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Graph theory is increasingly being used to study brain connectivity across the spectrum of Alzheimer3s disease
(AD), but prior findings have been inconsistent, likely reflecting methodological differences. We systematically
investigated howmethods of graph creation (i.e., type of correlationmatrix and edgeweighting) affect structural
network properties and group differences. We estimated the structural connectivity of brain networks based on
correlation maps of cortical thickness obtained from MRI. Four groups were compared: 126 cognitively normal
older adults, 103 individuals with Mild Cognitive Impairment (MCI) who retained MCI status for at least
3 years (stable MCI), 108 individuals with MCI who progressed to AD-dementia within 3 years (progressive
MCI), and 105 individuals with AD-dementia. Small-world measures of connectivity (characteristic path length
and clustering coefficient) differed across groups, consistent with prior studies. Groups were best discriminated
by the Randić index, which measures the degree to which highly connected nodes connect to other highly con-
nected nodes. The Randić index differentiated the stable and progressiveMCI groups, suggesting that it might be
useful for tracking and predicting the progression of AD. Notably, however, themagnitude and direction of group
differences in all three measures were dependent on the method of graph creation, indicating that it is crucial to
take into account how graphs are constructed when interpreting differences across diagnostic groups and stud-
ies. The algebraic connectivity measures showed few group differences, independent of the method of graph
construction, suggesting that global connectivity as it relates to node degree is not altered in early AD.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Graph theory, a branch of mathematics, is increasingly being used to
study the connectivity properties of structural and functional brain
networks in individuals across the spectrum of Alzheimer3s disease
(AD) (for reviews, see Griffa et al., 2013; Tijms et al., 2013b). These in-
vestigations have been partially motivated by the finding that AD is
characterized by changes in brain connectivity resulting from synaptic
dysfunction and loss (Brickman et al., 2009; D3Amelio and Rossini,
2012; Scheff et al., 2011; Scheff and Price, 2006; Selkoe, 2002), as well
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as neuronal loss and global atrophy (Braak and Braak, 1991; Gomez-
Isla et al., 1996; Kordower et al., 2001; Whitwell et al., 2012). In fact,
the progressive synaptic and neural degeneration across the continuum
of AD has led to the proposal that AD may be considered a ‘disconnec-
tion syndrome’ (for a review, see Delbeuck et al., 2003), whereby the
normal functional and structural connectivity of the brain becomes in-
creasingly disturbed. Although the precisemechanisms underlyingneu-
ronal injury in AD are unclear, it is hypothesized to result from the
aggregation of β-amyloid and tau (Fein et al., 2008; Henkins et al.,
2012; Takahashi et al., 2010), the two neuropathological hallmarks of
AD.

Graph theory provides a set of tools that can be used to quantify the
connectivity patterns of complex networks. In this framework, ‘nodes’
represent brain regions and ‘edges’ the network connections between
them. Based on the number and distribution of the edges, a variety of
measures can be computed to describe global and local connectivity
properties (for an overview, see Rubinov and Sporns, 2010). The appli-
cation of graph theory to the study of AD is appealing because AD
pathology progresses throughout the brain in an orderly fashion
(Braak and Braak, 1991), suggesting that connectivity properties may
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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also change in an ordered manner over the course of the disease and
may have diagnostic and prognostic utility.

Prior graph theoretic studies of AD dementia and Mild Cognitive
Impairment (MCI) have used a variety of methods, including structural
MRI (He et al., 2008; Li et al., 2012; Tijms et al., 2013a, 2014; Yao et al.,
2010) and diffusion tensor imaging (DTI) (Bai et al., 2012; Lo et al.,
2010; Shu et al., 2012; Sun et al., 2014) to study anatomic connectivity,
as well as resting state functional MRI (rsfMRI) (Sanz-Arigita et al.,
2010; Sun et al., 2014; Supekar et al., 2008; Zhao et al., 2012), electroen-
cephalography (EEG) (de Haan et al., 2009; Stam et al., 2007), and
magneto-encephalography (MEG) (de Haan et al., 2012a; Stam et al.,
2009) to study functional connectivity. Although there is agreement
among these studies that AD dementia and Mild Cognitive Impairment
are associated with changes in network properties, there is surprisingly
little agreement about the nature of these changes. For example, incon-
sistent results have been reported for the two metrics that have been
most frequently examined: characteristic path length, a measure of
the average network distance between regions, and the clustering coef-
ficient, ameasure of local interconnectivity. Some studies have reported
increases in the clustering coefficient as a function of disease severity
(He et al., 2008; Yao et al., 2010; Zhao et al., 2012), others have reported
a decrease (Li et al., 2012; Stam et al., 2009; Sun et al., 2014; Tijms et al.,
2013a) and still others found no difference (Bai et al., 2012; Lo et al.,
2010; Sanz-Arigita et al., 2010; Stam et al., 2007). Likewise, for the char-
acteristic path length, AD-related increases (Bai et al., 2012; He et al.,
2008; Lo et al., 2010; Shu et al., 2012; Yao et al., 2010; Zhao et al.,
2012) and decreases have been reported (Sanz-Arigita et al., 2010;
Tijms et al., 2013a, 2014).

While some of the variability in prior findings likely reflects differ-
ences in the underlying biological substrates of the networks
(e.g., white matter fiber track networks, cortical thickness networks,
or resting state functional networks), part of the inconsistency may
also reflect methodological differences in network creation. For exam-
ple, some studies used binary edges, whereby the strength of all connec-
tions is weighted equally (He et al., 2008; Li et al., 2012; Shu et al., 2012;
Stam et al., 2007; Supekar et al., 2008; Tijms et al., 2013a; Yao et al.,
2010), while others have used weighted edges, meaning that connec-
tions can differ in strength (Bai et al., 2012; Lo et al., 2010; Stam et al.,
2009; Sun et al., 2014). Additionally, different methods have been
used to construct the correlation matrix (or adjacency matrix) that is
used to determine the presence of an edge, such as ordinary Pearson
correlations (e.g., Li et al., 2012; Sun et al., 2014; Tijms et al., 2013a,
2014; Yao et al., 2010), partial correlations (e.g., He et al., 2008; Zhao
et al., 2012), or synchronization likelihood for functional connectivity
data (e.g., de Haan et al., 2012a; Sanz-Arigita et al., 2010; Stam et al.,
2007). Although it has been documented that different methods of
edge creation can alter the topological properties of brain graphs
(e.g., Liang et al., 2012; Van Schependom et al., 2014), prior studies of
AD have each used only onemethod of network creation and it remains
unclear how different methods influence the magnitude and direction
of topological differences between cognitively normal individuals, indi-
viduals with MCI, and patients with AD-dementia.

