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Abstract

Patients with mild cognitive impairment (MCI) have a high risk for conversion to Alzheimer’s disease (AD). Early diagnose
of AD in MCI subjects could help to slow or halt the disease progression. Selecting a set of relevant markers from multimodal
data to predict conversion from MCI to probable AD has become a challenging task. The aim of this paper is to quantify
the impact of longitudinal predictive models with single- or multisource data for predicting MCI-to-AD conversion and
identifying a very small subset of features that are highly predictive of conversion. We developed predictive models of
MCI-to-AD progression that combine magnetic resonance imaging (MRI)-based markers (cortical thickness and volume of
subcortical structures) with neuropsychological tests. These models were built with longitudinal data and validated using
baseline values. By using a linear mixed effects approach, we modeled the longitudinal trajectories of the markers. A set of
longitudinal features potentially discriminating between MCI subjects who convert to dementia and those who remain stable
over a period of 3 years was obtained. Classifier were trained using the marginal longitudinal trajectory residues from the
selected features. Our best models predicted conversion with 77% accuracy at baseline (AUC = 0.855, 84% sensitivity, 70%
specificity). As more visits were available, longitudinal predictive models improved their predictions with 84% accuracy
(AUC = 0.912, 83% sensitivity, 84% specificity). The proposed approach was developed, trained and evaluated using the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset with a total of 2491 visits from 610 subjects.
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Introduction

Alzheimer’s disease (AD) is the most common neurodegen-
erative disorder in the elderly, characterized by pathological
changes in the brain that begin 10 ~ 15 years prior to the
onset of clinical symptoms (Jack et al. 2010). Mild cognitive
impairment (MCI), the earliest clinically detectable phase
of the trajectory toward dementia and AD, affects 15%
to 20% of people older than 65 years (Markesbery 2010;
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Roberts and Knopman 2013). Approximately 10-15% of
MCI patients will develop into dementia annually (Petersen
et al. 2009). Predicting the conversion from MCI into proba-
ble AD could help to slow or halt disease progression, being
one of the most challenging tasks in the field of AD (Jack
2012).

An important task to improve the diagnosis of AD is
the biomarker selection from several data modalities such
as clinical, imaging, genetic and fluid data (Da et al.
2014; Moradi et al. 2015; Korolev et al. 2016; Gavidia-
Bovadilla et al. 2017). MRI-derived measurements of the
brain have become useful markers in the diagnosis of AD
and MCI (Cuingnet et al. 2011; Rathore et al. 2017).
Markers based on MRI have a minimal cost impact because
MRI scanning is often part of the clinical assessment
standard for patients with MCI (Albert et al. 2011). The
volume of the hippocampus is the most studied and used
structural MRI marker of AD up to date (Cuingnet et al.
2011). Markers applied in different parts of the brain are
expected to be more sensitive to different stages of the
AD (Li et al. 2012; Eskildsen et al. 2015; Moradi et al.
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2015). Accordingly, the combination of cortical thickness
(CT) and volume of subcortical structures has been used in
several studies (Korolev et al. 2016; Sgrensen et al. 2017).
Recently, CT has been proposed as a more stable parameter
for AD diagnosis than volume/density measures (Dickerson
et al. 2009; Desikan et al. 2009; Li et al. 2012; Park et al.
2013; Bernal-Rusiel et al. 2013; Eskildsen et al. 2013;
Pettigrew et al. 2016).

AD is a progressive neurodegenerative disorder, and lon-
gitudinal data could improve the predictive power (Gavidia-
Bovadilla et al. 2017; Minhas et al. 2017). Over time,
MRI-derived longitudinal measurements have been shown
to correlate with the progression of AD (Wolz et al. 2010;
Aubert-Broche et al. 2013; Iglesias et al. 2016; Platero
et al. 2018). Tracking longitudinal brain atrophy in these
neurodegenerative conditions has only recently become
feasible, with longitudinal methods allowing the analysis
of univariate and mass-univariate neuroimaging measures
based on linear mixed effects (LME) modeling (Bernal-
Rusiel et al. 2013; Bernal-Rusiel et al. 2013). In this way,
we combined MRI-based markers and standard neuropsy-
chological measures (NMs) for predicting MCI-to-dementia
progression using longitudinal data and validated with base-
line scores from the subjects. Our goals were to (1) improve
the performance of the predictive models of MCI-to-AD
progression and (2) find a group of interpretable features
that are highly predictive of conversion.

