more extreme endophenotypes. To address these

limitations, our objectives were twofold: To investigate (1) whether

vascular burden, quantified as total or lobar periventricular WMH

volume, is associated with cognition; and (2) the potential roles of

Aβ, glucose metabolism, and/or cortical atrophy as a mediator in the

WMH–cognition relationship, in aWMH-enriched cohort.We hypoth-

esized a relationship betweenWMHvolume and cognitive impairment

that is (1) primarily mediated by neurodegeneration and (2) to a lesser

extent sequentiallymediated byAβ and neurodegeneration. Key to our
approach is the inclusion of cognitively normal elderly and a unique

cohort of “real-world” patients capturing a wide spectrum of mild to

severeWMdisease, Aβ pathology, and cognitive impairment, as well as
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TABLE 1 Demographics

Variables Low–moderateWMH (N= 60) Moderate–severeWMHc (N= 60)

Age (years) 74.01± 5.47 76.85± 8.01*

Sexmale,N (%) 25 (42%) 34 (57%)

Education (years) 16.13± 2.73 14.25± 2.66**

Race and ethnicity,N (%)

Non-HispanicWhite 49 (82%) 58 (97%)

Hispanic 5 (8%) 0 (0%)

Non-Hispanic Black 3 (5%) 1 (2%)

Non-Hispanic Asian 1 (2%) 1 (2%)

Other 2 (3%) 0 (0%)

Pulse pressure (mmHg) 61.32± 14.35 (N= 47) 62.32± 16.02 (N= 59)

Hypertension,a N (%) 28 (47%) 35 (58%)

Bodymass index 27.65± 5.89 27.36± 5.19

Smoking history,N (%) 32 (53%) 26 (43%)

18F-AV45 SUVRwhole cereb
b

Non-PVC 0.98± 0.18 1.13± 0.23**

PVC 0.75± 0.35 1.05± 0.46**

Aβ positive,N (%) 13 (22%) 29 (48%)

18F-FDG SUVRpons
b

Non-PVC 1.42± 0.13 1.41± 0.16 (N= 57)

PVC 2.30± 0.28 2.26± 0.36 (N= 57)

Cortical thickness (global, mm) 2.33± 0.08 2.26± 0.10**

TotalWMH (cc) 10.61± 12.89 34.15± 18.80**

Free water (total inWMH) 0.32± 0.05 (N= 58) 0.51± 0.05** (N= 59)

Semantic fluency 20.95± 5.57 12.8± 5.93**

TMT-A (seconds) 36.30± 11.11 57.62± 32.81**

TMT-B (seconds) 95.78± 49.91 186.31± 84.79** (N= 59)

BNT 27.67± 2.14 23.72± 5.66** (N= 54)

FAQ 0.5± 1.23 6.36± 8.07** (N= 50)

MMSE 28.88± 1.44 27.08± 2.46**

MoCA 25.62± 2.50 22.42± 4.39**

Note: All values are indicated asmean± standard deviation.

Abbreviations: Aβ, amyloid beta; BNT, Boston Naming Test; FAQ Functional Assessment Questionnaire; MITNEC-C6, C6 project of Medical Imaging Trial

Network of Canada; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; PVC, partial volume correction; SUVR, standardized

uptake value ratio; TMT, Trail Making Test;WMH, whitematter hyperintensity.
aHypertension was defined as systolic blood pressure≥ 140mmHg and/or diastolic blood pressure≥ 90mmHg.
bComposite 18F-FDG and 18F-AV45 SUVRwere based on Landau et al.[73] and Jack et al.[74]

cMITNEC-C6 subjects were recruited from stroke-prevention (N= 17) and dementia clinics (N= 43).

*p= .03, **p< .001 based on a t-test.

the use of optimized segmentation tools to determine WMH volumes

and cortical atrophy in these populations.

1.2 Study design and main results

Our study involved a unique WMH-enriched cohort (N = 120 partici-

pants) that captured the spectrum of low-to-extensive WMH burden

and Aβ pathology (Table 1). Participants covered the spectrum of cog-

nitively normal to early AD dementia. Eighty-one out of 120 subjects

showed high confluent periventricular WMH volumes (>10 cm335).

Thirty-five percent were Aβ positive based on a meta–region of

interest (meta-ROI) covering frontal, temporal, parietal, and cingulate

regions associated with Aβ deposition in AD.36

First, we investigated the association between total WMH volume

and cognition using regression analyses. We observed that greater

WMH volumewas associated with poorer cognitive performance, par-

ticularly of semantic fluency and executive function (Figure 1). Second,
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F IGURE 1 Relationship betweenWMHvolumes and cognition. Linear regressions between totalWMHvolumes and cognitive tests scores
across all subjects. Confidence intervals (99%CI) are bootstrappedwith 5000 replications and adjusted for age, sex, and education. FAQ,
Functional Assessment Questionnaire; MoCA,Montreal Cognitive Assessment; TMT, Trail Making Test (part A or B);WMH, white matter
hyperintensity