The first aim of the current study is to address this issue for one im-
aging modality, structural MRI, by investigating how cortical thickness
(CT) networks differ across the spectrum of AD as a function of the
type of correlation matrix andmethod of edge weighting. Positive, neg-
ative, and absolute correlations were examined separately (see Gong
et al., 2012), resulting in 24 different graphs that were compared. Con-
sistent with prior studies, characteristic path length and the clustering
coefficient were examined. The second aim is to investigate three
graph measures that have received little or no attention in the study
of AD: (1) the Randić index, a measure of assortativity, or the tendency
of similar nodes to connect to one another (Randić, 1975), (2) the Fied-
ler value, also knownas algebraic connectivity, a graph spectralmeasure
that contains information about the global connectivity of a network (de
Haan et al., 2012b; Fiedler, 1973), and (3) the normalized Fiedler value,
which is similar to the Fiedler value, but normalized for the number of
edges in a graph (Chung, 1997). These measures are all indices of global
connectivity (for a review, see Kincaid and Phillips, 2011), which we
hypothesized would be affected in AD. Lastly, to our knowledge, prior
studies have not examined the utility of graph theoretic measures to
predict the progression of AD. Therefore, the third aim of this study is
to examine the predictive utility graph measures for differentiating
patients with stable and progressive MCI, based on their CT networks
obtained at baseline.

2. Methods

2.1. Subjects

All subjects in this studywere selected from the Alzheimer3s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/).
We analyzed data available as of May 2013. ADNI is a comprehensive,
multisite longitudinal study designed to identify biomarkers to predict
the progression of MCI and AD. It was launched in 2003 as a public–pri-
vate partnership. The MRI data used in this study was obtained at base-
line from subjects enrolled in the initial phase (ADNI-1). Study subjects
gavewritten informed consent at enrollment for data collection, storage
and use for research. Each participating institution3s Institutional Re-
view Board approved the study. The data were anonymized before
being made publicly available. At baseline, subjects were medically sta-
ble, free from significant neurological and psychiatric conditions, and
did not have significant cerebrovascular risk factors. For additional in-
formation about ADNI, including data collection and full inclusion and
exclusion criteria, see http://www.adni-info.org.

Data from four groups of subjects were included in the current study:
127 individuals who were cognitively normal at baseline and remained
cognitively normal for at least 3 years (stable normal group); 104 indi-
viduals diagnosed with MCI at baseline who retained a diagnosis of
MCI for at least 3 years (stable MCI group); 106 individuals who were
diagnosed with MCI at baseline and progressed to AD-dementia within
3 years; and 108 participants with a baseline diagnosis of AD-dementia.
All participants had anMRI scan at their baseline visit and were admin-
istered the Clinical Dementia Rating (CDR) scale (Morris, 1993). The
baseline CDR score was 0 for the cognitively normal group, 0.5 for the
stable and progressive MCI groups and 0.5–1 for AD-dementia group.
See Table 1 for participant characteristics at baseline. One-way analyses
of variance (ANOVAs) indicated that there was no age difference across
diagnostic groups (p N 0.6), but that education differed between groups
(F= 7.45, p b 0.0001), such that patients with AD-dementia had fewer
years of education than the other three groups (all p b 0.003). A chi-
square test indicated that the distribution of males and females also dif-
fered across diagnostic groups, with significantly fewer females in the
Stable MCI group than in the normal and AD-dementia groups (both
p b 0.05). To remove any effects of age, gender, and education on the
resulting CT graphs, we controlled for these variables as described
below.

2.2. MRI data acquisition and cortical thickness reconstructions

Standard T1-weightedMR images were acquired sagittally with dif-
ferent 1.5 T scanners using a three-dimensionalmagnetization prepared
rapid gradient-echo (MPRAGE) sequence varying in repetition time and
echo time with an in-plane resolution of 1.25 × 1.25 mm and 1.2 mm
slice thickness. Additional details about the MRI acquisition procedures
are available at the ADNI website (http://www.adni-info.org).

Cortical reconstruction and automated thickness measures were
performed using the Freesurfer software, version 5.1 (Fischl and Dale,
2000), which is documented and freely available for download online
(http://surfer.nmr.mgh.harvard.edu). Only images that passed a quality
review were included in the present analyses. Cortical thickness was
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Table 1
Participant characteristics at baseline.

Variable Cognitively normal
(N = 127)

Stable MCI
(N = 104)

Progressive MCI
(N = 108)

AD-dementia
(N = 106)

Age, mean number of years (SD) 80.8 (4.8) 79.7 (7.9) 79.5 (6.9) 80.0 (7.7)
Age range (years) 65–96 61–94 61–94 63–97
Gender, females (%)* 49.6 35.6 43.5 53.8
Education, mean number of years (SD)** 16.1 (2.6) 15.7 (2.9) 15.6 (3.0) 14.4 (3.0)
MMSE, mean score (SD)** 29.1 (1.0) 27.5 (1.7) 26.7 (1.7) 23.4 (1.9)

Abbreviations: MMSE = Mini Mental Status examination.
* Indicates significant difference across groups (p b 0.05), as assessed by a chi-square test.
** Indicates significant difference across groups (p b 0.0001), as assessed by one-way ANOVA.
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measured in subjects3 native space. The average CT for each of the 68
cortical regions of interest (ROIs) as provided by Freesurfer (34 regions
per hemisphere, Desikan et al., 2006) was used to construct the brain
graphs.
2.3. Construction of cortical networks

First, for each cortical region, a linear regression was performed to
remove the effects of age, gender, and education. The resulting residuals
were then used instead of the raw CT values to construct the graphs.
Note that past studies generally controlled for age and gender in the
same manner, but did not usually control for education. However, we
felt that it was important to do so because years of education were in-
versely associatedwith cortical thickness ofmany regions in all diagnos-
tic groups, in line with prior findings (e.g., Querbes et al., 2009).

Consistent with previous studies, each ROI represented a node in a
graph and a connection (or edge)was defined as a statistical association
in cortical thickness between brain regions (e.g., He et al., 2008). For
each diagnostic group, a set of 8 inter-regional correlation matrices
(68 × 68 ROIs) were then computed by calculating correlation coef-
ficients across individuals between every pair of regions: (1) absolute
Pearson correlation, (2) positive Pearson correlation values only,
(3) absolute Pearson correlation, controlling for mean CT, (4) positive
Pearson correlation values only, controlling for mean CT, (5) negative
Pearson correlation values only, controlling for mean CT, (6) absolute
partial correlation, (7) positive partial correlation values only, and
(8) negative partial correlation values only. Negative Pearson correla-
tion matrices were not computed because the majority of the Pearson
correlations were positive. The absolute Pearson correlation matrix,
controlled for mean CT, was computed by including each individual3s
mean CT value (across all regions) as an additional variable in the linear
regressions, along with age, gender, and education, prior to construc-
tion of the correlation matrix. The partial correlation between two re-
gions represents their conditional dependencies after partialling out
the effects of all of the other regions (e.g., He et al., 2008). This approach
allowed us to examine different methods for accounting for overall CT:
at the level of the linear regressions, by partialling out the effect of all
other regions, and by using CT weighting (see below). Positive, nega-
tive, and absolute CT correlations were examined separately because
prior work suggests that they show a differential relationship to white
matter diffusion connectivity andmaymeasure different aspects of con-
nectivity (Gong et al., 2012).