Materials

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset was selected to evaluate the behavior of the
longitudinal classification framework for predicting MCI-
to-AD conversion, where subjects have different numbers of
visits (Wyman et al. 2013; Weiner and Veitch 2015). MRI-
based markers and NMs used in this study correspond to
measures of neurodegeneration at 3 years follow-up. We
included an unbalanced longitudinal data of 610 subjects
at multiple time points: baseline and 6, 12, 18, 24 and 36
months.

Since our main objective was to predict the conversion
of MCI to dementia, two different strategies could be used
for the construction of predictive models. The first one was
to use a population of subjects probable AD and normal
controls (NC). Subsequently, given the feature selection
from NC and AD data, the population of stable MCI (sMCI)
and progressive MCI (pMCI) subjects was used to validate
the predictive models (Da et al. 2014; Moradi et al. 2015;
Eskildsen et al. 2015; Beheshti et al. 2017). The second
strategy was to exclusively use the population of sMCI
and pMCI subjects with a nested cross-validation procedure
to estimate the feature selection and performances of the
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predictive models (Korolev et al. 2016). An overview of the
subject groups is given in Table 1. Table 2 reports the time
points (Baseline, Month 6, Month 12, Month 24 and Month
36) that were available for the selected subjects.

Method

From a two-group comparison approach, which is applied
to the sMCI and pMCI patients, two types of predictive
models were built and examined. The first type of predictive
models was constructed using a single source, MRI data or
NMs. The second type of models used multisource data,
i.e., predictive models built with MRI-based features and
NMs. For each proposed model, sensitivity, specificity and
accuracy scores of the classifiers were computed (Cuingnet
et al. 2011). Additionally, receiver operating characteristic
(ROC) curves were also calculated. The discriminant value
of the corresponding ROC curve was estimated using the
area under the curve (AUC). We also examined the effects of
age, sex, educational level and APOE genotype as covariates
in the models in terms of predictive performance.

We used LME modeling to account the between-subject
and within-subject sources of variation (Bernal-Rusiel et al.
2013; Bernal-Rusiel et al. 2013).The LME model was built
with a intercept and slope as random effects to be included
in the longitudinal trajectory:

yij = (B1 + B2 - Group; + B3 - Agei + B4 - Education;
+Bs - Sex; + Poedi + bri)
+ (B7 + Bs - Group; + Bo - e4; + byi) tij +eij, (1)

where j = 1,..,n; indexes the time points with n;
indicating the number of scans for subject i, y;; is the j
measure of a feature from subject i, #;; is the scan time
from baseline (in years), and B, = [B1, B2, B3, B4, Bs. Be]”
and By = [B7.PBs,Po]? are the intercept and slope,
respectively. The components of b; = [by;, b,17 is a vector
of the random effects, and ¢; is a vector of measurement
errors. The boolean variable Group; is true if the i-subject
progresses to AD and false if the subject remains stable or is
control. The influence of sociodemographic characteristics
was collected with the effect of age at baseline (Age;),
sex (Sex;) and years of education (Education;) (Jiang
et al. 2014; Liu et al. 2012). Apolipoprotein E (APOE)
genotype status is the most prevalent genetic risk factor for
AD (Saykin et al. 2010). APOE genotype was assessed, and
patients were characterized as €4 carriers or €4 noncarriers.
The interaction between APOE genotype status and time
was also included based on the evidence that €4 accelerates
atrophy during the prodromal phases of AD (Bernal-Rusiel
et al. 2013).
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Table 1 Demographic and clinical details of the subset of ADNI database used in this study

Type (N. subjects) NC (113) sMCI (215) pMCI (206) AD (76) F p

Sex male (%) 72 (64%) 146 (68%) 121 (59%) 46 (61%) 0.144
Baseline age 75.6 (5.2) 74.9 (1.5) 75.0 (6.9) 73.8 (6.9) 1.02 0.282
MMSE (Baseline) 29.2 (1.0) 27.6 (1.7)° 26.6 (1.8)%" 23.4 (1.8)%bc 209.84 < 0.001
MMSE (Month 6) 29.1 (1.0) 27.6 (2.2)¢ 25.3 (2.9)%b 22.3 (3.1)%bc 141.76 < 0.001
MMSE (Month 12) 28.8 (3.0) 27.5 (3.9)° 249 (2.9)%b 20.6 (4.5)%bc 94.94 < 0.001
MMSE (Month 24) 29.2 (0.9) 27.1 (4.7)¢ 22.7 (4.5)%b 18.1 (6.9)0¢ 81.7 < 0.001
MMSE (Month 36) - 26.2 (6.3) 21.7 (3.7) - 11.8 < 0.001

