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ABSTRACT

Today, high-resolution MRI scans are able to reveal even the fine details of brain structure. Several meth-
ods have been developed to quantify shape differences specific to scans of diseased brains. We have
developed a novel method for quantifying shape information based on multidimensional scaling (MDS),
a well-known statistical tool. Multidimensional scaling uses distance measures computed from pair-wise
image registration of the training set. Image registration establishes spatial correspondence between
scans in order to compare them in the same spatial framework. Our novel method has several advan-
tages, including robustness to errors in registrations. Applying our method to 44 brain MRIs showed clear
separation between normal and Alzheimer scans. Using our method as basis for classification between
normal and Alzheimer scans yielded better performance results compared with using the volume of hip-
pocampus as basis for classification. We also devised a simple measure derived from the MDS approach
that was shown to correlate with the Mini Mental State Examination (MMSE), a well-known cognitive
test for Alzheimer’s disease.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

It is now possible to study the brain anatomy of a specific popu-
lation with high-resolution scans of a wide range of patients. In
the neuroimaging realm, researchers have used high resolution
(around 1 mm) T1-weighted MRI scans to study brain structures
hypothesized to be affected by disease. Image analysis techniques,
such as a simple volume measurement or a complex shape mea-
surement, are applied to structures of interest in order to quantify
changes that may relate to a specific disease process. Researchers
have developed computer algorithms to model those changes. The
scope of these projects has rapidly expanded in recent years, and
they have been grouped into a discipline referred to as compu-
tational anatomy (Grenander and Miller, 1998; Ashburner et al.,
2003).

% Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As
such, the investigators within the ADNI contributed to the design and imple-
mentation of ADNI and/or provided data but did not participate in analysis or
writing of this report. ADNI investigators include (complete listing available at
http://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Manuscript_Citations.pdf).
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Some neurodegenerative diseases cause distinct morphological
changes in the brain’s gross anatomy. For example, Alzheimer’s
disease typically results in atrophy in the hippocampal region.
Computer algorithms that detect such morphological changes (i.e.,
a smaller hippocampus with respect to those of a normal control
group) represent a clinical application of computational anatomy.
The ability of a computer algorithm to detect morphological signa-
tures specific to a disease has the potential to improve diagnosis
and treatment of a variety of neurodegenerative diseases. In this
paper, we focus on Alzheimer’s disease (AD).

Computational anatomy studies the morphology of a specific
population. The measurement of shape is a complex topic and has
been a matter of significant controversy (Ashburner and Friston,
2001; Friston and Ashburner, 2004; Bookstein, 2001; Davatzikos,
2004). There are two major approaches described in the literature.
The first approach, called deformation-based morphometry (DBM),
assumes that all shape information is encoded into the deformation
fields associated with different scans in the population (Ashburner
et al., 1998; Thompson and Toga, 1999). Deformation fields are
computed by registering two scans non-linearly, i.e., identifying
the best geometric transform between them. The second approach,
called voxel-based morphometry (VBM), assumes that all shape
information is encoded in some scalar function of spatially normal-
ized scans (Ashburner and Friston, 2000). For example, two scans
are segmented (i.e., labeled) and then linearly registered so that
both scans are in the same spatial coordinates. After registration,
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the shape information is assessed using voxel-wise differences in
the labels.

DBM uses deformation fields obtained from registrations of
scans of a population and identifies differences in the relative
positions of structures within organs. Analysis of the deformation
field needs to remove the confounding effects caused by varying
positions and sizes of the structure of interests. Procrustes shape
analysis removes much of these confounding effects (Bookstein,
1997). The biggest shortcoming of DBM is that it requires a very
accurate registration algorithm to compute the displacement field,
as the process is solely based on the displacement field. Registra-
tion is computed by either a set of manually identified landmarks
or a very high degrees of freedom (DOF) registration algorithm
(Bookstein, 1997). A perfect non-linear registration between scans
results in all of the information needed to assess shape changes
between scans. DBM is a solid platform for evaluating shape
information that requires precise computation of displacement
fields.

We assume that the shape information is coming from the
deformation fields given very accurate registrations. We propose
to make DBM more robust to imperfect registrations. Our DBM-
based approach improves robustness with respect to imperfect
registrations using a well-known statistical framework called mul-
tidimensional scaling (MDS). We applied our MDS-based shape
quantification method to separate patients with AD from the aged-
matched normal controls. We also devised a simple measure from
the MDS approach and showed that it was meaningfully correlated
with the Mini Mental State Examination (MMSE), a well-known
cognitive test commonly used to assess AD many forms of dementia
including AD.