Two brain regionswere defined as being connected in a graphwhen
therewas a significant correlation between them, corrected formultiple
comparisons using the false discovery rate (FDR) at a q value of 0.05
(Genovese et al., 2002). For connected brain regions (i.e., those whose
correlation meets the FDR threshold), three different types of edge
weights were applied to investigate how different methods of edge
weighting affect graph measures: uniform weights (i.e., unweighted
graphs), correlation-coefficientweights, and cortical-thicknessweights.
For unweighted graphs, all significant edges received a weight of 1; all
other edges were set to 0. For correlation-weighted graphs, significant
edges received a weight corresponding to the actual correlation coeffi-
cient between two regions and non-significant edges were set to 0.
For cortical-thickness weighted graphs, significant edges received a
weight corresponding to the normalized product of the actual thick-
nesses of the two regions. This latter weighting method has not been
used previously, to our knowledge. We reasoned that if two regions
are connected (as indicated by a significant correlation between
them), but both regions are very thin (due to AD-related atrophy)
then the actual amount of information that can be transferred between
regionswould be low. Likewise, when two regions are thick, theywould
be expected to communicate more efficiently because they have more
neurons and/or synapses. When one region is thin and one region is
thick, the thin region may impose an upper bound on the amount of
information transfer between the two regions, which we modeled by
using the product of the thickness of the two regions (rather than
the average thickness). There are other potential methods of edge
weighting one could use to model different underlying biological prop-
erties (such as amount of amyloid or tau burden in a given ROI), but we
restricted ourselves to these as a starting point. Note that the CTweights
could not be applied to graphs where mean CT was controlled at the
level of the linear regressions because the resulting thickness values
were both positive and negative (centered around 0) and negative
weights cannot applied. Thus, in total we constructed 24 types of graphs
for each diagnostic group (see Fig. 1 for a summary of how the graphs
were constructed). All graphs were undirected.

2.3.1. Graph theoretic analysis
The graph measures were computed using in-house software writ-

ten in R (version 3.0.2) and C. For each graph and diagnostic group,
five graph measures were calculated: the mean network characteristic
path length, the mean clustering coefficient, the Randić index, the Fied-
ler value, and the normalized Fiedler value. Briefly, the characteristic
path length, CPL, is the average of the shortest path lengths over all
pairs of nodes in a graph (Watts and Strogatz, 1998). CPL represents a
measure of graph efficiency, in the sense that it represents the average
arc distance between any pair of nodes.

The mean clustering coefficient, CC, is the average of the clustering
coefficients over all nodes in a network. For unweighted graphs, the
clustering coefficient, Ci, of node i is defined as the number of connec-
tions among the immediately connected neighbors of the node divided
by all their possible connections (Watts andStrogatz, 1998). Forweight-
ed graphs, the clustering coefficient represents the sumof weights from
node i to adjacent nodes neighboring i divided by the potential sum of
weights. More precisely, let wjk denote the weight between nodes
j and k and let wi ¼ ∑ jwi j: Note that we define wjk to be zero if there
is no edge between nodes j and k. Define Aij to be 1 if there is an edge
between nodes i and j and let di denote the number of edges touching
node i. Then, for weighted graphs, the clustering coefficient of node i

when di N 1 is Ci ¼ 2
ðdi�1Þwi

∑ j;k
wi jþwik

2 Ai jAikAjk
� �

, where j and k range

over the neighbors of i. If di is equal to 1, then node i has only one neigh-
bor, so we set Ci to zero. We assume that all nodes have at least one
neighbor. For both weighted and unweighted graphs, CC = 1

n∑
n
i¼1 Ci



Fig. 1. Thisfigure depicts the different graph creationmethods. Starting from the rawdata, therewere twopossible linear regressions used, one of which controlled formean cortical thick-
ness and both controlled for the demographic effects of age, gender, and education. For the latter regression, either Pearson or partial correlations were calculated whereas only Pearson
correlationswereusedwhen the effect ofmean cortical thicknesswas removed. Then, an FDR thresholdingwas applied to determine significant edges on (1) absolute r-values, (2) positive
r-values only, or (3) negative r-values. Then sparsity thresholding was applied at various levels. Finally, edge weights were applied (uniform, r-values, or cortical thickness).
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where n denotes the number of nodes in the graph. The clustering coef-
ficient for a network reflects, on average, the prevalence of clustered
connectivity around individual nodes.

The Randić index can be considered a measure of assortativity, or
similarity between connected nodes (Randić, 1975). It measures the de-
gree to which nodes with a similar number of edges are connected to
one another. A high Randić index indicates that nodes with high “de-
gree” (i.e., many edges) tend to be connected to other high-degree
nodes, similar to the “rich club phenomenon”. For a graphG, the general
Randić index Rα(G) is defined as the sumof (wiwj)α over all edges ij ofG,
wherewi denotes the weighted degree of a node i of G andα is an arbi-
trary real number. Thus, in the case where we have a binary graph, the
weight of every edge is one, and wi is the number of adjacent edges,
i.e., the degree, and when the graph is weighted, wi is the sum of the
weights of the adjacent edges. The Randić index is a generalization of
the assortativity coefficient (Bollobás and Erdős, 1998).Whereas Randić
initially proposed using a=−1/2,we are using a=1, inwhich case the
Randić index is the same as the assortativity coefficient. For further de-
tails about measures of assortativity see (Estrada, 2011).

The Fiedler value, or algebraic connectivity, was introduced by Fied-
ler in 1973 and can be thought of as a measure of network robustness
(Fiedler, 1973). The Fiedler value is equal to the second-smallest eigen-
value of the Laplacian matrix. The second smallest eigenvalue is used as
it can be proven that the smallest eigenvalue of the Laplacian is always
zero (Fiedler, 1973). The Laplacian matrix combines both degree infor-
mation and connectivity information in the same matrix. Specifically,
the Laplacian matrix is derived by subtracting the adjacency matrix
from the degreematrix. We denote the number of nodes by n. The degree
of a node is equal to the number of edges adjacent to the node. The de-
gree matrix is an n by n diagonal matrix where the main diagonal con-
sists of the degrees of each node in the graph. The adjacency matrix of
a graph is an n by n matrix where the ijth entry is equal to one if there
is an edge between nodes i and j, for all i,j = 1,…, n. The study of the
eigenvalues of the Laplacian and adjacency matrix is a part of algebraic
graph theory known as spectral graph theory (see, Chung, 1997;
Spielman, 2007).

