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Abstract

Aims/hypothesis: Midlife obesity is a risk factor for dementia. We investigated the

impact of obesity on brain structure, metabolism, and cerebrospinal fluid (CSF) core

Alzheimer’s disease (AD) biomarkers in healthy elderly.

Methods: We selected controls from ADNI2 with CSF AD biomarkers and/or fluo-

rodeoxyglucose positron emission tomography (FDG-PET) and 3T-MRI.Wemeasured

cortical thickness, FDG uptake, and CSF amyloid beta (Aβ)1-42, p-tau, and t-tau lev-

els.Weperformed regression analysesbetween thesebiomarkers andbodymass index

(BMI).

Results: We included 201 individuals (mean age 73.5 years, mean BMI 27.4 kg/m2).

Higher BMI was related to less cortical thickness and higher metabolism in brain

areas typically not involved in AD (family-wise error [FWE] <0.05), but not to AD CSF
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biomarkers. It is notable that the impact of obesity on brain metabolism and structure

was also found in amyloid negative individuals.

Conclusions/interpretation: In the cognitively unimpaired elderly, obesity has differ-

ential effects on brain metabolism and structure independent of an underlying AD

pathophysiology.

KEYWORDS
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1 INTRODUCTION

Obesity has become a global pandemic with multiple adverse clinical

consequences.1 Accumulating evidence demonstrates that cognition is

affected by an excess of body adiposity in both adults and children.2-5

Epidemiological studies also indicate that midlife obesity increases the

risk of progression tomild cognitive impairment (MCI) andAlzheimer’s

disease (AD).6,7 On the contrary, higher body mass index (BMI) in late-

lifemightbeprotective.8 This obesityparadoxmightbeassociatedwith

the confounding effect of weight loss in preclinical AD.9

The exact mechanisms leading to cognitive impairment and neu-

rodegeneration in persons with an excess of body adiposity remain

to be fully elucidated.7 Animal models suggest a significant contri-

bution of obesity and obesity-related metabolic disturbances to AD

pathophysiology.7,10-13 In contrast, humanstudies assessing the impact

of obesity on amyloid and tau pathology report conflicting findings

both in vivo and in post-mortem studies. Thus, higher BMI has been

related to higher, but also to lower, ADburden.14-18 On the other hand,

obesity might contribute to neurodegeneration by mechanisms unre-

lated to AD. Obesity is a state of peripheral low-grade chronic inflam-

mation, and it is frequently associated with an abnormal peripheral

sensitivity to insulin effects. In experimental models, obesity-related

peripheral inflammation has been linked to blood-brain barrier dys-

function, neuroinflammation, and neurodegeneration, whereas central

insulin resistance has been associated with impaired synaptic plas-

ticity and memory.19-21 Furthermore, obesity is a strong risk factor

for hypertension, type 2 diabetes, and dyslipidemia, and it is a well-

established cerebrovascular risk factor.1

Brain atrophy and brain hypometabolism are well-recognized non-

specific biomarkers of neurodegeneration. Several studies have shown

an association between high BMI and brain atrophy.22 Fewer studies

have assessed the relationship between obesity and brain metabolism

in cognitively healthy subjects.23-28 In contrast to the consistent brain

atrophy reported in magnetic resonance imaging (MRI) studies, these

works have reported higher brain metabolism with respect to lean

controls.23-26,28

None of the above-mentionedworks, however, integrated biochem-

ical and neuroimaging data. Multimodal studies might be useful to

better understand the pathophysiological pathways involved in the

deleterious impact of an excess of body adiposity on brain health

and to explore whether obesity contributes to neurodegeneration by

amyloid-dependent or independent mechanisms.

Taking advantage of a large multicenter cohort, the Alzheimer’s

Disease Neurodegenerative Initiative (ADNI), we aimed to investigate

the relationship between BMI and brain structure, brain metabolism,

and core AD cerebrospinal fluid (CSF) biomarkers in cognitively unim-

paired elderly. To examine whether the effects of obesity on brain

structure and metabolism are independent of an AD process, we also

investigated the aforementioned relationships in amyloid negative

individuals.

