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a b s t r a c t 

Background and Objective: 18 F-FluoroDeoxyGlucose Positron Emission Tomography ( 18 F-FDG PET) is one 

of the imaging biomarkers to diagnose Alzheimer’s Disease (AD). In 18 F-FDG PET images, the changes of 

voxels’ intensities reflect the differences of glucose rates, therefore voxel intensity is usually used as a fea- 

ture to distinguish AD from Normal Control (NC), or at earlier stage to distinguish between progressive 

and stable Mild Cognitive Impairment (pMCI and sMCI). In this paper, 18 F-FDG PET images are character- 

ized in an alternative way—the spatial gradient, which is motivated by the observation that the changes 

of 18 F-FDG rates also cause gradient changes. 

Methods: We improve Histogram of Oriented Gradient (HOG) descriptor to quantify spatial gradients, 

thereby achieving the goal of diagnosing AD. First, the spatial gradient of 18 F-FDG PET image is com- 

puted, and then each subject is segmented into different regions by using an anatomical atlas. Second, 

two types of improved HOG features are extracted from each region, namely Small Scale HOG and Large 

Scale HOG, then some relevant regions are selected based on a classifier fed with spatial gradient fea- 

tures. Last, an ensemble classification framework is designed to make a decision, which considers the 

performance of both individual and concatenated selected regions. 

Results: the evaluation is done on ADNI dataset. The proposed method outperforms other state-of-the- 

art 18 F-FDG PET-based algorithms for AD vs. NC with an accuracy, a sensitivity and a specificity values 

of 93.65%, 91.22% and 96.25%, respectively. For the case of pMCI vs. sMCI, the three metrics are 75.38%, 

74.84% and 77.11%, which is significantly better than most existing methods. Besides, promising results 

are also achieved for multiple classifications under 18 F-FDG PET modality. 

Conclusions: 18 F-FDG PET images can be characterized by spatial gradient features for diagnosing AD and 

its early stage, and the proposed ensemble framework can enhance the classification performance. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

There is a new case of dementia in the world every 3 s [1] , and

he most common form of dementia, which accounts for 60–70%,

s Alzheimer’s Disease (AD) [2] . It affects one in nine over 65 s

3] and one in three over 85 s [4] . It is estimated that 131 million
∗ Corresponding author at: Aix Marseille Univ, Marseille 13013, France. 

E-mail address: mouloud.adel@univ-amu.fr (M. Adel). 
1 Data used in preparation of this article were obtained from the Alzheimer’s 

isease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the in- 

estigators within the ADNI contributed to the design and implementation of ADNI 

nd/or provided data but did not participate in analysis or writing of this report. 

 complete listing of ADNI investigators can be found at: https://adni.loni.usc.edu/ 

p-content/uploads/how _ to _ apply/ADNI _ Acknowledgement _ List.pdf . 
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eople will be living with the disease in 2050 [5] . At present, AD

s incurable and irreversible, even if promising developments for

reatments are expected to be achieved in the near future. Diag-

osis at early stage of Mild Cognitive Impairment (MCI) is of im-

ortance in the therapeutic perspective to stop or slow down the

eurodegenerative process. 
18 F-FluoroDeoxyGlucose Positron Emission Tomography ( 18 F-

DG PET, referred to as FDG-PET hereafter) has proved to be one

f the effective modalities for identifying AD or MCI since it can

etect the subtle changes in the cortex [6–8] . Therefore, a variety

f studies have been published in either predicting MCI conver-

ion or differentiating AD from Normal Control (NC) using FDG-PET

odality. Among them, considerable attention has been dedicated

o developing Computer-Aided Diagnosis (CAD) approaches for AD.

heir basic idea is to investigate characteristic patterns in FDG-PET

https://doi.org/10.1016/j.cmpb.2019.105027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2019.105027&domain=pdf
mailto:mouloud.adel@univ-amu.fr
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1016/j.cmpb.2019.105027
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MMSE stands for the Mini-Mental State Examination. 

2 http://adni.loni.usc.edu/methods/pet- analysis- method/pet-analysis/ . 
3 https://ida.loni.usc.edu/ . 
images through combing medical image processing and machine

learning techniques, thereby achieving diagnosis goals. 

A fundamental step in CAD methods is feature extraction from

images. There have been many studies on feature extraction for

Alzheimer Disease and its prodromal stage [9] . Feature extrac-

tion approaches from FDG-PET images could be roughly grouped

into two main categories: voxel-wise and region-wise. Voxel-based

methods could include the whole voxels of each brain image, as

has been done by Hinrichs et al. [10] who utilized all the voxels to

predict AD under a boosting framework. In this case, even though

using the whole voxels preserves all the information, it can lead

to feature redundancy, which is a burden for training a classifier.