Because the Fiedler value is weakly increasing in the number of
edges in a graph, we are also interested in the normalized Fiedler value
(Chung, 1997). Let si denote the square root of the degree of node i,
and Lij denote the ijth entry of the Laplacian. The normalized Laplacian
is defined as thematrix where the ijth entry is Lij / (sisj). The normalized
Fiedler value is the second smallest eigenvalue of the normalized
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Laplacian. Intuitively, the relationship between the Laplacian and the
normalized Laplacian is analogous to the relationship between the co-
variance and correlation matrices, respectively.

Consistent with prior studies, we employed a sparsity thresholding
approach to control for the number of edges in a graph across diagnostic
groups (He et al., 2008). This was done because the network topology
measures used are sensitive to the number of edges in a graph and
our diagnostic groups had different numbers of edges for a given type
of graph. Thus, without this (or some other correction), group differ-
ences in network measures would not only reflect differences in the to-
pology of a graph, but also differences in the number of edges. Sparsity
(S) is defined as the total number of edges in a graph divided by the
maximum number of possible edges. In general, for a graph with n
nodes, there are n choose 2 = n(n − 1) / 2 possible edges assuming
all edges are between distinct nodes and only one edge is allowed be-
tween nodes. Graph measures were examined over a range of sparsity
values, 4% ≤ S ≤ 17%, except for graphs based on Pearson correlations,
where the maximum connectivity density examined was 47% (see
Results). This range was chosen because it is comparable to what has
been used in prior studies (e.g., Gong et al., 2012; He et al., 2008; Yao
et al., 2010) and because at the lower connectivity density ranges
(S b 10%), there seems to be a better correspondence between CT corre-
lations and actual fiber connections as determinedwithDTI (Gong et al.,
2012). The sparsity correction was implemented by removing edges se-
quentially in order of least significance. Once all edges had been re-
moved, the largest subgraph was selected and graph topology
measures were always calculated on the largest component
(i.e., disconnected nodes were not included in the calculation of any
graph measure). Sparsity for all graphs, including subgraphs with
fewer than 68 nodes, was always calculated as the percentage of
edges out of the total number of possible edges in a fully connected
graph with 68 nodes (i.e., out of 2278 edges). This way, the absolute
number of edges in each graph and the correlation threshold for
selecting significant edges was the same across diagnostic groups after
sparsity thresholding.
2.3.2. Statistical analysis
To determine if the network topology measures were statistically

different across diagnostic groups, nonparametric permutation testing
was used (He et al., 2008). For each type of graph, the five graph
measures were computed at each level of sparsity, separately for each
diagnostic group. Then, we randomly assigned each subject to one of
the four possible diagnostic groups, recomputed the correlation matrix
for each randomized group, applied the FDR correction, and then
recomputed the five network measures for each randomized group.
This procedure was repeated 10,000 times and the 95th percentile of
each distribution was used as the critical value for a two-tailed test of
the null hypothesis with a probability of type I error of 0.05. The proce-
dure was repeated for each sparsity threshold. For each level of sparsity
and type of graph, initially only the normal and AD-dementia groups
were compared. If this comparison was not significant, no further
group comparisons were performed. If the normal and AD-dementia
Table 2
Sparsity of graphs as a function of the type of correlation matrix.

Diagnostic group Pearson correlation Pearson correlation
(controlling for mean cor

Absolute values Pos. values Absolute values Pos

Normal 80.3% 80.3% 12.7% 7
MCI-stable 78.0% 77.9% 10.5% 6
MCI-progressive 87.4% 87.4% 20.1% 12
AD-Dementia 89.5% 89.5% 20.3% 11

Abbreviations: Pos. = positive; Neg. = negative.
Note: In each graph, all edges are significant using FDR correction of q b 0.05.
groups differed significantly, the remaining 5 group comparisons were
performed, correcting for multiple hypothesis testing at the group
level (i.e., 6 comparisons) at FDR b 0.05.

3. Results

Table 2 shows the sparsity of each of the 24 graphs after the FDR cor-
rection. For all types of graphs, the connectivity density increased with
disease severity, such that cognitively normal participants and individ-
uals with stableMCI had the fewest edges and patientswith progressive
MCI and AD-dementia had the most edges. Similar findings have been
reported for gray matter networks (Tijms et al., 2013b). This ordering
likely reflects the fact that there is greater variability in the CT values
among the cognitively impaired individuals due to a greater range of at-
rophy among these individuals compared to cognitively normal partic-
ipants. Thus, individuals with high levels of atrophy in one region likely
also had high levels of atrophy in other regions, leading to more signif-
icant correlations (and more edges) for the AD-dementia and progres-
sive MCI groups relative to the other two groups. Consistent with this
interpretation, the mean variance of CT values (computed as the stan-
dard deviation of mean CT for each ROI across subjects)was significant-
ly lower for the cognitively normal participants and stable-MCI groups
relative to the other two groups (both p b 0.01, as assessed by t-tests).
Additionally, those ROIs showing greater increases in variability be-
tween the normal and AD-dementia groups also showed greater in-
creases in their average correlations with other regions (r(66) = 0.40,
p = 0.0008, see Supplementary Figures 1 and 2).

For graphs based on absolute partial Pearson correlations, the con-
nectivity density (after FDR correction) ranged from 8.5% (normal
group) to 22.6% (AD-dementia group), see Table 2. Therefore, graph
measures were examined for sparsities ranging from 4 to 9%, in 1% in-
crements. For graphs based on only positive or negative partial correla-
tions, the sparsities ranged from 5.0% (normal group) to 12.9% (AD-
dementia group) and 3.3% (normal group) to 9.7 % (AD dementia
group), respectively. Because these graphs were very sparse, the corre-
sponding graph measures were only evaluated at these sparsities
(i.e., 5% for positive partial correlations and 3.3% for negative partial cor-
relations). For graphs based on Pearson correlations that controlled for
mean CT, the lowest connectivity density across groups was 10.5% for
absolute values, 6.5% for positive values, and 3.7% for negative values.
The graph measures were therefore evaluated at sparsities ranging
from 4% to 10% for absolute values, 5% for positive values, and 3.7% for
negative values. Lastly, for graphs based on absolute and positive Pear-
son correlations (not controlling for mean CT), sparsity values were
S N 75% for all groups. We therefore examined the graph measures at
the same sparsities values as for the other graphs to be able to compare
them directly to one another (i.e., 4% for 10%), as well as at 17%, 33%,
40%, 47%. Given that most of the Pearson correlations (not controlling
for mean CT) were positive, the results for graphs based on absolute
and positive correlation values were the same and we only present
the results for the absolute values.

