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A B S T R A C T

Background: Longitudinal studies using structural magnetic resonance imaging (MRI) and neuropsychological
measurements (NMs) allow a noninvasive means of following the subtle anatomical changes occurring during
the evolution of AD.
New Method: This paper compared two approaches for the construction of longitudinal predictive models: a)
two-group comparison between converter and nonconverter MCI subjects and b) longitudinal survival analysis.
Predictive models combined MRI-based markers with NMs and included demographic and clinical information
as covariates. Both approaches employed linear mixed effects modeling to capture the longitudinal trajectories of
the markers. The two-group comparison approaches used linear discriminant analysis and the survival analysis
used risk ratios obtained from the extended Cox model and logistic regression.
Results: The proposed approaches were developed and evaluated using the Alzheimer's Disease Neuroimaging
Initiative (ADNI) dataset with a total of 1330 visits from 321 subjects. With both approaches, a very small
number of features were selected. These markers are easily interpretable, generating robust, verifiable and re-
liable predictive models. Our best models predicted conversion with 78% accuracy at baseline (AUC = 0.860,
79% sensitivity, 76% specificity). As more visits were made, longitudinal predictive models improved their
predictions with 85% accuracy (AUC = 0.944, 86% sensitivity, 85% specificity).
Comparison with Existing Method: Unlike the recently published models, there was also an improvement in the
prediction accuracy of the conversion to AD when considering the longitudinal trajectory of the patients.
Conclusions: The survival-based predictive models showed a better balance between sensitivity and specificity
with respect to the models based on the two-group comparison approach.
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1. Introduction

Alzheimer's disease (AD), the leading cause of dementia in the aging
population, is a degenerative brain disorder that causes a progressive
decline in cognitive function (Holtzman et al., 2011; Jack, 2012). The
aging global population causes the prevalence of AD to grow un-
controllably in the coming decades, creating a critical problem for
health systems (Prince et al., 2013). The early identification of subjects
who progress towards AD will allow the implementation of appropriate
preventive treatments and interventions. Individual level clinical fore-
casting is complicated by the heterogeneous present in the prodromal
phases of AD. Mild cognitive impairment (MCI) is often considered to
be a transitional phase between healthy cognitive aging and dementia
(Petersen et al., 2009). Thus, MCI represents a key prognostic and
therapeutic target in the management of AD. However, MCI is a het-
erogeneous syndrome with varying clinical outcomes, and despite the
high rate of conversion to AD (MCI progressing to AD (pMCI)), a sig-
nificant number of MCI patients remain stable (sMCI) or regain normal
cognitive function (Manly et al., 2008). Therefore, it is critical to un-
derstand AD and its progression and the successful identification of
individuals with pMCI at early stages. A prognosis with high sensitivity
and specificity in MCI-to-AD progression is extremely valuable in clin-
ical practice and in medical research. In clinical practice, the reliability
to accurately predict the diagnosis can help in clinical decisions on
treatment strategies and early detection of at-risk subjects (Sperling
et al., 2014). Clinical trial design could be improved, since it has been
suggested that the low success of pharmaceutical trials in AD could be
due to the inclusion in the study population of subjects too hetero-
geneous (Falahati et al., 2014).

Different modalities of disease indicators have been studied for AD
progression, including neuroimaging biomarkers, blood tests, and
neuropsychological assessments. Some studies have shown that base-
line neuropsychological measures (NMs) have good power in predicting
MCI progression to AD (Chapman et al., 2011). Other studies have
demonstrated that neuroimaging and specifically structural magnetic
resonance imaging (MRI)-based markers support an earlier and more
precise MCI-to-AD diagnosis (Frisoni et al., 2010; Cuingnet et al., 2011;
Eskildsen et al., 2015; Rathore et al., 2017). Some MRI-based markers
complement each other, and markers applied in different parts of the
brain are expected to be sensitive to different stages of the disease
(Sørensen et al., 2017). Nevertheless, recent studies have suggested the
combination of NMs with MRI-based markers to improve early diag-
nostic performance (Da et al., 2014; Moradi et al., 2015; Korolev et al.,
2016; Gavidia-Bovadilla et al., 2017).

Most predictive models of MCI-to-AD conversion use only baseline
data. Compared to cross-sectional analysis, longitudinal studies allow
the observation of individual patterns of change, providing relevant
information that can improve the differential diagnosis (Bernal-Rusiel
et al., 2013b; Gavidia-Bovadilla et al., 2017; Minhas et al., 2017). The
majority of studies in AD have reported longitudinal changes in struc-
ture only, such as the hippocampus or the temporal lobes. Nevertheless,
longitudinal methods, such as linear mixed effects (LMEs) (Bernal-
Rusiel et al., 2013a,b; Platero et al., 2019), allow the analysis of uni-
variate or massive measures over time. The standard strategy for ana-
lyzing the association between longitudinal data and the conversion to
AD is to perform a group comparison based on dichotomizing MCI
subjects into converters and nonconverters (Chtelat et al., 2005; Moradi
et al., 2015; Korolev et al., 2016; Gavidia-Bovadilla et al., 2017).
However, the nature of the estimation problem with regard to MCI-to-
AD conversion is not dichotomous. There is no homogeneity in the
pMCI group (due to observed differences in conversion times) or in the
sMCI group (due to uncertainties in the use of fixed cut-off periods in
the follow-up). To overcome these drawbacks, survival models consider
a unique clinical group that takes into account conversion times and
finite follow-up or censoring (Kleinbaum and Klein, 2010; Sabuncu
et al., 2014). Accordingly, predictive models of MCI-to-AD progression

were designed using Cox proportional hazards regressions. These
models relate the biomarkers obtained from patients at baseline with
conversion or censoring times and estimate the risk of AD (Devanand
et al., 2007; Da et al., 2014; Pettigrew et al., 2016). However, the va-
lidity of the Cox models is based on the exploratory variables being
time-independent or varying proportionally with time. Normally, the
most discriminative markers between sMCI and pMCI patients are
neither invariant nor proportional to time. For example, the classical
hippocampal volume biomarker has annual atrophy ratios of 2% for the
sMCI population and 3.5% in the pMCI group (Wolz et al., 2010;
Iglesias et al., 2016; Platero et al., 2019). On the other hand, predictive
models of MCI-to-AD progression with longitudinal data show better
results than those based on cross-sectional studies. Following Sabuncu's
proposal (Sabuncu et al., 2014), predictive models can be built by
means of the temporal modeling of biomarker trajectories using LME
combined with extended Cox survival analysis, which allows the use of
exploratory variables that are time dependent (Kleinbaum and Klein,
2010). However, these authors only worked in a univariate study and
were not applied as a predictive model of conversion from MCI to AD. Li
et al. (2017) have also developed a predictive model of AD conversion
estimating the risk of the univariate longitudinal trajectory of each
marker, although recently they have built a multivariate approach (Li
et al., 2018).

In the present study, we compared two different approaches of
longitudinal multivariate predictive models to estimate the conversion
of MCI to AD: a) comparison between two clinical groups, stable MCI
and progressive MCI and b) survival analysis using the extended Cox
model and logistic regression. Both approaches combined a very small
number of MRI-based markers with standard cognitive measures, and
both employed LME modeling to estimate the longitudinal trajectories
of these measurements. The first approach was based on marginal
longitudinal trajectory residues, while the second used risk ratios. Our
experiments revealed that the survival-based predictive models with
multisource data (i.e. MRI and NMs) present better prediction results
starting from the second year of follow-up and showed a better balance
between sensitivity and specificity over time than those of the pre-
dictive models based on the two-group comparison.

