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A B S T R A C T

Prediction of subject age from brain anatomical MRI has the potential to provide a sensitive summary of brain
changes, indicative of different neurodegenerative diseases. However, existing studies typically neglect the un-
certainty of these predictions. In this work we take into account this uncertainty by applying methods of func-
tional data analysis. We propose a penalised functional quantile regression model of age on brain structure with
cognitively normal (CN) subjects in the Alzheimer’s Disease Neuroimaging Initiative (ADNI), and use it to predict
brain age in Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD) subjects. Unlike the machine
learning approaches available in the literature of brain age prediction, which provide only point predictions, the
outcome of our model is a prediction interval for each subject.
1. Introduction

The process of brain ageing is known to be associated to a general
decline in cognitive functions and higher risk of neurodegenerative dis-
eases (Yankner et al., 2008; Denver and McClean, 2018). In some cases,
both ageing and dementia affect the same areas in the brain (Lockhart
and DeCarli, 2014). For these reasons, a deeper understanding of brain
ageing in healthy conditions could potentially improve the diagnosis of
neurodegeneration at early stages.

Neuroimaging provides a non-invasive and safe way to study brain
structure and functioning. A large part of the research in neuroimaging
data analysis has been focused on explanatory analyses aimed at
describing the relationship between the brain and some variables of in-
terest (such as neurodegenerative diseases, sex, physical activity). With
the advent of large imaging databases, a prediction-oriented focus has
been also considered, in order to detect individual differences among
subjects that could be used in clinical practice (for example Yoo et al.,
2018; Zhou et al., 2019).
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brain age, a brain-derived prediction of chronological age is considered.
In order to be integrated in clinical practice, a brain age biomarker
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a useful biomarker should predict cognitive decline better than the
chronological age itself.
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model is trained on a control group with no ongoing brain diseases in
order to avoid spurious effects due to other conditions. The same model
can be used to predict age in neurodegenerative diseases, in order to
provide a “baseline” or “normative” brain age, whose difference from the
individual chronological age (brain-predicted age difference or brainPAD
as in Cole et al., 2017) might inform about the extent of the effect
induced by the pathology.

In addition, the prediction interval approach offers another potential
binary biomarker (whether the chronological age falls within it). Since
the width of the prediction interval is different for each subject, the same
brainPAD could be interpreted in different ways in light of its location
with respect to the individual prediction limits. The joint use of point and
interval brain age predictions could therefore be employed to easily
assess departures from a typical ageing profile.

The approach developed in this paper is based on modern statistical
tools. In order to use 3D brain images without the need to summarise
information by regions of interest, a functional data analysis (FDA)
framework is adopted (Ramsay and Silverman, 2005; Horv�ath and
Kokoszka, 2012). Functional data get this name because the observation
for each statistical unit is a function2 (a curve, surface, or image). These
data are usually considered as infinite dimensional and intrinsically
continuous, even if the data collection process reduces them to a discrete
series of observed points (Ramsay and Silverman, 2005, Section 3.2). In
other words, the whole function is considered as the object of interest,
and not only the specific value observed at a discrete location for each
image. A common model in FDA is scalar-on-function regression (see
Morris, 2015; Reiss et al., 2017 for reviews), which provides an effective
way to predict a scalar quantity of interest from a functional observation,
by fitting a regression model using the whole function as a covariate. In
our context we call it scalar-on-image regression. The non-identifiability
problem (Happ et al., 2018) arising from having sample size lower
than the number of voxels for each image can be attenuated by imposing
some assumptions on the data generating process (for example
smoothness).

We obtain prediction intervals by integrating the FDA framework
with quantile regression (Koenker and Bassett, 1978; Koenker and Hal-
lock, 2001), a model that is largely used in fields such as economics
(Fitzenberger et al., 2013) and ecology (Cade and Noon, 2003) to derive
a more complete picture of the relationship between a covariate and the
response variable. Quantile regression does not model the expected value
(or a function of it) of the outcome of interest given the predictors, but
some selected quantiles of the conditional distribution (for example the
median). This model can be adapted for functional covariates: in a
functional quantile regression model we explore the linear relationship
between a certain quantile of the outcome and the 3D image. By fitting
several quantile regression models we can build the prediction intervals
given the covariates. Prediction intervals from quantile regression (or
similar models) have received some attention in recent decades (Zhou
and Portnoy, 1996; Meinshausen, 2006; Mayr et al., 2012), but not
within the framework of functional data. In addition, the scalar-on-image
quantile regression generates a regression coefficient with the same
dimensionality as the brain image, providing an interpretable map that
shows how the changes in each brain structure are related to the pre-
dicted age.

Our FDA-based approach departs considerably from other methods
that are commonly used in the neuroimaging literature. The current
state-of-the-art method in neuroimaging data analysis is the so-called
mass-univariate approach implemented in the Statistical Parametric Map-
ping software (Ashburner et al., 2014). A model is fitted to predict the
signal at each voxel independently using the clinical or demographic
information as covariate, then a significance map is produced (see for
further details Friston et al., 1994; Penny et al., 2011). Although
2 the word “functional” in this case is used in a mathematical sense and is not
related to functional MRI.

2

computationally efficient, this approach does not explicitly model the
spatial correlation of adjacent pixels and is not tailored for prediction
purposes (Reiss and Ogden, 2010). The functional data approach allows
instead the incorporation of the spatial structure by using smoothing
techniques and in this way the fit of a global model for a scalar outcome
given the entire brain image.

Another popular approach is based on machine learning algorithms.
Franke and Gaser (2019) review a collection of studies published in the
last decade based on a technique called relevance vector regression. They
review a number of studies that examine associations with brain age,
including effects of meditation and playing an instrument. Cole et al.
(2019) collects a larger number of studies dealing with brain age pre-
diction conducted from 2007 to 2018 with different imaging modalities
and pathologies. Many of them adopt support vector regression (as the
ones listed in Franke et al., 2012, Franke and Gaser, 2019 or Sone et al.,
2019) or more recently Gaussian processes and convolutional neural
networks (Cole et al., 2017; Cole, 2017; Varatharajah et al., 2018; Wang
et al., 2019). A comparison between the predictive performances of these
methods is difficult due to the use of different datasets and different age
ranges, but according to Cole et al. (2019) the choice of the algorithm
does not seem to play a fundamental role. However, these approaches
provide only a point prediction with little knowledge of the internal
procedure that returned it, and in particular deep learning methods are
often criticised as “black boxes”. Our approach attempts to provide a
better picture of the set of information on which brain age is based,
introducing a straightforward quantification of uncertainty and at the
same time producing a visual display of the regions that are most relevant
for the prediction. In addition, the features of each step of the workflow
proposed here can be evaluated, therefore improving the interpretability
of the results. This last aspect is crucial in medical sciences and is
particularly welcome for predictive modelling in neuroscience (Scheinost
et al., 2019).