2 METHODS

2.1 Study participants

Data used in the preparation of this article were obtained from the

ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003

by the National Institute on Aging (NIA), the National Institute of

Biomedical Imaging and Bioengineering (NIBIB), the U.S. Food and

Drug Administration (FDA), private pharmaceutical companies, and

non-profit organizations, as a $60 million, 5-year public-private

partnership. The primary goal of ADNI has been to test whether

serial MRI, positron emission tomography (PET), other biological

markers, and clinical and neuropsychological assessment can be

combined to measure the progression of MCI and early AD. The

principal investigator of this initiative is Michael W. Weiner, MD, VA

Medical Center and University of California, San Francisco. ADNI is

the result of efforts of many co-investigators from a broad range of

academic institutions and private corporations, and subjects have been

recruited from >50 sites across the United States and Canada. More

information can be found in the acknowledgments section (see also

http://adni-info.org/).

For the present study, we included all cognitively healthy controls

from ADNI2 with biometric and biochemical data and either (a) a 3T

MRI and a fluorodeoxyglucose (FDG) PET scan with a time-lapse inter-

val between both scans of less than 1 year or (b) CSF measurements

of amyloid beta (Aβ 1-42), total tau (t-tau), and phosphorylated tau

http://adni-info.org/
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(p-tau). Supplementary Figure 1 shows the study flowchart. All human

subjects included in the study followed the inclusion criteria from

ADNI that requires an informed consent.

Demographic (age, sex, educational level), clinical (presence of type

2 diabetes [T2D], usual medication), neuropsychological (Alzheimer

Disease Assessment Scale-Cognitive score [ADAS-Cog], Clinical

Dementia Rating Sum of Boxes [CDR-SB], and Mini-Mental State

Examination [MMSE]), anthropometric (height, weight, and systolic

and diastolic blood pressure), and laboratory data (fasting plasma

glucose, cholesterol, and triglycerides) were downloaded from the

ADNI database. BMI was calculated as weight in kilograms divided by

height in meters squared.

2.2 MRI analysis

The details of MRI acquisition and pre-processing are available

elsewhere (http://adni-info.org/). We processed the MRIs using the

cortical reconstruction pipeline of Freesurfer v5.1. (http://surfer.nmr.

