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Correctly determining if a patient with subtle cognitive symp-
toms, such as memory decline, suffers from prodromal or 
preclinical AD and will progress to AD dementia within the 

near future remains a challenge for clinicians. The task is nonethe-
less of utmost importance for a timely referral to a memory clinic, 
a correct and early AD diagnosis, initiation of symptomatic treat-
ment, planning for the future and, hopefully soon, for initiating 
disease-modifying treatments. Although there have been impres-
sive developments in biomarkers for AD and progression to AD 
dementia, such as cerebrospinal fluid (CSF) analysis of β-amyloid 
(Aβ42 (ref. 1)) or the ratio of Aβ42/Aβ40 (ref. 2), P-tau3,4 and neuro-
filament light (NfL)5, as well as Aβ-positron emission tomography 
(PET)6,7 and tau-PET8,9, the invasive nature, high cost and limited 
availability restrict their use to a limited number of highly special-
ized centers. A possible turning point has emerged with the recent 
development of blood-based biomarkers, making it possible to mea-
sure NfL10,11, Aβ42/Aβ40 (refs. 12,13) and P-tau (phosphorylated at 
either threonine 181 or threonine 217) in plasma14–16.

Plasma P-tau181 and P-tau217, in particular, have shown espe-
cially high diagnostic performance for discriminating AD dementia 
from other neurodegenerative diseases14–16. Plasma P-tau has also 
recently been shown to be suitable for individualized prediction of 
cognitive decline in individuals with mild cognitive impairment 
(MCI)17. In the clinical workup of patients with cognitive complaints, 

however, it is unlikely that plasma P-tau (or any other biomarker) 
will achieve the highest potential predictive accuracy on its own, 
owing to the multifactorial nature of AD etiology and its heterog-
enous clinical presentation. There is, therefore, now a need to iden-
tify which other measures plasma P-tau should be combined with 
to produce the most accurate prediction of future AD and establish 
an optimal diagnostic algorithm of non-invasive, cost-effective and 
easily available methods for early diagnosis of AD.

Furthermore, before establishing plasma P-tau in clinical prac-
tice, alone or as part of an algorithm, it is important to examine 
whether it actually performs better than the clinical prediction 
made by a treating physician, which has not been previously exam-
ined. The aim of the current study was, therefore, to examine the 
accuracy of plasma P-tau among patients with mild cognitive symp-
toms for predicting future AD dementia when combined with other 
accessible and non-invasive biomarkers. The prediction included 
not only the discrimination between progression to AD dementia 
and stable cognitive symptoms but also versus progression to other 
dementias. The accuracies were compared with the diagnostic pre-
diction of memory clinic physicians who had performed extensive 
clinical assessments and evaluated cognitive testing and structural 
brain imaging at baseline. Selection of variables and accuracies 
from the models were examined in two independent, multi-center 
cohorts. The primary cohort was the Swedish BioFINDER study, 
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and the validation cohort was the ADNI. The primary outcome was 
progression to AD dementia within 4 years; secondary outcomes 
were progression to AD dementia within 2 and 6 years, respectively. 
Finally, a cross-validated model was established and implemented 
as an online tool for predicting the individual risk of progressing to 
AD dementia (http://predictAD.app).

Results
Participants in BioFINDER. The cohort included 340 consecu-
tively enrolled patients with cognitive complaints. One hundred and 
sixty-four patients were subsequently characterized as having sub-
jective cognitive decline (SCD), and 176 patients were subsequently 
characterized as having MCI. Ninety-one patients progressed to AD 
dementia at follow-up; 48 patients progressed to other dementias; 
and 201 patients did not progress to any dementia. The mean (s.d.) 
age was 70.7 (5.6) years, and 49% were women. The mean (s.d.) time 

to dementia was 2.9 (1.5) years, and the mean (s.d.) follow-up time 
in participants who did not progress to dementia was 4.5 (1.6) years. 
Participant characteristics are described in Table 1; the enrollment 
process is described in Extended Data Fig. 1.

Prediction of AD dementia in BioFINDER. Figure 1 summarizes 
the model selection process and main results. First, a data-driven 
model selection was performed to select the model with the low-
est Akaike information criterion (AIC)—that is, the best tradeoff 
between model fit and model complexity for predicting AD demen-
tia (see Supplementary Methods for a detailed description of AIC). 
Variables screened for included key demographics, number of 
APOE ε4 alleles, brief tests from four cognitive domains, a magnetic 
resonance imaging (MRI) measure (‘AD signature’ cortical thick-
ness from temporal regions prone to atrophy in AD18) and plasma 
biomarkers (NfL, P-tau217 and Aβ42/Aβ40). Then, a parsimonious 

Table 1 | Baseline characteristics for the BioFINDER and ADNI cohorts

BioFINDER ADNI

Converting to AD 
dementia (n = 91)

Not converting to AD 
dementia (n = 249)

P value Converting to AD 
dementia (n = 102)

Not converting 
to AD dementia 
(n = 441)

P value

Age (years) 72.1 (4.91) 70.2 (5.73) 0.007 73.2 (6.98) 71.2 (7.14) 0.003

Gender (female) 44 (48%) 124 (50%) 0.81 54 (53%) 229 (52%) 0.85

Education (years) 11.8 (3.44) 11.9 (3.56) 0.75 16.2 (2.64) 16.3 (2.63) 0.64

Baseline diagnosis

 SCD 20 (22.0%) 144 (57.8%) <0.001 0 (0%) 106 (24.0%) <0.001

 MCI 71 (78.0%) 105 (42.2%) <0.001 102 (100%) 335 (76.0%) <0.001

Time to any dementia from 
baseline SCD (years)

3.54 (1.71) 3.39 (1.26) NA 3.76 (2.49)

Time to any dementia from 
baseline MCI (years)

2.68 (1.52) 2.85 (1.49) 2.54 (1.90) 3.16 (2.42)

Follow-up time, stable 
participants (years)

NA 4.55 (1.62) NA 4.30 (2.38)

Follow-up diagnosis

 AD 91 (100%) 0 102 (100%) 0

 DLB/PDD/PSP 0 10 (4.0%) 0 1 (0.2%)