Voxel-based methods could also use a set of discriminative vox-

els in order to avoid feature redundancy. Cabral et al. [11] selected

typical voxels through using mutual information, which obtained

promising performance for predicting MCI conversion. Padilla et al.

[12] applied non-negative matrix factorization to select and extract

the most relevant voxels for the purpose of diagnosing AD. Region-

based methods generally use a pre-defined anatomical atlas to seg-

ment the FDG-PET image into different Regions of Interest (ROIs) in

order to compute statistical or other parameters that can represent

glucose rates within ROIs or connections between them. Pagani

et al. [13] , Li et al. [14] , Cheng et al. [15] and Gray et al. [16] used

the mean intensity value of each ROI as the feature, whereas Garali

et al. [17] used first order statistics (mean, variance, skewness and

kurtosis) and entropy extracted from the grey-level histogram of

each ROI as features to identify AD. Pan et al. [18] computed con-

nectivities among ROIs and exploited these connections as features

to tackle the problem of AD diagnosis. 

Another important part of CAD is machine learning techniques.

Traditional machine learning methods, such as Support Vector Ma-

chine (SVM) [19] , random forests [20] , are usually applied to do

the classification task. Cabral et al. [11] and Padilla et al. [12] used

SVM and FDG-PET images to predict MCI conversion and identify

AD, respectively. Gray et al. [21] exploited random forests to derive

the pairwise similarity measures from features and then made a

classification by using random forests as well for multi-modality, in

which FDG-PET was included. Recently, deep learning techniques

have shown impressive performance in recognition and classifi-

cation tasks [22,23] . Therefore, a great amount of research have

turned to the use of neural networks to address the problem of AD

diagnosis and obtained satisfactory results [24–26] . Even though

deep learning models have made significant progress, their inter-

pretability still needs to be investigated. 

In this paper, the feature is represented from another point of

view, the spatial gradient of FDG rates in PET brain images, in-

stead of voxel-wise and ROI-wise features as many studies have

done previously. This work is motivated by the observed differ-

ences of FDG rates between NC and AD subjects. The spatial gradi-

ent is quantified by a 2D histogram of orientation, which is similar

to Histogram of Oriented Gradient (HOG) [27] that has been suc-

cessfully applied for object detection in 2D images. Our contribu-

tions can be summarized into three aspects: 1) 1D HOG descriptor,

used in natural scene images originally, is improved to 2D HOG

to quantify spatial gradients, thereby characterizing 3D FDG-PET

brain images. Moreover, 2D HOG is expressed as Small Scale HOG

(SSH) and Large Scale HOG (LSH), which proves to be more effec-

tive than the commonly used features, voxel-wise and ROI-wise; 2)

a region ranking method is proposed to select distinctive ROIs by

using multiple SSH features; 3) an ensemble classification frame-

work is designed through considering both small and large scales

2D HOG for individual and concatenated regions, which enhances

the diagnosis accuracy for both binary and multiple classifications.

The rest of the paper is organized as follows. In Section 2 , mul-

tiscale spatial gradient features for diagnosing AD is described.

Section 3 presents and analyzes experimental results, and in
ection 4 , a discussion is given. Finally, a conclusion of this work

s given in Section 5 . 

. Methods 

In this paper, FDG-PET images are characterized by spatial gra-

ients for AD diagnosis. First, the spatial gradient of FDG-PET im-

ge is computed and then 90 ROIs are extracted from the gradient

mage through Automated Anatomical Labeling (AAL) [28] atlas,

n which the cerebellum is not considered. Next, some distinctive

OIs are selected through a proposed ROI ranking method which

onsiders multiple SSH descriptors of each region. Finally, an en-

emble classifier is trained under the selected ROIs by using SSH

nd LSH features. Fig. 1 illustrates the flowchart of the proposed

iagnosis method. 

.1. Dataset 

Data used in the preparation of this article were obtained from

he Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

adni.loni.usc.edu). The ADNI was launched in 2003 as a public-

rivate partnership, led by Principal Investigator Michael W.

einer, MD. The primary goal of ADNI has been to test whether

erial MRI, PET, other biological markers, and clinical and neu-

opsychological assessment can be combined to measure the pro-

ression of MCI and early AD. 