Because the graphs based on partial correlations and those based on
Pearson correlations controlling for mean CT were not fully connected
tical thickness)
Partial correlation

. values Neg. values Absolute values Pos. values Neg. values

.9% 4.6% 8.5% 5.0% 3.3%

.5% 3.7% 14.9% 8.9% 6.0%

.0% 8.2% 15.8% 9.1% 6.8%

.7% 8.6% 22.6% 12.9% 9.7%



Fig. 2.Number of nodes in each graph as a function of graph sparsity for three types of correlationmatrixes: absolute Pearson correlations (left), absolute Pearson correlations, controlling
for mean cortical thickness (center), and absolute partial correlations (right).
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at their maximum connectivity density values (and thus had different
numbers of nodes across groups, see Fig. 2), we also examined the
graph metrics at a sparsity threshold, 17%, at which all of these graphs
were fully connected. For these analyses, an FDR threshold of q b 0.1
Fig. 3.Mean characteristic path length (CPL) of eight different cortical networks for the four diag
Pearson correlations, the middle row (b) shows CPL values for graphs based absolute Pearson
values for graphs based on absolute partial correlations. Each column shows the results for gra
(middle column), and cortical thickness weighted edges (right column). The x-axis shows th
each level of S shown, only edges that met the FDR correction of q b 0.05 were included, except
tween the normal and AD-dementia groups are indicated as follows: #p b 0.1, * p ≤ 0.05, ** p ≤
was used. Although this likely introduces more spurious connections,
this analysis allowed us to determinewhether the pattern of results ob-
served at lower connectivity densities (based on the largest sub-graphs)
was the same as for the fully connected graphs. This analysis was
nostic groups (see legend). The top row (a) shows CPL values for graphs based on absolute
correlations with mean cortical thickness controlled, and the bottom row (c) shows CPL
phs with different edge weights: binary edges (left column), correlation-weighted edges
e sparsity level (S) at which the CPL values were compared across diagnostic groups. For
where S = 17% for graphs shown in (b) and (c), where q b 0.1. Significant differences be-
0.01, *** p ≤ 0.005 (all p-values two-tailed).
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important because a difference in the number of nodes across graphs
with fixed sparsities can affect graph measures.

3.1. Characteristic path length

The results for characteristic path length for the 9 graphs based on
absolute correlation values are shown in Fig. 3. Overall, the type of
edge weights affected the magnitude of group differences, whereas
the type of correlation matrix also affected the direction of those
differences.

For graphs based on Pearson correlations (not controlling for mean
CT), CPL was shortest for the cognitively normal group relative to the
other three groups, particularly over sparsity values ranging from 7 to
17%. The best discrimination between groups was obtained with the
thickness-weighted graph, which demonstrated significantly lower
CPL values for the cognitively normal group compared AD-dementia
group over a wide range of sparsity values (see Fig. 3a, right column),
and the MCI groups showed intermediate values.

For graphs based on Pearson correlations that control for mean CT,
the pattern of results tended to be in the opposite direction, with cogni-
tively normal individuals showing a longer path length relative to the
AD-dementia patients. The best group discrimination was evident for
the correlation-weighted graph (Fig. 3b, middle panel), where CPL
was greater for the cognitively normal individuals relative to the pro-
gressive MCI and AD-dementia groups (all p b 0.007 over a sparsity
range of 7–17%), with the stable MCI group showing intermediate
values. For graphs based on partial correlations, CPL also tended to
decrease with disease severity, although there was not a clear ordering
of CPL values across the four diagnostic groups (see Fig. 3c). Addi-
tionally, the direction of group differences reversed for the binary
partial-correlation graphs at the uncorrected sparsity threshold of
17%, such that CPL increasedwith disease severity. This reversalmay re-
flect the fact at the lower connection densities, the graphs for the ADde-
mentia group had fewer nodes (and hence higher relative connection
density) than the graphs for the cognitively normal group (see Fig. 2)
and CPL values tend to be shorter in denser graphs. By comparison, at
17% sparsity the graphs for all groups were the same size, so group dif-
ferences in CPL values only reflect topological differences.

The results for graphs based on only positive or negative correlations
(using FDR-corrected edges) revealed no differences in CPL across
groups, except for the graph based on positive partial correlations
with binary edges, where individuals with AD-dementia demonstrated
a shorter path length than the other three groups (p b 0.05, data not
shown).

3.2. Clustering coefficient

The mean clustering coefficient for each diagnostic group for the 9
graphs based on absolute correlation values is shown in Fig. 4. While
the type of edge weights had little impact on the results, themagnitude
and direction of group differences in CC was dependent on the type of
correlation matrix.

For graphs based on absolute Pearson correlations, CC tended to de-
crease for individuals with AD-dementia relative to the cognitively nor-
mal group. Specifically, when mean CT was not controlled, CC was
significantly lower for the AD-dementia group than for the cognitively
normal group over sparsity values of 6–40% (all p b 0.05, see Fig. 4a). In-
dividuals with MCI had intermediate values, but did not differ signifi-
cantly from the AD-dementia or from the cognitively normal group.
While these group differences may partially reflect difference in net-
work size across groups, the same pattern of results was obtained for
sparsities of 62% and 70% (data not shown), where all graphs where
fully connected.Whenmean CTwas controlled, themagnitude of differ-
enceswas smaller and less consistent, though in the same direction (see
Fig. 4b). When positive and negative correlations were considered
separately, there was no difference across groups for graphs using the
FDR-corrected sparsity threshold. At 17% connection density, the AD-
dementia group had higher CC values than the cognitively normal indi-
viduals when positive correlations were considered and mean CT was
controlled, and lower CC values when negative correlations were con-
sidered (see Supplementary Fig. 3).

Graphs based on absolute partial correlations produced consistent
group differences, although the direction of differences was reversed
compared to the graphs based on Pearson correlations, with AD-
dementia patients showing significantly higher CC values compared to
cognitively normal participants over sparsity values of 4–17% (all p
≤ 0.07). The twoMCI groups had intermediate CC values that were sig-
nificantly lower than the AD-dementia group in some cases, see Fig. 4c.
Graphs based on negative partial correlations demonstrated the same
pattern of results as those based on absolute correlations, with the AD
group having higher CC values than the normal group (p ≤ 0.06 for
graphs at S = 3.3% and S = 17%). However, graphs based on positive
partial correlations had clustering values of zero for all groups at S =
5% and significantly lower CC values for the AD-dementia group than
the stable MCI and normal groups at S = 17% (all p ≤ 0.05).