Another important distinction with the available literature on brain
age prediction relates to the imaging techniques used. Although several
models use functional imaging or multiple modalities, a large share of
studies focused on structural magnetic resonance imaging (MRI), in
particular T1-weighted images, usually segmentated into gray and white
matter. Unprocessed MR images have also been employed with success
(Cole et al., 2017). In this work we still remain in the family of structural
imaging but we use tensor-based morphometry (TBM) images, that are
obtained after a transformation of standard MRI images. TBM images
give information about relative volumes of brain structures with respect
to a common template; for this reason the images are all spatially
registered. TBM quantifies volumetric differences in brain tissue for each
voxel and is therefore specifically aimed at assessing the level of local
cortical atrophy which might help to study brain degeneration for
different diseases (Hua et al., 2008). To the best of our knowledge, this is
the first study addressing brain age prediction from TBM images. The
dataset used in this manuscript comes from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI, Mueller et al., 2005).

The work is structured as follows. Section 2 gives an overview of
functional data analysis and quantile regression. Section 2.4 introduces
the plan of the analysis and discusses details of the implementation. The
main characteristics of the ADNI dataset are described in Section 3, while
the results of the analysis are reported in Section 4 in terms of the pre-
dictions, their robustness with respect to the choices of the parameters in
the model and their correlation with standard cognitive measures.
Finally, Section 5 discusses the main findings, summarises the work and
briefly introduces further research directions.

2. Materials and methods

2.1. Functional data analysis

Functional data are realisations of a random function X 2 L2ðTÞ, the



3 From Mosteller and Tukey (1977): ‘Just as the mean gives an incomplete
picture of a single distribution, so the regression curve gives a correspondingly
incomplete picture for a set of distributions.’
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space of square–integrable functions f : T → R, for whichZ
T

½f ðtÞ�2dt < ∞: (1)

Typically in FDA we assume T⊆Rd (Kokoszka and Reimherr, 2017;
Ramsay and Silverman, 2005; Ferraty and Vieu, 2006). We define the
inner product

〈f ; g〉¼
Z
T

f ðtÞgðtÞdt; (2)

and the norm

jjf jjL2 ¼
0@Z

T

½f ðtÞ�2dt
1A1

2

; (3)

where f ; g 2 L2ðTÞ. The first order moment of X is the mean function
μðtÞ ¼ E½XðtÞ�; the second order variations of X are encoded in the
covariance function

vðs; tÞ ¼ E½ðXðsÞ � μðsÞ ÞðXðtÞ � μðtÞ Þ �; s; t 2 T (4)

of which the variance function is a special case (s ¼ t). A central object
when dealing with functional data is the covariance operator, whose
kernel is the covariance function vðs; tÞ. It is defined as

Γðf Þ¼E½〈X� μ; f 〉ðX� μÞ�; 8f 2 L2ðTÞ: (5)

The covariance operator transforms a function f in another function
Γðf Þ whose values are

Γðf ÞðtÞ¼
Z
T

vðt; sÞf ðsÞds; 8t 2 T : (6)

The covariance operator plays a key role in the Karhunen–Lo�eve
expansion for square–integrable functions,

XðtÞ¼ μðtÞ þ
X∞
m¼1

νmψmðtÞ; (7)

expressing X as an infinite linear combination of the deterministic
eigenfunctions fψmðtÞg of Γ with random and uncorrelated weights νm.
The eigenfunctions are the solutions of the eigendecomposition problemZ
T

vðt; sÞψ jðsÞds¼ λjψ jðtÞ; 8t 2 T : (8)

The eigenfunctions are orthogonal and rescaled to have unit norm,
and their corresponding eigenvalues fλjg are in decreasing order.

The results of the eigendecomposition of the covariance operator can
be interpreted under the framework of functional principal component
analysis (FPCA), which aims at studying the principal modes of variation
of the random function X. The eigenvalue λm is the part of the variance of
X explained by the m-th eigenfunction, also called functional principal
component. The random variables

νm ¼ 〈X� μ;ψm〉 (9)

are called scores. The scores are uncorrelated and centered with variance
λm.

2.2. Quantile regression

Regression models are used to study the relationship between some
fixed and known predictors Z ¼ ðz1;…; zMÞT 2 RM and an outcome var-
iable Y. For example, linear models are used to evaluate the change in the
3

expected value of the continuous outcome conditioned on the values of
the predictors, under specific assumptions on the error term. Neverthe-
less, there are occasions in which either these assumptions do not hold
(for example, when there is heteroskedasticity in the residuals) or simply
the main interest is to model specific quantiles of the conditional distri-
bution of the response variable in order to produce a deeper analysis of
the randomness of Y jZ that goes beyond the conditional mean.3 Quantile
regression (Koenker and Bassett, 1978) can effectively deal with these
cases by specifying the model:

QτðY jZÞ¼ ατ þ
XM
m¼1

zmγm;τ; τ 2 ð0; 1Þ; (10)

where QτðY jZÞ is the τ-th conditional quantile of YjZ defined as

QτðY jZ¼ zÞ¼ inf
�
y : FY jZðyjzÞ� τ

�
(11)

and

FY jZðyjzÞ¼PrðY � yjzÞ (12)

is the conditional cumulative distribution function of YjZ. For example,
Q0:5ðY jZÞ is the median of the conditional distribution of YjZ. The
interpretation of γm;τ is similar to the one in linear models: it corresponds
to the marginal effect on the conditional quantile due to a one-unit
increment in the m-th covariate.

Given n observations, the estimation procedure for the model in
Equation (10) is based on the following minimisation problem:

ðbατ;bγ1;τ;…;bγM;τÞ¼ arg min
a;γ1 ;…;γM

"Xn
i¼1

ρτ

 
yi �α�

XM
m¼1

zimγm

!#
; (13)

where ρτðuÞ ¼ ½τ�1fu�0g�u is the check (or quantile loss) function
(Koenker and Bassett, 1978). There is a relationship between the linear
formulation Y ¼ Zγ þ ε and the quantile formulation in Equation (10).
Under a linear data generating process Y ¼ αþ Zγ þ ε with known α and
γ, we can write the conditional quantile restriction

QτðY jZÞ¼ αþ ZγþF�1
ε ðτÞ; τ 2 ð0; 1Þ (14)

with ε being the mean zero random term of the model with cumulative
distribution function (CDF) Fε. In this simple setting, the marginal effect
of the covariate is constant across quantiles. Note that the result in
Equation (14) holds for any distribution of the error term. Quantile
regression can nonetheless accommodate more complicated data gener-
ating processes, like for example the location-scale model where ε is
replaced by σðZÞε, with σðZÞ > 0 and ε??Z. In this case the variance of
the random term depends on Z and it can be shown that the estimated
slope in the quantile regression model will be governed by the quantiles
of ε.

All the quantile regression models return as output a prediction at a
specific quantile level. For example, the model with τ ¼ 0:5 gives the
conditional median prediction for each experimental unit given partic-
ular values of the covariates. Predictive accuracy of the conditional
median can be measured through the mean absolute error (MAE) and the
root mean square error (RMSE) between the point predictions and the
observed responses. By fitting a model for several values of τ, we can also
build prediction intervals for new observations ðy*; z*Þ (Davino et al.,
2013; Mayr et al., 2012). For example, if we fit a model on the same data
for two quantile levels τ1 ¼ δ=2 and τ2 ¼ 1� δ=2 (with δ 2 ð0;1Þ), the
interval
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PI1�δðz*Þ¼
�bQτ1

�
Y jZ¼ z*Þ; bQτ2 ðY jZ¼ z*

��
(15)
should contain the observed response value for new data ð1�δÞ100% of
the time (provided Equation (10) is true). For example, a 90% prediction
interval can be obtained by fitting a model for τ1 ¼ 0:05 and τ2 ¼ 0:95.
This prediction model can effectively handle heteroskedasticity or
skewness, since in quantile regression there are no assumptions on the
response distribution: using simulated data Davino et al. (2013) provide
examples in which prediction intervals obtained via quantile regression
achieve the nominal levels where ordinary least squares prediction in-
tervals fail. This is also confirmed theoretically in Zhou and Portnoy
(1996): the coverage probability tends to 1� δ with an error of Oðn�1=2Þ,
as the sample size of the training set n → ∞.