Data as represented as mean and standard deviation (SD) unless specific otherwise. ANOVA with Bonferroni post hoc test is used for baseline
age and neuropsychological score, except for sex where the chi-square test is used. Statistical significance is considered with p — value < 0.01.
“ Significant compared to normal control (NC). ? Significant compared to sMCI. ¢ Significant compared to pMCI. NC= Normal control;
sMCI= Stable Mild cognitive impairment; pMCI= Progressive Mild cognitive impairment; AD= Alzheimer disease; MMSE=Mini-Mental State

Examination

For a feature, the difference between the longitudinal
trajectory of an i-subject and the LME model will be
described by the random vectors b; and e;, which follow
mean zero-Gaussian multivariate distributions, indicating a
population-averaged mean of E(Y;) = X;p (Bernal-Rusiel
et al. 2013). Therefore, the longitudinal trajectory residue is
defined as follows:

1 &
= ; (yij — (X0),B) . )
where (X;); is the j-row vector of the design matrix
and the boolean variable of the clinical group is activated
(Group; = 1), ie., the effects of the AD progression
compared to control or stable MCI are considered. The
l;-samples belonging to the AD or pMCI group follow a
normal distribution of zero mean and of variance determined
by b; and e;. In contrast, /;-samples not belonging to the
AD or pMCI group will also follow normal a distribution
with the same variance but with a bias in relation to zero-
mean, which is related to the fixed effects of the clinical
groups. The random variable /; is used to train and classify
the features by linear discriminant analysis (LDA). All

longitudinal trajectory residues of the selected features were
assumed to be independent. These marginal residues were
used as data for training and testing of the LDA classifiers.
Note that these classifiers do not require the adjustment of
any parameter, as is traditionally done at this stage (Moradi
et al. 2015; Korolev et al. 2016). The marginal residues
of the longitudinal trajectories of the markers as inputs to
the LDA were experimentally validated (see Supplementary
Materials S.4).

A nested cross-validation (CV) procedure was used to
avoid model overfitting and optimistically biased estimates
of model performance (Korolev et al. 2016). The procedure
consisted of two nested CV loops: an inner loop, designed
to select the optimal feature set for the proposed models,
and an outer loop, designed to obtain an unbiased estimate
of model performance. In the outer CV loop, the data were
partitioned into the model and test data (see Fig. 1). In the
inner CV loop, the model data were again partitioned into
the training and validation data. Random subsets of training
data were subjected to the minimal-redundancy-maximal-
relevance (mRMR) algorithm (Peng et al. 2005). For each
sample, subsets of features with different dimensions were
suggested. This sequence (i.e., selecting random subsets

Table 2 Number and timing of

scans per time point by clinical Type (N. subjects) NC sMCI pMCI AD Time from baseline (in month)
group

Baseline 113 215 206 76 0

Month 6 111 205 197 76 6.9(0.8)

Month 12 108 200 191 76 12.9(0.8)

Month 18 0 92 88 0 19.0(0.9)

Month 24 88 149 135 46 25.0(0.8)

Month 36 0 66 54 0 36.9(1.1)

Total 420 865 932 274

NC= Normal control; sMCI= Stable Mild cognitive impairment; pMCI= Progressive Mild cognitive

impairment; AD= Alzheimer disease
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of training, applying mRMR and proposing combination
features) was repeated several times. For each dimension,
the combinations of features that most frequently appear
were selected. Then, predictive models were trained using
only the training data with the candidate feature set.
The best combinations of features, which produced the
maximal classification accuracy, were selected to build the
final predictive models. These models were constructed by
training a classifier using longitudinal data. An unbiased
estimate of model performances was obtained by evaluating
the final models on the withheld test data, which were
not used during feature selection, model selection, or final
model construction. Both the outer and inner CV loops used
a 10-fold CV design. For better replicability, the nested 10-
fold CV procedure was repeated with different partitions of
the data, generating multiple performance estimate values.
A MATLAB implementation of our method is available at
https://www.nitrc.org/projects/predict_mci2ad/.