mgh.harvard.edu) as described previously.32,33 Before the statisti-

cal analyses, we checked the estimated surfaces in order to detect

and correct possible segmentation errors. We applied a smooth-

ing kernel of 15 mm. To assess atrophy in AD vulnerable areas,

we extracted the mean cortical thickness values for each subject

from a well-validated region of interest, the Dickerson’s finger-

print (ie, medial temporal cortex, inferior temporal gyrus, temporal

pole, angular gyrus, superior frontal gyrus, superior parietal lobule,

supramarginal gyrus, precuneus, and inferior frontal sulcus of both

hemispheres).34

2.3 18-Fluorodeoxyglucose PET scan analysis

Thedetails of positron-emission tomography (PET) acquisitionandpre-

processing are available elsewhere (http://adni-info.org/). Briefly, PET

scans were co-registered and averaged. Subsequently, the image was

standardized to 1.5 mm cubic voxels and smoothed with an 8 mm full

width at half maximum (FWHM) kernel to produce an image of a uni-

form resolution. Then, each FDG-PET image was spatially normalized

to each subject’s Freesurfer anatomical MRI space using a rigid-body

transformation and intensity-scaled by the pons-vermis region as pre-

viously described.35 The resulting images were visually-inspected in

order to check for35 errors and projected to the middle point of the

cortical ribbon.36 Before performing statistical analyses, the resulting

surfaces were smoothed using a kernel of 10 mm FWHM to obtain

equivalent relative smoothing kernels for the PET and cortical thick-

ness (CTh) maps. Surface-based smoothing introduces less bias than

volume-based methods and substantially improves the reliability and

the intersubject variability.37 In order to assess the brainmetabolism in

AD vulnerable areas, we extracted themean FDG standardized uptake

value ratios (SUVRs) for each subject from a well-validated region of

interest, the Landau signature (ie, left and right angular, temporal, and

posterior cingulate regions).35

Research in Context

1. Systematic review: The authors reviewed the litera-

ture using PubMed, meeting abstracts, and presenta-

tions. Obesity has been identified as a risk factor for

dementia and is related to brain atrophy in several stud-

ies. However, few works have explored the relationship

betweenobesity andbrainmetabolism. Theseworks have

reported higher brain metabolism with respect to lean

controls. In addition, the association between obesity

and cerebrospinal fluid (CSF) Alzheimer’s disease (AD)

biomarkers is inconclusive. No previous multimodal stud-

ies have assessed the relationship betweenBMI and brain

metabolism, structure, and AD biomarkers in cognitively

healthy elderly. This relevant bibliography is appropri-

ately cited.

2. Interpretation: Our findings demonstrate that obesity

presents a significant but divergent effect on corti-

cal structure and brain metabolism independent of AD

pathology.

3. Future directions: In this article we propose a framework

for conducting additional studies such as: (a) the role of

inflammation on the brain metabolic alterations found in

obesity, and (b) the AD-independent mechanisms leading

to cognitive impairment and dementia in subjects with

obesity.

2.4 Cerebrospinal fluid (CSF) data

The details of the CSF analysis have been described in http://adni-info.

org. Briefly, pristine aliquotswere examinedby the validated andhighly

automated Roche Elecsys electrochemiluminescence immunoassays.

Thismethodologyminimizes inter-run variability forAβ1-42, t-tau, and
p-tau levels in CSF. The cutoff used for Aβ1-42was 977 pg/mL.38

2.5 Statistical methods

Demographic, clinical, anthropometric, and cognitive variables were

analyzed by R statistical software (version 3.4.4; http://www.r-project.

org).

To assess the relationship between BMI and both the neuroimag-

ing and core AD CSF biomarkers, we performed regression analyses.

For the neuroimaging metrics, we first executed vertex-wise correla-

tion analyses between BMI and both CTh and FDGuptake in thewhole

sample including age, sex, and triglycerides, variables significantly cor-

related with BMI, as covariates. The figures show only those results

that survived the family-wise error (FWE) correction at P < 0.05 as

implemented in Freesurfer. Second, we performed regression analyses

between BMI and MRI and FDG-PET AD signatures, mean CTh and

http://adni-info.org/
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://adni-info.org/
http://adni-info.org
http://adni-info.org
http://www.r-project.org
http://www.r-project.org
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TABLE 1 Demographic, clinical, neuropsychological,
anthropometrical, and biochemical data for the study subsets (CSF
andMRI-PET samples)

CSF sample

MRI-PET

sample P

N 178 168

Gender=Male (%) 89 (50.0) 85 (50.6) .998

Age, mean (SD) 73.41 (6.25) 73.65 (6.30) .726

BMI, mean (SD) 27.36 (4.02) 27.15 (3.92) .627

SBP, mean (SD) 133.77 (15.90) 134.87 (16.04) .523

DBP, mean (SD) 73.61 (9.23) 74.86 (10.08) .231

Glycemia, mean (SD) 99.79 (18.19) 98.20 (17.89) .413

Total cholesterol, mean

(SD)

189.25 (36.69) 190.59 (36.34) .734

Triglycerides, mean (SD) 133.97 (72.08) 138.55 (79.70) .574

Years of Education, mean

(SD)

16.57 (2.46) 16.52 (2.56) .856

APOE ε4= Positive (%) 48 (27.0) 49 (29.2) .737

MMSE, mean (SD) 29.00 (1.27) 29.03 (1.27) .828

ADAS11, mean (SD) 5.87 (3.13) 5.70 (2.91) .617

ADAS13, mean (SD) 9.10 (4.56) 9.00 (4.42) .834

T2D= Positive (%) 31 (17.4) 23 (13.7) .420

CSF Aβ1-42, mean (SD) 1386.95

(656.68)

1397.40

(661.87)

.887

CSF t-tau, mean (SD) 235.61 (89.71) 236.15 (92.48) .958

CSF p-tau, mean (SD) 21.48 (9.10) 21.54 (9.10) .955

SUVRs and the core ADCSF biomarkers including age, sex, and triglyc-

erides as covariates.