2.3. Functional quantile regression

A large body of literature has been developed in order to translate
regression models into the functional framework. For example, func-
tional GLMs are now well established in the theory, both in the fre-
quentist and Bayesian approaches (Müller and Stadtmüller, 2005;
Crainiceanu et al., 2009). Quantile regression (Koenker and Bassett,
1978) has also been extended in the functional data paradigm: first with
Cardot et al. (2005), then with Kato (2012) and Yao et al. (2017), the
model has been readapted for the case of functional covariates with
scalar response. The model illustrated in Kato (2012) shares the main
characteristics with the scalar-on-function regression of Müller and
Stadtmüller (2005), except for the assumption that the conditional
quantile is a linear function of the (centered) covariates. In particular, the
conditional quantile of the response is expressed as a linear function of
the scalar product between the functional data and a coefficient function
βτð �Þ 2 L2ðTÞ:

QτðY jXÞ¼ ατ þ
Z
T

XðtÞβτðtÞdt; τ 2 ð0; 1Þ: (16)

The functional nature of the coefficient makes its interpretation less
straightforward than in standard regression. In the regions where βτðtÞ ¼
0 any increment in the covariate produces no marginal change on the
quantile of the conditional distribution Y jX. On the other hand, if βτðtÞ is
constant over a region T*⊂T and null elsewhere, then only the region T*

plays a role in the prediction of the conditional quantile. Despite the
differences between quantile and linear scalar-on-function regression,
the same difficulties of the interpretation of the functional coefficients
discussed in James et al. (2009) apply. The model can easily accommo-
date scalar covariates z1;…; zP (see for example Yao et al., 2017):

QτðY jXÞ¼ ατ þ
Z
T

XðtÞβτðtÞdtþ
XP
j¼1

zjγj;τ; τ 2 ð0; 1Þ: (17)

In order to estimate the parameters in Equation (16), both the pre-
dictors and the coefficient functions are represented in the truncated
Karhunen–Lo�eve expansion in Equation (7):

XiðtÞ�
XM
m¼1

νimψmðtÞ; βτðtÞ �
XM

m’¼1

bm’;τψm’ðtÞ:

Thanks to the orthonormality of the eigenfunctions ψm,Z
T

XiðtÞβτðtÞdt�
X
m¼1

X
m’¼1

νimbm’;τ

Z
T

ψmðtÞψm’ðtÞdt

¼
X
m¼1

νimbm’;τ: (18)

Thus the functional model in (16) becomes a standard quantile
regression problem of the form
4

QτðY jXÞ¼ ατ þ
XM

νimbm;τ; (19)

m¼1

where ατ and b1;τ;…; bm;τ are estimated as in Equation (13). The esti-
mated functional coefficient is then reconstructed by computing

bβτðtÞ¼
XM
m¼1

bbm;τψmðtÞ; (20)

for a given τ the estimated value for the quantile function is obtained by
plugging in the estimated coefficient into (16):

bQτðY jXÞ¼ bατ þ
Z
T

XðtÞbβτðtÞdt: (21)

In this functional principal components regression (FPCR) setting, the
number of principal components M to be used as regressors controls the
smoothness and the approximation error with respect to the real images.
The choice of M could be automated by using information criteria or
percentage of variance explained; nevertheless, there is no guarantee that
the first M components (which explain the most of the variability of X)
are also able to capture effectively the relationship between the func-
tional predictor and the scalar response (Febrero-Bande et al., 2017;
Delaigle and Hall, 2012). For this reason, a simple option could be to
select M such that a very large share of explained variability is repre-
sented and then use LASSO regularisation within the quantile regression
model (Belloni and Chernozhukov, 2011; Wang, 2013). The regularisa-
tion might produce a different subset of selected variables across
different quantile levels τ. Since for each τ a different model has to be

fitted, the plug-in estimator bQτðYjXÞ is not guaranteed to be mono-
tonically increasing in τ as the conditional quantile functionQτðY jXÞ is by
construction.

It must be considered that the bias introduced by the penalised esti-
mation could harm the interpretability of the coefficients for each co-
variate. A way to solve this issue is the post-ℓ1 quantile regression, where
LASSO is used only for model selection and then a vanilla quantile
regression model is fitted using only the covariates selected. This
approach guarantees better convergence rates and could reduce the bias
(Belloni and Chernozhukov, 2011).
2.4. Data analysis workflow

2.4.1. Imaging
The brain images are acquired using structural MRI. This workflow

(described in Fig. 1) does not depend on any specific preprocessing
stages, except for intersubject registration to an atlas image, such that
voxels from different images are aligned.

More transformations can be operated on the structural MR images.
For example, the analysis can be based on tensor-based morphometry
(TBM) images. TBM is an image technique that aims at showing local
differences in brain volume from structural imaging. In a cross-sectional
setting (one image for each subject), each image is aligned to a common
MRI template called minimal deformation template (MDT). The deforma-
tion induced by this alignment can be represented by a function that
maps a 3-dimensional point in the template to the corresponding one in
the individual image. The Jacobian matrix of the deformation can be
used to inform about volume differences in terms of shearing, stretching
and rotation. The determinant of the Jacobian matrix for each voxel is
then a summary of local relative volumes compared to the MDT: a value
greater than 1 indicates expansion, while a value less than 1 means
contraction. Further details about TBM are available in Ashburner and
Friston (2004).

In order to reduce the dimensionality of the problem, the voxels
outside the brain can be excluded from the analysis imposing a mask on
the images. We used FSL (through its R interface fslr, Muschelli et al.,



Fig. 1. Flowchart of the analysis from the brain images to the pre-
dicted intervals.
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2015) to obtain a mask on the template image with smooth boundaries.

2.4.2. Basis expansion
A common assumption in FDA is that the observed data are a noisy,

discretised version of the true underlying signal function that is of
5

interest in the analysis. In other words, the values observed at a specific
voxel may be contaminated with some measurement error that could
have an impact on the spatial correlation structure within the images.
Removing this measurement error leads therefore then to smoother im-
ages, improving the performances of FPCA.

For this reason, nonparametric basis expansion techniques such as B-
splines or wavelets are usually employed. The latter are chosen mainly
when the underlying function is thought to be characterised by rapid
changes in behavior (Ramsay and Silverman, 2005); B-splines are instead
preferred for their properties (compact support, unit sum) when less
abrupt changes in the function are expected. In this case, TBM images are
already smooth by construction, so we can use B-spline basis functions
with the main aim to obtain a parsimonious representation (under the
fairly safe assumption that the main sources of error have been already
removed).