Results
A total of 2491 scans from 610 subjects were processed.
For each each subject, subcortical volumes, ROI-based and

cluster-based CT measurements were obtained using the
longitudinal pipeline (see Supplementary Materials S.1).
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Perfarmance
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To validate the consistency of the applied longitudinal
pipeline, a quality control was used between the scans and
segmentations of each subject (see Supplementary Materials
S.2).

Cortical thickness analysis

By comparing the spatial patterns of cortical thinning, it
was found that the spatial patterns show annual rates of
atrophy different in the clinical groups of the progression
of AD (Dickerson et al. 2009; Li et al. 2012; Pettigrew
et al. 2016). Therefore, we constrained our analyses to the
association between the group time interaction and cortical
thickness.

The cohort used in this study were divided into two
independent populations. The first population was used to
build statistical maps of annual atrophy rates between NC
and AD or sMCI and pMCI. The second patient population
was used to obtain the predictive models between the two
clinical groups of MCI. This strategy was used to avoid
contamination between the developments of the statistical
significance maps and predictive models. Using only MCI
patients, the first population consisted of 50/50 subjects of
SMCI and pMCI with a total of 467 scans, which were
available from the ST-LME toolbox (Bernal-Rusiel et al.
2013). The second population consisted on 165/156 sMCI
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and pMCI patients with 1330 visits, which were used for
building and evaluating the predictive models. In contrast,
we used 40/30 NC and AD subjects with 278 visits to obtain
the statistical maps and 73/46 NC and AD subjects with 416
visits in order to develop the predictive models from the
feature selection stage.

To generate statistical significance maps for characteriz-
ing longitudinal thinning differences between two clinical
groups, an empirical strategy was used (Thirion et al. 2007).
Randomly subsets of subjects belonging to the two clinical
groups were conducted to the ST-LME method. A two-
stage adaptive false discovery rate (FDR) procedure was
employed to control multiple comparisons (Benjamini et al.
2006). Before calculating the statistical maps of cortical
thinning rates between two clinical groups, we proceeded to
test the control of type I and Il errors of the ST-LME method
(see Supplementary Materials S.3). A separate hypothesis
test at each vertex was conducted in the ST-LME approach
(see Fig. 2a). A binary map was derived by thresholding the
values shown in the statistical map with an FDR correction.

-log,g(p-value)

a) Statistical significance maps

-log,{p-value)

a) Statistical significance maps

Fig. 2 a Statistical significance maps (—logq(p — value)) compar-
ing longitudinal cortical thinning rates between NC and AD patients
(first row) and sMCI and pMCI patients (second row) visualized on the
pial surface of the FreeSurfer template (fsaverage). b Cortical cluster
exhibiting a statistically significant difference in longitudinal thin-
ning between two clinical groups (NC-AD and sMCI-pMCI). These

Within this thresholded map, only clusters that reached a
threshold region size of a set of contiguous vertices were
retained (> 100mm?) (see Fig. 2b). Cortical features were
determined as the mean CT for each selected cortical cluster.

Performance of the predictive models of MCI-to-AD
progression

The feature extraction stage obtained 40 ROI-based MRI
markers, 11 NMs and approximately a dozen clusters for
each hemisphere. Once the features were extracted, the
nested k-fold CV procedure was performed to select the
best subsets of features and to build the predictive models
with their subsequent evaluations. The nested 10-fold CV
procedure was repeated 50 times with different partitions
of the data. In the feature selection stage, feature sub-
sets of different dimensions were defined using the mRMR
algorithm. We used the mutual information difference met-
ric, and the features were normalized to zero-mean and
unit-variance in the mRMR algorithm (Peng et al. 2005).

cDtl
CEt@

cBtr

cCtr !

b) Cortical regions

cltl !

c2tr

c3tr,

b) Cortical regions

2.09

0.957

-0.957

-2.00

maps were derived by thresholding the values shown with a FDR
correction at ¢ < 10~7 (NC and AD) and g < 0.01 (sMCI and
pMCI). NC= Normal control; sMCI=Stable Mild cognitive impair-
ment; pMCI=Progressive Mild cognitive impairment; AD=Alzheimer
disease
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For each inner loop, the resampling method searched for
the 10-feature subset of each dimension that appears most
frequently in mRMR. Of these, the 3 that best offered
their performance in classification accuracy terms by the
evaluation of the corresponding models were selected. There-
fore, for each outer iteration, 30 feature subsets for each
dimension were evaluated. In total, there were 15,000 eval-
uations of selected subsets for each dimension. Predictive
models with higher AUC values and balanced between sen-
sitivity and specificity were selected. Table 3 summarizes
the performance of the predictive models with baseline data.
Classification results are presented with predictive mod-
els constructed with single- or multisource data. For each
source of data used, we present the best predictive models
identified with their markers, well trained exclusively with
MCI population or having used the NC and AD popula-
tion to select the features. Several predictive models instead
of one for each type of training are presented due to these
proposed models exhibiting combinations of markers with
similar performance. The LME models were built using
only age at baseline as covariate. Table 3 shows the scores
of the first combination of markers for each type of training.

