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ARTICLE INFO ABSTRACT

Keywords: White matter hyperintensities (WMHs) are abnormal signals within the white matter region on the human brain

White matter hyperintensities MRI and have been associated with aging processes, cognitive decline, and dementia. In the current study, we pro-

Segmentatlf)n posed a U-Net with multi-scale highlighting foregrounds (HF) for WMHs segmentation. Our method, U-Net with

Eeﬁptleammg HF, is designed to improve the detection of the WMH voxels with partial volume effects. We evaluated the segmen-
-Ne

tation performance of the proposed approach using the Challenge training dataset. Then we assessed the clinical
utility of the WMH volumes that were automatically computed using our method and the Alzheimer’s Disease
Neuroimaging Initiative database. We demonstrated that the U-Net with HF significantly improved the detection
of the WMH voxels at the boundary of the WMHs or in small WMH clusters quantitatively and qualitatively. Up to
date, the proposed method has achieved the best overall evaluation scores, the highest dice similarity index, and
the best F1-score among 39 methods submitted on the WMH Segmentation Challenge that was initially hosted
by MICCAI 2017 and is continuously accepting new challengers. The evaluation of the clinical utility showed
that the WMH volume that was automatically computed using U-Net with HF was significantly associated with
cognitive performance and improves the classification between cognitive normal and Alzheimer’s disease subjects
and between patients with mild cognitive impairment and those with Alzheimer’s disease. The implementation
of our proposed method is publicly available using Dockerhub (https://hub.docker.com/r/wmhchallenge/pgs).

Multi-scale highlighting foregrounds

1. Introduction

White matter hyperintensities (WMHSs) appear as abnormal hyper-
signals within the white matter region on the human brain MRI includ-
ing T2-weighted (T2w), proton density (PD), and fluid-attenuated in-
version recovery (FLAIR) imaging. These atypical signals mostly result
from aging processes such as demyelination and axonal loss, both as
a result of cerebral small vessel diseases (Prins and Scheltens, 2015).
They are frequently observed in the elderly and tend to increase in size
and number with age (Habes et al., 2016), while at the same time be-
ing associated with several potential vascular risk factors, particularly
hypertension (Abraham et al., 2016).

Based on quantitative analyses of WMHs (Barber et al., 1999;
Dubois et al., 2014; Habes et al., 2016; Lee et al., 2016; Prins and
Scheltens, 2015), previous studies showed that the presence and sever-
ity of WMHs are associated with dementia (Dubois et al., 2014) and
increase risk of conditions such as Alzheimer’s disease (Habes et al.,
2016; Lee et al., 2016), vascular dementia, and dementia with Lewy
bodies (Barber et al., 1999). These studies suggest that the quantitative
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characterization of WMHs plays an important role in various clinical
research into neurological disorders.

Manual delineation of WMHs provides ground-truth for volumetric
quantification of WMHs. However, it is a laborious, tedious, and time-
consuming task and requires a high level of expertise to avoid unac-
ceptable levels of intra- and inter-rater variability. Besides, this becomes
more problematic with the size of a dataset, encouraging automated seg-
mentation.

A number of methods have been proposed to segment WMHs au-
tomatically. Jeon et al. (2011) attempted WMHs segmentation based
on the Markov random field and an intensity thresholding method.
Other studies have developed k-nearest neighbors-based clustering ap-
proaches (Griffanti et al., 2016; Jiang et al., 2018; Steenwijk et al.,
2013). These methods used various features (e.g., spatial information,
intensity information, and texture) from T1w and FLAIR images as the
input of the clustering algorithm. Dadar et al. (2017) evaluated vari-
ous classifiers such as logistic regression, support vector machines, de-
cision trees, and random forests. They observed that the random for-
est achieved the best performance. Recently, convolutional neural net-
works (CNN), a class of deep neural networks, have rapidly become
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a primary method in medical image segmentation and shown remark-
able performance (Litjens et al., 2017). For the segmentation of WMHs,
Moeskops et al. (2018) proposed a CNN model based on multi-scale
patches extracted from Tlw, Tlw inversion-recovery, and FLAIR im-
ages. Rachmadi et al. (2018) added global spatial information to the
patch that was used as an input to a CNN to improve the segmentation
of WMHs.

The use of different evaluation metrics (e.g., Dice, Jaccard, Haus-
dorff indices), as well as evaluations against manually WMHs delin-
eations by different experts, makes it difficult to compare the perfor-
mance of segmentation methods from various studies systematically. To
address these issues, the WMH Segmentation Challenge 2017 was held
for a standardized comparison of the automatic segmentation of WMHs
(Kuijf et al., 2019) in conjunction with the 20th International Confer-
ence on Medical Image Computing and Computer Assisted Intervention
(MICCAI) (Descoteaux et al., 2017). The Challenge provided a public
platform to standardize the evaluation of WMHs segmentation methods
based on a unified dataset of MRI, evaluation metrics, and expert label-
ing. Twenty teams proposed new methods and performed training and
testing on the dataset provided. By using an ensemble approach, which
is a good way to reduce over-fitting of deep learning algorithms, with the
U-Net which is a deep encoder-decoder architecture and has skip con-
nections concatenating the feature maps in the encoder to the feature
maps in the decoder, Li et al. (2018) achieved the best performance.

Partial volume effects (PVE) on MRI images due to limited spatial
resolution is associated with the problem where one pixel/voxel repre-
sents a signal of a mixture of different brain tissues. This effect becomes
strong at voxels of the boundary between structures having different tis-
sue characteristics or between a lesion and the surrounding brain tissue.
Unidentification of the voxel with PVE may result in underestimating
the segmentation of the target lesion, in particular for small lesions and
lesions of boundaries.