In order to get a 3-dimensional basis function, a tensor product of

univariate B-spline basis functions is considered. Denote by BðjÞ
1 ðtðjÞÞ;…;

BðjÞ
Qj
ðtðjÞÞ the univariate basis functions for the j-th dimension (j ¼ 1;2;3).

The number of basis functions for each dimension is Qj ¼ lj þ r� 1,
where lj is the number of knots and r is the degree of the spline. We now
define the set of basis functions

Bq1q2q3

�
tð1Þ; tð2Þ; tð3Þ

�¼Bð1Þ
q1

�
tð1Þ
�
Bð2Þ
q2

�
tð2Þ
�
Bð3Þ
q3

�
tð3Þ
�

(22)

for qj ¼ 1;…;Qj, for j ¼ 1;2;3.
In order to derive the projection of each image onto this set of basis

functions, we define the following matrix of basis functions using the
Kronecker product

φ¼ Sð3Þ � Sð2Þ � Sð1Þ: (23)

where SðjÞ is the Pj 	 Qj-dimensional matrix whose qj-th column contains

the evaluation of the function BðjÞ
qj ðtðjÞÞ at each point tðjÞ (for j ¼ 1; 2;3)

and Pj is the number of points for the j-th dimension. The matrix φ has
dimensions P1P2P3 	 Q1Q2Q3 (the number of rows is equal to the num-
ber of voxels and the number of columns is equal to the number of basis
functions). Once the basis set is determined, this can be used as set of
regressors where the original (vectorised) image is the response variable.
Estimation can be performed via ordinary least squares:

bxiðtÞ¼ XK
k¼1

~cikφkðtÞ; (24)

where K ¼ Q1Q2Q3, ~ci is the K-dimensional vector containing the co-
efficients of the projection for the i-th image and φkðtÞ is the k-th basis
function. In compact form, all the N images are represented by the
product of the N 	 K coefficient matrix ~C and the matrix of basis func-
tions φ. We center the projected data (equivalent to centering the raw
data since the projection is linear). This apparently negligible aspect is
actually very relevant in the big data context as it allows to parallelise the
basis expansion stages without the need to import and store simulta-
neously all the images. We call the centered coefficient matrix C.

In this work we used a 3D tensor product of quadratic B-spline uni-
variate basis functions with equidistant knots. The number of knots (or
analogously their spacing) can be fixed in advance, but a poor choice
might heavily affect the number of basis functions that are needed to
represent the functions and consecutively the computational time and the
quality of projection. For this reason a preliminary study on a subset of
the data is recommended. Outcomes of interest for this preliminary study
could be the number of non-zero basis functions within the masked
image, the average time needed for the projection of an image and the R2

value obtained from the regression of each image using as design matrix
the matrix of basis functions. The latter value can be interpreted as a
proportion of variance explained. At this stage, it is highly recommended
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to retain as much variability as possible: a 0.95 threshold for R2 should
work for many applications and should ensure a manageable set of basis
functions. Alternative criteria could be established in terms of full width
at half maximum (FWHM).

2.4.3. Functional PCA
The coefficients of the projection are the quantities needed to solve

the eigendecomposition problem in Equation (8). In this section, we rely
heavily on Ramsay and Silverman (2005, Section 8.4.2), with minor
modifications to make this high dimensional problem computationally
feasible. The procedure is described also in Chen et al. (2018).

The sample variance-covariance function can be written as

bvðs; tÞ¼ 1
N � 1

φðsÞTCTCφðtÞ (25)

using the same decomposition in (24). Suppose then that the eigen-
functions in Equation (8). can be expressed as linear combinations of the
same basis functions φ:

ψðsÞ¼
XK
k¼1

ξkφkðsÞ ¼ φðsÞTξ: (26)

Then the eigenanalysis of the covariance operator described in
Equation (8) takes the following form:Z
T

�
1

N � 1
φðsÞTCTCφðtÞ

�
½φðtÞTξ�dt¼ λφðsÞTξ: (27)

Denoting by W the K 	 K symmetric basis product matrix with
elements

wkl ¼ 〈φk;φl〉; (28)

Equation (27) can be rewritten as

1
N � 1

φðsÞTCTCWξ¼ λφðsÞTξ: (29)

The entries in W are usually computed with some numerical quad-
rature rules (Ramsay and Silverman, 2005) but these procedures are
computationally demanding in our 3D context. The cross product,
although less accurate at the boundaries with respect to the trapezoidal
rule, offers a good result in shorter time. Simplifying both sides of
Equation (27) by φðsÞT (the relationship must hold for all s) we obtain

1
N � 1

CTCWξ¼ λξ: (30)

In order to get orthonormal eigenfunctions, some constraints must be
imposed:

ξTi Wξi ¼ 1 and ξTi Wξj ¼ 0:

These are fulfilled by setting u ¼ LTξ, where L is obtained through the
Cholesky decomposition W ¼ LLT (Ramsay and Silverman, 2005, p.
181); solving the equivalent problem

1
N � 1

LTCTCLu¼ λu; (31)

the original eigenfunctions are obtained using ξ ¼ ðLTÞ�1u.

We note that for A ¼ ðN � 1Þ�1=2CL the eigendecomposition problem
consists in finding the eigenvalues and eigenvectors of ATA. These can be
obtained in a computational efficient way by using the SVD of the matrix
A. In particular, the non-zero eigenvalues λ are equal to the squared non-
zero singular values, whereas the eigenvalues u of ATA are equal to the
right singular vectors of A. The m-th score for the i-th image is then

νim ¼ 〈Xi � μ;ψm〉
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¼
Z
T

"X
j

cijφjðtÞ
#"X

k

ξmkφkðtÞ
#
dt

¼ cTi Wξm: (32)

2.4.4. Functional quantile regression
The scores obtained after FPCA are plugged into a standard quantile

regression problem. We create the design matrix for the quantile
regression model using the first M scores for each image such that the
firstM eigenfunctions represent at least 80% of the variability within the
sample (see Section 4.3 for a sensitivity analysis). LASSO regularisation
can be applied within the quantile regression framework. The mini-
misation problem in Equation (13) can be readapted therefore to our
situation by writing

ðbατ;bb1;τ;…;bbM;τÞ¼arg min
α;b1 ;…;bM

(Xn
i¼1

ρτ

 
yi�α�

XM
m¼1

νimbm

!
þhLASSO

XM
m¼1

jbmj
)
(33)

where hLASSO is the LASSO tuning parameter. For a specific value of
hLASSO, a solution path is found, where the Lasso penalty will induce the
shrinkage of the estimates towards zero, but also sparsity, as some esti-
mates are exactly zero (Tibshirani, 1996).

Several R packages offer built-in functions that perform automatic
selection of the tuning parameter. For this purpose, we use the package
rqPen (Sherwood and Maidman, 2017), that produces penalised quan-
tile regression models for a range of tuning parameters and then selects
the one with minimum cross-validation error.

2.4.5. FPCA and functional quantile regression in a prediction setting
The scores are obtained by taking an inner product of each image with

the eigenfunctions estimated on the training set. For this reason, they can
be obtained for images from other datasets with the same formula, even if
the properties of zero mean and variance equal to the eigenvalues apply
only for the training dataset. The scores are in turn produced within the
FPCA step, where the estimation of the eigenfunctions depends on the
training data as well.