The performances of the predictive models using MRI
data, which were trained with NC and AD and with sMCI
and pMCI to define the feature selection, were similar
and almost coincident for the selected markers. MRI-based
markers included left hippocampal volume and CT in
medial temporal lobe (MTL) and left inferior parietal lobule.
Markers from CT in massive measures on hemispheres were
added to the set of ROI-based MRI features. We observed
that the cluster-based CT markers were first selected with
respect to the ROI-based CT markers by the mRMR
algorithm. In all our experiments using only MRI data,
better classification accuracies were obtained by combining
CT measures with subcortical volumes normalized by
intracranial volume, as in other publications (Westman
et al. 2013). When predictive models were built with only
cognitive measures, ADAS13 and FAQ were selected as the
best combination of features using NC and AD data. In
contrast, using the sSMCI and pMCI data, ADAS13, FAQ and
RAVLT immediate were selected, yielding an improvement
in the classification results. The best results of the predictive
models were obtained when combining the MRI-based
markers and NMs, especially when the feature selection
was performed with the data from the sMCI and pMCI
populations. The models were basically built by combining
ADAS13, FAQ and RAVLT immediate with hippocampal
volumetry and thinning measures in the temporal lobe. We
also observed that the models trained exclusively with sMCI
and pMCI populations outperformed the models built with
NC and AD subjects due to better selection in the cognitive
measures.
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These baseline classification results exclusively used age
as a covariate in the LME models. Once we observed
that the best results were obtained using combinations of
MRI-based markers and NMs, more covariates were added
to the LME models. Table 4 shows that the best results
were achieved by adding age, sex and years of education
as covariates. The selected feature subsets did not change
practically when new covariates were added to the LME
models.

The last experiment was to analyze the performance
of predictive models when data were available from new
patient visits. Table 5 shows the scores of the predictive
models previously proposed (see Table 4) with age, sex and
years of education as covariates in LME models applied
to longitudinal data. The predictive models improved AD
conversion prediction as more patient data were available
over time. The scores improved with the increase in patient
visits, and the balance between sensitivity and specificity
was also improved.

Discussion

The analysis of 610 participants with 2491 visits provided
a large number of subjects for the training and testing
datasets. The NM-based predictive models outperformed
the MRI models on accuracy (NM models: AUC = 0.826,
ACC = 75%, SEN = 86%, SPE = 65%, MRI models: AUC
= 0.778, ACC = 72%, SEN = 77%, SPE = 67%). The
multisource model outperformed both single-source models
(AUC = 0.855, ACC = 77%, SEN = 84%, SPE = 70%). All
these scores were at baseline. As more visits were available,
longitudinal predictive models improved their predictions
(AUC = 0.912, ACC = 84%, SEN = 83%, SPE = 84 %).
The specificity, accuracy and AUC positively increased
their scores with the time of follow-up, maintaining the
sensitivity scores. There is also a better balance between
sensitivity and specificity over time.

The feature vector dimensions were very low in compar-
ison to other studies. Low dimensions in predictive models
make them more robust, with more generalization capacity
and lower risk of overfitting. The features most frequently
selected in the NM model included ADAS13, FAQ and
RAVLT immediate. In the MRI model, the most frequently
selected features included hippocampal volume and CT
measures for several temporoparietal brain regions, with a
preference for the left hemisphere. The selection of hip-
pocampus, MTL, and inferior parietal cortex as predictors of
MCI-to-dementia progression is consistent with the known
pattern of grey matter atrophy associated with incipient
AD (Thompson et al. 2003), and there is also evidence that
AD-related atrophy occurs at a faster rate in the left hemi-
sphere (Thompson et al. 2003). Similar findings have been
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Table 3 Baseline scores for predicting MCI-to-AD conversion

Data

AUC

ACC (%)

SEN (%)

SPE (%)