F IGURE 2 Mediation analyses of Aβ and atrophy on theWMH–cognition relationship. Left: Theoretical serial mediationmodel indicating the
independent variable (X), dependent variable (Y), and twomediators (M1,M2). Middle/right: Aβ SUVR and atrophy aremediating the association
of totalWMHvolumes with semantic fluency (middle) and executive function (right). Thick lines are part of a significant pathway, whereas dashed
lines represent non-significant pathways. All mediators used an AD signaturemeta-ROI.36,37 Values are indicated asmean± SE and 99%CI are
bootstrappedwith 5000 replications. Path c represents the total (direct+ indirect) effect adjusted only for covariates (age, sex, education),
whereas c’ represents the direct effect adjusted for covariates and indirect effects. Aβ, amyloid beta; AD, Alzheimer’s disease; CI, confidence
interval; ROI, region of interest; SE, standard error; SUVR, standardized uptake value ratio; TMT-B, Trail Making Test part-B;WMH, white matter
hyperintensity

we investigated whether this association between total WMH volume

and cognition was mediated by cortical Aβ and atrophy using medi-

ation analyses. We observed that the WMH–cognition relationship

was strongly mediated by atrophy (assessed by cortical thickness in

anAD signaturemeta-ROI consisting of temporo-parietal regions from

structural MRI37; Figure 2, Figure S1 in supporting information; blue

path). In other words, the relationship between WMH and cognition

became non-significant when additionally adjusting for cortical atro-

phy. Besides the mediation through atrophy, we also observed a sig-

nificant serial mediation through Aβ and atrophy (Figure 2; Figure S1;

green path) although this path’s effect size was smaller compared to

the path through atrophy alone. No interaction effects betweenWMH

and Aβ on atrophy or cognition were detected in our cohort. Taken

together, our findings support the idea that the WMH effects on cog-

nitive impairment may be mainly additive to the Aβ pathway, while

not being completely independent of it. These results were confirmed

by using free water in WMH regions38,39 as a novel additional (diffu-

sion MRI-based) biomarker of cerebrovascular burden (Figure S2 in

supporting information).

While both cortical thinning and 18F-FDG PET are considered

metrics of neuronal loss/neurodegeneration (e.g., amyloid/tau/

neurodegeneration [A/T/N] framework40), we did not find a direct

mediating effect of WMH on cognition through glucose metabolism

(assessed in an AD-signature meta-ROI consisting of temporo-parietal
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F IGURE 3 Temporal lobe-focused analyses. A, Vertex-wise regression analysis of totalWMHvolumes with cortical thickness (left) and
18F-AV45 Aβ PET (right) across all subjects. Blue and red represent negative and positive associations respectively. Bothmodalities showed the
strongest association withWMHvolumes in the temporal lobe, which was then used as ameta-ROI in subsequent mediation analyses, see (B).
Results are displayed at P< .01 afterMonte Carlo simulations with 5000 iterations and two-tailed cluster-wise correction for multiple
comparisons. B, Mediationmodels showing which paths are significantly mediating the association ofWMHvolumes with semantic fluency (left)
and executive function (right). Thick lines are part of a significant pathway, whereas dashed lines represent non-significant pathways. All mediators
used a temporal meta-ROI. Values are indicated asmean± SE and 99%CI are bootstrappedwith 5000 replications. Path c represents the total
(direct+ indirect) effect adjusted only for covariates, whereas c’ represents the direct effect adjusted for covariates and indirect effects. Aβ,
amyloid beta; CI, confidence interval; PET, positron emission tomography; ROI, region of interest; SE, standard error; TMT-B, Trail Making Test
part-B;WMH, white matter hyperintensity volumes

regions from 18F-FDG PET36; Figure S3A in supporting informa-

tion). This suggests that atrophy rather than hypometabolism in

temporo-parietal regionsmediates theWMH–cognition relationship.

Last, we conducted a more regional-focused approach. The tem-

poral lobe was selected based on vertex-wise regression analyses

showing its relevance in relation toWMH,atrophy, andAβ in our cohort
(Figure 3A), in linewith priorwork.19–21 Thus,we performedmediation

analysis between WMH and cognition using Aβ and atrophy as medi-

ators evaluated in the temporal lobe. Generally, we observed higher

effect sizes of themediating paths compared to themodel based on the

AD signature regions (Figure 3B; Figure S4 in supporting information),

highlighting a potential important role for the temporal lobe in relation

tomixed AD and SVD pathologies.