This workflow is aimed at deriving brain age prediction intervals for
healthy individuals. This means that FPCA and functional quantile
regression should be based on a dataset of control subjects. In order to get
predictions for this dataset, 10-fold cross validation can be used, reducing
in this way the risk of overfitting. Age predictions for subjects with
neurodegenerative diseases can be obtained from the same normative
model. In this case the full dataset of control subjects can be used for
FPCA and functional quantile regression and the brain age is to be
interpreted as the equivalent brain age of a healthy individual having the
same brain image.

The R code implementing the workflow is available at https://github
.com/marcopalma3/neurofundata.

2.4.6. Alternative models
The degree of smoothing in the basis expansion step can be controlled

in different ways, by changing either the location or the numbers of
knots. When the number of knots is equal to the number of voxels, we
recover the original data, where the coefficient of the basis functions are
just the observed values at each voxel. The analysis of the “unsmoothed”
images can still be based on standard multivariate analysis techniques
such as PCA and quantile regression, but it requires an increased
computational effort. The data matrix containing the images as rows is
indeed large (in our case the memory needed to store it is more than 6.4
GB) and high performance computing tools are required to fit models on
these data. In addition, quantile regression under memory constraints is
receiving attention only recently (Chen et al., 2019), therefore the
calculation of the prediction interval is not straightforward. A small
amount of smoothing is recommended to reduce both the storage issues

https://github.com/marcopalma3/neurofundata
https://github.com/marcopalma3/neurofundata


Table 1
Summary statistics for each diagnosis group. N is the number of subjects in
each group. The second part of the table shows mean and quartiles of age.

Diagnosis N Min. Q1. Median Mean Q3. Max.

Control 229 59.90 72.30 75.60 75.87 78.50 89.60
MCI 387 60.10 70.85 75.60 75.30 80.40 89.30
AD 180 59.90 70.98 76.15 75.90 81.58 89.10

Fig. 2. Histogram of age of the subjects in the sample, for each diagnosis.
The number of bins has been fixed using the Freedman-Diaconis rule (Freedman
and Diaconis, 1981).

M. Palma et al. NeuroImage 219 (2020) 116938
and the computational time required to train the model.

3. Data

The workflow proposed in Section 2.4 is applied on a dataset coming
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, Mueller
et al., 2005), that supports the investigation about biological markers to
be used to detect Alzheimer’s Disease (AD) at early stages. The sample
used in this paper is made of 796 subjects, identified through an ID code,
for which several demographic and clinical variables are measured. In
this analysis, we will consider only the chronological age at the entry of
the study (ranging from 59.90 to 89.60 years; mean age 75:60
 6:29)
and their diagnosis: 180 subjects were diagnosed with AD, 387 with MCI
(Mild Cognitive Impairment, considered as an intermediate stage be-
tween healthy condition and AD) and 229 people were belonging to a
control group of cognitively normal (CN) subjects (see Table 1). The
histogram of age by diagnosis group is displayed in Fig. 2.

The functional part of the dataset consists of tensor-based
morphometry (TBM) images taken at the baseline of the study for each
subject. In this dataset, the threshold 1 is rescaled to 1000 for computer
number format reasons. Information about the preprocessing stages for
the ADNI TBM dataset is available in Hua et al. (2013).

The analysis is based on the original 3D TBM scans (220	 220	
220, with voxel size equal to 1 mm3). The conventional neurological
orientation (“right is right”) is used: the ðx; yÞ axes of the images are set
such that x increases from left to right and y increases from posterior to
anterior.

The mean functions for each diagnosis are shown in Fig. 3. MCI and
AD patients share similar average brain volumes patterns (namely,
expansion of the lateral ventricles and shrinkage almost everywhere else)
even if the intensity of the expansion is higher for people with dementia.
The expansion of the lateral ventricles is also visible in the healthy
control mean function, but it is less pronounced. Conversely, the healthy
control mean function shows other slightly expanded brain areas, such
that the cerebellum and several regions in the posterior and frontal lobes.
Further analyses based on the voxelwise variance functions per each
group show that the lateral ventricles are the areas with the highest
variability in terms of volume expansion.

4. Results

4.1. Prediction accuracy

The preprocessed images are masked to remove unnecessary voxels
for the analysis. A 3D smooth mask is obtained by smoothing the raw
mask with a Gaussian kernel with standard deviation equal to 2 voxels
(FWHM 4.7 mm) and thresholding it at 0.5, to regularise the boundary,
producing just over 2 million nonzero voxels.

For the dataset at hand the B-splines projection with equidistant knots
every 12 mm (equivalent to FWHM � 15:33 mm) for each dimension
allows to represent each image with R2 approximately equal to 0.96. The
number of B-spline functions in the tensor product that fall within the
mask is 2694. In the current implementation, the process of importing
one image into R and obtaining its B-spline coefficients takes approxi-
mately 30 s.

The eigendecomposition problem in Equation (8) solved for the
dataset of healthy control subjects returns M ¼ 54 eigenfunctions of
7

which the first 3 are plotted in Fig. 4. In analogy with standard PCA, a
basic interpretation can be provided. The first eigenfunction clearly
distinguishes the lateral ventricles from the rest of the brain. Subjects
with high scores for this eigenfunctions will show stronger expansion
within the lateral ventricles with respect to the mean function. Due to the
similarities with the observed patterns in the mean function for the
subjects with disease, it is likely that the scores for this eigenfunction
computed for all the 796 subjects in the dataset are correlated with the
diagnosis and with the chronological age, for the known interplay of the
effects of these two factors. The second mode of variation refers instead
to a more general expansion across the whole brain: in other words, it
discriminates between individuals with bigger brains and those with
smaller ones. For this reason, this component might account for some sex-
related effects, as males have on average larger overall absolute brain
than females (Ruigrok et al., 2014). The third eigenfunction weights
negatively some of the internal parts of the brain. This component might
therefore roughly distinguish white matter from the cortex, even if this
interpretation is not very clear and can be influenced by the smoothing
induced by the projection onto the basis functions. The first 3 compo-
nents account for 36:25% of the variance of the images of the healthy
control group.

We compute the scores for MCI and AD individuals as the product of
the centered images and the eigenfunctions in Fig. 4. For the control
subjects, we use 10-fold cross validation (with check function as loss
function) to run FPCA, produce scores and fit the models such the pre-
dictions are obtained on held-out data. Quantile regression models for
τ 2 f0:05;0:5;0:95g are considered. Table 2 shows that the MAE and
RMSE based on the difference between median brain-predicted age and
chronological age are lower for control subjects than the other groups.
This result is expected under the choice of a normative model that pre-
dicts brain age in absence of any diseases and indicates that the two
subpopulations (controls vs. cases) show different ageing characteristics
(if they were belonging to the same population, the MAE and RMSE
would have been similar).

The MAE observed for the control group is 3.49, in line with other
results obtained in the literature for other MRI datasets and different age
ranges (Cole et al., 2019). In addition, as shown in Fig. 5, the smoothed
regression line for control subjects indicates that the average brainPAD
(difference between predicted and chronological age) is close to zero for
the whole age range, while it departs from it for the other groups in the
predicted age range between 73 and 75. Prediction metrics do not
improve after debiasing using post-ℓ1 quantile regression.