2. Materials and methods

MDS is a technique for producing relative positional locations
from a collection of pair-wise distances. Our MDS-based method
has two components to improve the robustness with respect to
imperfect registrations. First, we compress the entire deformation
field, whose DOFs are on the order of the number of voxels, to the
single scalar value noted as distance. The effects of imperfect regis-
trations will be less evident using the single scalar value than those
using the deformation field. Second, we conduct multiple measure-
ments of the single scalar value (i.e., distance) between various
configurations in order to improve the sensitivity to shape change.
For example, for N scans, instead of computing N — 1 deformation
fields and distances with respect to a chosen target scan, we com-
pute deformation fields and distances with respect to all possible
pairs of target and source scans (i.e., N choose 2=N(N — 1)/2 scans).
Multiple distance measurements correspond to pair-wise distances
in the MDS framework. In summary, we compress the deforma-
tion into a single scalar value (distance) to improve robustness to
mis-registrations and perform multiple measurements at different
configurations to improve the sensitivity to shape change.

2.1. Registration framework

Registration is a task of mapping one image onto another. Reg-
istration is central to DBM, as it computes displacement fields
that will be analyzed as shape information. Registration itself has
been discussed extensively in the literature (Pluim et al., 2003; Hill
et al., 2001). In short, two main components must be determined
for any registration method: the similarity measure which mea-
sures the degree of alignment between images and the geometric
interpolant which defines the geometric transform. This study used
mutual information (MI) as the similarity measure and thin-plate
splines (TPS) as the geometric interpolant (Bookstein, 1989). We

implemented the registration software as described in Meyer et al.
(1997).

2.2. Distance measure

Registration between two images yields a geometric transform
optimized to maximize a certain cost function, such as MI. The
displacement field is a collection of evaluations of the geometric
transform at all voxel locations. We compressed the entire defor-
mation field, whose order is equal to the number of voxels, to a
single scalar value (distance). The geometric distance, hereafter
called distance, between two scans is usually measured by the
roughness of the geometric transform that associates the coordi-
nate spaces of two images. However, we preferred the distance to
have invariance to affine transforms. Roughness of the geometric
transform can be measured by integrating the squared value of nth-
order partial derivatives of the transform. Second-order derivatives
are chosen to ensure invariance to affine transforms. We define the
distance between two scans as the sum of the squared second-order
partial derivatives of the geometric transform.
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Formulation in (1) is for two dimensions, but it can be eas-
ily extended for 3D. The distance calculated using this equation
is often called the bending energy. Analytic formulae for calcu-
lating bending energy are available for TPS (Bookstein, 1989). For
other geometric transforms, the bending energy may need to be
calculated numerically. The defined distance is not strictly a metric
since the distance between two different images can be zero if both
images can be registered using an affine transform.

2.3. Multidimensional scaling (MDS)

MDS is a technique for producing relative positional locations
from a collection of pair-wise distances (Torgerson, 1952; Young
and Hamer, 1994). The relative locations are accurate up to an
arbitrary rotate-translate transform. For example, N(N —1)/2 (i.e.,
N choose 2) pair-wise distances are needed to apply MDS to visu-
alize the relative locations of N cities. The distances used in MDS
need not be metric, as non-metric distances such as ranking can
be used. Therefore, the distance we defined in the previous sub-
section can be used in MDS settings. Given a set of distances in the
distance matrix D, where dj; refers to the distance between objects
iand j, MDS outputs a set of coordinates in a user-specified dimen-
sion that best reproduces the distance matrix in the least-square
fashion. The dimension of MDS output is determined based on the
eigenstructure of the distance matrix. The output coordinates are
in the standard Euclidean space of the user-chosen dimension.