1.3 Study conclusions, disease implications, and
therapeutic opportunities

1.3.1 Conclusions and implications

In a unique cohort with a spectrum of low-to-extensive WMH burden

and Aβ pathology, we observed that WMH were related to cognitive

impairment mainly via pathways that do not involve Aβ accumulation,

particularly via atrophy. This suggests that vascular correlates of cog-

nitive impairment are, at least in part, the result of Aβ-independent
mechanisms that affect cortical atrophy. Thismediating role of atrophy

is in linewith prior research showing thatWMHcontributed to atrophy

beyond age and AD-related effects, in turn affecting cognition.15,18–20
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A potential explanation for this mediating role by neurodegeneration

in the WMH–cognition relationship may be that WM lesions exert

widespread neurodegenerative effects on the gray matter, specifically

by damaging WM tracts that subserve cortical regions, subsequently

affecting cognition.41 Our finding was also in line with previously

reported lower degrees of AD pathology in the presence of vascular

pathology for the same level of cognitive impairment42 and substan-

tial increases in dementia risk post-stroke.43 The (anterior) temporal

lobe seemed particularly vulnerable to vascular-related atrophy in our

WMH-enriched cohort, potentially due to its susceptibility to bothAD-

and ischemic-related processes44,45 and WMH crossing its connect-

ing tracts, such as the uncinate fasciculus running between frontal and

anterior temporal lobe.46

Unlike previous studies, we used PET-based biomarkers of Aβ and
glucose metabolism in addition to atrophy as potential mediators in

the model. This allowed us to investigate whether the effects of WMH

on cognition were indirectly promoted by Aβ, atrophy, and/or glucose
metabolism. This resulted in four interesting observations. First, we

detected amodest relationship betweenWMHand cortical Aβ (mostly

driven by Aβ-positive subjects in our cohort), highlighting an additional
role for Aβ in the WMH–atrophy–cognition relationship. This finding

corroborated the idea that Aβ accumulation may partially stem from

a vascular etiology where SVD exacerbates AD-related pathology by

inducing neuroinflammatory responses and/or reducing the clearance

of toxic proteins from the brain.12,47 This notion may also be sup-

ported by our finding that WMH are also related to Aβ deposition

within regions not typically associated with the early AD-related Aβ
accumulation like the temporal cortex.48 However, due to the cross-

sectional nature of this study, we do not exclude the possibility that

WMHare a consequence ofWallerian-type degeneration secondary to

AD-related pathology.31 Nevertheless, our observations on the exist-

ing WMH–Aβ relationship, while being supported by some,6,26,49,50

also differed from others claiming both markers are independent.28,29

The lack of a clear mechanistic relationship between WMH and Aβ
remains puzzling.23 A second interesting observation of our study was

that, while an association between WMH and Aβ may be indicative of

an interaction effect on neurodegeneration or cognition, this was not

observed in our cohort and is in line with most of the literature.29,51

Third, our study supported amodest association between Aβ and atro-
phy; however, the significance of the Aβ–atrophy pathway is less clear.
Previous literature remains conflicted on the relationship between Aβ
and graymatter volume.52 Some studies supported a negative associa-

tionmainly confined to the temporal lobe in predominant symptomatic

cohorts21 while others reported both positive53 or negative48,54 asso-

ciations in cognitively normal or mild impairment. Nevertheless, we

also predict that tau pathology could play an important mediating role

in this relationship (see section 1.4).25 A final interesting observation

of our study was that, with regard to glucose metabolism in temporo-

parietal regions, we did not find a similar mediating effect on the

WMH–cognition relationship aswith atrophy.Moreover, 18F-FDGPET

was only indirectly associatedwithWMHvia global Aβ (and potentially
via localized tau, see section 1.4). These findings may suggest that 18F-

FDG-based hypometabolism of the temporo-parietal cortex is more

closely related to AD than SVD-related processes of neurodegener-

ation, and supports earlier work that cortical thickness and 18F-FDG

PET are not interchangeable measures.55,56 Future studies applying

theA/T/N frameworkmay thus benefit from investigating both atrophy

andmetabolism asmarkers of neurodegeneration (“N”).40

1.3.2 Therapeutic opportunities

To date, the role of SVD is underrepresented in AD clinical trials. We

and others have shown that subjects with elevatedWMH burden may

represent an at-risk group for increased neurodegeneration. Thus, a

key therapeutic or preventative approach may be reducing or slowing

down the effects of SVD already from mid-life (for instance through

targeting education57 or vascular risk factors42), thus potentially lim-

iting additional neuronal loss and exacerbation of AD pathology later

in life.6 With regard to clinical trials in preclinical or early AD cohorts,

our findings advocate for a multi-agent approach as WMH had a sig-

nificant contribution to neurodegeneration thatwas independent from

Aβ burden. Our results further suggest that WMH may impact cog-

nitive domains independently from Aβ but in a location-dependent

manner (Table S1 in supporting information).58 For example, cognitive

correlates of frontal and insular WMH were confined to the Aβ-
negative subgroup, while temporo-parietal-cingulateWMHcorrelated

with cognition also in the Aβ-positive subgroup. Differential effects of
SVD and AD-related pathologies on cognition may thus be accounted

for when evaluating cognitive outcomes as the primary trial endpoint,

depending on the population and mechanism being targeted by the

therapeutic.