Fig. 3. Axial slices of the mean images for each diagnosis (from left to right: Control, MCI, AD). Slices are ordered from bottom to top. The colours are overlaid
on the corresponding slice of the MDT.

Fig. 4. Axial slices of the first 3 eigenfunctions for the control subset. Slices are ordered from bottom to top. The colours are overlaid on the corresponding slice of
the MDT. The eigenfunctions account respectively for 15:43%, 13:95%, 6:87% of the total variability. The signs of the eigenfunctions are determined on the basis of
clinical interpretation.

Table 2
Summary of the prediction results by diagnosis. Cor: correlation between
predicted brain age and chronological age. CICor : confidence interval for the
correlation between predicted brain age and chronological age, obtained via
Fisher-z transformation (Myers et al., 2013, Section 19.2). bπ : sample coverage
(proportion of cases for which the 90% prediction interval contain the chrono-
logical age). *-pos: proportion of cases for which the chronological age is less
than the lower limit of the 90% prediction interval.

Diagnosis N MAE RMSE Cor 95%CICor bπ *-pos

Control 229 3.49 4.43 0.48 [0.37, 0.57] 0.86 0.05
MCI 387 4.99 6.12 0.46 [0.38, 0.54] 0.68 0.24
AD 180 5.16 6.27 0.38 [0.25, 0.50] 0.64 0.28

Fig. 5. Plot of the brainPAD vs. predicted response. The coloured lines are
local regression lines obtained with loess (locally estimated scatterplot
smoothing) with span ¼ 0.75 and 95% confidence bands.
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We focus now our attention on the features of the 90% prediction
intervals and the sample coverage. We observe that the actual sample
coverage for control subjects is slightly lower than the nominal level. The
groups with cognitive impairment show lower coverage with respect to
the control group: the chronological ages of around 1 in 3 subjects with
diseases do not fall in the prediction intervals obtained under the
normative model. When we further analyse the direction of the
discrepancy, we can define a “*-positive brainPAD” group (for which the
chronological age is lower than the lower limit of the prediction interval,
or equivalently with positive brainPAD and chronological age outside the
prediction interval) and a “*-negative brainPAD” one (composed of those
subjects with negative brainPAD and chronological age outside the pre-
diction interval). While the share of *-negative subjects is approximately
constant across the diagnosis, the percentage of *-positive subjects for
MCI and AD groups is approximately 5 times the one for the control
subjects. This result aligns with the literature, where it has been shown
that MCI and AD patients show higher apparent brain age (Cole et al.,
8

2019; Franke et al., 2012): for this reason the *-positive group is more
interesting for their potential correlation with other disease indicators.
All the prediction intervals are plotted in Fig. 6, stratified by diagnosis
and sorted by predicted age. The prediction intervals for the control
subjects are scattered closer to the line of identity between predicted and
chronological age and there are no relevant trends in the residuals that



Fig. 6. Brain age 90% prediction intervals, relative to chronological age.
There is one interval per subject, and subjects are sorted in descending order of
predicted brain age (higher predicted ages at top). The black diamonds indicate
the subjects for which chronological age does not fall into the prediction in-
terval; the side indicates if the subject is in the *-negative (diamonds on the left)
or *-positive group (diamonds on the right).

Fig. 7. Left: distribution of the prediction interval width conditioned by diagnosis. Ri
1 if the chronological age is less than the prediction at τ ¼ 0:05, 0 otherwise).
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are left unexplained by the regression models. The variability of the
width of the 90% prediction intervals is displayed in Fig. 7: the average
width is similar for the 3 diagnosis groups, but there is higher variability
in the width distribution of the MCI and AD subjects. Moreover, *-posi-
tive brainPAD is mainly observed in the lower part of the age domain
covered in the dataset. This could be just a consequence of our regression
approach, or it might be due to the low number of subjects in the training
set with chronological age less than 70, which might produce issues in
the estimation of extreme quantiles of the conditional distribution of the
outcome.

The brain maps displayed in Fig. 8 are the functional coefficients
obtained from the scalar-on-image quantile regression trained on the
whole control dataset.

They can be used to identify the regions that are responsible for the
age prediction for the different quantiles. The functional coefficient for
τ ¼ 0:05 shows that the expansion of the lateral ventricles is the principal
factor that leads to higher predicted age (Preul et al., 2006; Apostolova
et al., 2012) in the lower tail of the chronological age distribution. Other
areas seem to have more limited impact on the prediction. In the coef-
ficient obtained from the median regression, the lateral ventricles still
play a role in the prediction (especially the posterior part) but expansion
in several other areas is correlated to higher predicted age. Among them
we point out the central sulcus (perpendicular to the median longitudinal
fissure that divides the two hemispheres) that separates the primary
motor cortex and the primary somatosensory cortex. In addition, the
frontal lobe shows negative values for the functional coefficient, meaning
that expansion in this part of the brain is linked to a lower predicted age.
This agrees with the literature: age-related atrophy is more pronounced
in the frontal lobe (Fjell et al., 2014; Cabeza and Dennis, 2013; Mac-
Pherson and Cox, 2017) and less in the occipital lobe (Dennis and Cabeza,
2011). For τ ¼ 0:95, the brain map indicates that the upper part of the
cortex and the cerebellum are related to higher predicted age, while a
larger left temporal lobe (in blue in the lower axial slices, it plays a role in
memory and language control) is associated to younger brain age.
Especially for these last two maps, asymmetry between hemispheres
appears in the relationship with brain age.

4.2. Correlation with cognitive decline measures

A small number of cognitive decline measures available in ADNI has
been used to evaluate the clinical utility of the predictions obtained. The
list of measures reported in Table 3 includes genetic assessments (ApoE4)
and various evaluations of writing and speaking skills, visual attention
and task switching. The outcomes of interest in this section are both the
brain-predicted age difference (brainPAD, difference between predicted
and chronological age, as defined in Cole et al., 2017) and the binary
ght: histogram of chronological age conditioned by *-positive indicator (equal to



Fig. 8. Axial slices of the functional regression coefficient for τ ¼ f0:05;0:5;0:95g (from left to right). Slices are ordered from bottom to top. The colours are
overlaid on the corresponding slice of the MDT. For a unit increase (expansion) in the observed TBM image in a red voxel, there is an increase in predicted brain age,
while in a blue voxel there is a decrease.

Table 3
Cognitive decline measures used in the analysis. The arrows indicate the
change in the measures associated to an increase in dementia severity.

Variable Values

ApoE4 Apolipoprotein E � Number of ε4
alleles

f0;1;2g ↗

ADAS11 AD Assessment Scale - 11-item
version

f0;0:33; 0:67;1;…;70g ↗

ADAS13 AD Assessment Scale - 13-item
version

f0;0:33; 0:67;1;…;85g ↗

ADASQ4 AD Assessment Scale - Delayed
Word Recall

f0;1;…;10g ↗

MMSE Mini-Mental State Examination f0;1;…;30g ↘
DIGITSCOR Digit Symbol Substitution Test f0;1;…;83g ↘
TRABSCOR Trails B Making Test f0;1;…;996g ↗
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*-positive indicator (equal to 1 if the chronological age is less than the
prediction at τ ¼ 0:05, 0 otherwise).