2. Materials

The Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset
was selected to evaluate the comparison among predictive models of
MCI-to-AD conversion, where subjects have different numbers of visits
to the clinic (Wyman et al., 2013). ADNI has been used by many pub-
lications that have focused on the early prediction of the conversion to
AD (Moradi et al., 2015; Eskildsen et al., 2015; Korolev et al., 2016;
Gavidia-Bovadilla et al., 2017). In the ADNI study, longitudinal brain
T1-weighted MRI data were acquired at baseline and at regular inter-
vals. MRI acquisition was performed according to the ADNI acquisition
protocol (Jack et al., 2008). In our study, all images downloaded from
ADNI were preprocessed using the N3 method (Sled et al., 1998) or
grad warped, followed by B1 bias field correction and N3 intensity
nonuniformity correction (Jack et al., 2008). The MRI-based markers
and NMs used in this study correspond to measures of neurodegen-
eration at the 3-year follow-up. We included unbalanced longitudinal
data from 321 subjects at multiple time points: baseline and 6, 12, 18,
24 and 36 months.

To predict MCI-to-AD conversion, we chose patients diagnosed with
MCI at their baseline assessments and asked whether their diseases had
converted to dementia within 3 years. At each visitation, a clinical di-
agnosis was made to identify MCI subjects whose diseases had con-
verted to probable AD according to ADNI clinical assessments (The
ADNI team, 2018). The conversion time was established between the
baseline and the first visit where the patient was diagnosed with de-
mentia, so long as the diagnosis was reconfirmed on subsequent visits.
The sMCI group only included those MCI patients who were followed-
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up and whose diseases did not convert to probable AD. In addition, the
last visits of the sMCI subjects defined the censorship times. The MCI
subjects were divided into 165 sMCI subjects and 156 pMCI subjects
according to the clinical follow-up for 36 months.

Current guidelines recommend the use of the same subjects as
public cohorts to make studies more comparable (Wyman et al., 2013).
Following this suggestion, the standardized two-year ADNI list for MCI
subjects was used (Wyman et al., 2013). Eskildsen et al. (2013) pub-
lished a list of MCI subjects from the ADNI database whose diseases had
converted to AD or who had remained stable at the 3-year follow-up. In
this study, Eskildsen's list was used and expanded with the MCI subjects
of the standardized two-year ADNI list, who were followed for 36
months. An overview of the subject groups is given in Table 1. For each
group, the total number of subjects, the number of males, and the Mini-
Mental State Examination (MMSE) scores (Folstein et al., 1975) are
shown. No significant differences in age and sex were observed among
the clinical groups. There were significant differences in MMSE scores
among the clinical groups at all time points. Table 2 reports the time
points (Baseline, Month 6, Month 12, Month 24 and Month 36) that
were available for the selected subjects.

2.1. Image processing

The FreeSurfer 5.3 software package was used for subcortical seg-
mentation and surface-based cortical processing (Fischl et al., 2002;
Fischl and Dale, 2000). All scans included in the study were pre-
processed through the same longitudinal pipeline, including those
participants with single time-point acquisitions (Reuter et al., 2012).
The preprocessing was performed separately for each subject and scan.
After cross-sectional preprocessing, FreeSurfer's longitudinal processing
pipeline was used to achieve unbiased within-subject registration
(Reuter et al., 2010), which is achieved by registering scans from each
time point of a subject using a robust and inverse consistent registration

algorithm. Several steps in the processing of the serial MRI scans, such
as skull stripping, Talairach transformations and atlas registrations,
were then initialized with common information from the subject-spe-
cific template. This implementation ensures that all time points are
treated uniformly and with a very high degree of reproducibility
(Reuter et al., 2012).

3. Method

A method with three fundamental stages was used to estimate the
prediction of MCI-to-AD conversion: 1) Feature extraction: a pool of
features was extracted from the MRI data and the cognitive measure-
ments from the MCI population. 2) Feature selection: a feature ordering
stage that uses the minimal-redundancy-maximal-relevance (mRMR)
algorithm (Peng et al., 2005) to propose good subsets of markers for the
prediction of AD conversion. 3) Classification: Two longitudinal clas-
sifier approaches were evaluated in terms of cross-validated classifica-
tion accuracy.

A group of biomarkers was computed from structural MRI scans as
potential predictors of MCI-to-dementia progression. The volumes of
the hippocampus, amygdala, caudate nucleus, pallidum and putamen
were selected (Sørensen et al., 2017) and normalized using the in-
tracranial volume. The eight cortical thickness (CT) measures that were
classified as AD-vulnerable cortical regions were also proposed as po-
tential features (Pettigrew et al., 2016). These regions consisted of the
entorhinal cortex, temporal pole, inferior temporal gyrus, middle tem-
poral gyrus, inferior parietal cortex, superior parietal cortex, precuneus,
and posterior cingulate cortex. All left and right hemisphere measures
were independently considered and combined as bilateral features to be
examined.

NMs are commonly used to classify dementia patients. These fea-
tures test patients in multiple cognitive domains, such as episodic
memory, learning and language (Ferreira et al., 2017). The cognitive
features used in the models included total scores and subscores on five
neuropsychological tests: Rey's Auditory Verbal Learning Test (RAVLT),
Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog),
MMSE, Clinical Dementia Rating (CDR), and Functional Activities
Questionnaire (FAQ). These standard cognitive measurements are ex-
plained in the ADNI General Procedures Manual (The ADNI, 2018). See
more information about extracted markers in supplementary material.

Next, longitudinal data were processed by means the mixed effects
modeling. As the mRMR method does not provide any information on
the optimal number of features, a combined feature ordering and
classification stage was adopted to identify optimal feature subsets
(Eskildsen et al., 2013; Korolev et al., 2016). Feature subsets of different
dimensions were defined using the mRMR algorithm. In the classifica-
tion stage, these feature subsets were evaluated in terms of the cross-
validated classification accuracy. Fig. 1 shows an illustrated diagram of
the main steps of the proposed framework.

3.1. Longitudinal classification

Cox proposed a proportional hazards model for survival data ana-
lysis (Cox, 1975). The Cox model expresses the relation between a
hazard function at time t for a subject with an explanatory vector
X = {X1, X2, ⋯, Xp}, which is independent of time:

=
=

h t X h t X( , ) ( )exp · ,
k

p

k k0
1

where h0(t) is the baseline hazard function and α = {α1, α2, ⋯, αp} is a
vector of regression coefficients. It is a semi-parametric model that
estimates that the risk of the clinical event (in our case, the conversion
from MCI to AD) is given by the composition of the baseline hazard that
depends on time and the linear combination of the exploratory vari-
ables, which were measured from a single baseline visit. The hazard

Table 1
Demographic and clinical details of the subset of the ADNI database used in this
study. Data as represented as means and standard deviations (SDs) unless
otherwise specified. ANOVA was used for baseline ages and neuropsychological
scores. Gender and APOE ε4+ were analyzed with a chi-square test. A
p − value < 0.01 was considered statistically significant. sMCI = Stable mild
cognitive impairment; pMCI = Progressive mild cognitive impairment; MMSE
= Mini-Mental State Examination; APOE ε4+ = APOE ε4 carriers or non-
carriers.

Type (N. subjects) sMCI (165) pMCI (156) F p

Sex male (%) 110 (67%) 92 (59%) 1.71 0.19
Baseline age 74.9 (7.3) 74.6 (6.8) 0.13 0.72
Years of education 15.7 (3.1) 15.8 (2.8) 0.07 0.79
APOE ε4+(%) 69 (42%) 108 (69%) 23.3 < 0.001
MMSE (Baseline) 27.6 (1.7) 26.6 (1.8) 23.53 < 0.001
MMSE (Month 6) 27.6 (2.2) 25.3 (2.9) 61.92 < 0.001
MMSE (Month 12) 27.9 (2.3) 24.9 (2.9) 102.53 < 0.001
MMSE (Month 24) 27.5 (3.0) 22.8 (3.9) 99.84 < 0.001
MMSE (Month 36) 27.3 (6.3) 21.3 (3.7) 63.71 < 0.001

Table 2
Number and timing of scans per time point by clinical group. sMCI = stable
mild cognitive impairment; pMCI = Progressive mild cognitive impairment.