Features

MRI(ROI) NC-AD

MRI(ROI) s-pMCI

MRI(all) NC-AD

MRI(all) s-pMCI

NM NC-AD

NM s-pMCI

MRI(ROI)+NM NC-AD

MRI(ROI)+NM s-pMCI

MRI(all)+NM NC-AD

MRI(all)+NM s-pMCI

0.758 (0.754 0.763)

0.763 (0.759 0.767)

0.778 (0.774 0.782)

0.761 (0.757 0.765)

0.816 (0.814 0.821)

0.826 (0.822 0.830)

0.826 (0.822 0.830)

0.855 (0.851 0.858)

0.833 (0.830 0.836)

0.846 (0.843 0.849)

72 (71.7 72.5)

71.8(71.572.2)

71.4(71.171.8)

67.8 (67.4 68.2)

73.0(72.6 73.4)

75.4(75.175.8)

73.3(72.973.7)

76.9 (76.577.3)

73.0(72.6 73.3)

75.2(74.8 75.6)

77.7(77.178.2)

77.0(76.4717.5)

76.3 (75.776.8)

72.6 (72.173.2)

83.8(83.2 84.5)

86.2 (85.8 86.7)

83.7 (83.1 84.3)

84.4 (83.7 85.0)

83.1(82.583.7)

82.2 (81.5 82.8)

66.8 (66.2 67.4)

67.0 (66.4 67.6)

66.9 (66.2 67.5)

63.4 (62.7 64.0)

63.0 (62.2 63.7)

65.3 (64.6 65.9)

63.6 (63.0 64.3)

69.9 (69.1 70.6)

63.4 (62.8 64.1)

68.7 (67.9 69.6)

Hvl,IPtl,Etr
Hvl,IPtl,AVtb,Etr
Hvl,IPtl,Etr

Hvl,IPtl,Etr
Hvl,IPtb
Hvb,IPtl

Hvl,cBtr,cAtl
Hvl,Etb,IPtb,cCtr
Hvl,AVtb,cBtr

Hvl,Pvl,c2tr
Hvl,c2tr
Hvl,MTtb

Al13,FAQ
A13,FAQ MMSE

A13,FAQ,RTim
A13,FAQ,RTle

HvLITtl,A11,AQ4,FAQ,MMSE
Hvl,MTtb,A11,AQ4,FAQ MMSE
ITt,AQ4,FAQ

Hvl,PvLMTtb,A13,FAQ,RTim,CDR
Hvl,PvLMTtb,A13,FAQ,RTim,MMSE
PvLMTtb,A13,FAQ,RTim,CDR

Hvl,MTtb,A11,AQ4,FAQ MMSE
Hvl,cEtl,A11,AQ4,FAQ,MMSE
Hvl,cDtl,A11,AQ4,FAQ,MMSE

Pvl,c2tr,A13,FAQ,RTim,CDR
Hvl,Pvl,c2tr,A13,FAQ,RTim
Hvl,c1tl,c3tr,A13,FAQ,RTim

Each row shows the classification results of the predictive models according to the type of data used (MRI, NM or MRI + NM). Numbers
within parentheses are the 95% confidence interval. The notation of the MRI-based features is given by an uppercase acronym of the brain
structure followed by two lowercase letters. The first lowercase letter indicates a measure of volumetry (v) or cortical thickness(t). The second
lowercase letter indicates that the measurement is from the left hemisphere (1), right (r) or bilateral (b). The cluster-based CT measurements
follow the same notation. Their labels are shown in the Fig. 2. H=Hippocampus; P=Pallidum; MT=Middle Temporal; IT=Inferior Temporal;
IP=Inferior Parietal; E=Entorhinal; AV= AD vulnerable (Pettigrew et al. 2016); A11=ADAS-Cog 11; A13=ADAS-Cog 13; AQ4=ADAS Q4;
RTim=RAVLT immediate; RTle=RAVLT learning; NC= Normal control; sMCI=Stable Mild cognitive impairment; pMCI=Progressive Mild
cognitive impairment; AD=Alzheimer disease; AUC=Area under curve; ACC=accuracy; SEN=sensitivity; SPE=specificity
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Table 4 Baseline scores for predicting MCI-to-AD conversion with different covariates using MRI-markers and NMs

AUC ACC (%) SEN (%)

SPE (%) Features

0.855 (0.851 0.858) 76.9 (76.577.3) 84.4 (83.7 85.0)

0.848 (0.845 0.851) 76.5(76.176.9) 82.9 (82.2 83.6)