Fig. 9 summarises the main findings in this validation analysis. A
higher ApoE4 value—linked to higher risk of dementia—is also related to
higher predicted age difference on average (the p-values refer to one-
sided tests). In addition, for the group with the highest ApoE4, more
than 75% of the individuals show higher predicted age than
chronological.
Fig. 9. Left: association of brainPAD with ApoE4 value (Holm-corrected p-val
Correlation between baseline brainPAD and cognitive scores at different visits
*-positive group and the rest of the sample at different visits. The black lines are S
distribution.

10
The correlation between baseline brainPAD and cognitive scores at
different visits shows some association (uncorrected) for several mea-
sures, with ADAS measures and MMSE showing the strongest associa-
tions after 2 years. Nevertheless, no cognitive measure recorded at
baseline is associated with the difference between predicted and chro-
nological age. On the other hand, there is some evidence that the average
of the cognitive measures is different between the *-positive group and
the rest of the subjects across different time points. Also in this case the
direction of the relationship is consistent with the numerical definition of
the measures.

4.3. Sensitivity analysis

The prediction results are obtained under specific choices of several
parameters. In order to assess how these choices might affect the results,
we perform a sensitivity analysis using different values of the following
parameters:

� PVE: proportion of variance explained (criterion to decide the number
of fPC to be included in the quantile regression models), PVE 2 f0:65;
0:8;0:95g;

� KS: knot spacing, KS 2 f6; 9; 12;15g;
ues) for different visits, with evidence of positive association. Right: (A)
; (B) t-statistic for the comparisons of means of cognitive scores between
tudent’s t quantiles which correspond to different probabilities in the tails of the
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� nominal coverage: desired width of the prediction intervals. Values
considered:

� τ 2 f0:1; 0:5; 0:9g for a 80% nominal coverage,
� τ 2 f0:05;0:5;0:95g for a 90% nominal coverage.

For each combination of values, we get the projections for each image
and then fit the LASSO quantile regression. For the cases with KS ¼ 6,
the standard procedure did not work because of a failure in the Cholesky
decomposition of the weight matrix W in Section 2.4 due to numerical
tolerance issues. In these cases, the pivoted Cholesky decomposition can
be applied: due to the fact that the matrix W is symmetric semipositive
definite by construction, there is a permutation matrix P for which PTWP
can be factorised with an upper triangular matrix (see Higham, 2009 for
an introduction).

We report as main outcomes the mean absolute error and the actual
relative coverage (1� h, where h is the ratio between observed and
nominal coverage) obtained for the control subjects in Fig. 10.

The MAE refers to the predictions obtained with τ ¼ 0:5, so it is not
affected by the choice of nominal coverage. In general, the MAE remains
rather stable across combinations of PVE and knot spacing, suggesting
that our results are robust to the choices of these parameters. The lower
MAE is always achieved for PVE ¼ 0:8: this might suggest that a low PVE
neglects important sources of variation while a higher one introduces too
many useless variables in the models. In terms of knot spacing, 12 mm
gives in almost all the cases the best results across PVE values.

Looking at the coverage for each setting of knot spacing, PVE and
nominal coverage, we first observe that there are no cases in which the
observed coverage is higher than the nominal level. This phenomenon of
undercoverage gets more pronounced for higher knot spacing values.
Except for KS ¼ 6, when the coverage relative difference increases as the
number of components in the quantile regression increases, for the other
KS values no clear pattern is visible. The relative difference seems not to
be influenced by the prespecified nominal coverage.

The table in the Supplementary Material section includes also a sanity
check based on non-monotonic prediction intervals - those for which the
predicted age at the upper τ level is smaller than the one at the lower
level. The number of occurrences of this phenomenon is negligible in
almost all the cases.

As an additional analysis, we have explored the prediction perfor-
mances in terms of MAE for the control group in twomodels which do not
use the basis expansion step, using the R packages bigmemory (Kane
et al., 2013) and bigstatsr (Priv�e et al., 2018). The first model (M1) is
a sparse linear regression with LASSO regularisation applied on the un-
smoothed data (represented by 1 column per voxel in the data matrix).
The second model (M2) is closer to our approach: a PCA is performed on
the covariance of the matrix of unsmoothed images, then the scores
corresponding to the first principal components selected (using a pro-
portion of variance explained of at least 0.8) are plugged into a penalised
quantile regression model. M2 can be interpreted as a special case of our
functional approach when the distance between adjacent knots is equal
to 1 mm.

The difference in computational time between our approach (M0) and
the models M1 and M2 is not substantial. On one hand, the smoothing
step in M0 is performed independently for each image in a parallelised
setting therefore it requires only a few minutes in total. On the other
hand, M1 and M2 require to load the matrix (6.4 GB in our case) in
memory and run sparse linear regression or PCA and quantile regression
which could take several minutes. For what concerns the prediction
performances, M0 achieves lower MAE for the control group with respect
to M1 (MAE ¼ 3.63) and M2 (MAE ¼ 3.65).

5. Discussion and further research

The functional data paradigm represents a useful approach to the
analysis of complex data such as brain scans and offers a way to fit a
global model for 3D images. In this work we have discussed the basic
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aspects of functional data and presented an application of quantile scalar-
on-image regression (as extensions of classical quantile regression) in the
field of brain age studies. Following the existing literature, we have
devised an efficient workflow that takes as input a tensor-based
morphometry image and returns a prediction interval. The advantages
of employing the whole images as covariates are that some common
preprocessing steps might be avoided (e.g. brain tissue segmentation)
and there is no need to summarise information at the ROI (regions of
interest) level. In addition, quantile regression gives a more detailed
picture of the relationship between the covariate and the response and
returns an interval with the desired coverage when the distribution of the
dependent variable departs from normality. In contrast with other
existingmodels coming from amachine learning perspective, our method
outputs not only a point estimate but also a prediction interval. In
addition, the model allows to investigate the functional coefficient esti-
mated, in order to visualise the brain regions that influence most the
predicted age.

Our modelling strategy introduces new features with respect to the
standard prediction-oriented approaches in the literature. While other
approaches focus only on maximising prediction accuracy, we emphasise
the detection of individual atypical ageing: the prediction intervals give a
simple and preliminary assessment of the relevance of the observed
brainPAD. In other words, the same brainPAD could be indicative of
potential neurodegenerative diseases for one subject, while being less
linked to such disease for another subject.

The results from the analysis of ADNI data are encouraging: the point
(median) prediction performances in terms of MAE and RMSE for the
control subjects are comparable with the literature on the topic—even
with deep learning approaches applied on bigger ADNI datasets (Vara-
tharajah et al., 2018)—while being also more principled and interpret-
able. The correlation between chronological and predicted age results to
be lower than the one found with other methods. The model trained on
the control group highlights differences with respect to the MCI and AD
groups: individuals with cognitive impairment are predicted to be older
on average than their observed age, as observed in the literature (Cole
et al., 2017; Franke et al., 2012).

The model proposed is an example of penalised functional regression.
In this respect, some degree of regularisation can be applied at different
stage of functional data analysis, starting from smoothing (Ramsay and
Silverman, 2005). At the same time, the choice of the number of func-
tional principal components to be used in regression (by using the pro-
portion of variance explained) is itself a penalisation. On top of this we
added a further penalisation, driven this time by the relationship be-
tween outcome and predictors, to account for the potential high number
of covariates given the sample size (following the indication provided in
Heinze et al., 2018). Our model represents a novelty in the literature as it
easily accommodates this aspect into a quantile regressionmodel with 3D
functional covariates.