1.4 Limitations, unanswered questions, and
future directions

A limitation of our study is the emphasis on cross-sectional relation-

ships between various imaging signatures and cognition. While our

path analysis involvedWMH→Aβ, we also tested its opposite direction.
Indeed, besides a vascular etiology, ADpathologymay arisewell before

vascular dysfunction (or develop in parallel) and increaseWMHburden

by accelerating processes that are related to inflammation, oxida-

tive stress, Wallerian degeneration, or cerebral amyloid angiopathy.32

Nevertheless, both our models resulted in similar conclusions, that

is, the indirect effects of Aβ and WMH through each other on atro-

phy and cognition had lower effect sizes compared to the effect of

either Aβ or WMH alone. A valuable future research direction would

be to investigate vascular burden at baseline and longitudinally in rela-

tion to Aβ accumulation over time in a large preclinical population.

This was recently investigated in ADNI data50 but could be repeated

in a community-dwelling cohort (with higher vascular co-pathology)

or early-onset AD. Nevertheless, a mechanistic understanding of the

causal relationship and thorough understanding of impaired Aβ clear-
ance pathways may likely require animal model studies reflecting

different aspects of human SVDsuch asWMHandperipheral oxidative

stress.
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A second limitation of our study involves the relatively small sam-

ple size (N = 120), due in part to the recruitment of a unique cohort

of “real-world” patients who demonstrated moderate-to-severe WM

disease. Therefore, we set the bootstrapping confidence interval to

99% while also limiting the number of mediation analyses by investi-

gating (1) all subjects combined and (2) using total (rather than lobar)

WMH volumes. In addition, our study involved the inclusion of pre-

dominantly non-Hispanic White individuals. A recent study by Rizvi

et al.15 observed that WMH were related to AD-typical patterns of

neurodegeneration, particularly among non-Hispanic Black individu-

als. Similarly, a strong association between WMH and Aβ has been

observed among Black elderly.59 Our future work will involve various

vascular-related risk factors for AD among diverse ethnic groups.

While we examined a selection of common markers of SVD (WMH

volume and free water) and AD (Aβ, glucose metabolism, and cortical

thickness in AD-signature regions), additional assays that encompass

a broader characterization of SVD/AD will be required to fully under-

stand their potential additive, synergistic, or sequential effects on

neurodegeneration and cognitive impairment. One important direc-

tion to investigate is the differential effects of various SVD markers

(e.g., WMH, enlarged PVS, lacunes, or microbleeds) on cognition in

mixed populations, both at the macro- and microstructural (e.g., con-

nectomics) level, which each may reflect different (vascular-related)

disease processes/stages.60 In this regard, high-resolution (7T) MRI

may be beneficial to reveal links between AD-related processes and

subtle vascular damage on the microscopic level in vivo (e.g., assessed

via enlarged PVS or microbleeds). Another useful aspect to study

would be the relative contributions of AD and SVD markers on cog-

nition in different diagnostic subgroups (preclinical, prodromal, and

AD dementia). Indeed, clear effects of WMH on neurodegeneration

in AD dementia groups may seem absent due to inter-subject het-

erogeneity, lower sample sizes, exclusion of subjects with vascular

co-pathology, and/or relative higher contributions of tau pathology.25

Future work will repeat our mediation analyses in an independent

dataset by adding diffusion MRI-based connectivity metrics and tau

pathology as mediators.

2 CONSOLIDATED DESCRIPTION OF METHODS
AND RESULTS

The contribution ofWMH to cognitive deficits has been thus far poorly

understood. Insofar, most large AD/dementia cohort studies excluded

patients with a considerable amount of vascular co-pathology asmixed

disease. As such, potential contributions of WMH to cognitive impair-

ment are often not well addressed in these “clean” cases of probable

AD.5 In a WMH-enriched cohort (totaling N = 120; Table 1), our first

step was to investigateWMH volume in relation to different cognitive

domains. We observed that greater total WMH volume was associ-

ated with poorer performance on the following assessments across all

subjects in rank order of effect size: semantic fluency, executive func-

tion, global function, processing speed, and global cognition (Figure 1).

Further exploratory analyses with regional (lobar)WMH revealed that

regional WMH may differentially affect cognition and depend on the

Aβ subgroup. Specifically, cognitive correlates of frontal and insular

WMH volumes were significant particularly in Aβ-negative subjects,

whereas cognitive correlates of temporal and parietal/cingulate WMH

volumes weremore prominent in the Aβ-positive subjects (Table S1).
Based on the significant WMH–cognition relationship, our sec-

ond step was to investigate the potential mediating roles of Aβ and

neurodegeneration within this WMH–cognition relationship. Aβ load
was quantified through 18F-AV45 standardized uptake value ratio