Such a problem may not be inevitable for deep neural network ap-
proaches. Indeed, we tested a standard U-Net method on WMH segmen-
tation and observed the unsuccessful classification of voxels placed at
both the edges of WMHs or small WMHs. The predicted probability of
foreground is low for the WMH voxels with strong PVE due to their fea-
tures uncertainty, and the networks tend to fail to identify those partial
volume WMHs (PV-WMHs). In general, the volume of the PV-WMHs is
relatively small compared to the volume of the overall WMHs. Thus the
PV-WMHs contribute little to the network loss, resulting in the network
insufficiently learn the PV-WMHs.

We propose the network to be trained using a multi-scale approach
of highlighting foregrounds (HF). In the standard U-Net, the training is
accomplished by minimizing the Dice loss at the output layer, which is
computed by comparing the posterior probability map with the ground
truth label. To emphasize the label voxels on WMH boundaries, which
would likely lie on PV-WMH voxels, we propose to compute and min-
imize the Dice losses at the particular intermediate decoder layers by
comparing their output probability maps with the corresponding labels
generated using the proposed HF method. The HF approach downsam-
ples the ground truth labels sequentially by applying 2 x 2 max-pooling
with stride 2, resizing the labels to the size of each of the decoder layers.
The approach emphasizes the influence of the voxels lying on the lesion
boundaries or consisting of small lesions on the training of a network.

We used the labels generated using the proposed HF method to train
auxiliary classifiers in the intermediate decoder layers. Training by in-
serting auxiliary classifiers in the intermediate layers is known as deep
supervision. In natural image classification, GoogLeNet (Szegedy et al.,
2015) is based on this method. However, this study did not sys-
tematically evaluate the use of auxiliary classifiers. Independently,
Lee et al. (2015) proposed deeply-supervised networks that were com-
bined with auxiliary classifiers at all intermediate layers for image clas-
sification. They showed that the deep supervision method improved
the convergence rate of networks by alleviating the vanishing or ex-
ploding gradient problem. It also improved the discriminative ability
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of the features learned by directly driving the low- and mid-level fea-
tures in intermediate layers to very high-level features (i.e., target out-
put). Wang et al. (2015) applied the deep supervision method to deeper
convolutional networks. They proposed to add auxiliary classifiers af-
ter certain intermediate layers for better classification performance in
the deeper convolutional networks. Chen et al. (2016a) used the deep
supervision framework for neuronal structure segmentation on electron
microscopy images. Their method added deconvolutional layers to the
intermediate encoder layers to train auxiliary classifiers and fused the
outputs. Several variants of the deeply-supervised networks were further
introduced to segment brain tissue (Chen et al., 2018), liver, whole heart
and great vessel (Dou et al., 2017), and retinal vessels (Lin et al., 2018).
Zhu et al. (2017) proposed to use a U-Net with deep supervision for
prostate segmentation in MR images. These previous works (Chen et al.,
2018; Chen et al., 2016a; Dou et al., 2017; Lin et al., 2018; Zhu et al.,
2017) reported that deep supervision could improve segmentation ac-
curacy.

Though the proposed method is similar to these previous works
(Chen et al., 2018; Chen et al., 2016a; Dou et al., 2017; Lin et al., 2018;
Zhu et al., 2017), our approach has several differences in the processing.
We generate label images at different resolutions from the ground truth
labeling while emphasizing the foreground voxels using the proposed
highlight foreground (HF) method. The generated multi-scale label im-
age is used for the network to learn the features focusing on the fore-
ground area at different resolutions. On the other hand, these previous
works used the ground truth labels without modification at the original
image resolution. During training, they upsampled feature maps to the
original image resolution in order to generate the output. Instead, the
proposed method computes the loss functions without the need for the
upsampling of network outputs, mitigating GPU memory usage.

The MICCAI WMH Segmentation Challenge continues to host fur-
ther studies since its initial opening. Of the 39 methods submitted the
challenge as of March 1st, 2020, our team that proposed the ensem-
ble U-Net with multi-scale HF currently achieves the best performance.
In the following sections, we outline the methods we used to achieve
state-of-the-art performance on this task. We first outline the U-Net with
HFs model. Then, we show that the proposed method significantly im-
proved the WMHs segmentation performance compared to the standard
U-Net. In the results section, we evaluate the proposed method in com-
parison to other methods and assess the influence of the multi-scale
HFs and the effect according to their organization. Finally, using the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, we inves-
tigate the potential clinical utility of the HF method by automatically
segmenting WMHs and associating the WMH volumes with cognitive
performance scores that are used for the diagnosis of mild cognitive
impairment and Alzheimer’s Disease (i.e., Mini-Mental State Examina-
tion (MMSE), Alzheimer’s Disease Assessment Scale-Cognitive Subscale
(ADAS-Cog), and Clinical Dementia Rating Scale sum (CDR sum)).

2. Materials and methods
2.1. Challenge dataset and pre-processing

We validated our method based on the dataset and evaluation frame-
work in WMH Segmentation Challenge 2017 because this provides a
standardized assessment of the segmentation performance of WMHs
(Kuijf et al., 2019). The challenge organization provided a training
dataset and a test dataset consisting of 170 subjects in total. Details of
the datasets are given in Table 1. The training dataset included 60 sub-
jects and was publicly available and downloadable after registration at
https://wmh.isi.uu.nl/data/. We used this dataset to train our network
and investigate the effect of the HF method. The test dataset including
the rest of the 110 subjects was only available for evaluating predictions
when submitted to the challenge.