In addition to the bias induced by the regularisation, another poten-
tial issue related to the functional coefficient is its sensitivity to the
modelling strategy used. As extensively studied in Happ et al. (2018), the
smoothness induced by splines could lead to different estimates with
respect to other approaches (e.g. wavelet basis expansion or random field
methods). Further work can be done to confirm the contribution of each
brain region to the final prediction. Nevertheless, the predictive ability -
which is the first focus of our model - does not seem to be harmed by this
modelling choice.

Our approach is competitive in terms of speed compared to existing
methods (Franke et al., 2012; Cole, 2017). In particular, for a new image
the model returns the predicted interval in approximately a minute and
the training phase of the model is expected to be shorter and less
computationally intensive than training a neural network, especially
because the basis expansion step runs in parallel for each image.

The modelling approach illustrated in this paper can be extended in
multiple ways, from both theoretical and practical perspectives. For what
concerns the key points of the workflow, in this paper we have chosen to



Fig. 10. Left: mean absolute error for control subjects as function of proportion of variance explained and knot spacing. Right: Coverage relative difference
of prediction intervals induced by each choice of proportion of variance explained, knot spacing and nominal coverage. Points are jittered horizontally for
visualisation purposes.
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project the images (and the functional coefficients) using B-spline basis
functions and sketched a possible strategy to select knot spacing.We have
shown that some degree of smoothing produces slightly better pre-
dictions with respect to no smoothing at all with negligible computa-
tional cost. The benefit of this approach could more easily appreciated
when the number of images is much larger, in which case loading the
whole unsmoothed data into memory can be unfeasible.

The quantile regression approach is a technically easy-to-implement
strategy to build prediction intervals without assuming normality.
Since we consider only the best fit for each of the regression models, it
could be of interest to study how the uncertainty about the coefficients
and the models could play a role in the calculation of individual pre-
diction intervals. The observed coverage in the control group could also
depend on the bias/variance trade-off introduced by the cross-validation
procedure (and in particular on the type of penalty and the number of
folds chosen). Further simulation study can be done to assess the extent
of this relationship.

In addition, further extensions of quantile regression could be
considered. Additive terms might be introduced in order to explore
nonlinear effects of the imaging covariate. Moreover, quantile boosting
(Mayr et al., 2012) could provide better prediction intervals by reducing
the bias due to the estimation at extreme quantiles. This approach has a
higher computational cost but keeps the advantage of interpretability,
which is no longer available with other approaches such as quantile
regression forests described in Meinshausen (2006). A potential issue for
the current formulation of our approach is the phenomenon of quantile
crossing, that occurs when the predicted quantiles are not monotonically
increasing in τ as the conditional quantile function is by construction.
Although in 90% prediction intervals the problem arises rarely (in our
application it has been reported for only 1 case out of 796), still this could
introduce some bias. Monotonicity can be forced after the estimation by
using rearrangement or isotonic regression (see e.g. Kato, 2012; Cher-
nozhukov et al., 2010). An alternative modelling strategy for quantile
regression that ensures monotonicity of the function is provided in Chen
and Müller (2012): the quantile function is obtained indirectly by first
estimating the entire CDF of the response variable and then inverting it to
recover the quantile function at the level of interest. The key idea is to use
a generalised functional linear model to model the conditional distribu-
tion of Y jX as conditional expected values of indicator functions. This
“indirect” model is claimed to provide better estimation of the quantile
function with respect to the classical quantile regression at extreme
quantile levels for non-gaussian response variables (Chen and Müller,
2012), although the flexibility induced by considering different pre-
dictors at different quantile levels is lost. In addition, generalised additive
models for location, scale and shape (GAMLSS, Rigby and Stasinopoulos
(2005)) can also provide a detail picture of the conditional distribution of
the outcome of interest. In GAMLSS the parameters of the distribution
(not only the location, as in GLM) can be written as (smooth) functions of
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the covariates. GAMLSS can handle functional covariates (Brockhaus
et al., 2018) and ensures monotonocity of the quantile predictions, but
the family of the conditional distribution of the outcome must be speci-
fied in advance.

From the application point of view, it is currently very difficult to
provide a sensible comparison between different models. This is due to
the large range of possible approaches (from multivariate statistics to
deep learning) applied to a plethora of datasets with different sizes, age
ranges and imaging modalities (T1-weighted MRI to PET or FMRI). Cole
et al. (2019) uses a MAEweighted by the age range in the training set as a
measure of comparison. That approach might be too simplistic, as a
1-year absolute error for a 6-year child should probably be weighted
more than the same error for a 70-year old individual. A more adaptive
measure should be devised, or alternatively there should be an incentive
towards the use of a specific dataset as a benchmark. Big databases such
as UK Biobank (Sudlow et al., 2015) seem the right testing ground for all
the methods available in the literature. Our model could be applied on
different imaging modalities, for example voxel-based morphometry, in
order to specify potential differences in the effects due to white and gray
matter.

Coming to more specific modelling-related issues, as observed from
the plots concerning the prediction intervals, a non negligible correlation
is noticed between chronological age and the brain age differences
(predicted minus chronological, called brainPAD in Cole et al., 2017,
brainAGE - brain age gap estimate - in Franke and Gaser, 2019 or δ in
Smith et al., 2019). This undesirable effect arises from the simple fact
that by construction the residuals (which become the objects of interest
when we want to explore the relationship with other variables such as
disease conversion) in a regression model are uncorrelated with respect
to the predicted values, but not with the observed ones. Similar issues are
also reported in the deep learning approaches to brain age prediction
(Cole et al., 2017; Varatharajah et al., 2018). The work by Smith et al.
(2019) identifies potential reasons for this phenomenon and proposes
some solutions. Among others, a viewpoint that is conceptually grounded
and at the same time can be embedded in our model could be rephrasing
the whole problem in terms of a errors-in-variables framework. In
particular, this accounts for the imaging covariate (consistently with the
functional data perspective) or its scores representation being measured
with some errors. At the same time, the response itself (chronological
age) can be considered as a noisy proxy for biological brain age (for
which it is difficult or even impossible to define a reference measure).

Another aspect left for future research is to extend the analysis of the
clinical utility of the prediction intervals obtained with our workflow by
using a larger battery of cognitive measures. The first basic measures
selected in this work show interesting and sensible results, especially for
the correlation with the *-positive binary variable. A desired feature of
this indicator in a prognostic context should be its correlation with
conversion to dementia, in order to provide a sensible way to early detect
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neurodegenerative diseases. Furthermore, a similarly defined “*-negative
indicator” could be also explored in the same way in order to show po-
tential aspects of a healthy aging process.

In addition, introducing other covariates in the model (such as sex,
years of education or physical activity measures) is rather straightfor-
ward and it could improve the detection of discrepancies from normative
ageing. On the other hand, these covariates might potentially introduce
confounding effects: the variability due to non-imaging information
could be already captured by one or more functional principal compo-
nents. Our approach can be also easily incorporated in a longitudinal
model where brain age trajectories could provide evidence of stable or
accelerated brain ageing.
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