 FTD 0 7 (2.8%) 0 1 (0.2%)

 VaD 0 23 (9.2%) 0 2 (0.5%)

 Other 0 8 (3.2%) 0 21 (4.8%)a

 Non-dementia 0 201 (80.7%) 0 416 (94.3%)

MMSE (points) 27.1 (1.87) 28.2 (1.65) <0.001 27.4 (1.81) 28.5 (1.56) <0.001

Memory function (z-score) −0.70 (0.82) 0.25 (0.94) <0.001 −0.82 (1.01) 0.20 (0.89) <0.001

Verbal function (z-score) −0.096 (0.89) 0.035 (0.75) 0.11 −0.39 (1.17) 0.090 (0.93) <0.001

Executive function (z-score) −0.46 (0.74) 0.17 (0.87) <0.001 −0.493 (0.927) 0.114 (0.777) <0.001

Visuospatial function (z-score) −0.17 (0.96) 0.061 (1.01) 0.02 −0.33 (1.26) 0.075 (0.91) 0.002

Plasma P-tau217 (pg ml−1) 0.40 (0.25) 0.17 (0.14) <0.001 NA NA

Plasma P-tau181 (pg ml−1)b 4.20 (2.22) 2.26 (4.54)  <0.001 24.4 (10.8) 15.8 (11.4) <0.001

Plasma Aβ42/Aβ40 (pg ml−1) 0.062 (0.006) 0.066 (0.008) <0.001 NA NA

Plasma NfL (pg ml−1)c 25.2 (10.9) 23.6 (20.8) 0.002 44.9 (18.1) 35.1 (19.0) <0.001

Cortical thickness of the AD 
signature region (mm)c

2.30 (0.24) 2.48 (0.27) <0.001 2.65 (0.18) 2.76 (0.15) <0.001

Data are shown as mean (s.d.) or n (%). Group comparisons were performed using the Mann–Whitney U test. aThere were 17 participants with a clinical follow-up diagnosis of AD dementia who were 
Aβ-negative. These were coded as having other dementias. bNote that plasma P-tau181 was available in only a small subset in BioFINDER, and that pre-analytical and assay differences make the BioFINDER 
concentrations incomparable with the concentrations in ADNI. cCalibration-related (NfL) or camera-related (MRI) differences make it difficult to directly compare the results between the cohorts for these 
biomarkers. Note that, before analyzed in logistic regression models, biomarker concentrations were transformed so that higher values corresponded to more abnormal results. DLB, dementia with Lewy 
bodies; FTD, frontotemporal degeneration; NA, not applicable; PDD, pervasive developmental disorder; PSP, progressive supranuclear palsy; VaD, vascular dementia.
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model was created by removing as many variables as possible while 
maintaining a similar model performance defined as being within 
two AIC points of the lowest AIC model identified in the first step 
(ΔAIC < 2)19,20. Thereafter, variables were removed further in a step-
wise procedure to examine the performance of more basic models. 
Using the primary outcome—prediction of AD dementia within 
4 years—the best model included the predictors plasma P-tau217, 
number of APOE ε4 alleles, executive function, memory function, 
cortical thickness and plasma NfL (Fig. 1 and Supplementary Table 
1). This model resulted in an AUC of 0.92 (95% confidence interval 
(CI) 0.89–0.95). Removing plasma NfL resulted in similar model 
performance (ΔAIC < 2) and accuracy (AUC = 0.91, 95% CI 0.88–
0.95). Also removing cortical thickness (that is, a model with plasma 

P-tau217, cognition and APOE) retained a similar accuracy (AUC 
= 0.91, 95% CI 0.87–0.94, P = 0.09–0.82 versus the more complex 
models, including the model with best fit) but with slightly poorer 
model fit (ΔAIC 6.0–7.7). The AUC of the latter model was signifi-
cantly higher than when using only plasma P-tau217 (AUC = 0.83, 
95% CI 0.78–0.89, P < 0.001; Fig. 1 and Supplementary Table 1).

The model with best fit for predicting AD dementia within 
2 years resulted in similarly included variables and accuracies 
(Extended Data Fig. 3 and Supplementary Table 2). Model selection 
for prediction within 6 years selected the same variables as for the 
4-year outcome but with the addition of plasma Aβ42/Aβ40 (AUC 
= 0.94, 95% CI 0.91–0.97; Extended Data Fig. 4 and Supplementary 
Table 3).
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Fig. 1 | Model selection process and performance for predicting AD dementia within 4 years. a, The logistic regression model selection process. Best 
model fit shows the data-driven model selection with the lowest AIC (that is, the model with best fit). The parsimonious model shows the model that 
had a similar model performance (ΔAIC < 2) with as few significant predictors as possible. In subsequent models, modalities were removed in a stepwise 
procedure. Model specifications, including comparisons between all models, are shown in Supplementary Table 1. Comparisons between AUCs were 
performed using DeLong statistics. b, ROC curve analyses of the different models for discriminating those who progressed to AD dementia versus those 
who progressed to other dementias or remained cognitively stable. n = 297, of whom 70 progressed to AD dementia within the time period. APOE, 
apolipoprotein E genotype (number of ε4 alleles); Exec. function, executive function; MRI, magnetic resonance imaging of the cortical thickness of a 
temporal AD-specific region; ROC, receiver operating characteristic.
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Separate AUCs of univariable models for predicting progression 
to AD dementia at each time point from 2 to 6 years are shown and 
discussed in Extended Data Fig. 2.

The clinical prediction of AD dementia in BioFINDER. The sub-
sample where the memory clinic physicians at baseline determined 
the most probable underlying cause of the cognitive impairment 
(that is, ‘clinical prediction’) comprised 285 patients, of whom 72 
converted to AD dementia during follow-up. Using the primary 
outcome (progression to AD dementia within 4 years), the AUC for 
the clinical prediction was 0.72 (95% CI 0.65–0.78), and, for plasma 
P-tau217 alone, the AUC was 0.81 (95% CI 0.75–0.87) (P = 0.03  

versus the clinical prediction). Adding memory, executive func-
tion and APOE to plasma P-tau217 provided a further significantly 
higher accuracy than the clinical prediction (AUC = 0.90, 95% CI 
0.86–0.94, P < 0.001) (see Fig. 2 and Supplementary Table 4 for 
details). Significantly better accuracies for the models versus the 
clinical prediction were also seen at 2 and 6 years (Supplementary 
Tables 5 and 6).