(SUVR) maps in the global cortical AD signature.36 Neurodegener-

ation was quantified through atrophy (cortical thinning) or glucose

hypometabolism (reduced 18F-FDG SUVR) in their respective, pre-

viously validated AD-signature regions.36,37 We hypothesized that a

serial mediation runs fromWMH→Aβ49,50→ neurodegeneration21,61

→ cognition.52 Importantly, this model allowed us not only to investi-

gate the indirect effects of WMH volumes on cognition through the

hypothesized serial path but also through the predictor and each of

the mediators separately while adjusting for the remaining variables

in the model. First, using temporo-parietal atrophy as a marker of

neurodegeneration, mediation analysis revealed that cortical atro-

phy alone explained most of the indirect effect between WMH and

cognition (i.e., WMH→ atrophy→ cognition), while the serial media-

tion through Aβ and atrophy explained a smaller part of the indirect

effect (Figure 2). The direct effect of WMH volume on cognition

(i.e., after controlling for the mediators and covariates) became non-

significant, except for processing speed, for which a significant direct

effect remained. Interestingly, while we and others showed that both

semantic fluency and executive function are closely linked toWMH,18

themediation paths weremore profound for semantic fluency. Indeed,

semantic fluency is sustained primarily by the (left) temporal lobe, with

language processing being a critical component for this task, while

executive function is thought to be predominantly frontal-mediated

(not being a region-of-focus in the current study based on its lim-

ited atrophy in early AD62). Exploratory path analyses of WMH with

global function and global cognition via Aβ and atrophy are reported

in Figure S1. Second, using temporo-parietal glucose hypometabolism

as a marker of neurodegeneration, we observed that, in contrast to

atrophy, metabolism alone did not mediate the WMH–cognition rela-

tionship. Instead, there was a significant single path between WMH

and semantic fluency that ran serially via Aβ and hypometabolism

(Figure S3). One potential explanation for the lack of a direct WMH–

metabolism relationship may be that WMH are more closely related

to frontal rather than temporo-parietal hypometabolism14 (the frontal

lobe was not a region of focus in our study).

Mediation analyses were repeated using a temporal meta-ROI,

as this region showed the largest effect sizes in the association of

WMH with both thickness and Aβ based on vertex-wise regressions

(Figure 3A). Generally, we found higher effect sizes of the mediat-

ing paths compared to the model based on AD-signature meta-ROIs

(Figure 3B; Figure S4), suggesting an important role for the temporal

lobe in the vascular–cognition relationship.
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To further validate our findings, we performed two sensitivity anal-

yses. First, as Aβ accumulation may start prior to the appearance of

WMH, we tested a post hoc mediation model using Aβ as the inde-

pendent variable and WMH as the mediator (Figure S5 in supporting

information). Similar to our main results, the single mediation through

atrophy had a higher effect size than the serial mediation through

WMH and atrophy, suggesting that Aβ drives atrophy downstream

mainly through mechanisms different from WMH (e.g., tau pathol-

ogy). A second sensitivity analysis was based on the notion that the

characterization and measurement of vascular burden are not limited

to WMH volume.60 Therefore, WMH volume was substituted in the

model by free water, a novel SVD-related marker of microstructural

changes and cognitive impairment derived from advanced tensormod-

eling of diffusion-weighted MRI data.38,39 We observed a significant

relationship between higher free water in WM lesions and cogni-

tive impairment (Figure S2). Similar to WMH volume, we observed

this relationship to be mediated by atrophy and serially mediated by

Aβ and atrophy. The main difference was that free water remained

significantly associated with all tested cognitive domains even after

adjustment for covariates and mediators (except for Montreal Cogni-

tive Assessment [MoCA]); thus, freewaterwithinWM lesionsmay be a

more sensitive marker of some cognitive functions compared toWMH

volumes.

3 DETAILED METHODS & RESULTS

3.1 Methods

3.1.1 Participants

The study included 120 subjects in total. Sixty subjects were recruited

in a multicenter prospective observational study through seven par-

ticipating sites as part of the C6 project in the Medical Imaging Trial

Network of Canada (MITNEC-C6). They were enrolled from stroke-

prevention clinics (i.e., transient ischemic attacks or minor subcortical

lacunar infarcts) anddementia clinics andpresentedwithmoderate-to-

severe confluent periventricular WMH burden quantified as Fazekas

score > 2 and high volumes (> 10 cm3, considered to be clini-

cally relevant;35 median (interquartile range [IQR]): 30.5 (22.1) cm3).

Detailed selection criteria are described in Table S2 in supporting

information and in Zukotynski et al.63 In addition, the study included

60 cognitively normal and mild cognitive impairment (MCI) subjects

from the baseline ADNI-2 database with low-to-moderate WMH

(median [IQR]: 5.8 [9.3] cm3). Inclusion criteria for ADNI included

age ≥ 60 years, education > 8 years, Mini-Mental State Examination

(MMSE)≥20, andWMHvolumes>1000mm3. Both cohortswerewell

matched for vascular risk factors including hypertension, pulse pres-

sure, bodymass index, sex, and smoking status. Detailed demographics

are reported in Table 1. The institutional review boards at all partic-

ipating institutions approved this study and all participants provided

written informed consent.

3.1.2 Assessments

A battery of cognitive tests was administered including: processing

speed (Trail Making Test part-A [TMT-A], N = 120); executive function

(assessed as TrailMaking Test [i] part-B [TMT-B], [ii] part-Bminus part-

A [TMT B-A], N = 119); semantic fluency (animal naming, N = 120);

and language (Boston Naming Test [BNT], N = 120). Exploratory anal-

yses included global cognition (MoCA, N = 120) and global function

(Functional Assessment Questionnaire [FAQ], N = 110). Individual

assessments are described in Table S3 in supporting information.