In ADNI dataset, there are four types of FDG-PET data, 2 which

re 1) Co-registered Dynamic; 2) Co-registered, Averaged; 3) Co-

eg, Avg, Standardized Image and Voxel Size; 4) Co-reg, Avg, Std

mg and Vox Siz, Uniform Resolution. The proposed method is

valuated on FDG-PET images from type 3). After downloading the

aseline data, images are spatially normalized to MNI template us-

ng SPM12 [29] with 2 × 2 × 2 mm 

3 voxel size and 91 × 109 × 91

ensor dimension. This normalization is based on two steps: a

lobal affine transformation followed by a non-rigid spatial trans-

ormation. For each step, a minimization of the mean squared dif-

erence between the image to be normalized and a linear combi-

ation of one or more template images. The general affine trans-

ormation assumes a 12-parameter model whereas the non-rigid

patial transformation is based on the combination of the lowest

requency components of the three dimensional cosine transform.

ext, the intensity normalization is performed through dividing

ach voxel intensity by the average value of global gray matter

hich is extracted under the aid of AAL template, and the data

s with 32-bit depth. Thereafter, images are further smoothed by

 Gaussian kernel with a full width at half maximum of 8 mm

ollowing many related studies [10,14,17,25,30] . Through the pre-

rocessing pipeline, experimental data are converted to a standard

pace, among which 741 images are selected according to the diag-

ostic information 

3 (LONI → Download → Study Data → Assess-

ents → Diagnosis → Diagnostic Summary). Specifically, there

re 247 AD subjects who stay in AD stage without conversion, 246

C subjects who stay in NC stage without progression, 123 pro-

ressive MCI (pMCI) subjects who have progressed from MCI stage

o AD in the available scan time and 125 stable MCI (sMCI) sub-

ects who have not converted to AD in the follow-up period which

asts at least 24 months. A full list of subject IDs used in this pa-

er can be found in the Supplementary Material. The demographic

nd clinical information of subjects is provided in Table 1 , in which

http://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/
https://ida.loni.usc.edu/


X. Pan, M. Adel and C. Fossati et al. / Computer Methods and Programs in Biomedicine 180 (2019) 105027 3 

Fig. 1. The flowchart of the proposed method. 

Table 1 

Demographic and clinical information of subjects. 

Characteristic AD NC pMCI sMCI 

Number of subjects 247 246 123 125 

Female/male 103/144 119/127 51/72 44/81 

Age(Mean ± SD 

∗) 75.09 ± 8.01 74.41 ± 6.09 74.01 ± 6.87 74.45 ± 7.86 

MMSE(Mean ± SD) 23.17 ± 2.13 29.04 ± 1.18 26.81 ± 1.64 27.66 ± 1.69 

∗ SD—Standard Deviation 
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.2. Histogram of oriented gradient for 2D images 

Histogram of Oriented Gradient (HOG) is a descriptor which

as proposed in for human detection [27] . The fundamental idea

s that the local object appearance and shape within an image can

e represented by the distribution of intensity gradients or edge

irections. Generally, the image is divided into small connected re-

ions, and for the pixels within each region, a histogram of gradi-

nt directions is computed. The descriptor is the concatenation of

hese histograms. HOG feature is an effective hand-crafted descrip-

or for object detection since it can capture the edge or gradient

tructure which is discriminative for local shape [27] . 

.3. 2D histogram of oriented gradient for FDG-PET images 

Fig. 2 shows the difference between an NC (top row) and an

D (bottom) subjects. Fig. 2 (a) displays one of the slices and the

ircled area belongs to region Parietal_Inf_R in AAL template. The

nlarged areas are shown in Fig. 2 (b) (different colors indicate dif-

erent intensities). It can be clearly seen that the intensities are

ifferent between NC and AD PET scans. In addition, the gradients

re also different, as shown in Fig. 2 (c) (different colors indicate

ifferent gradient magnitudes), and the gradient change of the AD

can (bottom) is more obvious than that of NC (top). This observa-

ion drove us to investigate the effectiveness of spatial gradients in

iagnosing AD. In this paper, we exploit a 2D histogram of orienta-

ion to quantify spatial gradients in order to characterize FDG-PET

mages. 

.3.1. Spatial gradient computation 

For a 2D image, the gradient is computed from the horizontal

nd vertical directions, and the corresponding orientation is deter-

ined by one angle. Similarly, the spatial gradient of a 3D image

s calculated in the x, y and z directions and the orientation is de-

ided by two angles. 