2.4. Shape quantification based on MDS

We intend to improve the DBM-based shape quantification
method. First, the whole deformation field is compressed to a
single scalar value (distance). Second, we conduct multiple mea-
surements of the distance at various configurations in order to
improve the sensitivity to shape change. For example, for N scans,
instead of computing N — 1 deformation fields and distances with
respect to a chosen target scan, as is typically done in DBM, we com-
pute N choose 2 (i.e., N(N — 1)/2) deformation fields and distances
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Fig. 1. Shape quantification procedures using MDS for N scans.

with respect to all possible combination of target and source scans.
Multiple distance measurements correspond to pair-wise distances
in the MDS framework. Our approach fits the MDS framework well
since MDS measures all possible pair-wise distances. MDS outputs
a collection of high-dimensional coordinates in Euclidean space,
each of which represents an object: in this case, a scan. With MDS,
we can compute the relative positions of all scans in the Euclidean
space of a user-chosen dimension. We hypothesize that scans of
the same type, either normal or abnormal, will be placed adjacent
and scans of different types will be placed separately. Therefore, we
hypothesize that MDS results will lead to a scatter plot in which two
distinct clusters can be observed. In summary, we hypothesize that
using MDS with pair-wise distances based on registrations will pro-
vide a framework for shape quantification. Fig. 1 is the procedure
for N scans.

2.5. Scan acquisition

We obtained MRI image data and the associated cognitive
test results (including MMSE scores) from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database. Following is a brief
description of the ADNI effort. Data used in the preparation of this
article were obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (www.loni.ucla.edu/ADNI). The ADNI
was launched in 2003 by the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and Bioengineering
(NIBIB), the Food and Drug Administration (FDA), private pharma-
ceutical companies and non-profit organizations, as a $60 million,
5-year public-private partnership. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD). Determination of sensitive and
specific markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical tri-
als. We acquired 44 MRI brain scans and noted the MMSE score for
each patient. Nine scans were identified with Alzheimer’s disease,
and nine scans were identified as age-matched normal controls. AD
scans were of patients aged 67.5-82.2 years (median 72.7). Normal
scans were of patients aged 70.8-89.7 years (median 78.7). All MRIs
were sagittal T1-weighted scans and had typical dimensions of
256 x 256 x 166 and resolutions of 0.94 mm x 0.94 mm x 1.2 mm.
The scans were collected using a 1.5T GE Signa scanner with MR-
RAGE acquisition sequence.

2.6. Data pre-processing

We removed non-brain tissues from all 44 scans using a proce-
dure called “skull stripping”, for which many algorithms are readily
available (Bedell and Narayana, 1998). In our procedure, we applied
our own skull stripping algorithm based on registration. First, reg-
istration between the labeled International Consortium for Brain
Mapping (ICBM) scan and the user-chosen scan was established.
Second, labels from the ICBM scan were carried onto the user scan
and then used as a mask. Masked voxels contained only brain tis-
sues including white matter, gray matter, and cerebral spinal fluid
(CSF). With this mask, the user-chosen scan could be stripped of
non-brain tissues. The accuracy of this method depends on the

Fig. 2. Sample brain MRI scans. Samples of the skull stripped brain scans with control points are given. The left figure is AD and the right figure is normal control. Control
points are given in blue dots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Output of three-dimensional MDS. Only the first two of three dimensions
were plotted due to space constraints. Scans 1-22 are AD cases marked with magenta
triangles. Scans 23-44 are normal control cases marked with black squares. Major
separation occurred along the second dimension. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this
article.)

accuracy of the registration between the ICBM scan and the user-
chosen scan. We used TPS-based registration with approximately
60 DOFs (i.e., 20 control points) to establish registration between
the ICBM scan and the user-chosen scan.

After all scans were removed of non-brain tissues, pair-wise
registrations using 50 control points were performed. The 50 con-
trol points were distributed almost uniformly over the entire brain.
Typical samples of the skull stripped brain scans with control points
are shown in Fig. 2. There were 946 (i.e., 44 choose 2) pair-wise
registrations involved. Once all of the pair-wise registrations were
completed, distance values (i.e., bending energies) were computed
and entered into the distance matrix. The upper half of the matrix
was computed, and the lower half was duplicated, thus a symmetric
distance matrix was assumed.

3. Results
3.1. Results: testing separability between clusters

MATLAB (Mathworks Inc., Natick, MA, USA) was used to com-
pute the statistical results in Section 3. After the distance matrix
was computed, MDS was applied and the results were analyzed in
three dimensions. The dimensionality of MDS was chosen based on
the eigenvalues of the distance matrix. Eigenvalues obtained from
singular value decomposition (SVD) were plotted in a descending
fashion; we chose the number L as the dimension, such that after
L largest eigenvalues, the next occurring eigenvalue dropped dra-
matically. The output of MDS was plotted in Fig. 3. Each coordinate
represents a scan from 44 training scans. As we had hypothesized,
there were two distinct clusters for normal and abnormal scans.
Scans 1-22 were of patients with AD, and scans 23-44 were of nor-
mal controls. The two clusters seemed to be separable along the
second coordinate dimension (the vertical axis). A two-sample t-
test on the second coordinates of the MDS output showed a p-value
of 6 x 107, Thus, the two clusters were likely to have different
means. In summary, we showed the separability of two classes,
normal and AD, with 44 MRI scans.