To further assess a potential influence of preclinical AD, we per-

formed regression analyses, with and without including the core AD

CSF biomarkers as covariates, and stratified analyses in the amyloid-

positive and amyloid-negative groups separately.

3 RESULTS

We included 201 subjects (50.3%male) in the studywith amean age of

73.5 years (range: 56.2 to 89.1) and a mean BMI of 27.4 kg/m2 (range:

20.0 to 39.1). Therewere nodifferences in these variables between the

subset of patients with MRI and FDG (N = 168) and the subset of sub-

jects with CSF (N = 178). Table 1 summarizes the demographic, clin-

ical, neuropsychological, anthropometrical, and biochemical data for

the two study subsets. Therewerenodifferences in anyof the variables

between the subsamplewithCSFbiomarkers and thewhole sample.Of

thewhole sample, 29.2%of participants hadabnormal levels ofAβ1-42.
BMI was weakly correlated with fasting triglycerides levels (r = 0.18,

P= 0.02). There was no correlation between BMI and education, base-

line cognitive performance, systolic or diastolic blood pressure, total

cholesterol, or fasting glucose levels.

3.1 Higher body mass index (BMI) is associated
with increased cerebral metabolism and cortical
atrophy in areas not typically involved in Alzheimer’s
disease (AD)

Figure 1A and 1B show the association between BMI and FDG uptake

across the cortical mantle. Higher BMI was associated with higher

cerebral FDG uptake in widespread brain areas including the inferior

temporal lobe of the left hemisphere, insula of the right hemisphere

and anterior cingulate,medial frontal, andorbitofrontal regions of both

hemispheres (FWE < 0.05). Figure 1C and D show the association

between BMI and CTh in the same individuals. Higher BMI was asso-

ciated with lower cortical thickness in areas that included superior

medial frontal regions of the right hemisphere and inferior temporal

zones of the left hemisphere (FWE< 0.05).

The areas of increased brain metabolism and less cortical thickness

showed little overlap. Of note, these regions also had very little overlap

with the Landau’s and Dickerson’s signature, respectively. Moreover,

BMIwas not significantly associatedwith CTh orwith FDG in theDick-

erson’s and Landau’s signatures (P = 0.41 and P = 0.50, respectively)

(supplementary Figure 2).

3.2 Higher BMI is not associated with CSF AD
biomarkers

We found no relationship between BMI and CSF Aβ1-42 (P = 0.15),

CSF p-tau (P = 0.43), or CSF total tau (P = 0.35, respectively) levels

(Figure 2). Neither did we find any association between BMI and CSF

biomarkers when analyzing the amyloid-positive and amyloid-negative

groups separately (supplementary Figure 3).

3.3 The impact of BMI on neuroimaging
biomarkers is independent of AD pathophysiology

To test the influence of AD biomarkers on neuroimaging outcomes,

we repeated the analyses including Aβ1-42 and t-tau as covariates,

and we performed stratified analyses in amyloid-positive and amyloid-

negative individuals. The inclusion of CSF biomarker levels did not

affect the results, which remained qualitatively the same (supplemen-

tary Figure 4).

The stratified analyses in the amyloid-positive and amyloid-negative

participants separately, despite the smaller sample size, showed that

higher BMI was related to higher FDG uptake in both groups. Brain

atrophy in relation to higher BMI was significant only in the amyloid-

negative group (Figure 3).