Comparison with CSF biomarkers. To examine the effect of using 
CSF biomarkers instead of plasma biomarkers, we tested different 
models with CSF P-tau, Aβ42/Aβ40 and NfL for the main outcome: 
prediction of AD dementia within 4 years (Supplementary Table 7). 
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Fig. 2 | Comparison with the clinical prediction for predicting AD dementia within 4 years. a, Logistic regression models from Fig. 1 compared with the 
clinical diagnostic prediction of memory clinic physicians at the baseline visit (before fluid biomarker data were available). Comparisons between AUCs 
were performed using DeLong statistics. b, ROC curve analyses of the different models for discriminating those who progressed to AD dementia versus 
those who progressed to other dementias or remained cognitively stable. Note that the comparison with the clinical prediction was performed on a 
subsample where the clinical prediction was available, hence the slightly different AUCs (and 95% CIs) compared with those shown in Fig. 1. n = 247, of 
whom 53 progressed to AD dementia within the time period. APOE, apolipoprotein E genotype (number of ε4 alleles); Exec. function, executive function; 
MRI, magnetic resonance imaging of the cortical thickness of a temporal AD-specific region; ROC, receiver operating characteristic.
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In the model with best fit (Fig. 1, top model), the use of CSF P-tau 
and CSF NfL, instead of plasma P-tau and plasma NfL, produced a 
non-significantly different AUC (0.93, 95% CI 0.90–0.96, P = 0.44). 
In a new data-driven model selection using CSF instead of plasma 
biomarkers, CSF P-tau, CSF Aβ42/Aβ40, memory, executive func-
tion and cortical thickness were selected for the model with best fit. 
This model also produced a non-significantly different AUC when 
compared to the model with best fit using plasma biomarkers (0.94, 
95% CI 0.92–0.97, P = 0.085). The more basic model with P-tau, 
APOE, memory and executive function had very similar accuracies 
(AUC = 0.91 using either CSF or plasma P-tau; P = 0.55). Finally, 
in univariate analyses, both CSF and plasma P-tau had an AUC of 
0.83 (P = 0.95).

Validation in the ADNI cohort. The cohort included 106 par-
ticipants with SCD and 437 participants with MCI, of whom 102 
progressed to AD dementia at follow-up and 28 to other demen-
tias (Table 1). The validation from BioFINDER was carried out in 
two steps. First, the same type of model selection was performed 
in ADNI to examine if similar variables were selected (with the 
exception that plasma P-tau181 was available instead of P-tau217 
and that plasma Aβ42/Aβ40 measures were available only in a 
small subsample and, therefore, not included in the analysis;21,22 see 
Supplementary Methods for details). Second, the key models iden-
tified from the BioFINDER cohort were tested in ADNI. Third, a 
cross-validated model was constructed and implemented online 
(see next section).

For the primary outcome (predicting AD dementia within 4 
years), the same biomarkers as in BioFINDER were selected for the 
model with best fit in ADNI, with the exception that plasma NfL 
was not chosen in ADNI (Fig. 3 and Supplementary Table 8). Note 
that, even though plasma NfL was selected in BioFINDER, it was 
not a significant predictor (Supplementary Table 1). When testing 
the variables selected in the parsimonious model from BioFINDER 
in ADNI (plasma P-tau, MRI, APOE, memory and executive func-
tion), the accuracy (AUC = 0.91, 95% CI 0.87–0.94 in BioFINDER) 
was not different from the model with best fit established in ADNI 
(AUC = 0.91, 95% CI 0.87–0.94, P = 0.41, ΔAIC < 2) (Fig. 3 and 
Supplementary Table 8). The more basic model with just P-tau, 
APOE, memory and executive function performed very similarly in 
both cohorts (AUC = 0.90, 95% CI 0.86–0.94 in ADNI versus AUC 
= 0.91, 95% CI 0.87–0.94 in BioFINDER).

Similar accuracies were seen in ADNI compared to BioFINDER 
for predictions of AD dementia within 2 and 6 years, respec-
tively (Supplementary Table 2 versus Supplementary Table 9 and 
Supplementary Table 3 versus Supplementary Table 10).

Finally, a comparison between models using CSF P-tau181 
instead of plasma P-tau181 was performed. The plasma-based mod-
els did not perform significantly differently from the CSF-based 
models (Supplementary Table 11). For example, plasma P-tau181, 
APOE, memory and executive function had an AUC of 0.90 (95% 
CI 0.86–0.94), and CSF P-tau181, APOE, memory and executive 
function had an AUC of 0.91 (95% CI 0.88–0.95). When compar-
ing plasma P-tau181 alone (AUC = 0.78, 95% 0.72–0.84) to CSF 
P-tau181 alone (AUC = 0.86, 95% 0.81–0.90), plasma had a lower 
accuracy (P = 0.01).

Cross-validation and implementation of a prediction algorithm. 
As seen in the comparison between the BioFINDER and ADNI 
cohorts, a model consisting of plasma P-tau, memory, executive 
function and number of APOE ε4 alleles provided a good bal-
ance among simplicity, accuracy and generalizability for predic-
tion of AD dementia within 4 years (AUCs 0.90–0.91; Figs. 1 and 
4). We, therefore, created a new model in BioFINDER, where the 
estimates of the model could be directly tested in ADNI (and other 
cohorts). Because of the different plasma P-tau isoforms used in the 

cohorts, P-tau217 and P-tau181 were converted to binary variables 
(abnormal/normal). Unbiased plasma P-tau cutoffs were estab-
lished in independent populations in BioFINDER and ADNI at the 
mean level + 2 s.d. in Aβ-negative controls (Methods). Cognitive 
domain scores for both the BioFINDER and ADNI cohorts were 
established based on the distribution in an independent control 
sample in BioFINDER without tau or Aβ pathology, adjusted for 
age and education (Supplementary Methods)23,24. The new model 
had an AUC of 0.89 (95% CI 0.85–0.93) in BioFINDER (P = 0.18 
versus the model using continuous plasma P-tau217 data in Fig. 1). 
When the estimates of the model were validated in ADNI, the AUC 
was 0.86 (95% CI 0.81–0.90) (Fig. 4a). A secondary cross-validated 
model was constructed using plasma P-tau z-scores (instead of 
binary P-tau status) based on the distribution in Aβ-negative con-
trol participants (Methods). This model had an AUC of 0.90 (95% 
CI 0.87–0.94) in BioFINDER, and, when the estimates of the model 
were validated in ADNI, the AUC was very similar (0.89, 95% CI 
0.85–0.93) (Extended Data Fig. 5). The cross-validated models were 
implemented online at http://predictAD.app where the individual 
probability of progressing to AD dementia within 4 years can be 
calculated for new cases (Fig. 4b).