For a voxel with an intensity f ( x, y, z ) at the position ( x, y, z ),

ts numerical gradient can be computed as: 

g x = 0 . 5 × ( f (x + 1 , y, z) − f (x − 1 , y, z) ) 

 y = 0 . 5 × ( f (x, y + 1 , z) − f (x, y − 1 , z) ) 

g z = 0 . 5 × ( f (x, y, z + 1) − f (x, y, z − 1) ) (1) 
here g x , g y and g z are gradients in the x, y and z directions, re-

pectively. The magnitude ‖ g ‖ is obtained through: 

 g ‖ = 

√ 

g x 2 + g y 2 + g z 2 (2) 

nd the orientation is represented by the polar angle, φ, and the

zimuth angle, θ , as shown in Fig. 3 

= arctan 

(
g y 

g x 

)
θ = arccos 

(
g z 

‖ g ‖ 

)
(3) 

here φ is in the range [ −180 ◦, 180 ◦] and θ is in the range [0 ◦,

80 ◦]. 

.3.2. Spatial gradient quantification 

In this step, a 2D histogram is constructed based on gradient

rientations ( φ and θ ), and the magnitude is used to count the oc-

urrence of a certain orientation. Specifically, φ and θ are viewed

s two properties of the 2D histogram, and then are evenly divided

nto several intervals or bins, respectively. Last, if the gradient ori-

ntation is within a certain interval, the value for that interval is

ccumulated. According to [27] , the value is computed via a func-

ion of the gradient magnitude. Considering the magnitude of each

oxel is small, the exponential function of magnitude, g e , is applied

s the counting value in each interval, 

 e = exp ( ‖ g ‖ ) (4) 

onsequently, the FDG-PET image can be represented by a 2D

istogram, and meanwhile, the representation will vary with the

umber of bins in the histogram. Fig. 4 shows histograms with dif-

erent numbers of bins for the same FDG-PET image, where the top

ow is for an NC subject and the bottom row is a subject with AD.

t can be seen that for a subject, either NC or AD, a change in the

umber of bins can result in different representations (each row).

oreover, the difference between NC and AD is obvious under the

ame number of bins (each column), which also implies that it is

easonable to use 2D HOG as the feature to diagnose AD. 

Compared with Global HOG which is computed on the whole

ubject without segmentation, calculating locally is also worth con-

idering. To achieve this goal, each subject is divided into 90 re-

ions by using AAL atlas, and a histogram can be constructed for

ach region. It should be noted that the 2D histogram is com-

uted in irregular regions which contain different numbers of vox-

ls. Since the number of bins in a histogram is adjustable, multiple
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Fig. 2. An instance to differentiate between NC and AD via intensity and gradient, where the top row is for an NC subject and the bottom row is for a subject with AD. 

Fig. 3. An instance of the polar angle φ and azimuth angle θ . 
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scales of 2D HOG features are extracted from each ROI to make

the features informative, including 18 × 18 ( φ × θ ), 12 × 18, 18 × 9,

12 × 9 and 12 × 6 bins, which are denoted Small Scale HOG (SSH)

because of the small interval used in gridding angles for construct-

ing a histogram. Correspondingly, some Large Scale HOG (LSH) de-

scriptors, in which a large interval is used to grid angles, are also

extracted from each ROI, including 5 × 5 ( φ × θ ), 1 × 1 bins. The

features from different ROIs exhibit different ranges, so normal-

ization is essential in order to achieve good performance. In this

paper, L 2 norm is used to do the normalization. 

h 

′ = 

h 

‖ h ‖ 

(5)

where h is 2D HOG vector for each scale of any ROI in a subject,

h 

′ stands for 2D HOG descriptor after normalization. 

2.4. ROI ranking 

The probability of AD occurring in each ROI is not consistent,

which means that some ROIs are more likely to be affected by AD,
hile others are not. In practice, doctors pay more attention to key

reas as well. Therefore, it is necessary to select typical ROIs which

re more susceptible to AD. A region ranking method is devel-

ped to achieve the goal of region selection. Specifically, 2D HOG

eatures are applied to characterize each ROI and then fed into a

inear SVM to compare each ROI’s classification accuracy, thereby

anking ROIs. In order to obtain a robust and reliable result, multi-

le SSH features are considered, and the average accuracy is used

or ranking ROIs. The reason LSH is not taken into account is that

he feature dimension of LSH is relatively low, for example, the di-

ension of 1 × 1 LSH is only 1. Fig. 5 shows the framework of the

anking method. A region with a higher classification accuracy im-

lies its stronger ability to recognize AD. At last, some ROIs can

e selected through the ranking order. The ranking results are an-

lyzed in Section 3.3 . 