4 DISCUSSION

In this study, we found a differential influence of obesity on brain struc-

ture and brain metabolism. Higher BMI was associated with increased
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F IGURE 1 Cortical vertex-wise pattern of the relationship between BMI and both FDG (A) and CTh (C) adjusted by age, gender, and
triglycerides. Only clusters that survived family-wise error corrected P-value< 0.05 are shown. Red-yellow scale color is used to display positive
correlations in relation to FDG uptake and blue-green scale is used for negative correlations in relation with CTh. Scatter plots in B andD show the
relationship between BMI andmean FDG uptake andmean CTh in the cluster ROIs in A and C

brain metabolic activity, but at the same time with less cortical thick-

ness. The affected zones did not overlap with the typical AD vulner-

able areas. Furthermore, BMI was not associated with core CSF AD

biomarkers and the results were also found in amyloid-negative partic-

ipants, suggesting that these changes are independent of an underlying

AD pathophysiology.

We first analyzed the relationship between brain metabolism and

BMI. Only two cross-sectional and three longitudinal previous studies

have assessed the relationship between brain metabolism and obesity

in middle-aged individuals.23,24,26-28 The results of the cross-sectional

studies were conflicting.Wang et al. observed higher brainmetabolism

in theparietal cortices of 20middle-agedparticipantswithmorbidobe-

sity as compared with 10 lean controls, whereas Volkow et al. found

a negative relationship between BMI and FDG uptake in prefrontal

areas.27,28 Of note, only 3 of the 21 participants evaluated in the lat-

ter study had BMIs in the obesity range.27 All three longitudinal stud-

ies assessed brain metabolism in middle-aged individuals with morbid

obesity before and after bariatric surgery–induced weight loss.23,24,26

Marques et al. described brain hypermetabolism in 17 women with

severe obesity as compared with 16 lean controls, which normalized

after weight loss.23 Brain metabolism normalization in this study was

associated with cognitive improvement.23 Tuulari et al. and Rebelos

et al. did not observe differences in brain metabolism between par-

ticipants with morbid obesity and controls in fasting conditions, but

both found higher insulin-stimulated FDG uptake.24,26 The low num-

ber of controls in these two studies (n = 7 and n = 12, respectively)
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F IGURE 2 Scatter plots showing the lack of relationship between BMI and ADCSF biomarkers. From left to right: Aβ1-42, p-tau, and t-tau

might have limited the statistical power to detect subtle differences

during fasting conditions. Nonetheless, in both studies, brainmetabolic

abnormalities normalized after bariatric surgery.24,26 Only one pre-

vious study assessed the relationship between BMI and brain FDG

uptake in healthy elderly. This study, also in the ADNI cohort, included

222 participants and also showed higher brain metabolic activity in

relation to higher BMI mostly in women.25 Altogether, our results and

the aforementioned studies suggest that obesity is associated with

increased FDG uptake in the brain.

We also evaluated the relationship between obesity and cortical

thickness in the same sample. In accordancewith previous results from

our group and others, we observed cortical thinning associated with

increasing BMI.9,22,39-41

The regions affected by atrophy and higher metabolism in our

study showed little overlap with the typical vulnerable AD regions.

It is important to note that we did not find any association between

BMI and the CTh and brain metabolism in two of the most commonly

used AD signatures.34,35 Furthermore, we did not find any associa-

tion between BMI and CSF amyloid or tau levels, and the inclusion of

CSF biomarkers in the analyses yielded qualitatively the same results.

Finally, in the analyses stratified by amyloid status, amyloid-negative

participants showed a pattern of changes similar to that observed in

the whole cohort. Altogether, these results suggest that the aforemen-

tioned cortical changes are independent of an underlying AD process.

Other cross-sectional studies in cognitively normal controls

showed greater amyloid and tau burden associatedwith lower late-life

BMI.17,18,42 On the contrary, the only two previous longitudinal studies

showed greater amyloid deposition late in life in relation with mid-life

obesity.15,16 Discrepancies between mid-life and late-life studies

might be explained by reverse causation (ie, AD-related weight loss

in preclinical AD), selection and survival biases (ie, higher mortality

and dementia risk in persons with obesity might determine that only

those specially protected against obesity consequences survived

and/or maintained normal cognition late in life), or by the existence

of additive and/or competing risk (ie, obesity not only promote neu-

rodegeneration throughout AD pathophysiological mechanisms and

therefore only those with lower AD burden remain cognitively normal

late in life).9,29,30,43 Thus, although a contribution of obesity to AD

pathophysiological processes cannot be completely ruled out, our

results reinforce the notion that obesity affects brain metabolism and

structure bymechanisms independent of AD pathophysiology.