Type (N. subjects) sMCI pMCI Time from baseline (in month)

Baseline 165 156 0
Month 6 159 148 7.0(0.9)
Month 12 158 143 12.9(0.8)
Month 18 58 45 19.0(0.9)
Month 24 124 101 25.0(0.8)
Month 36 46 27 36.9(1.1)
Total 710 620
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ratio (HR) quantifies the differential risk of a subject characterized by
XS in relation to a reference subject characterized by XR:

= =
=

X X h t X
h t X

X XHR( , ) ( , )
( , )

exp ( ) ,S R
S

R k

p

k S k R k
1

, ,
(1)

when HR > 1 indicates that the subject characterized by XS has an
increased risk of disease conversion with respect to the reference sub-
ject, XR. Conversely, if HR < 1, the conversion risk is decreased. The
main assumption of the Cox model is the ratio of the hazard functions of
the two samples over time.

The partial likelihood maximization method is used to calculate the
α coefficients (Cox, 1975). Let m denote the event of the conversion
time from MCI to AD (m∈ {1, 2, …, M}, where M is the number of
converters such that M is less than the number of subjects in the po-
pulation), and the partial likelihood is expressed as the product of the M
terms. Each of these terms is calculated between the hazard functions of
the subjects whose diseases converted at the mth event of time (tm) in
relation to all the subjects whose diseases have not yet converted:

= =
=

L L L h t X
h t X

( ) ( ) ( , )
( , )

,
m

M

m m
m m

r R m r1 m (2)

where Rm is the so-called risk set at tm, which indexes the subjects who
remain as MCI patients at tm. Subsequently, the partial likelihood
function is maximized with respect to the unknown α parameters of the
model. This set of equations will allow estimation of the α parameters
using a numerical optimization method.

Variables such as gender or years of education can be considered
independent of time. Age, meanwhile, is proportional to time. However,
most of the biomarkers in a longitudinal study are neither constant nor
proportional with time. The Cox model can be extended for in-
dependent and dependent variables over time:

= +
= =

h t X h t X Y t( , ) ( )exp · · ( ) ,
k

p

k k
l

p

l l0
1 1

1 2

(3)

where the second term in the exponential includes the effects of p2 time-
varying variables = …Y t Y t Y t Y t( ) { ( ), ( ), , ( )}p1 2 2 with associated coeffi-
cients = …{ , , , }p1 2 2 . The estimation of the model parameters is also
calculated by partial likelihood maximization. However, for each con-
version event time, the risk set should take into account the values of
the exploratory variables according to the conversion time, tm.
Therefore, to estimate the extended Cox model parameters, the values
of the markers at each instant of conversion tm for all the subjects of the
risk set are required. However, in a longitudinal study, image data and
neuropsychological tests are acquired at regular periods and un-
balanced samples, i.e. the number of visits for each subject can be
variable. Moreover, the acquisition times of the markers and the in-
stants of conversion time do not necessarily coincide. To solve these
drawbacks, the longitudinal trajectories of the measurements were
modeled by LME models, allowing estimates of these measurements to

be known at any time.
LME models are extensions of linear models that allow both fixed

and random effects, which consider the sources of variation between
subjects and within subjects (Bernal-Rusiel et al., 2013b). The LME
model is expressed as:

= + +Y Z W b e ,i i i i i

where Yi is the vector of a feature for the time points of subject i, Zi is
the design matrix for the fixed effects (including variables such as
clinical group, age, sex, education, and scan time), and β are the fixed
effects coefficients, which are identical for all subjects. In addition to
the fixed effects, a mixed effects model is used for subject-specific
random effects, where Wi is the design matrix for the random effects, bi
is a vector of the random effects, and ei is a vector of measurement
errors. The components of bi reflect how the subset of regression
parameters for the ith subject deviates from those of the population.
The LME models were built with an intercept and slope as random ef-
fects to be included in the longitudinal trajectory (Bernal-Rusiel et al.,
2013b; Platero et al., 2019).

The influence of sociodemographic characteristics was collected
with the effect of age at baseline (Agei), sex (Sexi) and years of educa-
tion (Educationi) (Jiang et al., 2014; Liu et al., 2012). Apolipoprotein E
(APOE) genotype status is the most prevalent genetic risk factor for AD
(Saykin et al., 2010). The APOE genotype was assessed, and patients
were characterized as ε4 carriers or ε4 noncarriers. The interaction
between APOE genotype status and time was also considered based on
the evidence that ε4 accelerates atrophy during the prodromal phases of
AD (Bernal-Rusiel et al., 2013b). The combinations of these fixed effects
in the LME modeling did not show significant differences for the pre-
diction of conversion from MCI to AD (Platero et al., 2019). The best
predictive results were obtained when constructing LME models that
added age, sex and years of education as covariates. The APOE geno-
type was not selected as a covariate in the LME modeling. This decision
was consistent with APOE ε4 being a risk factor for AD; however, its
value for individual patient predictions was limited (Da et al., 2014).

In the case of the two-group comparison approach, the effect of the
clinical group was considered; therefore, a Boolean variable for the
clinical group (Groupi) and its interaction with time were added:

= + + + + +
+ + + +

y b
b t e

( ·Group ·Age ·Education ·Sex )
( ·Group ) ,

i i i i

i

ij 1 2 3 4 5 ri

6 7 si ij ij (4)

where j = 1, .. ., ni indexes the time points with ni indicating the
number of scans for subject i, yij is the jth measure of a feature from
subject i, tij is the scan time from baseline (in years), and βr = [β1, β2,
β3, β4, β5,]T and βs = [β6, β7]T are the intercept and slope, respectively.
The boolean variable Groupi is true if the ith subject progresses to AD
and false if the subject remains stable. However, in the survival ana-
lysis, the LME modeling did not consider the effect of the clinical group:

Fig. 1. Overview of the proposed comparative framework.
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= + + + +
+ + +

y b
b t e

( ·Age ·Education ·Sex )
( ) .

i i iij 1 2 3 4 ri

5 si ij ij (5)

3.2. Predictive models using the two-group comparison

Regarding the classification of subjects between the two clinical
groups of MCI, we proposed to compare the longitudinal tendency of a
feature using an LME model trained between these two clinical groups.
For a feature, the difference between the longitudinal trajectory of the
ith subject and the LME model is described by the random vectors bi and
ei, which follow mean zero-Gaussian multivariate distributions, in-
dicating a population-averaged mean of E(Yi) = Ziβ (Bernal-Rusiel
et al., 2013b). Therefore, the longitudinal trajectory residue is defined
as follows:

=
=

l
n

y Z1 ( ( ) ),i
i j

n

i j
1

ij

i

(6)

where Z( )i j is the j-row vector of the design matrix, which is activated
by the boolean variable of the clinical group (Groupi = 1), i.e., the ef-
fects of AD progression compared to stable MCI. The li samples be-
longing to the pMCI group follow a normal distribution with zero mean
and variance determined by bi and ei. In contrast, the li samples not
belonging to the pMCI group will also follow a normal distribution with
the same variance but with a bias in relation to zero-mean, which is
related to the fixed effects of the clinical groups. The random variable li
is used to train and classify the features by linear discriminant analysis
(LDA). All longitudinal trajectory residues of the selected features were
assumed to be independent. These marginal residues were used as data
for training and testing of the LDA classifiers. Note that these classifiers
do not require the adjustment of any parameter, as is traditionally done
at this stage (Moradi et al., 2015; Korolev et al., 2016). Moreover, the
marginal residues of the longitudinal trajectories of the markers as in-
puts to the LDA had been experimentally validated (Platero et al.,
2019).

3.3. Predictive models using survival analysis

Given a population of MCI subjects, from which a series of long-
itudinal measurements of both MRI and neuropsychological tests have
been extracted, the longitudinal measurements were modeled by LME
using age, sex and education as covariates (without the clinical group
effect, see Eq. (5)). Therefore, for each subject and each of the different
conversion times, it was possible to estimate the value of each marker.
In addition, it was also known whether the subject's disease had become
AD in the follow-up period. For those subjects whose disease had con-
verted to AD, the conversion time was calculated from the baseline. In
the case of sMCI subjects, the censorship time was also known.

