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a b s t r a c t

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative condition whose develop-
ment is characterized by lateralized brain atrophies. In AD, the hippocampus is the first brain structure
to present atrophy, which, although to a lesser extent, is also a precursor to the broader asymmetrical
development of the human brain. Structural magnetic resonance (MR) imaging is capable of detecting
the disease-induced anatomical changes in the brain, thus aiding the diagnosis of AD. MR image attri-
butes extracted from the hippocampal regions are commonly used for the AD classification task.
However, most of the published methods do not explore hippocampal asymmetries for image classifica-
tion. In this study, we propose a new technique for performing the classification of MR images for AD
using only hippocampal asymmetrical attributes. By using the new proposed asymmetry index (AI), we
assessed the attributes and the ones that passed the analysis of variance test, i.e., showing statistically
mean differences among the classes (CN, MCI, and AD), were selected for classification. As a result of
our study, the statistical analysis of our AI has shown a significant increase in hippocampal asymmetry
as disease progress (CN < MCI < AD). Moreover, for the classification using clinical MR images, we
obtained accuracy values of 69.44% and 82.59%; and AUC values of 0.76 and 0.9 for CN � MCI and
CN � AD, respectively. Last, we found the results of our asymmetry analysis consistent with other statis-
tical assessments and our classification results, using only asymmetry attributes comparable to (or even
higher than) existing hippocampus studies.

� 2020 Published by Elsevier B.V.
1. Introduction

Alzheimer’s disease (AD) is a progressive and irreversible neu-
rodegenerative disease predominantly affecting the elderly and
corresponding up to 80% of all dementia cases [1]. As advancing
age is the most significant risk factor for developing AD, with the
increase in life expectancy, this disease has become one of the
most significant health problems in the world [2,1]. Histologically,
AD is associated with an excessive accumulation of amyloid-b pro-
tein on extracellular plaques and deposition of hyperphosphory-
lated tau protein in intracellular neurofibrillary tangles [3], which
can lead to the death of the neurons.

The human brain exhibits a high level of structural hemispher-
ical symmetry that decreases with aging [4,5], and it is even more
acutely affected by the presence of pathological conditions [6],
which is the case of AD. The structural hemispherical asymmetry
progression in AD is often characterized by regional gray matter
loss with the degradation process affecting first and more severely,
the left-hemisphere regions [7]. In Alzheimer’s, several studies
have been exploring the degree of brain symmetry loss in magnetic
resonance (MR) images, especially of the hippocampal regions, as a
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3 These MPRAGE files are considered the best in the quality ratings and have undergone

preprocessing steps - http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/.
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way to develop biomarkers for AD [8,9]. Shi et al. [10] have con-
ducted a meta-analyses of MRI studies to assess volume reduction
and asymmetry patterns in MCI and AD and found lower values of
bilateral hippocampal volume loss and atrophy in MCI when com-
pared to AD and a consistent left-less-than-right asymmetry pat-
tern in all groups, but with different extents. Furthermore,
computer vision and artificial intelligence techniques that perform
the analysis using the whole-brain or hippocampal regions, and
incorporate anatomical knowledge, such as anatomical landmarks
and subfield atlases, have been developed to facilitate decision
making [6].

The hippocampus is a brain structure located in the medial tem-
poral lobe with a decisive role in the formation and retention of
episodic memory [8]. In the presence of cognitive disease, it is
one of the first brain structures to endure atrophy, besides being
the precursor to the broader asymmetrical development of the
human brain [11,12].

Structural magnetic resonance imaging (MRI) has been playing
an increasingly significant role in clinical trials and studies related
to Alzheimer’s. The main reason is its high sensitivity in detecting
subtle structural brain changes [13], which results in images with
superior contrast and exquisite anatomical details. This property
makes it possible to detect disease-induced anatomical changes
in the brain [14] and help with the AD diagnosis.

Over the past years, several studies have assessed hemispheric
asymmetries in MR images, mostly focusing on healthy popula-
tions stratified by sex [15–17,4,18] and handedness [16,19]. More-
over, some studies have evaluated brain asymmetry under the
influence of cognitive disease, i.e., autism and developmental lan-
guage disorder [20], epilepsy [21], AD [9,8,22,23], and Parkinson’s
disease on DaTSCAN images [24]. Among these studies, the ones
assessing asymmetries in AD usually have concentrated on the dif-
ferences in the left and right hippocampus and reported an increas-
ing asymmetry ratio with aging that grows with AD development
[9,8,22]. However, except for the work of Barnes and his colleagues
[22], that adopts manual segmentation, they rely on the proper
automatic segmentation of the hippocampus to quantify the asym-
metrical differences. Furthermore, these studies did not have a goal
of image classification using asymmetrical features, but only in
studying asymmetry on the different conditions of AD.