Each subject included the brain MR images before and after pre-
processing for Tlw and FLAIR images and a manual delineation of
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Table 1
The overview of the characteristics of the WMH Segmentation Challenge 2017 dataset.
Institute Scanner T1 voxel size(TR/TE(/TI)) FLAIR voxel size(TR/TE/TI) Train  Test
UMC Utrecht 3T Philips Achieva 1.00 x 1.00 x 1.00 mm3(7.9/4.5 ms) 0.96 x 0.95 x 3.00 mm?(11,000/125/2800 ms) 20 30
NUHS Singapore 3T Siemens TrioTim 1.00 x 1.00 x 1.00 mm?(2300/1.9/900 ms) 1.00 x 1.00 x 3.00 mm?(9000/82/2500 ms) 20 30
VU Amsterdam 3T GE Signa HDxt 0.94 x 0.94 x 1.00 mm?(7.8/3.0 ms) 0.98 x 0.98 x 1.20 mm?(8000/126/2340 ms) 20 30
1.5T GE Signa HDxt 0.98 x 0.98 x 1.50 mm3(12.3/5.2 ms) 121 x 1.21 x 1.30 mm3(6500/117/1987 ms) 0 10
3T Philips Ungenuity  0.87 x 0.87 x 1.00 mm3(9.9/4.6 ms) 1.04 x 1.04 x 0.56 mm?(4800/279/1650 ms) 0 10

*Abbreviations: TR: repetition time; TE: echo time; TI: inversion time.

WMHs. The images were acquired from five different MR scanners in
three different institutes. The images acquired in the three MR scan-
ners (i.e., 3T Philips Achieva, 3T Siemens TrioTim, and 3T GE Signa
HDxt) were used for both training and testing. The images acquired in
the other two MR scanners (i.e., 1.5T GE Signa HDxt and 3T Philips
Ingenuity) were used only for testing. All the 3D FLAIR images from
VU Amsterdam institute were resampled into the axial direction with
3mm slice thickness. The WMHs were labeled on the FLAIR images by
two experts, based on Standards for ReportIng Vascular changes on nEu-
roimaging (STRIVE) criteria (Wardlaw et al., 2013). The organizers pro-
vided the pre-processed data like 1) T1w images that were registered to
the FLAIR images using the Elastix toolbox (Klein et al., 2009); 2) the
T1w and FLAIR images that underwent correction for the intensity non-
uniformity using SPM12 (Ashburner and Friston, 2000).

We further pre-processed these data for training or testing our
method. First, to reduce false positives, we removed non-brain tissue,
using ROBEX (Iglesias et al., 2011). Second, we performed intensity
normalization to match the intensity distribution among the training
data. For each image, we calculated means and variances using intensi-
ties ranging from 2nd to 98th percentiles in the brain region. We then
normalized the intensities within the brain in each image using z-score
transformation. Finally, to equalize the size of the input data to the net-
work, the axial slices in each 3D image were cropped or padded to a
size of 200 x 200. We used 2D slices to train our 2D CNN model.

2.2. Network architecture

In the current study, we propose to combine multi-scale HFs with
a U-Net architecture (Ronneberger et al., 2015). The main idea of the
U-Net is the skip connections between the encoder and decoder to al-
low the network to reuse the feature maps in the encoder. This gener-
ally helps the network to predict dense segmentation results and alle-
viates the vanishing gradient problem. Variants of the U-Net have been
used in diverse medical image segmentation problems and have demon-
strated outstanding performance (Cicek et al., 2016; Drozdzal et al.,
2018; Guerrero et al., 2018). In the original Challenge in 2017, Four
among the top teams, including the top team (Li et al., 2018), exploited
the U-Net architecture (Kuijf et al., 2019). Here, we advance a 2D U-
Net for WMHs segmentation (Fig. 1) with two novel components: use of
different details of the network architecture and inclusion of the multi-
scale HFs.

2.2.1. Details of the network configuration

As seen in Fig. 1, the modified network is based on the encoder-
decoder structure. In the encoder during both training and testing, the
axial slices of FLAIR and T1lw modalities are fed into the network as
a two-channel input (i.e., the input size is 200 x 200 x 2). We chose
the axial slice for the 2D input data because the best image resolution
was found on the FLAIR axial slice. In our network, we adopt the fol-
lowing configurations as suggested in recent works: 1) Instead of 3 x 3
kernel convolutions in the standard U-Net, we use 5 x 5 kernel convo-
lutions in the first two layers for handling different transformations as
in Li et al. (2018); 2) Batch normalization is added to the 18 convolu-
tional layers each, which accelerates the training process and improve
the network performance by reducing internal covariate shift (Ioffe and

Szegedy, 2015). 3) Finally, we use an exponential linear unit (ELU)
(Clevert et al., 2015) as the activation function for non-linearity capac-
ity instead of a rectified linear unit (ReLU) in the standard U-Net. ReLU
is neither activated nor updated at a negative value, while ELU does not
only have all the strengths of ReLU but also is activated and updated at
negative values, improving the learning characteristics (Clevert et al.,
2015). The encoder contains four 2 x 2 max-pooling layers with a stride
2 after every two convolution layers for downsampling (Fig. 1). Upsam-
pling layers based on nearest-neighbor interpolation are applied after
every two convolutional layers in the decoder (Fig. 1). Prior to down-
sampling, the feature maps in the encoder are concatenated to the fea-
ture maps right after upsampling in the decoder. At the output con-
volutional layers, a 1 x 1 convolution with softmax function is used to
convert the feature maps into the label space with the depth of two (i.e.,
two classes; WMHs and non-WMHSs).