3.1.3 Neuroimaging

Each subject underwent a 3T MRI scan, with structural sequences

including 3D T1-weighted (T1w) and fluid-attenuated inversion recov-

ery (FLAIR). Subjects also underwent diffusion MRI (N = 117) using

standardized acquisition protocols across vendor platforms that were

compatible with the ADNI-2 diffusion-weighted MRI protocol. Acqui-

sition parameters are described in Table S4 in supporting information

and followed a common imaging protocol.64 Each subject also under-

went 18F-AV45 amyloid-PET (N = 120) and 18F-FDG PET (N = 117).

Consistency of PET data between participating sites was maintained

by use of the main ADNI-2 PET protocol (see http://adni.loni.usc.edu/

wp-content/uploads/2008/07/adni2-proceduresmanual.pdf). Last, all

imaging data was transferred to a central site for quality check.

ADNI was launched in 2003 as a public–private partnership. The

primary goal of ADNI was to test whether MRI, PET, other biological

markers, and clinical data can be combined tomeasure the progression

ofMCI/AD (see www.adni-info.org).

3.1.4 MRI processing

Atrophy was quantified as reduced cortical thickness (cortical thin-

ning), extracted based on T1w images using FreeSurfer v6.0. We used

a modified FreeSurfer workflow for patients with WMH burden by

integrating enhanced skull stripping and lesion masks, to avoid under-

estimation of the intracranial volume (ICV) and mis-segmentation of

the WM.65 An “AD-signature” thickness meta-ROI was used based

on surface-weighted thickness averages of the entorhinal, fusiform,

parahippocampal, mid/inferior temporal, and inferior parietal gyri.37

To quantify WMH volumes, we used our HyperMapper tool66

(https://hypermapp3r.readthedocs.io/), a novel Bayesian 3D convolu-

tional neural network (CNN) with a U-Net architecture that automat-

ically segments WMH, provides uncertainty estimates of the segmen-

tation output for quality control, and is robust to changes in acquisition

protocols. TheCNNwas trained using 432 subjects recruited from four

multisite imaging studies. Subcortical lacunar infarcts were masked

beforeWMHsegmentation.67 ICVwasextractedusingourCNN-based

“iCVMapper” tool, which was shown to be more robust compared

to other state-of-the-art skull-stripping methods.68 Vascular burden

http://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-proceduresmanual.pdf
http://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-proceduresmanual.pdf
http://www.adni-info.org
https://hypermapp3r.readthedocs.io/
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F IGURE 4 Volumetric delineations. Example of brain segmentation for one subject (age range 60 to 70 years, male) andWMHheatmap across
subjects (outer right column). Left to right: T1-weightedMRI with delineation of stroke region; FLAIRwith the stroke regionmasked out; FLAIR
withWMHdelineations in yellow color;WM lobe segmentation (pink: frontal, brown: temporal, light green: parietal, purple: occipital; cyan: insula;
dark green: cingulate);WMH volume distribution “heatmap” across theMITNEC-C6 subjects (% of subjects withWMHper voxel) overlayed on the
ADNI template. ADNI, Alzheimer’s Disease Neuroimaging Initiative; FLAIR, fluid-attenuated inversion recovery; MITNEC-C6, C6 project of
Medical Imaging Trial Network of Canada;MRI, magnetic resonance imaging;WMH, white matter hyperintensity

was conceptualized and quantified as WMH normalized by total brain

volume (i.e.,WMH volume divided by ICV) and log-transformed.

Lobar WMH volumes were determined by intersecting the total

WMHmaskandeach individual lobarWMmask, as delineated in native

T1w MRI space based on the Desikan–Killiany–Tourville (DKT) atlas

of FreeSurfer. Lobar WM masks included the frontal, parietal, tempo-

ral, occipital, insula, and cingulate lobes. Figure 4 shows examples of

our structural MRI scans, WMH and lobar delineations, as well as a

heatmap ofWMHvolumes.