3.3. Randić index

Similar to the clustering coefficient, the type of edge weighting did
not affect the direction of group differences in the Randić index, but
had some impact on themagnitude of those differences. By comparison,
the type of correlation matrix altered the direction of group differences,
with graphs based on Pearson correlations demonstrating a decrease in
the Randić index with increasing disease severity and graphs based on
partial correlations exhibiting the reverse pattern.

In particular, for graphs based on Pearson correlations that did
not control for mean CT, the Randić index was lower for individuals
with AD-dementia compared to individuals with normal cognition
over all sparsity levels examined for binary and CT-weighted graphs
(all p b 0.005) and at sparsities of 4–17% for r-weighted graphs (all
p b 0.05), see Fig. 5a. The two MCI groups had intermediate values
that were lower relative to the cognitively normal group at sparsities
of 7–33% for CT-weighted graphs and 10–47% for binary graphs (all
p b 0.05). The stable-MCI group had higher Randić index values
than the progressive MCI and the AD-dementia groups at sparsity
values of 4–10% for binary and CT-weighted graphs (all p b 0.05).
When mean CT was controlled, the Randić index was also lower for
the AD-dementia group relative to the cognitively normal group for
binary graphs (all p b 0.05 at S = 4–17%), while for r-weighted
graphs, this difference did not reach significance, see Fig. 5b.

For graphs based on partial correlations, the cognitively normal and
stable MCI groups had lower Randić index values than the progressive
MCI and AD-dementia groups over sparsity levels of 4–17% (all
p≤ 0.05 for binary and r-weighted graphs, see Fig. 5c). Thus, individuals
who progressed fromMCI to ADwithin 3 years had higher Randić index
values at baseline than those who did not progress over the same time
period (see Supplementary Fig. 4). Graphs based on positive and nega-
tive partial correlations showed similar patterns as the corresponding
graphs based on absolute partial correlations at both the FDR-
corrected sparsity threshold and at S=17% (data not shown), although
the difference between the two MCI groups did not reach significance.

3.4. Fiedler value

There were few differences across diagnostic groups in the Fiedler
value for any of the graphs and for many graphs there was no clear
ordering in the magnitude of the Fiedler value as a function of disease
severity (see Fig. 6). The type of edge weighting had little impact on
the result. Graphs based on positive and negative correlations also
showed no reliable group differences, suggesting that the Fiedler value
does not change significantly with AD.



Fig. 4.Mean clustering coefficient (CC) of eight different cortical networks for the four diagnostic groups (see legend). The top row (a) shows CC values for graphs based on absolute Pear-
son correlations, themiddle row (b) shows CC values for graphs based absolute Pearson correlationswithmean cortical thickness controlled, and the bottom row (c) shows CC values for
graphs based on absolute partial correlations. Each column shows the results for graphs with different edgeweights: binary edges (left column), correlation-weighted edges (middle col-
umn), and cortical thickness weighted edges (right column). The x-axis shows the sparsity level (S) at which the CC values were compared across diagnostic groups. For each level of S
shown, only edges thatmet the FDR correction of q b 0.05were included, exceptwhere S=17% for graphs shown in (b) and (c), where q b 0.1. Significant differences between the normal
and AD-dementia groups are indicated as follows: #p b 0.1, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.005 (all p-values two-tailed).
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3.5. Normalized Fiedler value

Similar to the Fiedler value, the normalized Fiedler value also
showed little difference across diagnostic groups for graphs based on
absolute correlations. The type of edge weighting had little effect on
the results (see Fig. 7). There were also no significant group differences
for graphs based on positive partial correlations, while for graphs based
on negative partial correlations there was a decrease in the normalized
Fiedler value with increasing AD severity at the 17% sparsity threshold
(see Supplementary Fig. 5). At the 17% sparsity threshold, graphs
based on positive Pearson correlations with mean CT controlled also
demonstrated a decrease of the normalized Fiedler value with AD
severity.

3.6. Descriptive comparison of graphs based on different correlation
matrices

The type of correlation matrix used to construct each graph in some
instances changed the direction of significant group differences. While
this may be partially attributable to the fact that the number of nodes
in each graph differed across diagnostic groups at the low connection
densities, the pattern of results was the same for the complete networks
in many instances. This indicates that the topology of networks based
on different correlationmatrices is qualitatively different. To further ex-
plore these differences, we compared a subset of the graphs based on
three types of correlation matrices in greater detail. Specifically, we
compared the hubs (10 nodes with greatest number of edges, summing
across hemispheres) and types of connections formed by edges
(i.e., ipsilateral vs. contralateral, within-lobe vs. across lobes) in three
types of graphs (absolute Pearson correlations, absolute Pearson corre-
lations with mean CT controlled, and absolute partial correlations) for
cognitively normal individuals and those with AD-dementia at a fixed
sparsity level of S=9%. This threshold was chosen because all edges in-
cluded in each of the three types of graphs were significant at the FDR
threshold of q b 0.05, thus minimizing the presence of false positive
edges.

As shown in Table 3, one of the greatest differences across the three
types of graphs is the number of common edges shared by the



Fig. 5.Mean Randić index of eight types of cortical networks for the four diagnostic groups. The Randić index of graphs based on absolute Pearson correlations is shown in (a), top row, for
graphs based absolute Pearson correlations with mean cortical thickness controlled in (b), middle row, and for graphs based on absolute partial correlations in (c), bottom row. Each col-
umn shows the results for graphswith different edgeweights: binary edges (left column), correlation-weighted edges (middle column), and cortical thicknessweighted edges (right col-
umn). The x-axis shows the sparsity level (S) at which the Randić index was compared across diagnostic groups. For each level of S shown, only edges that met the FDR correction of
q b 0.05were included, exceptwhere S=17% for graphs shown in (b) and (c), where q b 0.1. Significant differences between the normal andAD-dementia groups are indicated as follows:
#p b 0.1, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.005 (all p-values two-tailed).
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cognitively normal individuals and those with AD-dementia. Whereas
in graphs based on Pearson correlations (with or without mean CT con-
trolled) roughly half of the edges were the same for the two groups of
individuals, in graphs based on partial correlations, only 19% of the
edges were the same for the two groups of individuals. Likewise,
many of the hub regions were the same in the graphs based on Pearson
correlations with and without mean CT controlled, whereas graphs
based on partial correlations not only had fewer hubs, but alsomanydif-
ferent hubs (see Supplementary Table 1). Other differences include the
relative number of contralateral edges for the two groups of individuals,
the number of local edges (i.e., within the same hemisphere and lobe),
and the percentage of edges involving temporal and occipital lobe re-
gions (see Table 3). For example, in graphs based on Pearson correla-
tions (with and without mean CT controlled), close to 50% of the
edges for the cognitively normal group were contralateral edges,
whereas only 20–30% of the edges for the AD-dementia group repre-
sented contralateral connections. By comparison, in graphs based on
partial correlations, both groups of subjects had close to 50% of contra-
lateral edges. In summary, these and other differences indicate that
graphs based on partial correlations and those based on Pearson
correlations can be qualitatively different on a number of levels, which
may explain why differences in graph measures between diagnostic
groups were in opposite directions.