3.2. Results: classification between AD and normal

In this section, we compared classification performance
between AD and normal based on our MDS approach and the

established approach using hippocampus volume. The volume of
hippocampus was reported to be a good feature to classify between
AD and normal (Duchesne et al., 2008). Simply put, AD patients
tend to have smaller hippocampus compared to normal controls.
We used the well-known FSL software to automatically segment
the hippocampus and computed its volume (Woolrich et al., 2009).
Manual segmentation is better in terms of accurately segmenting
the hippocampus but is very labor intensive so we chose the auto-
matic segmentation method. For our MDS approach, we used the
separable coordinates of MDS scatter plot to classify between AD
and normal. We adopted k-nearest neighbor (kNN) classification
algorithm for both approaches, where k is set to three. A leave-
one-out approach was adopted when computing the classification
performance. For each case being tested, we trained the classifier
using the remaining 43 cases and then computed the classification
performance for the test case. The process was repeated for all 44
cases and the classification rate was reported. Our MDS approached
yielded 86.3% accuracy, while the approach based on hippocampus
volume yielded 75.0% accuracy. Thus, we observed performance
improvements of classification rate using the MDS coordinates over
the use of hippocampus volume.

3.3. Robustness to mis-registrations

In this section, we present the simulation results regarding the
robustness of MDS-based shape quantification. We performed two
simulated trials. In the first trial, we added registration noise to
one of the many pair-wise registrations and observed the p-value
of the two sample t-tests on the second coordinates of the MDS
output. A low p-value indicates that the two clusters have different
means (i.e., are separable), and a high p-value indicates that the two
clusters have the same mean (i.e., are not separable). p-Values were
measured as we increased the magnitude of the added registration
noise to one chosen pair-wise registration. Registration noise was
implemented by randomly perturbing the optimized TPS control
point location by a zero mean Gaussian of appropriate standard
deviation.

For the first trial, we observed that the p-value did not change as
we increased the magnitude (i.e., standard deviation) of the added
registration noise, as shown in the left plot of Fig. 4. The p-value
remained stable even at a standard deviation of 50 mm, where the
size of the scan was 240 mm x 240 mm x 198 mm. This implies that
one erroneous pair-wise registration out of 946 possible registra-
tions does not affect the p-value. As long as only one pair-wise
registration was affected, we witnessed a similar trend: a relatively
constant p-value despite increased registration noise.

In the second trial, we fixed the amount of registration noise
but increased the number of pair-wise registrations affected. The
zero mean Gaussian noise of standard deviation 20 mm was added
to optimized locations of TPS control points for randomly chosen
pair-wise registrations. The p-values were measured as the num-
ber of affected pair-wise registration increased. The p-value stayed
relatively constant initially, but eventually increased as more pair-
wise registrations were affected. This is shown in the right plot of
Fig. 4. The p-value with 60 (out of 946 possible registrations) erro-
neous registrations was fairly close to the p-value with no affected
pair-wise registrations. This implies that our shape quantification
is sufficiently robust to withstand many erroneous registrations.