The mechanisms mediating the structural and metabolic brain

abnormalities in individuals with obesity are beyond the objectives

of the present work, and deserve further research.47 The finding

of higher brain metabolism with increased BMI is relatively unex-

pected.We hypothesize that this findingmight reflect obesity-induced

neuroinflammation and astrogliosis. Of interest, in the aforemen-

tioned studies with subjects who underwent bariatric surgery,

higher FDG cerebral uptake correlated with markers of systemic

inflammation.23,24 In this sense, although brain glucose metabolism is

considered a marker of neuronal activity, FDG-PET signal has recently

been demonstrated to be also located in astrocytes.44 In addition,

animal studies combining FDG-PET and PET with tracers for activated

microglia confirmed a highly co-localized signal of increased glucose

metabolism and neuroinflammation in both wild-type aging mice and

AD transgenic mice.45,46 It is interesting to note that in wild-type mice

an uncoupling between glucose metabolism and neuroinflammation

was observed at older ages, that is, neuroinflammation persisted

but glucose metabolism returned to baseline values. This late-life

uncoupling has been attributed to the progression of age-dependent

neurodegeneration.46 In this same line, a triple-tracer study per-

formed in AD transgenic mice showed age-dependent microglial

activation, which positively correlates with amyloid load and brain

metabolism. Nonetheless, in this study, brain hypermetabolism was

observed especially at younger ages, and declined in relation to

increasing amyloid burden, thus suggesting that synaptic dysfunction

might mask inflammation-related hypermetabolism.45 In the same

line, in our study, the relationship between obesity and increased

brain metabolism was attenuated in participants with preclinical AD.

Further studies are required to better understand the contribution of
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F IGURE 3 Cortical vertex-wise pattern of the relationship between BMI and both FDG and CTh depending on their Aβ1-42 status. Only
clusters that survived family-wise error corrected P-value< 0.05 are shown. Red-yellow scale color is used to display positive correlations in
relation with FDG uptake and blue-green scale is used for negative correlations in relation with CTh

peripheral and central nervous system inflammation or other mecha-

nisms to the brainmetabolic changes, which are present in obesity.

This study has limitations. First, as it is cross-sectional, a causal

relationship between BMI and brain neuroimaging abnormalities

cannot be assessed. Second, there is a significant bias in the ADNI

cohort, which excluded participants with large vascular burden and

comprises mainly Caucasian participants. This selection bias might

explain the healthier than expected phenotype of cognitively healthy

ADNI participants with obesity. Of note, we did not find the expected

correlation between BMI and fasting plasmatic glucose and systolic

or diastolic blood pressure. This bias precludes the generalization of

our results to broader obese populations. Third, there is evidence

that both insulin resistance and variability in fasting glucose lev-

els can affect FDG uptake among cognitively normal middle-aged

individuals.47,48 Given that there is sparse data available in ADNI

to better characterize the glucometabolic status in our subjects, the

degree of increase in FDGuptake reported here needs to be confirmed

among individuals with more detailed evaluation of glucose tolerance

status and appropriate measures of insulin sensitivity. Nonetheless, it

should be underscored that no significant correlation between fasting

glucose levels and BMI was found in our cohort, and that the impact

of insulin sensitivity on brain metabolism was not consistent among

studies.23,24,26,48,49 Fourth, other relevant variables closely related to

body weight, including dietary habits and physical activity, which have

been previously related to brain health, are not available in ADNI.

In conclusion, obesity presents a significant and divergent effect on

cortical structure and brain glucose metabolism in areas not typically

involved in AD and independent of the AD pathophysiological process.

Further studies are needed to explore the association of these changes

with obese-related neuroinflammation or other mechanisms.
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