Additional analyses. In primary care centers and in centers not spe-
cifically specialized in dementia disorders, patients without demen-
tia are unlikely to be correctly classified as having SCD or MCI, 
because it requires a substantial cognitive battery25. However, this is 
often done in specialized memory clinics, and, for this sake, sepa-
rate analyses in patients with SCD and MCI were performed. When 
evaluating the predictive accuracy in patients with SCD, we found 
that plasma P-tau217, APOE, memory and executive function could 
predict development of AD dementia within 4 years with an AUC 
of 0.95 in BioFINDER (Supplementary Table 12). When selecting 
only individuals with MCI, we found that plasma P-tau217, APOE, 
memory and executive function could predict AD dementia within 
4 years with an AUC of 0.86, which increased to 0.88 when also 
including MRI in BioFINDER (Supplementary Table 14). In ADNI, 
the same variables could predict AD dementia in MCI with an AUC 
of 0.90 (Supplementary Table 17). Details of these and additional 
analyses in SCD and MCI populations are shown in Supplementary 
Tables 12–19.

In addition, negative and positive predictive values for the main 
models in the whole populations of BioFINDER and ADNI are 
reported in Supplementary Tables 20 and 21.

Finally, a plasma P-tau181 measure (although with a different 
assay and analytical platform than for the one used in ADNI) was 
available in a subsample in BioFINDER (n = 192 for the 4-year 
prediction). When comparing plasma P-tau217 to this P-tau181 
measure for predicting progression to AD dementia within 4 years, 
no significant differences in predictive accuracies were found 
(Supplementary Table 22).

Discussion
In this study, we examined how plasma P-tau could be best com-
bined with other easily accessible and cost-effective measures to 
predict progression to AD dementia, primarily within 4 years, in 
a heterogenous and consecutively included memory clinic cohort. 
Although plasma P-tau alone could predict AD dementia accurately 
within 4 years (AUC = 0.83), the most marked increase in accu-
racy was seen when it was combined with brief cognitive tests of 
memory and executive function and APOE genotype (AUC = 0.91;  
Fig. 1 and Supplementary Table 1). Minor further improvements 
were seen when also including cortical thickness and plasma 
NfL (Fig. 1). No significant differences were observed in accura-
cies when using CSF biomarkers instead of plasma biomarkers 
(Supplementary Table 7 and 11). Plasma P-tau217 alone and in 
combination with other variables had significantly higher accuracy 
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than the clinical diagnostic predictions of memory clinic physicians 
after a comprehensive baseline assessment including medical his-
tory, cognitive testing and computed tomography (CT) or MRI of 
the brain (Fig. 2 and Supplementary Table 4). The generalizability 
of these predictors was demonstrated by a similar variable selection 
and performance in the independent ADNI cohort (Fig. 3) as well 
as the performance in separate SCD and MCI populations, respec-
tively (Supplementary Tables 12–19). Especially the combination 
of plasma P-tau, memory, executive function and APOE geno-
type had a robust performance and high accuracy in both cohorts 
(AUC = 0.90–0.91 in BioFINDER and ADNI; Figs. 1 and 4). This 
selection of variables was used to create cross-validated mod-
els that can be used to predict the individual risk for progression  

to AD dementia for new cases (Fig. 4 and Extended Data Fig. 5; 
http://predictAD.app).

Although there has been great progress recently in validating 
plasma P-tau as a biomarker for AD14–16,26–30 and for individual-
ized prediction of cognitive decline in individuals classified as 
having MCI17, this paper is, to our knowledge, the first to present 
how plasma P-tau can be combined with other easily available and 
cost-effective measures for predicting development of AD demen-
tia in patients seeking medical care based on diverse mild cognitive 
symptoms. To ensure robustness of the models that included plasma 
P-tau and other measures, the other measures that were examined 
in this study were based on the literature of cognitive tests sensitive 
to the cognitive decline in AD31–33, plasma and MRI biomarkers that 
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have been shown to measure the underlying disease processes in 
AD at different stages11,12,16,18 and known demographic and genetic 
risk factors of AD and cognitive decline34,35. Another novelty of the 
study is the comparison with the clinical prediction (Fig. 2), which 
shows the true value of implementing plasma P-tau alone or in com-
bination with other measures to improve the diagnostic prediction 
in clinical practice.

Using BioFINDER as the primary cohort of interest had some 
valuable strengths for determining optimal combinations of tests for 
use in clinical practice. The population consisted of consecutively 
recruited patients who had been referred to participating memory 

clinics, making the cohort heterogenous and representative of a 
future target population (Table 1). Nonetheless, similar results were 
obtained in ADNI that consists of a selected population focused on 
AD. The cognitive span in both cohorts ranged from subjective to 
objective cognitive symptoms (that is, both SCD and MCI), which 
best mimics the clinical scenario where physicians would use the 
combination of tests. Although the commonly used division into 
individuals with MCI and cognitively unimpaired individuals (SCD 
and controls) can make sense from a research standpoint—for 
example, for studying disease mechanisms in AD36—this cogni-
tive classification system is difficult to replicate among cohorts and 
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translate into clinical practice. Depending on MCI definitions and 
use of cognitive tests and cutoffs, those classified as MCI will greatly 
vary between populations37–39. And even if a unified definition and 
set of cognitive tests were determined, the comprehensive cognitive 
test battery needed would not fit the testing routines—for example, 
in primary care25.