Eddy current and motion-corrected diffusion MRI data were fit-

ted to a two-compartment diffusion model in each voxel, separating

the free water from the WM tissue compartment.39 Specifically, a

free water map represents the fractional volume (ranging 0 to 1) of

freely diffusing extracellular water with a fixed isotropic diffusivity of

3 × 10−3 mm2/s (the diffusion coefficient of water at body tempera-

ture). More details on our free water estimation are reported in Ottoy

et al.69

3.1.5 PET image processing

PET images were processed using PetSurfer v6.0.70 This included

motion correction of the individual PET frames to the first frame

and averaging to obtain one static frame, co-registration to T1w MRI,

smoothing to a common Gaussian kernel of 8 mm across sites,71 and

generating SUVR maps. The 18F-AV45 and 18F-FDG SUVR maps were

referenced to the whole cerebellum and the pons, respectively.36 PVC

was applied using the geometric-transfer-matrix method with a point-

spread-function of 8 mm. Regional values were extracted based on

the DKT atlas in native T1w MRI space. AD-signature meta-ROIs

were created for 18F-AV45 and 18F-FDG SUVR based on Jack’s mask

(volume-weighted averageof the lateral/medial frontal, lateral parietal,

lateral temporal, and cingulate regions) and the temporo-parietal lobe,

respectively.36 Based on our Aβ-PET pipeline, 22% and 48% of ADNI

and MITNEC-C6 subjects, respectively, were considered Aβ positive

using a quantitative 18F-AV45 SUVR cut-off of 1.1. This cut-off was

derived from Gaussian mixture modelling with two components using

non-PVC SUVR in the AD-signature meta-ROI and corresponded to

the ADNI cut-off.36 The PVC-based SUVR values used in our analyses

were strongly correlated to non-PVC SUVR (cortical meta-ROI: Pear-

son R = 0.96, P < .001) as well as to SUVR based on an alternative

reference region, that is, cerebellar gray (cortical meta-ROI: Pearson

R = 0.95, P < .001). The distributions of Aβ SUVR are displayed in

Figure S6.

3.1.6 Statistical analyses

Regional statistics were performed in SPSS v24 (SPSS Inc.) and vertex-

wise statistics were performed in FreeSurfer v6.0. All metrics were

z-scored to allow for direct comparison between models across pre-

dictors and outcome measures. Values were reported as mean ±

standard error (SE) unless otherwise stated. A two-tailed t-test for

continuous variables and chi-square for categorical variables were

used to check for significant group differences in the demograph-

ics. Linear regressions were used to assess the associations between

total/lobar WMH volume (independent variable) and each of the cog-

nitive scores (dependent variable), adjusted for age, sex, and education.

Bias-corrected bootstrapping with 5000 replications and a 99% confi-

dence interval (CI) was applied to account for heteroscedasticity and
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multiple comparisons. Bias-corrected bootstrapping does not make

any assumptions about normality in the sampling distribution and

better controls type I errors.

For mediation analyses, the PROCESS macro v3.5 in SPSS was

applied. Bias-corrected bootstrapping with 5000 replications and 99%

CI was performed for estimation of (in)direct and total effects. We

hypothesized that a serial mediation runs from “total WMH → Aβ →
atrophy→ cognition.”21,49,50,52 Glucose metabolism was tested as an

additionalmediatorwithin thepathanalyses.52,61,72 Imagingmediators

were evaluated within AD-signature regions as described above. Age,

education, and sexwere used as covariates regressed on themediators

and outcome simultaneously. Note that we also tested Aβ SUVR as a

potential moderator in each of the paths within “WMH→ atrophy→

cognition” but it was found to be non-significant.

To test the regional specificity of the mediation analyses, we per-

formed additional path analysis whereby AD-signature meta-ROIs of

the imaging markers were substituted by a more focal region. This

region was selected through two separate whole-brain vertex-wise

linear regressions of total WMH volume with (1) cortical thickness

and (2) Aβ SUVR (with PVC), to identify one WMH-signature region

in relation to both atrophy and Aβ. These vertex-wise regressions

were adjusted for age, sex, education, and regression (1) was addi-

tionally adjusted for global Aβ SUVR. Multiple comparisons correction

was based on Monte-Carlo simulations with 5000 iterations, which

implemented a two-tailed cluster-forming P-value of .01.

3.2 Results

3.2.1 Associations between WMH and cognition

Greater total WMH volume was associated with poorer performance

on the following assessments across all subjects in rank order of effect

size: semantic fluency (β = –0.35 ± 0.09, P < .001), executive func-

tion (TMT-B: β = +0.34 ± 0.09, P = .001; TMT B-A: β = +0.32 ± 0.10,

P< .001), global function (β=+0.30±0.10,P= .005), processing speed

(β = +0.22 ± 0.08, P = .011), and global cognition (β = –0.17 ± 0.08,

P = .040; Figure 1). The relationship between WMH and processing

speed remained significant after outlier removal (β = +0.12 ± 0.06,

P = .030). No significant association was found for language (BNT; P

= .13).

Cognitive correlates of frontal and insular WMH volumes were sig-

nificant only in Aβ-negative subjects, whereas cognitive correlates of

temporal and parietal/cingulateWMH volumes were more prominent in

the Aβ-positive subjects (Table S1).

3.2.2 Aβ and cortical thickness mediate the effects
of WMH on cognition

AD-signature meta-ROIs

In the path analysis for semantic fluency, we found significant indirect

effects of totalWMHvolume through (1) “WMH→ atrophy→ fluency”

and (2) “WMH → Aβ → atrophy → fluency” (total of 71% mediation,

β = –0.25 ± 0.06, 99% CI [–0.41, –0.12]; Figure 2). Path (1) via atro-

phy explained most of the indirect effects (β = –0.19 ± 0.05, 99% CI

[–0.34, –0.08]). The direct effect of WMH volume on semantic fluency

(i.e., after controlling for the mediators and covariates) became non-

significant.Whenusingmetabolism insteadof atrophy in themodel, the

indirect path viaAβ (i.e., “WMH→Aβ→hypometabolism→ cognition”)

was significant when semantic fluency was the cognitive outcome, but

the overall mediation was not (Figure S3). There was no significant

serial path between metabolism and atrophy when entered together

in themodel (Figure S3B).