.5. Ensemble classification 

After ranking ROIs, the top N ROIs with higher performance are

elected as candidate regions for the classification. SVM is a popu-

ar and effective classifier in AD diagnosis [12,16,31] . In this study,

VM is applied in an ensemble classification framework which

onsiders both SSH and LSH features of selected ROIs. The mo-

ivation of designing an ensemble framework is inspired by the

dea that weak classifiers can be combined into a strong clas-

ifier. Although SVM is usually treated as a strong classifier, we

ake it become a relatively weak model through controlling in-

ut features (ROI by ROI, scale by scale) and setting the parame-

er C which is introduced in Section 3.1 . In addition, concatenat-

ng all the scales of 2D HOG and all the regions is not an efficient

ay to train a model due to too many inputs. Therefore, the se-

ected regions guided by the ROI ranking method are utilized to

rain a set of weak classifiers, and then multiple classifiers are inte-

rated to make a prediction. The framework of the ensemble clas-

ifier is briefly presented in Fig. 6 . Specifically, five types of SSH
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Fig. 4. Improved 2D Histogram of Oriented Gradient (HOG) for an NC subject (top row) and an AD subject (bottom row) without segmentation. 

Fig. 5. The framework of region ranking method. 

Fig. 6. The framework of the ensemble classification, circles with different colors indicate different regions. 
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Table 2 

Performance of different type of feature for AD vs. NC(%). 

Feature Dimension ACC SEN SPE AUC 

Voxel 160 , 990 91.25 90.44 92.05 96.43 

ROI 90 86.47 85.23 87.71 93.40 

Global HOG 162 63.75 62.37 64.95 68.89 

LSH 2250 92.64 91.45 93.95 97.31 

SSH 14,580 93 . 37 91 . 77 95 . 10 97 . 49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Performance of different type of feature for pMCI vs. sMCI(%). 

Feature Dimension ACC SEN SPE AUC 

Voxel 160 , 990 62.79 61.80 64.76 68.94 

ROI 90 64.46 63.29 65.84 69.75 

Global HOG 162 50.57 52.63 50.39 51.90 

LSH 2250 64.74 64.55 65.74 69.83 

SSH 14,580 66 . 53 65 . 24 68 . 18 72 . 80 
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features (18 × 18 ( φ × θ ), 12 × 18, 18 × 9, 12 × 9 and 12 × 6 bins) are

extracted from each selected ROI and then are used to train five

classifiers, respectively. The average score of five classifiers is con-

sidered as the corresponding ROI’s output, S , which is expressed

as: 

S = 

1 

T 

T ∑ 

t=1 

s t (6)

where s t is the output score of SVM with t -th scale of SSH descrip-

tor and T is the number of scales of SSH, here T = 5 . For LSH, all

the features of candidate ROIs are concatenated to feed into a clas-

sifier because of the low feature dimension. The final decision, Y ,

is made through an addition strategy of two parts’ outputs, small

and large scales, 

Y = sgn 

( 

N ∑ 

i =1 

S i + 

M ∑ 

j=1 

L j 

) 

(7)

where sgn ( ·) is a sign function, N is the number of candidate ROIs,

M is the number of scales of LSH, M = 2 , and L is the score of

LSH-based classifier. Therefore, the proposed ensemble classifier

not only considers the performance of each individual ROI, but also

considers the performance of cascade regions. 

3. Results 

3.1. Setup 

In order to test the effectiveness of the proposed method, the

experiments are mainly conducted on two classification tasks, AD

vs. NC and pMCI vs. sMCI. We apply four metrics, namely classifi-

cation accuracy (ACC), sensitivity (SEN), specificity (SPE), and area

under curve (AUC), to evaluate the corresponding performance. For

all the metrics, a higher value indicates better performance. Specif-

ically, ACC is the proportion of samples that are correctly predicted.

SEN implies the proportion of correctly classified AD or pMCI sam-

ples. SPE represents the proportion of NC or sMCI samples that are

correctly classified. Due to the limited number of subjects, we use

a 10-fold cross-validation technique to assess the performance and

repeat 10 times to reduce the possible bias. The margin parameter

C of all the SVMs used in the ensemble classifier is set to 0.5 in or-

der to construct relatively weak classifiers. In this paper, the SVM

algorithm is implemented with the LIBSVM toolbox [32] . 

3.2. Evaluation on spatial gradient feature for FDG-PET 

The spatial gradient feature is compared with commonly used

voxel-wise and ROI-wise features. The comparison results of differ-

ent representations are presented in Tables 2 and 3 for AD vs. NC

and pMCI vs. sMCI, respectively. The terms ’Voxel’ and ’ROI’ stand

for classification results which obtained by using voxel intensity

and region’s mean intensity, respectively. ’Global HOG’ means 2D

HOG descriptor is computed on the subject without parcellation.