This study had limitations. First, plasma Aβ42/Aβ40 was not 
available in an adequately large sample size in ADNI and could 
not, therefore, be included in that cohort. However, in BioFINDER, 
where plasma Aβ42/Aβ40 was available, it was selected only for 
the prediction within 6 years, and removing it from the model 
reduced the AUC by less than 0.02. Second, the cognitive tests that 
were available in both cohorts were limited. This resulted in sub-
optimal tests for the verbal and visuospatial domains, which could 
have contributed to their lower accuracy (Extended Data Fig. 2). 
On the other hand, those representing the memory and executive 
domains have been extensively validated as sensitive measures of 
early cognitive decline in AD31–33. Third, although we did not find 
a significantly different accuracy between the best-performing 
plasma-based models (AUC = 0.92) and CSF-based models (AUC 
= 0.94), we cannot rule out that using a much larger sample size 
would have identified a significant difference. Fourth, the updated 
diagnostic criteria for AD are based on a framework of identifying 
Aβ (A), tau (T) and, depending on stage of the disease, neurode-
generation (N)36. From this ATN scheme, we included only a bio-
marker for T (P-tau) in our online algorithm consisting of plasma 
P-tau, APOE and cognition. However, in this model, we think that 
the number of APOE ε4 alleles acts as a proxy for Aβ given their 
incrementally increased association with Aβ burden34. As shown 
when using CSF instead of plasma biomarkers, CSF Aβ42/40 (which 
is a better biomarker for Aβ pathology than plasma Aβ42/40), 
and not APOE genotype, was selected in the model with the low-
est AIC (Supplementary Table 7, model 3). In addition, P-tau has 
also been shown to reflect Aβ pathology (that is, it is not a pure 
tau biomarker)4,40, further supporting that the predictors, including 
in the algorithm, partly reflect both A and T in the ATN scheme. 
Regarding ‘N’, although it is an important marker for determining 
the pathophysiological stage of AD, the inclusion of cognitive tests 
might have overruled its importance in predicting cognitive decline, 
because cognition itself probably is more closely linked to progres-
sion to dementia in individuals who already experience cognitive 
symptoms. Fifth, a model using estimates based on absolute plasma 
P-tau concentrations could not be cross-validated, because different 
P-tau isoforms were available in BioFINDER (plasma P-tau217) and 
ADNI (plasma P-tau181). Instead, a cross-validated model includ-
ing binary plasma P-tau (abnormal/normal), memory, executive 
function and number of APOE ε4 alleles was validated (Fig. 4). This 
model had high accuracy in the training cohort but, more impor-
tantly, also when applied in the validation cohort. Furthermore, we 
developed a second cross-validated model using continues z-scores 
of plasma P-tau based on a reference population, which resulted 
in higher accuracy in the cross-validation analysis (Extended Data 
Fig. 5; both models are implemented at http://predictAD.app). In 
the near future, it is likely that several different P-tau assays will be 
available on the market. The robust cross-validated results found 
in the present study, despite using different plasma P-tau assays 
in BioFINDER versus ADNI, opens up the possibility to use the 
same algorithm for different P-tau assays with similar prognostic 
information, including high-performing assays for either plasma 
P-tau181 or P-tau217, provided that either binary or standardized 
continuous P-tau data are used.

As for the potential diagnostic improvements in clinical practice, 
our comparison with the clinical-based prediction shows a clear 
advantage of using plasma P-tau in combination with the other 
measures (increases in AUC from 0.72 to 0.89–0.92; Fig. 2). The 
clinical prediction consisted of the baseline assessment of memory 

clinic physicians, showing the potential improved value at a spe-
cialist center. In addition, the presented models showed similarly 
high accuracy when comparing CSF biomarkers and plasma bio-
markers (Supplementary Tables 7 and 11). This suggests that the 
plasma P-tau models might provide a similar substitute for CSF 
analyses in settings where these are not accessible or too expensive. 
Venous puncture (for plasma analyses) is also easier for patients 
to undergo than lumbar puncture (for CSF analysis). In primary 
care, the implementation of these models is even more important 
because of the restricted availability of accurate diagnostic tools and 
the fact that only 20–50% of patients with dementia are routinely 
recognized and documented41,42. Presuming that primary care phy-
sicians make less accurate predictions of future AD dementia than 
memory clinic physicians, the advantage of using brief diagnostic 
algorithms based on plasma P-tau in primary care would be even 
greater. However, the present cross-validation does not warrant an 
accurate prediction of AD dementia in primary care, and further 
validation is required in large, unselected and ethnically diverse pri-
mary care populations with a lower pre-test probability of underly-
ing AD. Additionally, future steps before clinical implementation of 
plasma P-tau-based prognostic algorithms include (1) development 
of clinical-grade plasma P-tau assays approved by the appropriate 
regulatory authorities; (2) establishment of a standardized protocol 
for collecting and handling of plasma; and (3) agreement on appro-
priate use criteria to avoid misinterpretation and misuse of these 
prognostic algorithms in the clinic.

Besides clinical use, a prognostic algorithm could be used for 
recruitment of individuals with early AD to clinical trials. The pre-
sented models might, therefore, provide substantial cost benefits 
compared to using CSF analysis or PET to screen for eligible partici-
pants, which could speed up recruitment and, hence, facilitate the 
drug development process of future disease-modifying treatments 
for AD32.
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Methods
Participants. Participants from the Swedish BioFINDER study (http://biofinder.
se; NCT01208675) consisted of consecutively included non-dementia patients with 
mild cognitive symptoms who were referred to the participating memory clinics. 
Two hundred and fifty-three (81%) patients were referred from primary care 
units; 40 (13%) patients were referred from other specialist settings; and 20 (6%) 
patients were self-referrals. The inclusion criteria were as follows: (1) referred to 
the memory clinic at Skåne University Hospital or Ängelholm Hospital in Sweden 
owing to cognitive symptoms experienced by the patient and/or informant. These 
symptoms did not have to be memory complaints but could also be executive, 
visuospatial, language, praxis or psychomotor complaints; (2) age between 60 
and 80 years; (3) Mini-Mental State Examination (MMSE) score of 24–30 points 
at the baseline visit; (4) do not fulfill the criteria for any dementia; and (5) speak 
and understand Swedish to the extent that an interpreter was not necessary for the 
patient to fully understand the study information and neuropsychological tests. The 
exclusion criteria were as follows: (1) significant unstable systemic illness or organ 
failure, such as terminal cancer, that makes it difficult to participate in the study; 
(2) current substantial alcohol or substance misuse; (3) refusing lumbar puncture 
or neuropsychological assessment; and (4) the cognitive impairment at the baseline 
visit could, with certainty, be explained by another condition or disease, such as 
normal pressure hydrocephalus, major cerebral hemorrhage, brain infection, brain 
tumor, multiple sclerosis, epilepsy, psychotic disorders, severe depression and 
ongoing medication with drugs that invariably cause cognitive impairment (such as 
high-dose benzodiazepines).