0.858 (0.855 0.862) 773 (77.077.7) 84.7 (84.0 85.3)

0.851 (0.848 0.855) 77.0 (76.6 77.4) 83.2(82.583.9)

69.9 (69.1 70.6)
Hvl, Pvl, MTtb, A13, FAQ, RTim,CDR
Hvl, Pvl, MTtb, A13, FAQ, RTim, MMSE
Pvl, MTtb, A13, FAQ, RTim, CDR

70.5 (69.7 71.2)
Hvl, Pvl, MTtb, A13, FAQ, RTim,CDR
Hvl, Pvl, MTtb, A13, FAQ, RTim, MMSE
Pvl, MTtb, A13, FAQ, RTim, CDR

70.5 (69.8 71.2)
Huvl, Plv, MTth, A13, FAQ, RTim, CDR
Huvl, Pvl, MTth, A13, FAQ, RTim
Pul, MTth, A13, FAQ, RTim, CDR

71.2(70.571.9)
Hvl, Pvl, MTtb, A13, FAQ, RTim,CDR
Hvl, Pvl, MTtb, A13, FAQ, RTim

The first row using only age as a covariate, in the second row age and APOE &4, in the third row age, sex and education and in the fourth row,
age, sex, education and APOE e4. Numbers within parentheses are the 95% confidence interval. The notation of the MRI-based features is given
by an uppercase acronym of the brain structure followed by two lowercase letters. The first lowercase letter indicates a measure of volumetry
(v) or cortical thickness (t). The second lowercase letter indicates that the measurement is from the left hemisphere (1), right (r) or bilateral (b).
H=Hippocampus; P=Pallidum; MT=Middle Temporal; A11=ADAS-Cog 11; A13=ADAS-Cog 13; RTim=RAVLT immediate; AUC=Area under

curve; ACC=accuracy; SEN=sensitivity; SPE=specificity

reported in other studies (Korolev et al. 2016; Sgrensen
et al. 2017). Using multisource predictive models, the best
classification results were obtained when constructing LME
models that added age, sex and years of education as covari-
ates. APOE genotype was not selected as covariates in LME
approach. This result was consistent with APOE ¢4 being a
risk factor for AD, however its value for individual patient
predictions was limited (Da et al. 2014).

CT measures were extracted from the ROIs and clusters.
The statistical maps were in strong agreement with the

literature (Bernal-Rusiel et al. 2013; Landin-Romero et al.
2017). Specifically, our longitudinal analyses revealed that
using NC and AD data for building statistical maps,
the proposed predictive models selected cluster-based CT
measurements in middle and superior temporal regions
and inferior parietal regions. When the predictive models
were constructed exclusively with sMCI and pMCI patients,
the clusters were bilaterally in the MTL. These findings
are consistent with neuropathological studies showing that
neurofibrillary tangles initially accumulate in MTL regions

Table 5 Scores for predicting

MCI-to-AD conversion with Time AUC ACC (%) SEN (%) SPE (%)

different visits
Baseline 0.858(0.855 0.862) 77.3(77.077.7) 84.7(84.0 85.3) 70.5(69.8 71.2)
Month 6 0.879(0.876 0.882) 79.2(78.9 79.6) 84.8(84.3 85.4) 74.0(73.4 74.6)
Month 12 0.892(0.889 0.894) 80.9(80.6 81.2) 83.8(83.2 84.3) 78.4(77.8 79.0)
Month 24 0.905(0.902 0.908) 82.0(81.6 82.3) 78.6(78.0 79.3) 84.6(84.0 85.2)
Month 36 0.928(0.923 0.933) 85.9(85.3 86.5) 79.3(77.9 80.7) 89.8(89.0 90.6)
longitudinal 0.912(0.909 0.914) 83.7(83.4 84.0) 83.4(82.9 84.0) 84.0(83.5 84.5)

@ Springer

Numbers within parentheses are the 95% confidence interval. The longitudinal results correspond to the
classification scores with the unbalanced data of test subjects. The predictive models used in this experiment
correspond to those indicated in Table 4 with age, sex and years of education as covariates in LME models.
AUC=Area under curve; ACC=accuracy; SEN=sensitivity; SPE=specificity
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Table 6 Comparison of approaches for predicting MCI-to-AD conversion

Approach Follow-up Subject number Data AUC ACC SEN SPE Number of
sMCI/pMCI (%) (%) (%) features