The results of Global HOG and SSH shown in the following two ta-

bles are achieved based on a histogram with 18 × 9 bins, while for

LSH, its results are computed on a histogram with 5 × 5 bins. 
It can be seen from Table 2 that voxel intensity is a kind of

ffective f eature in classifying AD from NC, which achieves an ac-

uracy of 91.25%. But the feature dimension is too large, which is

 drawback for training a model. Even though the dimension of

OI-wise feature is small, its performance is not satisfactory and it

s not as effective as voxel-wise feature, with an accuracy rate of

6.47%. Global HOG, with 63.75% accuracy, cannot achieve a note-

orthy result. It can be explained that: 1) Global HOG is computed

n the whole subject without considering local details; 2) the di-

ension, 162 (18 × 9), seems to be a satisfactory one, but the ef-

ective information is much less than that because of a lot of zero

alues, like Fig. 4 (b), which is less informative. LSH and SSH de-

criptors can guarantee the performance and meanwhile tackle the

roblem of large dimension. Even though 14580 (18 × 9 × 90) is not

n absolutely desirable dimension, it is still acceptable compared

o the dimension of the voxel-wise feature. In addition, owing to

he adjustable number of bins in a histogram, a smaller dimension

an be obtained if setting an appropriate number of bins. 

As for classifying pMCI from sMCI, which is reported in Table 3 ,

oxel-wise feature is inferior to ROI-wise feature, which is differ-

nt to their performance in AD classification. The reason could be

hat the dimension of voxel-wise feature is far greater than that

f ROI-wise feature, which can cause the problem of feature re-

undancy. Such a problem would harm the classifier training, es-

ecially for the case that the classifier could not work well. As can

e seen from Table 3 , all the features (voxel-wise, ROI-wise, Global

OG, LSH and SSH) cannot perform as well as in AD diagnosis,

hus prediction of pMCI is a challenging task and it is easily influ-

nced by redundant features. Nevertheless, SSH descriptor still has

ominant performance with an accuracy of 66.53%, which is 2.07%

igher than the ROI-wise feature, and LSH has comparative per-

ormance with the ROI-wise features. The other three metrics also

ndicate SSH is superior to the other features. Therefore, character-

zing FDG-PET images by 2D HOG locally is effective and feasible.

he reason could be that the spatial gradient is calculated at voxel

evel and the 2D histogram is computed at ROI level, which makes

he 2D HOG descriptor become a bridge to link voxel-wise feature

nd ROI-wise feature. 

.3. Evaluation on ROI ranking method 

Since different regions have different abilities to diagnose AD, a

imple ROI ranking method using multiple SSH features and SVM

s proposed. Specifically, for each region, five scales of SSH features

re extracted and then fed into five SVMs, respectively. The aver-

ge accuracy of classifiers is considered as the ranking metric, and

he higher the accuracy is, the stronger the ability of the region

o distinguish AD from NC. Multiple SSH features are applied to

nsure the reliability and robustness of the results. Fig. 7 shows

he maximum difference of accuracy in five scales of SSH, �acc ,

or each ROI. As can be seen, the difference is obvious, especially

or identifying pMCI from sMCI, and the highest �acc is 17.84%,

hich proves that it is rational to use multiple SSH features to rank

OIs. Moreover, the change of maximum difference in pMCI predic-

ion is larger than that of AD classification, which is because that

he later task is easier than the former one. For AD classification,
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Fig. 7. Maximum difference of accuracy in five scales of SSH for each ROI. 

Table 4 

Top 20 ROIs for AD vs. NC and pMCI vs. sMCI. 

Rank AD vs. NC pMCI vs. sMCI 

1 Cingulum_Post_R Cuneus_L 

2 Cingulum_Post_L Cingulum_Post_L 

3 Hippocampus_L Temporal_Inf_L 

4 Hippocampus_R Precuneus_L 

5 Precuneus_R Temporal_Mid_R 

6 Cuneus_R Rectus_L 

7 Fusiform_R Parietal_Inf_R 

8 Temporal_Inf_L Lingual_R 

9 Cuneus_L SupraMarginal_L 

10 Parietal_Inf_R Rectus_R 

11 Precuneus_L Temporal_Inf_R 

12 Paracentral_Lobule_R Cuneus_R 

13 Paracentral_Lobule_L Hippocampus_R 

14 Temporal_Mid_L SupraMarginal_R 

15 Fusiform_L Parietal_Inf_L 

16 Parietal_Sup_R Frontal_Sup_L 

17 Occipital_Mid_R Supp_Motor_Area_L 

18 Temporal_Sup_L Parietal_Sup_R 

19 Occipital_Sup_R Occipital_Mid_L 

20 Angular_L Angular_R 
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Table 5 

Performance comparison for AD vs. NC(%). 