An extended Cox model was constructed for each significant dis-
crete time. In our case, we had four models, i.e. one for the beginning of
the study, and one each for the 12, 24 and up to 36 months follow-up.
To build each of these four predictive models, the hazard ratios were
calculated (see Eq. (1, 2),(3)) and converted into probabilistic terms of
conversion from MCI to AD using the logistic regression model:

=
+

p X( ) 1
1

,S v
X X

, 1
HR ( , )v S v R v, , (7)

where HRv is the hazard ratio in the visit v v, ( {0, 12, 24, 36}) and XS v,
and XR v, are the vectors of the exploratory variables of the subject and
the reference in the visit v, respectively, and these vectors are formed
with p1 time-independent and p2 time-varying variables, the latter
being modeled by means LME. Note the bias due to the use of LME
modeling in the time-dependent measurements as input to the extended
Cox model (see supplementary materials). HRv was built by means an
extended Cox-LME model with XR v, , which was calculated using a

random subset of the training population at visit v. This subset was
sampled with the same number of subjects, both sMCI and pMCI pa-
tients. The components of XR v, were defined by the average values of
this population and scaled by their standard deviations. Therefore, each
exploratory variable of X X( )S v R v, , was defined as a z-score. Therefore,
if a subject with XS v, shows a >X XHR ( , ) 1v S v R v, , , then >p X( ) 0.5S v, ,
and on the contrary, when <X XHR ( , ) 1v S v R v, , , then <p X( ) 0.5S v, ,
where p X( )S v, denotes the conversion probability into AD of the disease
of subject S at visit v.

3.4. Feature selection and building the predictive models

For both approaches, a nested cross-validation (CV) procedure was
used to avoid model overfitting and optimistically biased estimates of
model performance (Korolev et al., 2016). The procedure consisted of
two nested CV loops: an inner loop, designed to select the optimal
feature subsets for the proposed models, and an outer loop, designed to
obtain an unbiased estimate of model performance. Note that in this
manner, double-dipping, i.e., using the same data for both feature se-
lection and learning the classifier, was avoided. A nested k-fold CV
procedure was applied. The value for k was fixed to 10, a value that was
found through experimentation to generally result in a model skill es-
timate with low bias a modest variance (Kuhn and Johnson, 2013).
Both the outer and inner CV loops used a 10-fold CV design. In the outer
CV loop, the data were partitioned into model and test data (see Fig. 2).
In the inner CV loop, the model data were again partitioned into
training and validation data.

For each inner CV loop, a set of combinations of markers with dif-
ferent dimensions was proposed, which were subsequently evaluated in
the outer CV loop. The feature ordering by means mRMR was combined
with the evaluation of the predictive models constructed with the
candidate feature subsets. These two steps of each inner CV loop were
developed with the following activities: I) A resampling method sear-
ched for the first 10 subsets of each dimension that appeared most
frequently in mRMR. The feature subsets with dimensions from 2 to 5
for single-source predictive models and from 4 to 10 for multi-source
models were explored. For this purpose, random partitions of training
data were subjected to the mRMR algorithm. We used the mutual in-
formation difference metric, and the features were normalized to zero
mean and unit variance in the mRMR algorithm. This sequence (i.e.,
partitions of the random subsets of training, applying mRMR and pro-
posing combination features) was repeated 100 times for each inner
loop. For each dimension, the 10 combinations of features that most
frequently appeared were selected. And II) Predictive models were built
using only the training data with the above candidate feature subsets.
Of these, the 3 top-performing combinations of markers in terms of
classification accuracy by the evaluation of their corresponding models
were selected. Therefore, for each outer iteration, 30 subsets for each
dimension were evaluated. In the outer CV loop, for each candidate
feature selection, a predictive model was built from the training data
and its performances were evaluated with the withheld test data, which
were not used during feature selection, model selection, or final model
construction. For better replicability, the nested 10-fold CV procedure
was repeated with different partitions of the data, generating multiple
performance estimate values. In total, there were 30,000 evaluations of
selected subsets for each dimension. Note that these 30,000 proposals
for each dimension of the combinations of markers only use training
information. Predictive models with more frequent appearances of the
feature subsets (i.e. number of times that the combination of proposed
features was evaluated by the CV procedure), higher AUC values and
balanced sensitivity and specificity were selected. Fig. 2 shows the
general procedure for the development of the predictive models and
their subsequent evaluation.

A MATLAB implementation of our method is available at https://
www.nitrc.org/projects/twogrsurvana/. As well as a demo with the
ADNI data used in this study. The proposed algorithm may generate
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new predictive models. Faced with a new problem, the subject identi-
fiers, their visits, as well as a list of proposed markers to be explored
must be provided. Note that both the feature selection, and the con-
struction of the predictive models do not require tedious parameter
adjustment, since mRMR does not require any parameter, nor the
modeling of the trajectories with the LME approach, nor the classifi-
cation tasks that also does not require any parameter.

4. Results

A total of 1330 scans from 321 subjects were processed using the
proposed approaches. To validate the consistency of the applied long-
itudinal image processing pipeline, quality control was used between
the scans and segmentations of each subject (see supplementary ma-
terials). For each visit by each subject, subcortical volumes and CT
measurements were obtained using the longitudinal pipeline of
Freesurfer (Reuter et al., 2012). The feature extraction stage resulted in
40 ROI-based MRI predictors of cortical and subcortical structures and

11 NMs. Considering the 51 features, first, a univariate analysis of each
of the markers was performed, and then a multivariate analysis was
carried out to generate the proposed predictive models.

4.1. Univariate analysis of the markers

Given the LME modeling of each longitudinal measurement on the
study population, hypothesis tests were performed on the marker dis-
crimination capacities according to the clinical group and time. In
general, for a given contrast matrix C, the two competing hypotheses
are as follows:

=H C H C: 0 and : 0,A0

where the β parameters were estimated from Eq. (4). Under the null
hypothesis, it can be shown that the samples follow an F-distribution
with different degrees of freedom depending on the contrast matrix
(Bernal-Rusiel et al., 2013b). Table 3 shows the p-values for the top-
most discriminating markers between sMCI and pMCI. For the first
contrast matrix (C1), the differences of each marker between the two

Fig. 2. Nested 10-fold cross-validation procedure for model development and evaluation.

Table 3
The most significant p-values when comparing values between clinical groups at baseline (C1) and over time (C2). The ranking was determined based on the
increasing order of the sum of the two p-values. The notation of the MRI-based features is given by an acronym of the brain structure, accompanied by a subindex,
which indicates a measure of volumetry (V) or cortical thickness (T). A13 = ADAS13; ADV = AD-vulnerable (Pettigrew et al., 2016); MT = Middle temporal lobe;
FAQ = Functional Activities Questionnaire; IT = Inferior temporal lobe; E = Entorhinal; RTim = RAVLT Immediate; IP = Inferior parietal lobe; H = Hippocampus.

Features A13 ADVT MTT FAQ ITT ET RTim IPT HV

p-values (C1) 3.1E − 18 1.2E − 12 7.8E − 12 3.6E − 11 4.8E − 9 9.0E − 9 7.9E − 15 6.0E − 10 4.0E − 11
p-values (C2) 3.3E − 16 1.1E − 16 4.8E − 14 3.3E − 17 2.1E − 16 5.8E − 14 1.8E − 6 2.2E − 6 1.9E − 5
Ranking 1 3 4 5 8 10 17 18 22
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groups were measured at baseline. For the second contrast matrix (C2),
the discrepancies between sMCI and pMCI were evaluated over time.
The markers were named without indication as to which hemisphere or
subscore they corresponded. In addition, the ranking was determined
based on the increasing order of the sum of the two p-values. The absent

markers in the sorting correspond well to marker subgroups (for ex-
ample, the marker in the second position was ADAS11) or the same
marker on the left, right or bilateral side (for example, the markers in
the sixth and seventh positions were the cortical thickness of the left
and right medial temporal lobe, respectively). It should be noted that

Fig. 3. The smoothed longitudinal trajectories of some of the best biomarkers under the univariate analysis. Dashed lines show 95% confidence intervals. The
notation of the MRI-based features is given by an acronym of the brain structure, accompanied by a subindex that indicates a measure of volumetry (V) or cortical
thickness (T). CTs are measured as the mean value of each ROI. The volume measurements are normalized by the intracranial volume (ICV). FAQ = Functional
Activities Questionnaire; MT = Middle temporal lobe; E = Entorhinal; IP = Inferior parietal lobe; H = Hippocampus.
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the first volume measure occupies position 22 in the ranking, corre-
sponding to the normalized left hippocampal volume. Fig. 3 displays
the smoothed longitudinal trajectories of some of the best biomarkers
under the univariate analysis.