2.2.2. Multi-scale highlighting foregrounds

We add modified label images by the multi-scale HF approach to the
intermediate layers in the decoder in our network (Fig. 1). The inter-
mediate output convolutional layers convert the feature maps into the
multi-scale segmentation probability maps (black arrows in Fig. 1). The
multi-scale HFs max-pool the label image (Fig. 2). Given the foreground
pixels in one label image, the label image max-pooled by HF is defined
as follow:

= D) (=12 o v

Where fyp is a2 x 2 max-pooling operator with stride 2 and I['¥ is
the label image max-pooled, which generated by applying f),p k times
and I(’)’ F is the original foreground image (i.e., ground truth label). The
background image, /2, is defined as follow:

B9 =1-11F (k=0, 1,2, ..., ), @

Where /3¢ is the original background image and /2 is a background of
inverting / ,‘:’ F,

The foreground/background images by multi-scale HFs are used to
generate losses through comparison with the corresponding outputs. We
used a soft Dice score as a loss function. Let L¢ = (I¢, li, s 1S) be
ground truth label image (/j) and M represents different scales for
multi-scale HF. The ¢ represents the type either HF or BG. Then, let
S¢ = (s(”), si, e sj'w) be the segmentation resulting from the network.
sg and (s{, ..., s9,) is the output segmentation at the size of the origi-
nal label image 18 and multi-scale label images (¢, ..., lj'w) each. The
Multi-scale Loss Functions (MLF) can be written as

c M S
2(1°s¢ ) + €
MLF = mm T 3
CZ‘fmz:‘()wmlfn+sfn+e Q)

where C is the foreground or background, ° is the element-wise prod-
uct, w,, is the weight for mth scale loss function, and ¢ is a smoothing
constant to prevent MLF from division by 0, which we set as 0.00001 for
current network training. The sum of all of w,, is one. We evaluated var-
ious sets of w,, and found the best segmentation performance when w,,
was the same for all of the losses as described in the following section.
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Fig. 1. The workflow of the proposed U-Net with multi-scale highlighting foregrounds.
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Fig. 2. Illustration of the multi-scale highlighting foregrounds.

3. Experiments
3.1. Evaluation metrics and ranking system

We used the five evaluation metrics that the WMH challenge adopted
to compare the methods that participating teams developed quantita-
tively (details in Table 3). Let ML be the WMHs manually labeled by
expert and AL be the WMHs automatically labeled by the proposed ap-
proach. The five evaluation metrics are as follow: (1) the Dice similarity
coefficient (DSC) as the overlap index between ML and AL, (2) a mod-
ified Hausdorff distance (95th percentile; H95) as the overall distance
between ML and AL boundaries, (3) the absolute percentage volume dif-
ference (AVD) between the total WMHSs of ML and AL, (4) recall as the
sensitivity in detecting individual lesions, and (5) F1-score as the aver-
age of precision and recall in detecting individual lesions. The challenge

organization defined the individual lesions in both recall and F1 as 3D
connected components within an image. All five measurements are pos-
itive real-valued and the closer the measured values of DSC, recall, and
F1 approach one, the higher the similarity between ML and AL. On the
contrary, the closer the measured values of H95 and AVD are to zero,
the higher the similarity between ML and AL. Table 3 details the def-
inition of these five metrics. These metrics for our testing results were
computed by the challenge organization.

The challenge organization proposed a system for ranking the over-
all performance of participating teams. This system consisted of four
steps. First, the mean of each metric was computed over all test data for
each team’s method. Second, for each evaluation metric, the organiza-
tion sorted all of the teams from best to worst. Next, the best and worst
teams received a rank score of zero and one, respectively, for that metric.
Other teams were assigned a rank score between zero and one following
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their results within the range of that metric. Finally, the five rank scores
were averaged into the overall rank score indicating the overall perfor-
mance of that team. The overall rank score was used to determine the
ranking of each team on the result board on the challenge homepage
(https://wmbh.isi.uu.nl/results/).

3.2. Implementation details

The proposed network and experimental networks were imple-
mented in Python using Tensorflow (Abadi et al., 2016). The networks
were trained on four NVIDIA Titan-Xp GPUs with 12GB RAM. The hyper-
parameters of the networks were set as follows: mini-batch size=30,
optimizer=Adam (Kingma and Ba, 2014), learning rate=0.0002, the
number of epochs=1000, and He initialization (He et al., 2015). Early
stopping based on a validation dataset was used to avoid overfitting in
training data. The performance of all networks converged within 1000
epochs. Data augmentation was applied during training to enhance ro-
bustness in the face of limited training data. To this end, flipping of
axial-sliced images to each axis and various affine transforms including
translation, rotation, scaling, and shearing were randomly applied. The
details of the parameters of data augmentation were as follows: the prob-
ability of flipping each axis=0.5, the range of translation ratio=(-0.1,
0.1), the range of rotation=(-15°, 15°), the range of scaling ratio=(0.9,
1.1), the range of shearing=(—18°, 18°). The networks were trained on
an 1:3 ratio of original data to augmented data at each epoch.

To achieve robust segmentation results, we applied an ensemble
method and a flip averaging to the proposed method. In a training step,
we performed 5-fold cross-validation where each fold (n=12) images
were randomly and equally sampled from each site dataset in the whole
training dataset (n=60). Then, validating each fold, we trained the pro-
posed network using the other four folds (n=48), resulting in 5 networks
trained separately. In a testing step, we first flipped each individual im-
age with respect to the x-axis, y-axis, and xy-axis, which generated 3
flipped images per individual. Then, each of the four images was used
as input to a network generated from 5-fold cross-validation. The flip
averaging was the major voting of four outputs from an original input
and three inputs flipped to the x-axis, y-axis, and xy-axis in a network. As
a result, the final output was the major voting of five outputs generated
from the flip averaging of each network.