Method Subjects ACC SEN SPE AUC 

Hinrichs et al. [10] 89AD + 94NC 84 84 82 87.16 

Padilla et al. [12] 53AD + 52NC 86.59 87.50 85.36 –

Li et al. [14] 25AD + 30NC 89.1 92 86 97 

Gray et al. [16] 50AD + 54NC 88.4 83.2 93.6 –

Pan et al. [18] 247AD + 246NC 90.55 90.46 90.92 95.22 

Zhu et al. [30] 51AD + 52NC 93.3 – – –

Lu et al. [24] 226AD + 304NC 93.58 91 . 54 95.06 –

Liu et al. [25] 93AD + 100NC 91.2 91.4 91.0 95.3 

Our method 247AD + 246NC 93 . 65 91.22 96 . 25 96.93 
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ifferent scales of effective features usually achieve high-level ac-

uracies but with a little differences. While for pMCI prediction, it

s challenging, so different scales of features may not be that ef-

ective and may achieve unstable performance, which could cause

 larger difference within different scales of features. 

Table 4 presents the top 20 regions ranked by the proposed

ethod for two tasks, AD vs. NC and pMCI vs. sMCI, which can be

egarded as potential FDG-PET indicators for the subsequent clas-

ification tasks. 

.4. Evaluation on ensemble classification 

An ensemble classification framework is designed by consider-

ng SSH and LSH descriptors together since these multiple scales of

D HOG contain both specific (SSH) and general information (LSH).

ig. 8 shows the accuracies under different number of regions for

D vs. NC and pMCI vs. sMCI. It should be noted that the x axis

enotes ROIs which have been ranked from most to least relevant

o AD/pMCI according to the proposed ROI ranking method. As can

e seen from Fig. 8 (a), SSH achieves a higher ACC, 93.06%, with

ewer regions (15 ROIs) than LSH whose best performance (ACC:

2.64%) is obtained by using 57 ROIs. Thus SSH descriptor per-

orms better than LSH in AD diagnosis. In addition, the ensemble

lassification through integrating SSH and LSH improves the accu-
acy to 93.65% under top 15 ROIs, which achieves a slight increase

or AD diagnosis (0.59%). In the case of pMCI vs. sMCI, as illus-

rated in Fig. 8 (b), the performance of SSH is still superior to LSH

nd both of them reach the best accuracy with the top 10 regions,

hich are 73.92% and 68.81%. Furthermore, the ensemble classi-

er raises the accuracy to 75.38% with 10 ROIs, and can signifi-

antly improve performance under different numbers of ROIs. In

ummary, for the two tasks (AD vs. NC and pMCI vs. sMCI), LSH

escriptor does not perform as well as SSH feature. It is because

SH contains more general features, which makes it less informa-

ive than SSH. Besides, the ensemble classifier is better than the

SH-based classifier, which proves that the integration strategy is

ffective. Moreover, the accuracy trend is a result of a trade-off be-

ween informative and redundant features. The highest accuracy is

ttributed to the optimal balance between effective f eatures and a

roper dimension, while for the decline of the accuracy trend, it is

aused by the feature redundancy overwhelming its effectiveness. 

.5. Comparison with the state-of-the-art methods 

The proposed method is compared with other methods which

lso address the problem of AD/pMCI diagnosis under the modality

f FDG-PET, including methods of Hinrichs et al. [10] , Padilla et al.

12] , Li et al. [14] , Gray et al. [16] , Pan et al. [18] , Zhu et al. [30] ,

u et al. [24] and Liu et al. [25] . Lu’s and Liu’s methods applied

he neural network technique, and other approaches were devel-

ped under the traditional classification framework. Noting that

an’s method is evaluated on the same dataset with the proposed

ethod for the sake of a fairer comparison. 

Tables 5 and 6 present the comparison results of two binary

asks, AD vs. NC and pMCI vs. sMCI. It can be seen that the pro-

osed method outperforms others in terms of ACC and SPE for AD

iagnosis, but it is inferior to Lu’s method in respect of SEN and
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Fig. 8. Performance under different numbers of ROIs. 

Table 6 

Performance comparison for pMCI vs. sMCI(%). 