4.2. Performance of the predictive models of MCI-to-AD progression

However, adding the above mentioned first n markers did not
guarantee that the prediction of AD conversion would be improved. It
was proposed to apply a nested k-fold CV procedure, which selected the
best subsets of features, and to build the predictive models with their
subsequent evaluations (see Section 3.4). All training data was reused
for the construction of predictive models in any of its visits and ap-
proaches used. Both proposed methods have as input to the construc-
tion of the predictive models the LME modeling of the longitudinal
trajectories of the selected markers. LME modeling was calculated with
all visits of training subjects (see Fig. 1). Another very different thing
happens with the information of the test subjects. In the two-group
comparison approach, the input to the linear discriminant analysis uses
the longitudinal trajectory residue (see Eq. (6)). Therefore, all the
measurements of a test subject, in the selected markers, from the
baseline to the censorship visit were considered. Regarding the pre-
dictive models based on survival analysis, since the models were stra-
tified by visits, the exploratory variables of the test subjects were
compared with the reference population of that censored visit, then
only the information of the censored visit was used, although in the
construction of the extended Cox models, all the information of the
training subjects was used, from the first visit to the last. Table 4 and 5
summarize the scores of the predictive models with the two types of
approaches over time. Several predictive models instead of one for each

approach were presented due to these proposed models exhibiting
combinations of markers with similar performance.

For predictive models with only MRI-derived markers (see Table 4),
i.e. single-source models, the dimensions of the feature vector ranged
from 2 to 5, and the selected markers were similar in both approaches.
Hippocampal and pallidum volume and CT in the inferior parietal and
medial temporal lobes were usually selected. Regarding the scores, as
expected, we observed a sustained increase in AUC and accuracy as
more visits of the subjects were considered in both approaches. The
extended Cox models show a better balance between sensitivity and
specificity throughout the longitudinal study. In addition, these survival
models also reflected an increase in sensitivity and specificity scores
over time. In contrast, the two-group comparison approach remained
stable with a sensitivity of approximately 74% over time, and a speci-
ficity that increased with time. During the first year, the results of both
approaches were comparable. However, from the second year onward,
the survival analysis showed improved scores over those of the com-
parison method.

For multisource predictive models (i.e. MRI data and NMs), in either
of the two approaches, the dimensions of the feature vectors range from
5 to 7, the sum of either two or three measurements from MRI data and
of either three or four neuropsychological tests. There were many co-
incidences over the biomarkers chosen in the two approaches. In vo-
lumetry, one or two measures related to the hippocampus and pallidum
appeared, especially on the left side. In cortical thickness, there was a
unique measurement, one of either the inferior parietal lobe or the
medial temporal lobe. Regarding NMs, the combined use of ADAS13,
FAQ and RAVLT Immediate overwhelmingly coincided. In the same
way as in the single-source models, the two approaches maintained
similar scores during the first year. Starting in the second year, the

Table 4
Scores for predicting MCI-to-AD conversion using only MRI-based biomarkers. Each row shows the classification results of the predictive models according to the
approach (Two-group comparison, 2G, and Survival analysis, SA) and visit (Baseline, bl, Month 12, m12, Month 24, m24, Month 36, m36). Numbers within
parentheses are the 95% confidence interval except the frequency column. The notation of the MRI-based features is given by an acronym of the brain structure,
accompanied by subindex and super-index. Subindex indicates a measure of volumetry (V) or cortical thickness (T). Super-index indicates whether the measurement
is from the left (L), right (R) or bilateral (B) hemispheres. H = Hippocampus; P = Pallidum; MT = Medial Temporal; IP = Inferior Parietal; E = Entorhinal; AUC =
Area under the curve; ACC = Accuracy; SEN = Sensitivity; SPE = Specificity; Frequency = Minimum and maximum range of the number of times that the
combination of proposed features was evaluated by the cross-validation procedure.

Data AUC ACC (%) SEN (%) SPE (%) Frequency Optimal feature subsets

MRI G
bl
2 0.769(0.763 0.775) 69.7(69.1 70.3) 74.1(73.2 74.9) 65.6(64.7 66.4) 376-981 H P, , MTV

L
V
L

T
R

H P, , IP , MTV
L

V
L

T
L

T
R

E , IPT
B

T
L

MRIbl
SA 0.769(0.763 0.775) 70.2(69.6 70.8) 68.8(68.0 69.7) 71.5(70.7 72.2) 756-1760 H P, , IP , MTV

L
V
L

T
L

T
R

H P E, , , IPV
L

V
L

T
B

T
B

H P E, , IP ,V
L

V
L

T
L

T
R

MRIm
G
12

2 0.797(0.791 0.803) 71.3(70.7 71.9) 73.9(73.0 74.7) 69.2(68.3 70.1) 473-552 H P, , IP , MTV
L

V
L

T
L

T
R

H P E, , IP ,V
L

V
L

T
L

T
B

H P, , MTV
L

V
L

T
R

MRIm12
SA 0.789(0.783 0.795) 70.9(70.4 71.5) 71.4(70.5 72.3) 70.7(69.9 71.6) 636-1915 H P, , MTV

B
V
L

T
B

H P, , IPV
B

V
L

T
L

H P, , IPV
B

V
L

T
B

MRIm
G
24

2 0.810(0.804 0.816) 72.4(71.8 73.0) 73.9(73.0 74.8) 71.0(70.2 71.8) 363-573 H P, , IPV
B

V
L

T
L

H P, , IP , MTV
L

V
L

T
L

T
R

H P, , MTV
L

V
L

T
R

MRIm24
SA 0.817(0.810 0.823) 73.7(73.0 74.3) 75.5(74.6 76.5) 71.9(70.9 72.8) 502-758 H P, , MTV

B
V
L

T
B

H P E, , IP , MT ,V
B

V
L

T
B

T
L

T
R

H P, , IPV
B

V
L

T
L

MRIm
G
36

2 0.858(0.849 0.868) 74.2(73.3 75.1) 75.7(73.9 77.4) 72.9(71.7 74.2) 574-1471 H P E, , IP , , MTV
L

V
L

T
L

T
R

T
R

H P, , IP , MTV
L

V
L

T
L

T
R

H P E, , IP ,V
B

V
L

T
B

T
R

MRIm36
SA 0.885(0.872 0.898) 78.3(76.9 79.7) 79.0(76.5 81.5) 78.1(76.2 80.0) 470-1165 H P E, , IP , , MTV

L
V
L

T
L

T
B

T
R

P E, IP ,V
L

T
B

T
B

H P, , IPV
B

V
L

T
L
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prediction scores of the extended Cox models improved with respect to
the two-group comparison approach.