3.3. The evaluation of the importance of multi-scale highlighting
foregrounds

To investigate the importance of multi-scale HF in WMHs segmen-
tation, we evaluated our model with various parameters of multi-scale
HF, which included 1) the type of pooling for HF, and 2) the weights of
losses at output layers. We performed this evaluation through a cross-
scanner validation using the training datasets (60 subjects) of WMHs
segmentation challenge. The dataset for the evaluation was split into a
training dataset (1st and 2nd sites: 40 subjects) and a validation dataset
(3rd site: 20 subjects). Our evaluation results are based on the raw net-
work output (i.e., without ensembling and flip averaging).

The type of pooling for HF: We compared the network using the pro-
posed max-pooled label images with the corresponding average-pooling
version. We downsampled the ground truth label image into the lower
resolutions at the intermediate output layers by repeatedly using a 2
X 2 average pooling operation with stride 2. We then generated their
hard labels by thresholding the downsampled soft labels at 0.5. The
network for this experiment was equipped with either four max-pooled
or four average-pooled label images and the same loss weights at all
of the output layers. To avoid cherry-picking results by random seed,
we performed a cross-scanner validation (3-fold cross validation) with
5 runs of random initialization (resulting in 15 trained networks for
each tested method) for the original U-Net, U-Net with HF, and U-Net
with average-pooled labels (AVG). Each fold represented each scanner
dataset: i.e., the UMC dataset, NUHS dataset, or VU dataset. We treated
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the results of each fold as an individual sample. We performed paired t-
tests for the comparison among the tested methods and calculated 95%
confidence interval (CI) according to the paired sample test.

The weights of losses about all of the output layers: In this experi-
ment, we investigated the impact of the set of w,, in Eq. (3). The net-
work with four max-pooled label images was used for this experiment.

Three sets of w,, were tested: 1) w, = 15—5, w, = %, wy = 13—5, wy = %,

_. _ 3 _ 3 _ 3 _3 _ 3. :
(U’ldLU4— G,2)w0— E’ w; = E’ Wy = E’ w3 = E,andw4— E’S)Fl-
nally, w, = %, w, = 3, Wy = =, Wy = 14—5, and w, = 35; For this exper-

iments, we trained three networks (only one run for each fold; a total
of three runs) and averaged the results on a patient-level to investigate
statistical differences.

3.4. Clinical utility evaluation

The aim here was to assess the clinical utility of the proposed method
by evaluating whether the proposed HF-based automated volumetry is
a biomarker of the dementia severity (i.g., cognitive performance de-
cline) or a diagnostic measurement of dementia. Accordingly, we ana-
lyzed the association of the WMH volumes with cognitive performance
scores or with the diagnosis among cognitively normal (CN), mild cog-
nitive impairment (MCI), and early Alzheimer’s Disease (AD). Also, to
analyze the effect of WMH volume on subject diagnosis (CN, MCI, and
AD), we compared classification performances using logistic regression
under three different conditions (WMH volume only, clinical variables
only, and WMH volume and clinical variables combined).

3.4.1. ADNI dataset and preprocessing

We employed the datasets from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (http://adni.loni.usc.edu). We randomly
selected 243 ADNI subjects who completed cognitive evaluations and
MRI scans at their baseline visits. The data include 73 CN, 115 MCI,
and 55 AD subjects at baseline diagnosis. We used Mini-Mental State
Examination (MMSE), Alzheimer’s Disease Assessment Scale-Cognitive
Subscale (ADAS-Cog), and Clinical Dementia Rating Scale sum (CDR
sum) as cognitive performance evaluations that followed a standardized
protocol (Petersen et al., 2010). The score ranges of MMSE, ADAS-Cog,
and CDR sum were 0-30, 0-70, and 0-18, respectively. A higher ADAS-
Cog or a CDR sum score indicates lower cognitive performance. On the
other hand, a lower MMSE means lower cognitive performance. Each
individual MRI scan consisted of a set of a T1w image and FLAIR image
acquired axial-plane. Table 2 details demographic and clinical informa-
tion.

We pre-processed all images through the same steps that are de-
scribed in Section 2.1. Challenge dataset and pre-processing for con-
sistent data processing. We did not perform the cropping or padding of
the images to 200 x 200 axial planes because inputting an arbitrary size
image is accepted in fully convolutional networks at test time.

3.4.2. Statistical analysis

We used a general linear model (GLM) to assess whether WMH vol-
umes computed using our method were associated with the cognitive
performance scores or the diagnosis of subjects. We included each type
of the cognitive scores or the diagnosis (i.e., CN, MCI, and AD) as a de-
pendent variable and the WMHs volume as an independent variable. In
the GLM, we also included age, cardiovascular risk, education, gender,
ApoE4 genotype, and race as covariates to collect for their confound-
ing effects. The cardiovascular risk score ranged from O to 5 by count-
ing the following diseases or characteristics individually: hypertension,
stroke, smoking, diabetes mellitus, and cardiovascular disease. To miti-
gate the possible issue of the skewed distribution of the cognitive scores
and WMH volumes, we applied the square root transformation to MMSE
and CDR sum, and the log-transformation to WMH volumes as suggested
in Carmichael et al. (2010). Then, all the transformed values and ADAS-
Cog were normalized using the z-score transformation. All the statistical
tests were implemented using Matlab 2019b.
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The overview of the characteristics of 243 ADNI subjects.