After inclusion, the patients were categorized as having either SCD or 
MCI based on an extensive neuropsychological battery performed at baseline, 
examining verbal, episodic memory, visuospatial ability and attention/executive 
domains, as previously described25. Patients with domain z-scores of ≤ −1.5 in 
at least one domain were classified as having MCI. In agreement with Diagnostic 
and Statistical Manual of Mental Disorders, 5th Edition, (DSM-5) criteria for 
mild neurocognitive disorders, all patients with composite z-scores of −1 to −1.5 
were individually assessed by a senior neuropsychologist and classified as having 
MCI if the performance was assessed to represent a significant cognitive decline 
in comparison with their estimated premorbid level. All patients with SCD were 
required to experience cognitive symptoms (but not necessarily in the memory 
domain). Note that the cognitive tests used for the SCD versus MCI differentiation 
were different from those used as predictors in the models.

Participants with at least one follow-up visit and a complete baseline dataset 
of all variables included in the logistic regression models were selected for this 
study. See Extended Data Fig. 1 for an enrollment flowchart. The participants were 
followed longitudinally with yearly follow-ups that included cognitive testing, 
informant-based activities of daily living (ADL) questionnaires and detailed 
assessments by physicians experienced in neurocognitive disorders. All patients 
gave their written informed consent to participate, and the study was approved by 
the regional ethics committee in Lund, Sweden.

The clinical diagnostic prediction. In a subgroup of patients (those included 
from the memory clinics in Malmö and Lund), the treating physician at the 
memory clinic was prospectively registering the most likely underlying cause 
of the cognitive impairment (here called the ‘clinical prediction’) in the clinical 
research form at baseline. The clinical prediction was based on the first visit to the 
clinic (1.5-h-long visit with the patient and informant), informant-based cognitive 
symptom (CIMP-QUEST43) and ADL (FAQ44) questionnaires, a broad cognitive 
test battery (https://biofinder.se/data-biomarkers/clinical-evaluation/) and a CT or 
MRI scan. The physicians had no access to CSF, plasma and PET biomarker data, 
because these tests were performed after this initial visit.

Cognitive tests. Brief cognitive tests that were available in both BioFINDER and 
ADNI were selected to approximately represent different cognitive domains. 
Trail-Making Test B and verbal fluency (animals) were selected as measures 
of executive/attention performance based on their validated use in modified 
preclinical Alzheimer’s cognitive composites, which are sensitive in tracking 
cognitive decline in AD31,33. The ten-word delayed recall test from the Alzheimer’s 
Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) has also been validated 
for detecting early cognitive decline in AD31,32 and was chosen for the memory 
domain. The naming objects and fingers task from the ADAS-Cog was used 
for verbal performance45, and the clock-drawing test was used for visuospatial 
performance46. Each domain was converted to a z-score based on the test score 
distribution in the present population. See Supplementary Methods for the z-scores 
used in the cross-validated model. In addition, the MMSE was used as a brief test 
of global cognition with specific sensitivity to the cognitive decline seen in AD33,47.

Plasma biomarkers. Blood samples were collected at baseline and analyzed 
according to a standardized protocol12. Plasma P-tau217 and P-tau181 
concentrations in BioFINDER were measured on a Meso-Scale Discovery platform, 
using an assay developed by Eli Lilly, as previously described14,16,30. For the plasma 
P-tau217 assay, biotinylated‐IBA493 was used as a capture antibody and SULFO‐
TAG‐4G10‐E2 as the detector (both antibodies developed by Lilly Research 
Laboratory). For plasma P-tau181 assays, biotinylated-AT270 was used as a capture 

antibody (Thermo Fisher Scientific, cat. no. MN1050) and SULFO-TAG-LRL 
(antibody developed by Lilly Research Laboratory) as the detector. Note that 
plasma P-tau181 was available only in a smaller subsample (n = 192) and that a 
different platform, capture antibody and detection antibody were used compared 
with ADNI (in addition to the differences in pre-analytical protocols), making the 
measured concentrations incomparable to the plasma P-tau181 concentrations 
measured in ADNI. Plasma Aβ42 and Aβ40 concentrations were analyzed using 
the Elecsys immunoassays on a cobas e601 analyzer (Roche Diagnostics), and 
plasma NfL was measured using Simoa, as previously described10.

Plasma P-tau in the cross-validated model. Cutoffs were developed to evaluate 
the generalizability of plasma P-tau-based models across cohorts and assays. The 
cutoffs were established using an out-of-sample population to further add to the 
robustness of the results. In our previous work in neuropathology-confirmed 
cases14,16, we observed that changes in plasma P-tau are associated with tau 
pathology only in the presence of Aβ pathology. This was in contrast to cases with 
low Aβ where very few cases had elevated plasma P-tau. Furthermore, we found 
that fewer cognitively normal individuals had increased plasma P-tau levels in 
contrast to those with MCI and AD dementia. Based on these previous findings, 
we used Aβ-negative cognitively normal individuals to define an independent 
normal population and establish cutoffs for plasma P-tau217 and P-tau181 in 
BioFINDER and ADNI, respectively. In BioFINDER, CSF Aβ42/Aβ40 was used 
to define Aβ status, and the Aβ-negative sample consisted of 215 healthy controls. 
In ADNI, 18F-florbetapir PET was used to define Aβ status and the Aβ-negative 
sample consisting of 547 healthy controls. The cutoff for plasma P-tau abnormality 
was set at the mean + 2 s.d. in each sample, respectively, similarly to how plasma 
P-tau cutoffs have been established previously16. This approach, thus, resulted in 
unbiased, non-optimized cutoffs, which should provide higher reproducibility 
in other populations48. The cutoff was >0.387 pg ml−1 for plasma P-tau217 and 
>38.2 pg ml−1 for plasma P-tau181 (note that differences in P-tau isoforms, assays 
and platforms explain the large difference in measured concentrations).