4. Discussion

This study examined how cortical thickness networks differ across
the spectrum of AD as a function of the type of correlation matrix and
method of edge weighting. Five different graph measures were com-
pared across 24 different graphs for four diagnostic groups. There are
several notable findings. First, different types of correlation matrices
gave rise to graphs with different topological properties. Not only the
magnitude, but also the direction of group differences in graph mea-
sureswas dependent on the type of correlationmatrix used to construct
the graphs. Second, while three of the graph measures showed little
sensitivity to the type of edge weighting (i.e., clustering coefficient,
Fiedler value, and normalized Fiedler value), the characteristic path
length and the Randić index showed significant variability depending
on the type of edge weights used. These two findings are of significance
because they indicate that it is of critical importance to take into account



Fig. 6.Mean Fiedler value of eight types of cortical networks for the four diagnostic groups. The Fiedler value of graphs based on absolute Pearson correlations is shown in (a), top row, for
graphs based absolute Pearson correlations with mean cortical thickness controlled in (b), middle row, and for graphs based on absolute partial correlations in (c), bottom row. Each col-
umn shows the results for graphswith different edgeweights: binary edges (left column), correlation-weighted edges (middle column), and cortical thicknessweighted edges (right col-
umn). The x-axis shows the sparsity level (S) atwhich the Fiedler valuewas compared across diagnostic groups. For each level of S shown, only edges thatmet the FDR correction of q b 0.05
were included, exceptwhere S=17% for graphs shown in (b) and (c), where q b 0.1. Significant differences between thenormal andAD-dementia groups are indicated as follows: #p b 0.1,
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.005 (all p-values two-tailed).
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how graphs are constructed when interpreting differences in graph
measures across groups or individuals and when comparing findings
across different studies.

Third, contrary to our predictions, we found that the Fiedler value
and the normalized Fiedler value do not change reliably with increasing
AD severity, independent of how graphs were constructed. The Fiedler
value is bounded above by theminimumdegree in the graph (weighted
degree if the graph has edge weights), and as such, it can be considered
ameasure of global connectivity as it relates to node degree. Our results
suggest that the global connectivity of cortical thickness networks as it
relates to node degree is not significantly altered in mild to moderate
AD. Interestingly, the characteristic path length, which is also consid-
ered a measure of global connectivity, demonstrated some significant
group differences. Taken together, these findings indicate that while
AD pathology does not significantly affect the node degree of cortical
thickness networks, it may alter the routing between brain regions in
the generated networks. Consistent with the interpretation that the
routing between regions is altered in AD, we found that only 19%–58%
of the edges were identical for the cognitively normal and AD-
dementia groups at 9% sparsity, see Table 3. At the same time, many of
the most highly connected regions were the same for the two groups
of subjects (Supplementary Table 1), which may help explain why the
path length, but not the Fiedler and normalized Fiedler were altered in
AD. That is, while the regions with the most connections (i.e., highest
degree nodes) were largely the same for the normal and AD-dementia
groups, the connections between themwere very different. Additional-
ly, the proportion of edges connecting specific lobeswere also compara-
ble for the cognitively normal and AD-dementia groups (see Table 3),
suggesting that aspects of global connectivity were not changed in AD.

Fourth, the Randić index, which has not previously been examined
with respect to AD, appeared to be the most sensitive of the five graph
measures in terms of differentiating between diagnostic groups. This
suggests that AD disrupts the degree to which highly connected brain
regions are connected to other highly connected brain regions. We
also found that the Randić index of brain graphs obtained at baseline
was the only graph measure to differentiate between MCI subjects
who remained stable over 3 years and MCI subjects who progressed
to AD over the same time period. As such, the Randić index may be a
useful measure for predicting the progression of ADwhen applied to in-
dividual subject brain networks. Overall, our results provide evidence



Fig. 7.Mean normalized Fiedler value of eight types of cortical networks for the four diagnostic groups. The normalized Fiedler value of graphs based on absolute Pearson correlations is
shown in (a), top row, for graphs based absolute Pearson correlations with mean cortical thickness controlled in (b), middle row, and for graphs based on absolute partial correlations in
(c), bottom row. Each column shows the results for graphs with different edge weights: binary edges (left column), correlation-weighted edges (middle column), and cortical thickness
weighted edges (right column). The x-axis shows the sparsity level (S) atwhich the normalized Fiedler valuewas compared across diagnostic groups. For each level of S shown, only edges
that met the FDR correction of q b 0.05 were included, except where S=17% for graphs shown in (b) and (c), where q b 0.1. Significant differences between the normal and AD-dementia
groups are indicated as follows: #p b 0.1, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.005 (all p-values two-tailed).
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for the utility of graph theoretic measures for tracking and predicting
the progression of AD, but they also highlight the need for methodolog-
ical consistency across studies, especially if the goal is to understand the
neurobiological significance of AD-related connectivity changes.

As outlined in the introduction, there has been little consistency in
the literature examining AD-related changes in graph theoretic mea-
sures, evenwhen considering studies using the same imagingmodality.
For example, prior studies using structural MRI have reported both in-
creases in the clustering coefficient and characteristic path length with
AD (He et al., 2008; Yao et al., 2010), as well as decreases in both
measures (Li et al., 2012; Tijms et al., 2013a, 2014). Likewise, resting
state fMRI studies of functional connectivity have found increases in
the clustering coefficient and path length (Zhao et al., 2012), as well
as decreases or null results for the same measures (Sanz-Arigita et al.,
2010; Sun et al., 2014). Our results indicate that at least some of the dis-
crepancy in prior findings may be attributable to differences in graph
creation, which has varied across studies (see Tijms et al., 2013b, sup-
plementary material, for preliminary evidence supporting this view).
Furthermore, our results suggest that comparing results across studies
may only be feasible for graphs constructed using the same type of
correlation matrix and edge weights. Future studies should therefore
consider reporting graphmeasures formore than a single type of graph.