Method Subjects ACC SEN SPE AUC 

Gray et al. [16] 53pMCI + 64sMCI 63.1 52.2 73.2 –

Pan et al. [18] 123pMCI + 125sMCI 71.10 68.04 74.38 74.78 

Zhu et al. [30] 43pMCI + 56sMCI 69.9 – – –

Lu et al. [24] 112pMCI + 409sMCI 81 . 55 73.33 83 . 83 –

Our method 123pMCI + 125sMCI 75.38 74 . 84 77.11 80 . 70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Performance comparison for AD vs. MCI vs. NC(%). 

Method Subjects ACC 

Voxel 247AD + 248MCI + 246NC 73.65 

ROI 247AD + 248MCI + 246NC 64.73 

Our method 247AD + 248MCI + 246NC 74 . 70 

Zhu et al. [30] 51AD + 99MCI + 52NC 65.50 

Zhou et al. [33] 190AD + 389MCI + 226NC 58 

Table 8 

Performance comparison for AD vs. pMCI vs. sMCI vs.NC(%). 

Method Subjects ACC 

Voxel 123AD + 123pMCI + 125sMCI + 123NC 60.57 

ROI 123AD + 123pMCI + 125sMCI + 123NC 53.65 

Our method 123AD + 123pMCI + 125sMCI + 123NC 70 . 04 

Zhu et al. [30] 51AD + 43pMCI + 56sMCI + 52NC 56.29 

Zhou et al. [33] 190AD + 157pMCI + 205sMCI + 226NC 48 

o  

i  

c

4

 

F  

a  

R  
Li’s method in AUC, with a slight difference of 0.32% and 0.07%, re-

spectively. For the case of distinguishing between pMCI and sMCI,

our method is not as effective as Lu’s method, which utilized mul-

tiscale deep neural networks in terms of ACC and SPE, but it should

be noted that the data used in Lu’s method for the task of pMCI vs.

sMCI is unbalanced (pMCI: 112, sMCI: 409), which can enhance the

accuracy to a certain degree. 

Moreover, we also report the results of multiple classifications,

AD vs. MCI (pMCI + sMCI) vs. NC and AD vs. pMCI vs. sMCI vs.

NC, and compare them with the results of voxel-based, ROI-based

and state-of-the-art methods, which are shown in Tables 7 and 8 .

It is worth noting that the number of subjects of AD and NC is

reduced to 123 respectively in order to achieve balance data for

the four-class classification task. Clearly, the proposed method still

outperforms voxel-based and ROI-based approaches, especially for

the task of four-class classification, where the improvement is sig-

nificant. Besides, our method is also superior to the comparison

methods, and the differences with the best result are 9.2% and

13.75% regarding three-class and four-class classifications, respec-

tively. The results of multiple classifications are lower than those
f binary classifications, which indicates the multiple classification

s a very challenging problem and more investigations need to be

arried out in the future. 

. Discussion 

This paper extends the feature in object detection, HOG, to

DG-PET brain images to aid AD diagnosis, which is effective

s well. Compared to the classic representations (voxel-wise and

OI-wise), 2D HOG descriptor is more informative than the
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OI-wise feature and more sparse than the voxel-wise feature and

eanwhile, can ensure effectiveness, which will motivate us to ex-

lore the effects of other descriptors used in natural scene im-

ges for FDG-PET images, such as LBP (Local Binary Pattern) [34] ,

IFT (Scale Invariant Feature Transform) [35] . Furthermore, 2D HOG

an characterize different regions with the same feature dimen-

ion, even if each ROI contains a different number of voxels, which

ay be significant for some research and applications. As for the

ataset, a key issue needs to be taken seriously. In fact, most state-

f-the-art methods are not comparable because the experimen-

al dataset is different. Even though most methods use the ADNI

ataset, the image processing procedures and subject IDs are dif-

erent, which greatly weakens the significance of comparison. Con-

idering not all methods are open-source, evaluating methods over

he same dataset is more practical. 

. Conclusion 

We introduce 2D HOG to quantify spatial gradients thereby

haracterizing FDG-PET images instead of the common features,

uch as voxel-wise and ROI-wise features. Experimental results

uggest that 2D HOG is more efficient and effective than voxel-

ise and ROI-wise features, respectively. Besides, a ROI ranking

ethod is proposed by applying multiple SSH descriptors and ac-

ording to which, a set of candidate ROIs are selected to assist

he diagnosis. Furthermore, an ensemble classification framework

s designed over the selected regions through using SSH and LSH

eatures. The ensemble classifier is effective and outperforms other

ethods according to the evaluation on the ADNI dataset. Mean-

hile, we test the proposed method on multiple classification

asks as well, and improvements are also significant. 
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