3.4. MDS distance and Mini Mental State Examination (MMSE)

The MMSE is a well-known cognitive test to assess and follow
AD (Apostolova et al., 2006). Typically, an MMSE score of 30 is nor-
mal, scores between 23 and 29 signify mild impairment, and scores
below 23 signify possible dementia. Although it is not the most
accurate test, it is widely used. In the remainder of this section,
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we further demonstrate the effectiveness of our MDS approach.
MDS provides relative locations for all scans, so the mean loca-
tion of a group is easily defined. The mean location of the normal
group is a simple sample mean of the MDS coordinate of the nor-
mal scans. Distance between scans may be computed by calculating
the Euclidean distance (i.e., L2 norm) between the respective MDS
coordinates. We hypothesize that, if an AD scan is far from the
mean location of normal scans, then it will be associated with a low
MMSE score. The rationale behind this hypothesis is that a severe
AD scan is likely to be morphologically more different with respect
to a normal scan than is a less severe AD scan. In MDS terms, this
means that a severe AD scan will be further away from the mean
of normal scans than will a less severe AD scan. Note that each
patient had an MDS distance and a corresponding MMSE score.
We plotted MDS distance and MMSE scores in Fig. 5. The MDS dis-
tance was computed as the Euclidean distance between an AD scan
and the mean of the normal group. A negative correlation (i.e., as
MDS distance increased, MMSE score decreased) was observed in
nine AD samples. A correlation of —0.33 with a p-value of 0.13 was
observed. Neglecting one outlier led to a correlation of —0.53 with
a p-value of 0.01. Nonetheless, the negative correlation between
MDS distance and MMSE score was notable. Note that MMSE scores
themselves are subject to variability (Molloy and Standish, 1997).
Patients with the same neuronal degeneration may have differ-
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Fig. 5. Plot of MDS distance and MMSE score. A straight line with a negative
slope is drawn for easer visualization. There are nine samples (red dots) in the
plot. An outlier, indicated with an arrow, is observed in the lower left-hand
corner. Most of the dots occur near the straight line. The regression equation
is MMSE = —0.034 x MDS_distance +27.4. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

ent MMSE scores if tested on different healthcare environments
possibly due to differential quality of healthcare they receive. This
variability in MMSE is another reason that a perfect linear relation-
ship between MMSE scores and MDS distance was not possible.
Increased variability in MMSE might lead to decrease in absolute
value of the correlation (i.e., more dispersed dots in Fig. 5). We
wanted to show correlation of MDS derived distances with easily
obtainable clinical measures of cognitive impairment. MMSE was
chosen since it was easily available not because it was the most
accurate.

4. Discussions

The demonstration of separability between normal and AD
scans combined with the correlation between MDS distance and
MMSE scores will act as a good basis for designing a classifica-
tion algorithm. This may ultimately contribute to improvements
in computer-aided diagnosis (CAD) for AD. In the past, there have
been efforts to use shape measurement over a volume of interest
(VOI) (Duchesne et al., 2008) as a basis for CAD. In addition, some
researchers have adopted normalized grayscale values of VOI as a
basis for CAD (Duchesne et al., 2005). Defining VOI requires man-
ual definition by an expert, which is time-consuming and subject
to operator bias. The difficulties of defining VOI are circumvented
using our MDS-based shape quantification as the basis for CAD,
because the pair-wise distance (i.e., registration) of the MDS is per-
formed over the entire volume. As demonstrated in Section 3.3,
our approach is quite robust to errors in registration, which in turn
leads to a robust basis for CAD.

Artificial intelligence based algorithms namely non-linear
dimensionality reduction algorithms have been successfully
applied to medical image analysis. In this paper, the observed data
were the high-dimensional deformation fields whose dimension-
ality was reduced to the dimension of MDS. Recent advances in
non-linear dimensionality reduction include kernel principal com-
ponent analysis (Scholkopf et al., 1997), isomap (Roweis and Saul,
2000), diffusion map (Lafon, 2004), local MDS (Venna and Kaski,
2006), and manifold sculpting (Gashler et al., 2008). Our approach
is similar to isomap and local MDS where pair-wise distances are
extensively used.

We note that a more clinically relevant problem is to iden-
tify early stages of AD or mild cognitive impairment (MCI). Shape
changes related to MCI are smaller in magnitude compared to the
shape changes in AD with respect to normal control. In principle,
the same MDS based approach may be applied to MCI versus nor-
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mal scenario, which might lead to better separability between two
groups than some of the existing methods. Some tweaks to handle
the smaller shape differences must be incorporated. We leave this
interesting problem as future work.

5. Summary

In summary, we have proposed an alternative to DBM-based
shape quantification. Our algorithm is based on MDS, in which pair-
wise distances are computed from pair-wise registrations. We have
shown that our algorithm was able to detect differences between
AD scans and normal scans using a 44-patient pilot study. We
have also provided simulated results showing that the separability
between clusters was maintained even in the case of noisy regis-
trations, demonstrating the robustness of our shape quantification
method. A simple MDS distance was meaningfully correlated with
MMSE scores for AD patients, although the sample size of 44 is
too small to draw statistical conclusions. Therefore, we plan to
test our approach in the future using a larger sample size. Our
study is a feasibility study to show that a well-established statis-
tical tool, MDS, can be effective for shape quantification and CAD
in AD.
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