In recent years, many studies have been published in the field of
MCI-to-AD prediction. Reviews of these approaches can be found in
Falahati et al. (2014), Rathore et al. (2017). Table 6 shows that our best
prediction models, with either single- or multisource data, performed
favorably compared with recently published models. For better com-
patibility with the present study, we limit this comparison to studies
that used data from the ADNI dataset to predict MCI-to-AD progression

from 24 to 36 months of follow-up. In our study, we presented the
baseline scores and the classification results from longitudinal trajec-
tories belonging to the 36-month visit. This work stands out for ob-
taining baseline scores comparable with other cross-sectional ap-
proaches but with a smaller and identifiable feature vector. Unlike the
other approaches, there was also an improvement in the prediction
accuracy of the conversion to AD when considering the longitudinal
trajectory of the patients. As more visits were made available from the
patients, the predictive models exhibited not only improvement in the

Table 5
Scores for predicting MCI-to-AD conversion using multisource biomarkers. Each row shows the classification results of the predictive models according to the
approach (Two-group comparison, 2G, and Survival analysis, SA) and visit (Baseline, bl, Month 12, m12, Month 24, m24, Month 36, m36). Numbers within
parentheses are the 95% confidence interval except the frequency column. The notation of the MRI-based features is given by an acronym of the brain structure,
accompanied by subindex and super-index. Subindex indicates a measure of volumetry (V) or cortical thickness (T). Super-index shows the measurement is from the
left (L), right (R) or bilateral (B) hemispheres. H = Hippocampus; P = Pallidum; MT = Medial Temporal; IP = Inferior Parietal; A13 = ADAS13; AQ4 = ADAS-Q4;
FAQ = Functional Activities Questionnaire; RTim = RAVLT Immediate; AUC = Area under the curve; ACC = Accuracy; SEN = Sensitivity; SPE = Specificity;
Frequency = Minimum and maximum range of the number of times that the combination of proposed features was evaluated by the cross-validation procedure.

Data AUC ACC (%) SEN (%) SPE (%) Frequency Optimal feature subsets

+(MRI NM) G
bl
2 0.855(0.850 0.861) 75.9(75.3 76.5) 85.6(84.8 86.4) 67.1(66.2 68.0) 405-1480 P A, MT , 13, FAQ, RTV

L
T
B

im

P A, IP , 13, AQ4, FAQ, RTV
L

T
B

im

H A, MT , 13, FAQ, RTV
L

T
R

im

+(MRI NM)bl
SA 0.860(0.856 0.864) 77.7(77.3 78.2) 79.2(78.6 79.9) 75.9(75.2 76.5) 266-461 H P A, , MT , 13, FAQ, RTV

L
V
L

T
B

im

H P A, , IP , 13, AQ4, FAQ, RTV
L

V
L

T
L

im

P A, IP , 13, FAQ, RTV
L

T
B

im

+(MRI NM)m
G
12

2 0.894(0.890 0.897) 80.1(79.6 80.5) 82.5(81.9 83.1) 77.9(77.2 78.5) 709-1080 P A, IP , 13, FAQ, RTV
L

T
B

im

P A, MT , 13, FAQ, RTV
L

T
B

im

H P A, , IP , 13, AQ4, FAQ, RTV
B

V
L

T
B

im

+(MRI NM)m12
SA 0.891(0.886 0.895) 79.3(78.7 79.9) 78.5(77.5 79.4) 80.2(79.3 81.1) 479-635 P A, IP , 13, FAQ, RTV

L
T
B

im

P A, MT , 13, AQ4, FAQ, RTV
L

T
B

im

P A, IP , 13, AQ4, FAQ, RTV
L

T
B

im

+(MRI NM)m
G
24

2 0.908(0.905 0.911) 81.6(81.2 82.0) 77.8(77.1 78.5) 84.7(84.1 85.3) 646-1386 P A, IP , 13, FAQ, RTV
L

T
L

im

P E A, , IP , 13, AQ4, FAQ, RTV
L

T
B

T
B

im

P A, MT , 13, FAQ, RTV
L

T
B

im

+(MRI NM)m24
SA 0.925(0.920 0.930) 83.6(82.9 84.2) 85.2(84.3 86.2) 82.4(81.4 83.3) 525-817 P A, IP , 13, FAQ, RTV

L
T
L

im

P A, MT , 13, FAQ, RTV
L

T
B

im

P A, IP , 13, FAQ, RTV
L

T
B

im

+(MRI NM)m
G
36

2 0.917(0.908 0.926) 82.6(81.6 83.6) 74.2(72.1 76.2) 87.8(86.6 89.1) 672-1162 P A, MT , 13, AQ4, FAQ, RTV
L

T
B

im

H P A, , IP , 13, AQ4, FAQ, RTV
B

V
L

T
B

im

P A, MT , 13, FAQ, RTV
L

T
B

im

+(MRI NM)m36
SA 0.944(0.949 0.949) 85.3(84.7 86.0) 86.3(85.2 87.4) 85.6(84.8 86.5) 692-1639 P A, MT , 13, FAQ, RTV

L
T
B

im

H P A, , MT , 13, FAQ, RTV
L

V
L

T
B

im

P A, MT , 13, AQ4, FAQ, RTV
L

T
B

im

Table 6
Comparison of approaches for predicting MCI-to-AD conversion. Our classification results are given at baseline as well as at the 36-month visit. Our predictive models
were built using survival models with age, sex and years of education as covariates. AUC = Area under the curve; ACC = Accuracy; SEN = Sensitivity; SPE =
Specificity.

Approach Follow-up Subject number Data AUC ACC (%) SEN (%) SPE (%) Feature number
sMCI/pMCI

Gavidia-Bovadilla et al. (2017) 36 MRI 70.3 64.3 75.2
Beheshti et al. (2017) 36 65/71 MRI 0.751 75.0 76.9 73.2
Eskildsen et al. (2015) 36 227/161 MRI 0.763 71.9 69.6 73.6 5
Moradi et al. (2015) 36 164/100 MRI 0.766 74.7 88.8 51.6 309
Minhas et al. (2017) 24 65/54 MRI 0.811 77.5 53.9 89.2 38
Spasov et al. (2019) 36 228/181 MRI 0.79 72 63 81
Present study 36 165/156 MRI 0.769 70.2 68.8 71.5 2-5

0.885 78.3 79.0 78.1
Korolev et al. (2016) 36 120/139 MRI,NM 0.87 79.9 83.4 76.4 10
Moradi et al. (2015) 36 164/100 MRI,NM 0.902 82.0 87.0 74.0 309
Gavidia-Bovadilla et al. (2017) 36 MRI,NM 76.7 70.8 81.6
Minhas et al. (2017) 24 65/54 MRI,NM 0.889 84.3 70.4 92.3 45
Spasov et al. (2019) 36 228/181 MRI 0.925 86 87.5 84
Present study 36 165/156 MRI,NM 0.860 77.7 79.2 75.9 5-7

0.944 85.3 86.3 85.6
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prediction but also a better balance between sensitivity and specificity.
Finally, our study employed a greater number of subjects and visits of
the ADNI database in the construction of the predictive models com-
pared to other publications.

4.2.1. Correlations between the proposed predictive models and ADAS-Cog
The ADAS-Cog is the most widely used general cognitive measure in

clinical trials of AD (Skinner et al., 2012). The ADAS-Cog assesses
multiple cognitive domains including memory, language, praxis, and
orientation (Skinner et al., 2012). The longitudinal ADAS-Cog score has
been reported to be the strongest predictor of time from MCI to AD (Li
et al., 2017). In addition, using the univariate analysis of the features,
ADAS13 was the most discriminating measure between sMCI and pMCI
patients. Table 7 shows the scores for predicting MCI-to-AD conversion
using ADAS13 exclusively. These scores were obtained using the pro-
posed survival analysis with ADAS13 and considering age, sex and
education as covariables. Comparing these results with those presented
in Tables 4 and 5, the scores using ADAS13 were similar to those ob-
tained with the predictive models constructed with only MRI markers.
However, the balance between sensitivity and specificity is better in the
predictive models using MRI markers exclusively.

Next, we tried to verify whether there was a correlation between the
ADAS13 scores and the predictions of the proposed models. Figs. 4 and
5 show the relationships between the ADAS13 scores of the subjects at
the different visits with the predictions of the single- or multiple-
sources models using the proposed survival analysis. It was observed
that the linear correlation between ADAS13 and the results of the
predictive models increased over time, more so in the multisource
models. It is noteworthy how the single-source models, i.e. constructed
exclusively with MRI data, correlated reasonably well with ADAS13.
This was more obvious in the multisource models, as this measure was
used in the construction of these models. It was also remarkable how
the combination of ADAS13 with other markers, either MRI-based
markers or NMs, improved the prediction results of the conversion of
MCI to AD in relation to the ADAS13 scores.