In a secondary cross-validated model, z-scored plasma P-tau data were used. 
The z-scores for plasma P-tau217 and P-tau181 were established based on the 
distribution in the above-described Aβ-negative samples the following way: (P-tau 
concentration − mean P-tau concentration in reference sample) / s.d. of P-tau 
concentrations in reference sample. Such z-scores can, thus, be obtained from any 
clinical chemistry lab with a similar reference sample.

CSF biomarkers. CSF was collected and handled according to a structured 
protocol as previously described1. P-tau and the Aβ42/Aβ42 were analyzed 
using the Elecsys immunoassays on a cobas e601 analyzer49. NfL was analyzed as 
previously described5.

MRI. The MRI protocol for BioFINDER was previously described50. As MRI 
measure, cortical thickness in temporal brain regions susceptible to atrophy in 
AD was used (referred to as the ‘AD signature’ region). The cortical thickness was 
quantified using FreeSurfer version 5.1 (http://surfer.nmr.mgh.harvard.edu). The 
AD signature region was calculated based on the cortical thickness in entorhinal, 
inferior temporal, middle temporal and fusiform regions, as previously described18. 
The AD signature region was chosen instead of hippocampal volume, which 
performed poorer for predicting progression to AD dementia (data not shown).

Outcomes. The primary outcome was prediction of progression to AD dementia 
versus progression to any other dementia or not progressing to any dementia 
within 4 years. Four years was chosen to reflect a clinically relevant timeframe in 
which it seems reasonable for a physician to give prognostic advice to an elderly 
patient and also a suitable timeframe for clinical trials to detect differences in 
conversion to dementia. Those who converted to AD dementia within that 
timeframe were coded as ‘1’, and stable SCD/MCI and conversion to any other 
dementia within the timeframe were coded as ‘0’. Non-dementia converters with 
follow-ups <4 years were excluded from this analysis. Conversion to AD dementia 
within 2 and 6 years, respectively, were secondary outcomes with corresponding 
selection criteria for the examined population. The follow-up diagnosis was based 
on the treating physician’s follow-up assessments and reviewed by a consensus 
group including memory clinic physicians and a senior neuropsychologist. The 
diagnosis was based on the DSM-5 criteria for major neurocognitive disorder due 
to probable AD. In addition, the patient was required to show signs of abnormal 
amyloid accumulation according either to CSF analysis49 or Aβ PET1 in agreement 
with the National Institute on Aging–Alzheimer’s Association criteria for AD51. 
See Supplementary Methods for further details. Plasma biomarkers were analyzed 
after the follow-up diagnosis had been determined (that is, neither the treating 
physician nor the consensus group had access to them).

Validation cohort. The ADNI was used as the validation cohort (NCT00106899). 
The data used in the preparation of this article were obtained from the ADNI 
database (http://adni.loni.usc.edu). The ADNI was launched in 2003 as a public–
private partnership, led by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial MRI, PET, other biological 
markers and clinical and neuropsychological assessment can be combined to 
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measure the progression of MCI and early AD. For up-to-date information, see 
www.adni-info.org. ADNI was approved by the institutional review boards of all 
participating institutions, and written informed consent was obtained from all 
participants at each site (see the Reporting Summary for a list of the institutional 
review boards).

According to our aim, we selected only non-dementia patients with cognitive 
symptoms at baseline. This included participants with MCI from the MCI cohort 
and participants from the healthy control cohort who had significant memory 
concerns (here referred to as ‘SCD’). Inclusion/exclusion criteria are described in 
detail at www.adni-info.org and in Supplementary Methods. Briefly, all patients in 
this study were between the ages of 55 and 91 years, had completed at least 6 years 
of education, were fluent in Spanish or English and were free of any significant 
neurologic disease other than AD. Patients with SCD had an MMSE score ≥24 
and a Clinical Dementia Rating (CDR) score of 0 but expressed concerns about 
memory impairment on the Cognitive Change Index52. Patients classified as having 
MCI had an MMSE score ≥24, objective memory loss as shown on scores on 
delayed recall on the Wechsler Memory Scale Logical Memory II test, a CDR of 
0.5, preserved ADL and absence of dementia. Detailed criteria for SCD and MCI 
are specified in the Supplementary Methods. All SCD and MCI participants with at 
least one follow-up visit and a complete dataset of variables included in the logistic 
regression models were included in this study. The variables used in the model 
selection were the same as in BioFINDER except for the plasma P-tau biomarker 
(in ADNI, P-tau181 was available instead of P-tau217).

The plasma-handling procedures were described previously27. Plasma 
P-tau181 in ADNI was measured on Simoa HD-X instruments (Quanterix) at 
the Clinical Neurochemistry Laboratory, University of Gothenburg. The capture 
antibody AT270 (MN1050, Invitrogen) was coated onto paramagnetic beads 
(103207, Quanterix), and the detector antibody (Tau12, 806502, BioLegend) 
was biotinylated; these reagents were used together with recombinant tau 441 
phosphorylated in vitro by glycogen synthase kinase 3β (TO8-50FN, SignalChem) 
as the calibrator to build the assay, as described previously15. Personnel performing 
the plasma analysis were blinded to the clinical and biomarker information. 
The analysis was performed after the follow-up diagnosis had been determined. 
Further assay details were published previously27. Plasma NfL was analyzed using 
the same Simoa-based assay as described for the BioFINDER study. In ADNI, 
there were two different plasma Aβ42/Aβ40 assays, and each one was available 
only in very small datasets. Therefore, plasma Aβ42/Aβ40 was not included in 
the ADNI models. This is further described in the Supplementary Methods. CSF 
P-tau181 was analyzed using an Elecsys immunoassay on a cobas e601 analyzer, as 
previously described49.