There are multiple methodological reasons for why the magnitude
and direction of group differences was altered for the different ways
of constructing graphs. First, when the same sparsity threshold is used
for each diagnostic group to determine which edges to include in a
graph, the resulting graphs may differ in the number of nodes across
groups, which, in turn alters the relative connectivity density of each
group3s graph. Both network size and connectivity density are known
to affect the graphmeasures examined in this study, except for the nor-
malized Fiedler value. Second, the average connection weight across all
possible edges increasedwith AD symptom severity in this study, which
may have led to the inclusion of more spurious edges for the cognitively
normal participants than the AD-dementia group, particularly when
connection density was higher (i.e., 17%). Third, our results suggest
that the type of correlation matrix used to construct each graph can
alter network properties. As shown in Table 1, controlling for mean CT
reduces the number of edges in the normal group by a factor of 6.3
(80.3%–12.7%) whereas it reduces the number of edges in the AD-
dementia group by a factor of 4.4 (89.5%–20.3%). The difference is



Table 3
Comparison of edges between cognitively normal individuals and AD-dementia patients
for three types of graphs at 9% sparsity.

Type of edge Pearson
correlation

Pearson
correlation
(controlling
for mean
cortical
thickness)

Partial
correlation

Normal AD Normal AD Normal AD

Common edges 58% 43% 19%
Contralateral edges 47% 23% 49% 33% 45% 47%
Within lobe & hemisphere 29% 35% 24% 38% 19% 17%
Frontal 58% 49% 56% 54% 51% 59%
Parietal 66% 52% 58% 46% 40% 39%
Temporal 21% 35% 22% 29% 45% 39%
Occipital 5% 6% 10% 12% 20% 24%
Frontal–parietal 29% 17% 23% 19% 10% 12%
Frontal–temporal 4% 6% 7% 7% 14% 17%
Frontal–occipital 0% 0% 0% 1% 8% 11%
Parietal–temporal 10% 12% 8% 9% 15% 10%
Parietal–occipital 4% 3% 6% 2% 4% 7%
Temporal–parietal 0% 3% 0% 3% 4% 4%

Note: Common edges refers to edges that are present in the graphs of both the normal and
the AD group; within lobe and hemisphere refers to edges that connect nodes
representing brain regions within the same lobe and hemisphere (i.e., local connections);
frontal refers to edges that connect a node representing frontal lobe cortex to a node in the
same lobeor in another lobe; parietal, temporal, and occipital are defined similarly as fron-
tal; frontal–parietal represent edges that connect a node representing frontal lobe tissue to
a node representing parietal lobe tissue.
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more extremewhen using partial correlations, which reduces the num-
ber of edges in the normal group by a factor of 9.4 (80.3%–8.5%) versus a
factor of 4.0 (89.5%–22.6%) in the AD-dementia group. Controlling for
mean CT or using partial correlations removes the effect of regional
interdependencies on given pairs of nodes. Thus, our findings indicate
a higher amount of regional interdependency among the CT values for
the normal group than among the AD-dementia group.We further con-
jecture that this pattern of regional interdependency reduction (due to
partialling or controlling for mean CT) may have the effect of reversing
the order of group differences.

The only prior study comparing group-level cortical thickness
networks between cognitively normal individuals and individuals
with AD-dementia (i.e., He et al., 2008) created graphs based on abso-
lute partial correlationmatrices and used unweighted edges. Consistent
with the results of this study, we found an increase in the clustering co-
efficient among AD-dementia patients for similarly constructed graphs
(Fig. 4c), as well as a higher characteristic path length in the fully con-
nected network (i.e., 17% sparsity). At the lower connectivity density
ranges (6–9%), our results showed the reverse trend and the ordering
across groups was not consistent. Additionally, some of the hub regions
identified by He et al. (2008) are the same as the ones identified in the
current study, including the lateral orbital frontal gyrus, superior tem-
poral gyrus, and middle frontal gyrus (see Supplementary Table 1).
Overall, this may indicate that when graphs are constructed in the
same manner, consistent results can emerge across studies with differ-
ent imaging parameters, network sizes, and subject populations. How-
ever, whereas He et al. (2008) interpreted the increased clustering
coefficient and path length among AD patients as reflecting an increase
in local specialization and an AD-related shift toward a more regular
network, our results suggest that this interpretation does not generalize
across graphs, as other types of graphs produced different results.

Unfortunately, too little is currently known about the biological
underpinnings of cortical thickness or gray matter volume correlations
across subjects or within subjects. It is therefore, unclear how different
methods of graph construction map onto different biological processes
that influence anatomical correlations, such as the presence ofwhitemat-
ter tracts, direct and indirect functional coupling, neurotrophic influences
between regions, experience-dependent plasticity, developmental
effects, and genetic influences. In fact, it is unlikely that a single type of
structural connectivity graph can be identified that best captures the con-
nectivity between two brain regions. Rather, different kinds of graphs are
likely useful for describing different kinds of underlying neurobiological
processes.

One of the few studies that has examined this issue (Gong et al.,
2012) showed that when cortical thickness graphs are constructed
based on Pearson correlations, controlling for mean CT, about 40% of
the positive correlations but only 10% of the negative correlations map
onto fiber connections as determined by diffusion tensor imaging.
Gong et al. (2012) suggested that the negative correlations and some
positive correlations might instead correspond to direct and indirect
functional connections. Providing some support for this view, a recent
study found relatively high similarity (~60%) between gray matter vol-
ume networks and resting state fMRI networks based on positive corre-
lations, as well as low to moderate similarity (10–40%) for negative
correlations (Hosseini and Kesler, 2013). It is also possible, however,
that some correlations are artificially induced by data processing, such
as controlling for mean signal strength, thickness, or volume. For exam-
ple, negative correlations only emergewhen controlling for mean CT, or
when using partial correlations. While these approaches may reduce
spurious correlations and noise, theymay also introduce artificial corre-
lations (Van Dijk et al., 2010). In the current study, three of the graph
measures (characteristic path length, Randic index, and Fiedler value)
showed the same general pattern of results for positive, negative, and
absolute correlations, though significance values were often reduced
for positive and negative correlations. By comparison, the clustering co-
efficient and normalized Fiedler showed some dependence on the sign
of correlations, such that some group differences were evident only
for positive or negative correlations, or group differences were reversed
for positive and negative correlations. Future studies usingmultiple im-
agingmodalities will be needed to sort out how different types of corre-
lations map onto different neurobiological mechanisms underlying
structural and functional connectivity.

5. Conclusion

In sum, ourfindings suggest that themagnitude and direction of AD-
related differences in some graph measures, including the small-world
measures of clustering and characteristic path length, is strongly depen-
dent on the choice of correlation matrix and edge weights used to con-
struct the graphs. These findings likely apply to group-level structural
gray matter networks more generally. Consequently, extreme caution
is needed when interpreting the presence or absence of group differ-
ences in thesemeasureswithin the context of underlying biological pro-
cesses. However, even in the absence of an understanding of the nature
of different types of gray matter correlations, our findings provide evi-
dence for the clinical utility of some graph measures. The Randić index
in particular may be useful for tracking and predicting the progression
of AD, especially when used in combination with traditional AD
biomarkers.
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