5. Discussion

Many studies have focused on the ability to predict the conversion
of MCI to AD with a single marker. For example, using two-group
comparison approaches, greater rates of atrophy, as a biomarker, have
been used in the hippocampus (Jack et al., 2004; Apostolova et al.,
2010; Miller et al., 2013), entorhinal cortex (Jack et al., 2004; Miller
et al., 2013) and the medial temporal lobe (Blasko et al., 2008).
However, the complexity and heterogeneity of AD does not appear to be
explained by the analysis of a single biomarker (Cuingnet et al., 2011;
Falahati et al., 2014; Rathore et al., 2017). Advances in neuroimaging
have provided the opportunity to study many variables simultaneously
and observe inherent patterns in the data over time. Longitudinal stu-
dies of MCI patients basically have two objectives: (i) Maximize the
accuracy of the prediction of conversion to AD using a combination of
markers and (ii) Identify a small group of interpretable markers that can
aid in the understanding of the evolution of AD. We developed

predictive models of MCI-to-AD progression that combine a very small
subset of MRI-based markers with standard cognitive measures and
included demographic and clinical information as covariates. The pre-
dictive models were built using longitudinal data. An extensive set of
cortical and subcortical features from MRI data and neuropsychological
tests were longitudinally extracted. Feature subsets of different di-
mensions were preselected using the mRMR algorithm, and a resam-
pling method searched through each dimension for the feature subsets
that appeared most frequently. Subsequently, the proposed feature
subsets were evaluated in terms of the cross-validated classification
accuracy. The optimal feature subsets to be used in the final models
were determined according to the number of times that the combina-
tions of proposed features were evaluated by the CV procedure, higher
AUC values and the best balances between sensitivities and specificities
(see Fig. 2, Tables 4, 5). Predictive models with more frequent ap-
pearances (i.e. number of times that the combination of proposed fea-
tures was evaluated by the CV procedure), higher AUC values and ba-
lanced sensitivity and specificity were selected.

The main purpose of this paper was to compare two approaches to
build longitudinal predictive models: a) Comparison between two
clinical groups, i.e. sMCI vs. pMCI and b) Use of models based on sur-
vival analysis. Both approaches share LME modeling of the longitudinal
trajectories of the markers. While the two-group comparison approach
considered the differences between converter and nonconverter sub-
jects, the survival analysis only explored the information of the subjects
up until the conversion or censoring times. The analysis of the MMSE of
the studied MCI population during the 36 months clearly shows that the
problem is not dichotomous (see Table 1). The subjects labeled as sMCI
maintained a MMSE value that practically remained constant
throughout the study. However, the MMSE scores of the pMCI patients
fell over time. The explanation for this is that the conversion times from
MCI to AD were variable. There were subjects whose diseases convert at
the beginning of the study and others at the middle or end. The con-
clusion was obvious: the pMCI group was not homogeneous with re-
spect to conversion time; therefore, the main hypothesis in the two-
group comparison approach was violated. There was no homogeneity in
the pMCI group, as a result of different conversion times, or in the sMCI
group, as a result of uncertainties due to a fixed cut-off period in the
follow-up. To overcome these difficulties, statistical methods of survival
analysis were used and the AD-prediction markers were reevaluated.
The Cox proportional hazards model has previously been employed to
predict the conversion from MCI to AD (Devanand et al., 2007; Desikan
et al., 2009; Vemuri et al., 2011). However, this approach only analyzes
baseline measurements, which restricts the associations among markers
and the evolution of AD. An alternative approach was designed by
combining an extended Cox model with LME modeling that examined
the relationship between time-dependent markers and the timing of the
conversion to AD or the censure times of the samples.

With both approaches, a very small number of features were se-
lected. These markers are easily interpretable, generating robust, ver-
ifiable and reliable predictive models. Moreover, age, sex and years of
education of the patients were easily incorporated into the predictive
models as covariates. Two-group comparison approaches used LDA-
based classifiers, which were trained with marginal longitudinal tra-
jectory residues. In contrast, survival analysis used risk ratios obtained
from the extended Cox model, and these were transformed in prob-
abilistic terms for the conversion from MCI to AD using the logistic
regression model. CV strategies were used to avoid contamination of
the training data with the testing data. The procedure consisted of two
nested CV loops: an inner loop, designed to select the optimal feature
set for the proposed models, and an outer loop, designed to obtain an
unbiased estimate of model performance. The use of k-fold CV was
recommended as a means of standardizing to evaluate the predictive
models of MCI-to-AD progression (Wyman et al., 2013). Finally, a key
feature of the dynamic prediction frameworks is that the predictive
models can be updated as additional longitudinal measurements

Table 7
Scores for predicting MCI-to-AD conversion using ADAS13. For each visit
(Baseline, bl, Month 12, m12, Month 24, m24, Month 36, m36), a predictive
model was built with the extended Cox approach. Numbers within parentheses
are the 95% confidence interval. AUC = Area under the curve; ACC =
Accuracy; SEN = Sensitivity; SPE = Specificity.

Visit AUC ACC (%) SEN (%) SPE (%)

bl 0.773(0.766 0.780) 70.3(69.7 71.0) 69.5(68.5 70.5) 71.2(70.2 72.3)
m12 0.836(0.830 0.842) 73.6(72.9 74.3) 69.5(68.4 70.5) 77.3(76.3 78.2)
m24 0.848(0.841 0.855) 75.8(75.1 76.6) 72.0(70.7 73.2) 79.0(78.0 80.0)
m36 0.899(0.886 0.912) 76.7(75.3 78.2) 74.3(71.6 76.9) 78.2(76.1 80.2)
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become available for the target subjects, providing instantaneous risk
assessment.

Performing an analysis of 321 participants with 1330 visits provided
a large number of subjects for training and testing the two proposed
approaches and enabled us to establish a few main conclusions. Both
strategies shared the following aspects: 1. Better scores were obtained
when combining the MRI measurements with the neuropsychological
tests. 2. The dimensions of the feature vectors were very low and the
selected markers were usually always the same. Between two and five
features in the predictive models used only MRI data, and between five
to seven used multisource data. Among the selected MRI-based markers
were the hippocampal and pallidum volumes and the cortical thick-
nesses of temporal and parietal regions. Regarding NM, ADAS13, FAQ
and RAVLT Immediate were repeated. No differences were observed
either in the dimensions of the feature vectors, nor the markers selected
due to the approach used as well as over time. 3. As more visits were
made available, the performance of the predictive models improved. 4.
The selected features were similar over time for building predictive
models at each visit. 5. Classifier scores were similar during the first
year between the two approaches.

According to the approach, the predictive models differed in the
following ways. 1. Survival models showed a better balance between
sensitivity and specificity over time. 2. The prediction results from the
survival models were better from the second year on. These dis-
crepancies could be explained by the lack of homogeneity accelerated
over time in the pMCI group. During the follow-up period, an increasing
number of pMCI subjects progressed towards AD. Unlike the two-group
comparison approach, survival analysis takes this effect into account,

given that the conversion time of each subject was considered in the
estimations of these predictive models. Moreover, based on the classi-
fier operations, in the two-group comparison approach only the re-
sidues between the trajectory and the available samples are weighted
(see Eq. (6)), while in the survival analysis a logistic regression is ap-
plied depending on the patient's visit, i.e. it takes into account how the
risk factors depend on the time of the visit (see Eq. (7)). This stratifi-
cation of survival analysis models together with the consideration of
conversion and censorship times are the two causes that produce an
improvement in the predictions of diagnoses over time.