Total,Mean Diagnosis at baseline, Mean (SD)
Characteristic (SD) Cognitively normal ~ MCI AD
Sample, No. 243 73 115 55
Age, y 73 (7.5) 75 (6.5) 71 (7.9) 76 (7.1)
CV risk 1.7 (1.0) 1.7 (1.1) 1.7 (1.0) 1.6 (1.0)
Education, y 16 (2.7) 16 (2.5) 17 (2.7) 16 (2.7)
Male, No. (%) 123 (51) 36 (49.3) 56 (48.7) 31 (56.4)
ApoE4 genotype, 0/1/2 114/100/29 48/23/2 50/49/16 16/28/11
Race
White 218 63 105 50
Other 25 10 10 5
MMSE score 27 (2.8) 29 (1.3) 28 (2.1) 23 (2.1)
ADAS-Cog score 11 (6.8) 6 (3.1) 10 (4.8) 20 (5.8)
CDR sum 1.75 (1.99) 0.12 (0.53) 14 (1.1) 4.6 (1.7)
WMHs, cm? 9.94 (11.74)  9.13 (14.33) 8.72 (9.04) 13.58 (12.41)
Table 3

List of evaluation metrics and their definitions. The organization of the challenge defined

individual lesions for recall and F1 as 3D connected components. N means the number

of 3D connected components. d(X,Y) means ma)? mi)r} d(x, y), where d(x, y) is the distance
XE. YE

between x and y points. V},, and V,, mean the WMH volume computed by manual
segmentation and our method, respectively.

DSC H95 AVD Recall F1
. 2TP 5 2 W =Varl N, 2N,
Equation FP+FN+2TP max{d(X.Y),d(¥, X)} ";‘,,AL N,,,-::Iw ZN,,,+N,T:+NM,

*Abbreviations — DSC: the Dice Similarity Coefficient; H95: a modified Hausdorff dis-
tance (95th percentile); AVD: the absolute percentage volume difference; Recall: the
sensitivity for detecting individual lesions; F1: Fl-score for individual lesions; TP: true
positive; FN: false negative; FP: false positive.

3.4.3. Classification analysis

We assessed whether alterations in WMH volume were used to clas-
sify an unseen individual into CN, MCIL, or AD. To this end, we used
logistic regression as a classifier and performed the classification under
three different conditions where input features varied: 1) WMH volume
only; 2) clinical variables only (age, cardiovascular risk, education, gen-
der, ApoE4 genotype, and race; these are mentioned in Section 3.4.2),
and 3) WMH volume and clinical variables combined. The classification
was evaluated using a leave-one-out strategy. We calculated the receiver
operating characteristic (ROC) curves from the classification resulting
in from each of the three conditions and compared their area under the
curve (AUC) values. Classification analysis was processed using Matlab
2019b.

4. Results

In this section, we compare our results with the results of the top
2nd-5th algorithms listed in the WMH Segmentation Challenge as of
April 30, 2020. We also show the influence of multi-scale HF on the pro-
posed network’ys performance. Finally, the results of the clinical analy-
sis are presented.

4.1. Results of the WMH segmentation challenge

As of March 1st 2020, the following four teams, as well as our
team, were listed as the top five in the challenge leaderboard: 1)
sysu_media_2—- deep 2D multi-scale stacked U-Net and ensemble learning;
2) sysu media- fully convolutional ensemble neural networks (Li et al.,
2018); 3) anonymous_ 20200413 - brain atlas guided attention U-Net;
and 4) coroflo- multi-dimensional convolutional gated recurrent units
and ensemble learning. More description of each method is available on
the challenge website.

Table 4 shows the results of the top five teams about five metrics (i.e.,
DSC, H95, AVD, recall, and F1). Bold text indicates the best performance

among all algorithms for the given metric. Our method pgs achieved the
best overall performance.

The results of our method are detailed in Table 5. Part of the test
dataset (n=90) was from three sites (Utrecht, Singapore, and AMS GE3T)
that matched the sites from which the training datasets were acquired.
Whereas the other 20 subjects were from AMS GE1.5T and AMS PETMR
which were completely unseen. However, the proposed method demon-
strated similar performance in this unseen dataset relative to the three-
site dataset.

4.2. The influence of the multi-scale highlighting foregrounds and other
parameters on segmentation accuracy

We evaluated the segmentation accuracy of the proposed network
under different configurations of the multi-scale HF. Table 6 shows the
segmentation results and 95% confidence intervals for 15 multiple runs
of original U-Net, U-Net with HF, and U-Net with AVG. The U-Net with
HF achieved the best performance across all metrics compared to the
other two methods. Table 7 shows the effect of the weights of losses at
all the output layers on segmentation accuracy. The network with equal
weights among all the five output layers outperformed the networks
using other arrangements of the weights.

4.3. Clinical utility of the proposed segmentation approach

WMH volumes computed using our method were significantly asso-
ciated with cognitive scores and group diagnosis of the ANDI subjects
(Table 8; MMSE, CDR sum, and group diagnosis: Bonferroni correction
p-value < 0.05; ADAS-Cog: FDR correction p-value < 0.05). In other
words, the bigger WMH was, the more was cognitive decline and the
more severe was the diagnosis of a patient observed. Furthermore, our
linear model showed that a 1-standard deviation (SD) increase in WMH
volume corresponded 0.133 and 0.165 SD increases in ADAS-Cog and
CDR sum scores, respectively, and a 0.176 SD decrease in MMSE score.
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Comparison of our method with other methods in the MICCAI WMH segmentation chal-
lenge. Bold fonts indicate the best result among all teams.