A similar path result was found for executive function (i.e., with cor-

tical atrophy explaining most of the indirect effect). The total indirect

effects via atrophy and Aβ corresponded to 50% (β = +0.17 ± 0.06,

99% CI [+0.04, +0.32]; Figure 2). Exploratory path analyses of global

function and global cognition through atrophy and Aβ are reported in

Figure S1. The direct effect ofWMHvolume on these cognitivemetrics

similarly becamenon-significant due tomediation.No significantmedi-

ating effects were detected for processing speed (β = +0.10 ± 0.06,

99%CI [–0.04,+0.27]).

We did not detect a moderating effect of Aβ status in either of

the paths within the “WMH → atrophy → cognition” relationship.

Conversely, this serial mediation remained significant within the Aβ
subgroups. Note that the WMH–atrophy relationship was mainly

driven by Aβ-negative subjects in our cohort, while the WMH–Aβ
relationship was mainly driven by Aβ-positive subjects (Figure S7 in

supporting information). This may suggest that an interplay between

WMH and atrophy is already present before significant AD-related

neurodegeneration has occurred, while the interplay of WMH and Aβ
may bemore profound in the presence of Aβ.

Temporal meta-ROI

Vertex-wise regression analyses showed that total WMH volume was

positively associated with Aβ load and atrophy, particularly in lateral

temporal regions (Figure 3A). As such, we performed further path anal-

ysis on cognition using a temporal meta-ROI for all mediators. The

temporal meta-ROI consisted of the inferior, superior, andmiddle tem-

poral lobe, the temporal pole, and the entorhinal cortex. When using a

temporal meta-ROI for each of the mediators, we found higher effect

sizes of the mediating paths compared to the model based on AD-

signature meta-ROIs (Figure 3B). The total indirect effects via atrophy

and Aβ corresponded to 89% for semantic fluency (β = –0.31 ± 0.06,

99% CI [–0.48, –0.16]), while the total indirect effects via atrophy and

Aβ corresponded to 62% for executive function (β=+0.21± 0.06, 99%

CI [+0.06, +0.39]). Exploratory path analyses of global function and

global cognition are reported in Figure S4. Similar to the AD-signature

regional results, the path “WMH → temporal atrophy → cognition”

explainedmost of the indirect effect.

3.2.3 Sensitivity analyses

Post hoc mediation model

A post hoc mediation model incorporated Aβ as the predictor and

WMH as the mediator: “Aβ→WMH→ atrophy→ cognition.” Rather
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than investigating the causal relationships between Aβ andWMH, this

model was applied to support our previous findings that the indirect

effects of Aβ and WMH through each other on atrophy and cognition

have a lower effect size compared to the effect of Aβ or WMH alone.

Similar significant paths (Figure S5) were found as described above for

each of the cognitive domains (see section 3.2.2). Importantly, the indi-

rect path “Aβ→ atrophy→ cognition” had a larger effect size than its

effect throughWMH(“Aβ→WMH→atrophy→ cognition”). This paral-

leled the results described above (see section 3.2.2) where the indirect

path “WMH→ atrophy→ cognition” also had a larger effect size than

its effect through Aβ (“WMH→ Aβ→ atrophy→ cognition”). This may

suggest that WMH and Aβ exert more additive and fewer sequen-

tial effects on atrophy (i.e., potentially driving further atrophy through

different underlying mechanisms). Furthermore, the Aβ-independent
effect of WMH on atrophy was greater than the WMH-independent

effect of Aβ on atrophy in both the initial and post hoc models, which

may suggest that the effect of WMH on atrophy exceeds the effect of

Aβ on atrophy in amixed cohort.

Further sensitivity analyses assessing the robustness of our vari-

ables yielded similar results using (1) non-PVC data, (2) the cerebellar

gray cortex as the reference region for 18F-AV45 SUVR, and (3) TMT

B-A instead of TMT-B as themetric for executive function (Figure S8 in

supporting information).

Free water as an alternative metric of vascular burden

Free water in the WMH regions was strongly correlated to WMH vol-

ume (R= 0.74, P< .001). SubstitutingWMH volume with free water in

the mediation analyses led to similar results, that is, with cortical atro-

phy explainingmost of the indirect effect (Figure S2). However, indirect

effects were generally lower compared to those for WMH volume.

Specifically, the total indirect effects via atrophy and Aβ corresponded
to 39% for semantic fluency (β = –0.21 ± 0.06, 95% CI [–0.33, –0.10]),

while the total indirect effects corresponded to28%for executive func-

tion (β = +0.13 ± 0.06, 95% CI [+0.02, +0.26]). The direct effect of

free water on cognition remained significant (except for MoCA; data

not shown).
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