In both approaches, the number of feature vector dimensions was
very low in comparison to other studies. The features most frequently
selected in the NMs included ADAS13, FAQ and RAVLT Immediate. In
the MRI data, the most frequently selected features included hippo-
campal and pallidum volumes and CT measures for several tempor-
oparietal brain regions, with a preference for the left hemisphere. The
selection of the hippocampus, middle temporal lobe, and inferior par-
ietal cortex as predictors of MCI-to-dementia progression is consistent
with the known pattern of grey matter atrophy associated with in-
cipient AD (Thompson et al., 2003), and there is also evidence that AD-
related atrophy occurs at a faster rate in the left hemisphere (Thompson
et al., 2003). Similar findings have been reported in other studies
(Belleville et al., 2014; Korolev et al., 2016; Sørensen et al., 2017),
although most publications have used cross-sectional approaches,
whereas this work is a longitudinal study.

The proposed predictive models were also validated by analyzing
their correlations with the ADAS13 scores, which is currently con-
sidered a strong predictor of the conversion from MCI to AD.

Fig. 4. Linear correlation between ADAS13 and single-source predictive models over time. The predictive models were built according to the proposed survival
analysis and visit (Baseline, bl, Month 12, m12, Month 24, m24, Month 36, m36). The outputs of the predictive models are shown in terms of the probabilities of
conversion to AD. The linear correlation coefficients (R) of each visit are presented in the legends. sMCI = Stable mild cognitive impairment; pMCI = Progressive
mild cognitive impairment.
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Verification was approached in two different aspects: a) A comparison
between the ADAS13 scores and the predictive capacities of the pro-
posed models and b) An analysis of the linear correlation between the
ADAS13 scores and the probabilities of conversion to AD of the subjects’
diseases at the different visits as estimated by the models. From the first
proof, analyzing the tables of the prediction scores for AD conversion
(see Tables 4, 5, 7), the classification results between sMCI and pMCI
were similar between the ADAS13-only models and the models con-
structed with only MRI-based markers throughout the visits. Clearly,
the multisource models yielded the best prediction results. Un-
doubtedly, the strongest validation was observed with the correlation
analysis between the prediction probabilities of the models and the
ADAS13 scores. Particularly relevant was the correlation between
ADAS13 and the predictive models constructed exclusively with MRI-
based markers, verifying the correlation between this cognitive mea-
sure and the selected structural T1-MRI measures, in addition to vali-
dating the proposed approaches. The highest correlations were found
between ADAS13 and the multisource models where ADAS13 was
usually present in their construction. Finally, it has been observed that
the combination of ADAS13 with other markers proposed here, whether
based on MRI data or other NMs, improved the prediction results of the
conversion of MCI to AD.

5.1. Limitations

Despite the promising results, there are several limitations of our
study. The data used here correspond to subjects who met the inclusion
and exclusion criteria established by ADNI. The choice of cohort may

have affected the results of the predictive models. However, most of the
studies that have investigated MCI-to-AD progression have used this
database. In addition, we followed the recommendation of using stan-
dard patient lists, which allows a better comparison among the pro-
posed approaches (Wyman et al., 2013). On the other hand, although
321 subjects with 1330 visits were processed, it would be desirable to
increase the number of samples. To date, ADNI continues to recruit
more subjects and visits. Therefore, future works should apply the
proposed approaches for developing new predictive models using other
public cohorts, like OASIS-3 (LaMontagne et al., 2018), and increase the
number of samples to study.

The modeling of markers was implemented using the LME approach
and the longitudinal trajectories were considered as linear. A linear
function to model the dynamic changes of structural MRI-based mar-
kers is a well-accepted practice (Guerrero et al., 2016). Although other
authors suggest the use of higher order polynomial models (Donohue
et al., 2014; Schmidt-Richberg et al., 2016). On the other hand, ex-
perimental evidence suggests that linear models are not enough to
describe cognitive decline measurements in AD progression (see sup-
plementary materials). Neuro-psychological marker models have been
hypothesized to follow sigmoid or quadratic shape (Jack and Holtzman,
2013; Buckley et al., 2018), with acceleration or deceleration of annual
atrophy in the initial or final phases of the evolution of the disease.
Therefore, more complex modeling of the evolution of the longitudinal
trajectories of the markers (especially of the NMs) could improve the
forecasts of the predictive models. A future line of work would be to
improve the modeling of marker trajectories.

One of the main limitations in any AD study involving in vivo data is

Fig. 5. Linear correlation between ADAS13 and multiple-source predictive models using the proposed survival analysis over time. The predictive models were built
according to the proposed survival analysis and visit (Baseline, bl, Month 12, m12, Month 24, m24, Month 36, m36). The outputs of the predictive models are shown
in terms of the probabilities of conversion to AD. The linear correlation coefficients (R) of each visit are presented in the legends. sMCI = Stable mild cognitive
impairment; pMCI = Progressive mild cognitive impairment.
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the uncertainty of the diagnosis. This is the reason why the diagnosis
will always be probable AD until an autopsy can confirm the diagnosis
(Eskildsen et al., 2013). The clinical diagnosis of probable AD has an
accuracy of 70–90% relative to pathological diagnosis (Beach et al.,
2012). The predictive models were developed with the clinical diag-
nosis as the ground truth. This limitation could be overcome by im-
proving the accuracy of the clinical assessments, which is beyond the
scope of this study.

The criteria for the classification of MCI patients between stable and
converters used in these studies are not unique (Moradi et al., 2015).
We observed some discrepancy in the labeling of MCI patients in the list
of Eskildsen et al. (2013), guided by the Wolz criteria (Wolz et al.,
2011). In this study, the diagnosis from the ADNI was used at each visit.
The conversion time and the corresponding labeling were based on the
first visit with a diagnosis of dementia, staying with this prediction until
the end of the follow-up time, i.e., up to 36 months.

Finally, because most studies established a 3-year cut-off period, we
used this length of follow-up, which facilitates the comparisons among
the proposed approaches (see Table 6). In addition, several studies
claim that predictive models with follow-up beyond 3 years become less
reliable in the prediction of conversion to AD (Pettigrew et al., 2016).

5.2. Future work

A new line of work would involve the optimization of the type of
longitudinal classifier employed. The classifiers used here work well
with low-dimensional feature vectors. Finding combinations of NMs
and MRI markers that improve classification results may require
searching for more powerful longitudinal classifiers.

Nothing prevents these approaches from being applied to other
events in the progression of AD and even to other types of diseases with
prodromal phases. In this sense, we are exploring the construction of
predictive models in the preclinical phase of AD, i.e. a longitudinal
study of control subjects towards MCI or AD. We are also developing
predictive models for the case of Parkinson's disease (PD) between
control subjects and PD subjects without medication, i.e. PD novo.

6. Conclusions

We compared two approaches for developing predictive models of
MCI-to-AD progression that combine a very small subset of MRI-based
markers with standard cognitive measures from a longitudinal study
with a 3-year follow-up. The approaches were able to predict patients
with converting diseases with an accuracy of 78%, a sensitivity of 79%
and a specificity of 76% using only baseline patient data. In addition,
the availability of new patient visits improves the performance of the
proposed predictive models. For example, in the 36-month visit, the
results were an accuracy of 85%, a sensitivity of 86% and a specificity
of 85%.

Some of the conclusions of this study are as follows: 1) The proposed
predictive models were built with only 2–7 highly stable features under
cross-validation; these markers were consistent with Braak stages, were
previously reported in MCI-to-AD conversion and are easy to transfer to
new cohorts and clinical practice; 2) Multisource data for predicting
MCI-to-AD conversion delivered a more accurate estimate than single-
source data; 3) The survival-based predictive models showed a better
balance between sensitivity and specificity, in addition to improving
the scores starting from the 24-month visit, with respect to the models
based on the two-group comparison approach; and 4) The proposed
methods used relatively common clinical tests, such as MRI and NMs, as
opposed to methods that rely on more expensive or invasive tests, such
as PET-, CSF- and genotype-based markers, and can offer potential for
monitoring treatment outcomes in future drug trials.

The scripts and list of the ADNI identifiers of the subjects used in
this study are freely released for other users at https://www.nitrc.org/
projects/twogrsurvana/. The MRI-based measurements and the

neuropsychological tests from each patient and each visit are also
available.
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