Team Rank DSC H95 (mm) AVD (%) Recall F1
1 pgs (ours) 0.0185 0.81 5.63 18.58 0.82 0.79
2 sysu_media_2 0.0187  0.80 5.76 28.73 0.87 0.76
3 sysu_media 0.0288  0.80 6.30 21.88 0.84 0.76
4 anonymous_20200413  0.0314 0.79 6.17 22.99 0.83 0.77
5  coroflo 0.0493 0.79 546 22.53 0.76 0.77

*Abbreviations — DSC: the Dice Similarity Coefficient; H95: a modified Hausdorff distance
(95th percentile); AVD: the absolute percentage volume difference; Recall: the sensitivity
for detecting individual lesions; F1: F1-score for individual lesions.

ROC Curves for Logistic regression (CN vs AD)
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Fig. 3. The receiver operating characteristic (ROC) curves for logistic regression about two types of the classification (CN vs AD and MCI vs AD).
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Table 5

Results about five metrics of the proposed method in the test dataset of the
challenge.

DSC H95 (mm) AVD (%) Recall F1
Utrecht (n=30) 0.81 6.76 18.62 0.81 0.75
Singapore (n=30) 0.84 4.71 15.69 0.83 0.80
AMS GE3T (n=30) 0.80 3.74 22.03 0.83 0.82
AMS GE1.5T (n=10)  0.74 9.30 22.09 0.75 0.77
AMS PETMR (n=10)  0.80 7.00 13.25 0.82 0.81
Weighted average 0.81 5.63 18.58 0.82 0.79
rank [0...1] 0.000  0.004 0.003 0.086  0.000

Even though feeding WMH volume alone to the classifier did not
achieve a better classification compared to using clinical variables only
(Fig. 3), We observed that combining WMH volume with clinical vari-

Table 6

ables resulted in the best classification performances between CN and
AD (AUC=0.75) and between MCI and AD (AUC=0.67). In the classifica-
tion of CN vs. MCI, the classification performance was not improved by
combining WMH volume and clinical variables (AUC=0.58) compared
to using clinical variables only (AUC=0.59).

5. Discussion

We proposed a new U-Net variant with multi-scale highlighting fore-
grounds (HF) in this paper. Our network framework was designed to
improve the detection of the WMH voxels involving a degree of par-
tial volume effects. We added the multi-scale label images that were
max-pooled by HF to a U-Net for WMHs segmentation. The proposed
method has been placed at the top rank for the overall score in the MIC-
CAI WMH Segmentation Challenge. The WMH volume computed using
our automated approach was significantly associated with cognitive per-

The segmentation results and 95% confidence intervals for the 15 multiple runs of original U-Net, U-Net with HF, and U-Net with

average-pooled labels (AVG). Bold fonts indicate the best result.

DSC HD95 (mm) AVD (%) recall F1-score
Original U-Net Mean+SD  0.8033+0.0204* 6.2509+1.6870* 18.8337+6.086* 0.7261+0.0538* 0.7273+0.0466*
95% CI [0.0060, 0.0089] [-0.7435, -0.3917] [-2.8959, —-1.2721] [0.0212, 0.0440] [0.0228, 0.0298]
Original + AVG Mean+SD  0.8037+0.0191* 6.9537+2.5907* 17.6740+6.4449 0.7373+0.0552* 0.7340+0.0513*
95% CI [0.0055, 0.0085] [-1.7264, -0.8143] [-2.0247, -0.1762] [0.0086, 0.0341] [0.0126, 0.0266]
Original + HF Mean+SD  0.8107+0.0203 5.6833+1.8080 16.7497+6.9472 0.7587+0.0456 0.7536+0.0436

*p-value corrected by FDR < 0.05 between U-Net with HF and other (paired t-test).

Abbreviation — SD: standard deviation; CI: confidence interval.
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Table 7
Influence of various weighting among all the output layer losses on the segmentation accuracy. Bold fonts indicate the best
result.
DSC H95 (mm) AVD (%) Recall F1
Original + HF (all 0.2) 0.8139+0.0878 5.0383+4.3894 15.893+24.845 0.7725+0.1033 0.7575+0.0903
Original + HF (1/15 - 5/15) 0.8095+0.0952 5.4751+4.9443 17.890+29.337 0.7707+0.1055 0.7523+0.0956
Original + HF(5/15 - 1/15) 0.8093+0.0912 6.1427+5.7800 16.709+18.847 0.7496+0.1020 0.7595+0.0746

Table 8

Summary of the results of the general linear model using WMH volumes and covariates as independent variables
and cognitive scores and group diagnosis as dependent variables.

Cognitive scores

MMSE ADAS-Cog CDR sum Group(CN/MCI/AD)
B p-value B p-value B p-value B p-value
WMH volume -0.176 < 0.001**  0.133 0.017* 0.165 0.009+* 0.131 0.008**
Age - - - - - - - -
CV risk - - - - - - - -
Education 0.062 < 0.001** -0.061 0.001** -0.047  0.031* - -
Gender - - - - - - - -
ApoE4 genotype  -0.296 < 0.001**  0.184 < 0.001**  0.421 < 0.001** 0299 < 0.001**
Race - - - - - - - -

*p-value corrected by FDR < 0.05.
**p-value corrected by Bonferroni method < 0.05.

formance scores (MMSE, ADAS-Cog, and CDR-sum) and the dementia
diagnosis (CN, MCI, and AD). Furthermore, the automated WMH vol-
umetry improved the classification of unseen subjects into CN, MCI, or
AD.