Gavidia-Bovadilla et al. (2017) 36 MRI 70.3 64.3 75.2
Beheshti et al. (2017) 36 65/71 MRI 0.751 75.0 76.9 73.2
Eskildsen et al. (2015) 36 227/161 MRI 0.763 71.9 69.6 73.6 5
Moradi et al. (2015) 36 164/100 MRI 0.766 74.7 88.8 51.6 309
Minhas et al. (2017) 24 65/54 MRI 0.811 77.5 53.9 89.2 38
Present study 36 215/206 MRI 0.763 71.8 77.0 67.0 3

0.795 74.1 76.8 71.5
Ferreira et al. (2017) 36 160/122 NM 0.870 81.6 85.0 79.0
Minhas et al. (2017) 36 65/37 NM 0.881 83.3 85.6 81.5
Present study 36 215/206 NM 0.826 754 86.2 65.3 3

0.896 80.6 84.4 80.6
Korolev et al. (2016) 36 120/139 MRINM 0.87 79.9 83.4 76.4 10
Moradi et al. (2015) 36 164/100 MRINM 0.902 82.0 87.0 74.0 309
Gavidia-Bovadilla et al. (2017) 36 MRI,NM 76.7 70.8 81.6
Minhas et al. (2017) 24 65/54 MRI,NM 0.889 84.3 70.4 92.3 45
Present study 36 215/206 MRI,NM 0.858 77.3 84.7 70.5 6

0.912 83.7 83.4 84.0

Our classification results are given at baseline as well as the scores from unbalanced longitudinal trajectories. Our predictive models from single
source data were built using LME models with only age at baseline as covariate and models with multi-source data used age, sex and years
of education as covariates. sMCI=Stable Mild cognitive impairment; pMCI=Progressive Mild cognitive impairment; AUC=Area under curve;

ACC=accuracy; SEN=sensitivity; SPE=specificity

before spreading to other regions, including adjacent
temporal and parietal areas (Braak and Braak 1991;
Pettigrew et al. 2016). We also observed that models
exclusively built with the sMCI and pMCI population
yielded better benefits than those trained with feature
selection based on the populations of NC and AD, especially
in the choice of the neuropsychological measures.

In recent years, many studies have been published
in the field of MCI-to-AD prediction. Reviews of these
approaches can be found in Falahati et al. (2014) and
Rathore et al. (2017). Table 6 shows that our best prediction
models, with single- or multisource data, performed very
favorably compared with recently published models. For
better compatibility with the present study, we limit this
comparison to studies that used data from the ADNI dataset
to predict MCI-to-AD progression from 24 to 36 months of
follow-up.

Limitations

Despite promising results, there are several limitations
of our study. The data used here correspond to subjects
who meet the inclusion and exclusion criteria established
by ADNI. The choice of cohort may affect the results
of the predictive models. It would remain as future
work to apply the proposed approach for developing new

predictive models using other public cohorts, like OASIS-
3 (LaMontagne et al. 2018).

The modeling of markers was implemented using the
LME approach. A linear function to model the dynamic
changes of structural MRI-based markers is a well-accepted
practice (Guerrero et al. 2016). Experimental evidence
suggests that linear models are not enough to describe
cognitive decline measurements in AD progression (see
Supplementary Materials S.5). A future line of work would
be to improve the modeling of marker trajectories.

Conclusions

Some conclusions of this study were the following: 1)
Identifying most robust predictors of conversion using
feature subsets that appear most frequently in mRMR and
better performance in classification; 2) Classification of
MCI patients into sMCI and pMCIs using the marginal
longitudinal trajectory residues from the selected features;
3) The proposed predictive models were built with
only 3-6 features highly stable under cross validation;
these markers were consistent with Braak stages and
previously reported in MCI-to-AD conversion and are
easy to transfer to new cohorts and clinical practice; 4)
Multisource data for predicting MCI-to-AD conversion

@ Springer
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deliver a more accurate estimate than single-source data;
5) The method uses relatively common clinical tests
such as MRI and neuropsychological tests, as opposed to
methods that rely on more expensive or invasive tests such
as PET-based, CSF-based and genotype-based markers;
6) It can be observed that longitudinal NM and MRI
markers embedded in our proposed longitudinal framework
outperform other classification methods; 7) These reliable
NM and MRI markers of AD progression can offer potential
for monitoring treatment outcome in future drug trials;
and 8) The proposed approach was developed, trained and
evaluated using the ADNI dataset.
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