The MRI measure was extracted from structural brain images acquired 
using 3T MRI scanners with T1-weighted scans. Cortical thickness regions were 
quantified using FreeSurfer version 5.1 (http://surfer.nmr.mgh.harvard.edu) and 
combined to the AD signature composite region, as described in the BioFINDER 
methods.

To create a similar outcome variable as in BioFINDER, participants were 
deemed converters to AD dementia if they had a follow-up diagnosis of AD 
dementia53 and were Aβ-positive according to the Aβ PET scan54. Cognitively 
stable participants and converters to other dementias or Aβ-negative AD dementia 
were, thus, coded as non-AD dementia converters. See Supplementary Methods for 
further details.

Statistical analysis. Conversion to AD dementia was used as the dependent 
variable in logistic regression models. All continuous independent variables were 
transformed to z-scores based on the distribution in the present population. APOE 
ε4 genotype was coded into two different variables: presence of just one ε4 allele 
and presence of two ε4 alleles, as per previously described differences in their risk 
of AD32,34. The initial model selection was performed using the R package MuMIn, 
which tests all different combinations of variables and then ranks the models 
according to the AIC. For more information on the AIC, see Supplementary 
Methods and refs. 19,20. The model with the lowest AIC was selected as the model 
with the best tradeoff between fit and model complexity. The next step was then 
to find models with as few variables as possible that had a similar performance 
(defined as ΔAIC < 2 from the model with the lowest AIC19,20,30). Therefore, a 
stepwise removal of variables was performed as long as the ΔAIC was <2 from 
the model with best fit to end up with the ‘parsimonious model’. In addition, only 
variables with P < 0.10 were kept in the parsimonious model. Then, variables were 
removed using a stepwise procedure in subsequent models to illustrate the added 
value of the different variables to plasma P-tau. This process was repeated for the 
time points 2, 4 and 6 years. Comparisons of AUC were performed using DeLong 
statistics. A two-sided P value <0.05 was considered statistically significant. R 
version 4.0 was used for all statistical analyses.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
For BioFINDER data, anonymized data will be shared by request from a qualified 
academic investigator for the sole purpose of replicating procedures and results 

presented in the article and as long as data transfer is in agreement with EU 
legislation on the general data protection regulation and decisions by the Ethical 
Review Board of Sweden and Region Skåne, which should be regulated in a 
material transfer agreement. ADNI data are stored (publicly available) in the loni 
database (https://ida.loni.usc.edu/).

Code availability
No custom code or mathematical algorithm that was central to the conclusions was 
used in this study.
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Extended Data Fig. 1 | Enrollment flowchart for the BioFINDER sample. Eligible population was defined as being referred to any of the participating 
memory clinics and being non-demented.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Univariable logistic regression models for predicting progression to AD dementia vs other conditions within 2–6 years. Data 
are shown as AUCs at each time point (error bars show the 95% CIs of the AUCs). AUCs above the dashed lines represent a predictive accuracy better 
than chance (AUC 0.5). APOE genotype was coded as 0, 1 or 2 ε4 alleles. Regarding the cognitive measures, memory had high accuracy from short- to 
long-term predictions, while executive function had lower accuracies for long-term prediction. This suggest that memory changes earlier than executive 
function during the development of AD. Regarding the biomarkers, cortical thickness representing AD-specific neurodegeneration were best for short- to 
mid-term prediction, plasma P-tau217 for mid- to long-term prediction and plasma Aβ42/Aβ40 better for long-term prediction. This is congruent with 
the model for the development of AD that begins with the accumulation of Aβ, then phosphorylation of tau and the deposition of tau tangles, and finally 
neurodegeneration.
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Extended Data Fig. 3 | Model selection process and performance for predicting AD dementia within 2 years in BioFINDER. a, Model selection process. 
Best Model Fit shows the data-driven model selection with the lowest AIC (that is, the best model fit). The parsimonious model shows the model that 
had a similar model fit (ΔAIC <2) with as few significant predictors as possible. In subsequent models, the least important modalities were removed in a 
step-wise procedure. Model specifications including comparisons between all models are shown in Supplementary Table 2. b, ROC curves of the different 
models. Abbreviations: AD, Alzheimer’s disease; AIC, Akaike Information Criterion; APOE, Apolipoprotein E genotype (number of ε4 alleles); AUC, Area 
under the ROC curve; MRI, Cortical thickness of a temporal AD-specific region; ROC, Receiver Operating Characteristic.
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Extended Data Fig. 4 | Model selection process and performance for predicting AD dementia within 6 years in BioFINDER. a, Model selection process. 
Best Model Fit shows the data-driven model selection with the lowest AIC (that is, the best model fit). The parsimonious model shows the model that 
had a similar model fit (ΔAIC <2) with as few significant predictors as possible. In subsequent models, the least important modalities were removed in a 
step-wise procedure. Model specifications including comparisons between all models are shown in Supplementary Table 3. b, ROC curves of the different 
models. Abbreviations: AD, Alzheimer’s disease; AIC, Akaike Information Criterion; APOE, Apolipoprotein E genotype (number of ε4 alleles); AUC, Area 
under the ROC curve; MRI, Cortical thickness of a temporal AD-specific region; ROC, Receiver Operating Characteristic.
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Extended Data Fig. 5 | Cross-validation and implementation of an algorithm using plasma P-tau z-scores. Plasma P-tau z-scores based on the 
distribution of Aβ-negative cognitively unimpaired participants in BioFINDER and ADNI, respectively (see Methods), was used in the logistic regression 
models. Model coefficients were established in BioFINDER (AUC 0.90) and tested in ADNI (AUC 0.89). Cognitive z-scores have been inverted so that 
higher scores equal poorer results. This model is implemented at http://predictAD.app where one can enter the raw cognitive test scores that constitute 
the z-scores, number of APOE ε4 alleles and plasma P-tau z-score (either from P-tau217 or P-tau181).
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