5.1. Comparison to other methods evaluated in the WMH segmentation
challenge

Our method has achieved the best overall evaluation scores, the high-
est dice similarity index, and the best F1-score in the MICCAI WMH Seg-
mentation Challenge among all the listed 39 methods. Our method has
also achieved the top 5 for other evaluation metrics (Hausdorff distance
95: 2nd, average volume difference: 3rd, and recall: 5th). Given that
the Dice similarity index represents the overlap between the automated
and manual segmentation and the Hausdorff distance represents their
boundary gap, our achievement of high accuracy in these two indices
demonstrates that the proposed method successfully detects the WMH
voxels that are located either at the boundary of the WMH or in small
WMH volumes and consequently exposed to PVE. Indeed, a visual in-
spection of individual segmentations shows the superior segmentation
of such partial volume voxels in the proposed U-Net with multi-scale HF
compared to the standard U-Net (Fig. 4). In Fig. 4, the proposed method
more accurately segmented WMHs on the boundary of manual WMHs
(Subject 1) as well as small clusters of WMHs (Subjects 2-4) compared
to the standard U-Net. Despite a relatively low recall (5th rank, meaning
relatively more false-negative voxels detected), we achieved the best F1-
score which is the harmonic mean of recall and precision. This suggests
two things. First, our method yielded a higher true-positive rate and a
lower false-positive rate than other methods. Second, our method may
have difficulty in detecting some WMH voxels even though it detects
the small cluster and the border of WMHs better than other approaches.

5.2. Configuration of the multi-scale highlighting foregrounds

The segmentation performance was the best when setting equal all
the weights of different scale HFs suggesting that the feature maps gen-
erated from all scales are equally important for deep learning of WMHs
segmentation. Our method achieved statistically significant improve-
ments in all metrics compared to the original U-Net, and significant
improvements in all metrics excepted average volume difference com-
pared to the U-Net with AVG (Table 6). Although U-Net with AVG tends

to have better performance in all metrics than the original U-Net, these
differences did not reach the statistical significance. These results in-
dicate that the superior performance of U-Net with HF did not merely
result from a lucky random seed. The significant improvements in Dice
score and F1-score by our method suggest that the proposed method can
more accurately detect WMH clusters that are hard to detect by other
methods, such as small WMHs involving large partial volume effects.

Based on these results, therefore, we confirm that the proposed HF
approach is highly advantageous to WMHs segmentation and likely to
segmentation of brain lesions which have similar characteristics (size,
shape, or intensity), such as multiple sclerosis (Weeda et al., 2019), mi-
crobleeds (Seghier et al., 2011), and perivascular space (Ballerini et al.,
2018). Since our method uses multi-scale label images emphasizing fore-
ground voxels (i.e., unbalanced data), it can be used in combination with
various loss functions (boundary loss, (Kervadec et al., 2019); focal loss,
(Lin et al., 2017); Tversky loss, (Salehi et al., 2017); and focal Tversk
loss, (Abraham and Khan, 2019)) to overcome the problem of unbal-
anced data. It may be worth trying to combine the above-mentioned
loss functions and HF in various ways and compare the results to find a
loss function that fits well with HF. Additionally, our method can also
simply be applied to various networks based on the encoder-decoder
structure such as U-Net variants or other variants of deep supervision
methods.

5.3. Clinical evaluation

Previous studies showed that the increase in WMHs volume relates to
cognitive decline (Barber et al., 1999; Dubois et al., 2014; Habes et al.,
2016; Lee et al., 2016; Prins and Scheltens, 2015). On the basis of find-
ings in these studies, we evaluated the clinical utility of the proposed
approach by investigating whether automated WMH volumetry can pre-
dict cognitive performance declines or the diagnosis of a subject (CN,
MCI, and AD). Our results demonstrate that the automatically computed
WMH volume is significantly associated with cognitive performance in
the direction we hypothesized (Table 8).

Furthermore, we hypothesized that feeding the automatically com-
puted WMH volumes to a classifier individually can diagnose subjects.
The results of this experiment showed that classification performance for
CN vs. AD and MCI vs. AD can be improved using the combined feature-
set of WMH volumes and clinical variables. These results are consistent
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with previous findings that WMHs provide an imaging marker for AD
(Habes et al., 2016; Lee et al., 2016; Prins and Scheltens, 2015).

6. Conclusions

In the current study, we proposed a U-Net with multi-scale highlight-
ing foregrounds (HF). Our various evaluations show that the proposed
method improves detecting WMH voxels with partial volume effects
as intended. However, it still remains challenging for our model to re-
tain both high precision and recall. Attention-based models (Chen et al.,
2016b; Woo et al., 2018) that effectively learn important characteristics
of a target structure for segmentation can potentially be a way to solve
this issue. To improve WMHs segmentation, integrating an attention-
based model into deep neural networks is thus suggested in the future.
Our clinical evaluation demonstrates the clinical utility of our method.
Yet, the individual diagnosis of unseen subjects using WMH volumes
alone is below the clinical standard. In a further study, other informa-
tion of WMHs such as the location or distribution of WMH volumes and
the longitudinal trajectory of WMH volume changes would be incor-
porated for the improvement of individual diagnosis. The implementa-
tion of our proposed method is available at Dockerhub (Merkel (2014);
https://hub.docker.com/r/wmhchallenge/pgs).

Data and code availability statements

The data that support the findings of this study are
openly available in 2017 MICCAI WMH Segmentation Chal-
lenge  homepage at  https://wmh.isi.uu.nl/data/,  reference
number (Kuijf, 2019). Our code also is openly available at
https://hub.docker.com/r/wmbhchallenge/pgs.

Neurolmage 237 (2021) 118140

Fig. 4. Segmentation results in the training dataset.
From top to bottom are axial slices of four different
subjects. From left to right are FLAIR image, ground
truth, the results from the standard U-Net, and the
results from the proposed U-Net with multi-scale HF
method. Yellow voxels indicate WMHs segmented us-
ing each method. Color boxes show our approach’s im-
provement of false-positives (orange border) or false-
negatives (green border) observed in the standard U-
Net.

U-Net
with HF
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