Martins et al. [21] have proposed a framework to model normal
structural brain asymmetry from control subjects, but they have
not considered the AD classification using their model. There are
many studies in the literature that extract and use MR [25–30]
and single-photon emission computed tomography (SPECT) [31–
35] image attributes for automatic the classification of CN, MCI,
and AD. More recently, deep neural networks have been used with
the same purpose [36,37], however, despite the high accuracy
shown by these methods, they also present high complexity, which
implies in a large number of hyperparameters to be estimated and
the need for a large number of images for training the models.
Moreover, these models are difficult to interpret, considering the
imaging anatomy provided for training them [38].

In this study, we propose a new technique to performMR image
classification for AD using only attributes presenting significant
differences among our diagnosis groups (CN, MCI, and AD) when
tested for asymmetry using the one-way analysis of variance
(ANOVA) test. As statistical attributes, we use the first four
moments (mean, variance, skewness, and kurtosis) computed from
the magnitude maps of directional log-Gabor filter responses of
hippocampal regions in MR images. The attributes that passed
the ANOVA test were used to train Support Vector Machine
(SVM) models to classify clinical MR images in CN � MCI and
CN � AD.

Although the performance of our proposed method is not as
high as the performance of some works proposed in the literature,
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we are convinced that our method can be used as a complementary
approach as it explores an important element not evaluated by
other classification methods, which is the hippocampal asymmetry
analysis on AD development. Besides, our method explores well-
established anatomical changes signaling the progression of Alz-
heimer’s disease, which is the ones affecting the hippocampal
regions, and, therefore, it is easy to explain and interpret the
results. Moreover, the low dimensionality of the devised feature
vectors has great benefits for classifier design, since a relatively
small sample size is required for this task, especially compared
to the deep learning methods and considering the limited number
of images samples typically available for neuroimaging studies.

The structure of the rest of this paper is organized as follows.
Section 2 and 3 provide, respectively, a description of the image
datasets and all methods and processes used in this research. Sec-
tion 4 presents the experimental results of our statistical analysis
and image classification using the asymmetrical attributes. Finally,
Section 5 concludes the paper and briefly outlines future work.
2. Datasets

In this study, we used MR images from both the Neuroimage
Analysis Center (NAC) [39] and the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) [40].

The NAC dataset consists of 149 3-D triangular meshes, each
representing a distinct brain structure. The meshes are spatially
aligned to a T1-weighted (T1-w) and T2-weighted (T2-w) MRI
sequences of a healthy, 42-year-old male patient. The images were
acquired using a Siemens 3T scanner with an isotropic voxel size of
0.75 mm. This dataset also contains a downsampled version of
both acquisitions at 1 mm isotropic resolution with a matrix size
of 256� 256� 256 voxels. For this study, we only used the T1-w
image with 1 mm isotropic resolution and the two hippocampal
3-D triangular meshes.

The ADNI image dataset contains images acquired using a wide
variety of 1.5T and 3T MRI scanners and protocols from the three
leading manufacturers (Philips, General Electric, and Siemens),
and over 50 sites across the USA and Canada2. Consequently, the
image specifications (e.g., size, resolution) are diverse and will be
omitted here. In this study, the ADNI images were limited to images
acquired using only the MPRAGE sequence3, and for patients with
age between 70–85 years, among the three diagnostic groups, i.e.,
CN, MCI, and mild-AD, and with the MMSE data provided. With these
restrictions, a total of 762 unique images (one image for each sub-
ject) were randomly selected. The images cohort demographics are
shown in Table 1.

For the image preprocessing detailed in Section 3.1, we used the
NAC T1-w image as a reference, and for the classification tasks, we
used the ADNI T1-w MRI study images.
3. Methods

As illustrated in Fig. 1, our method starts by first preprocessing
all ADNI MR brain images. Then, for each image, we extract the two
hemispheres and flip the left one so they can have approximately
the same spatial location. After that, in the directional filtering
step, we perform a convolution of the image hemispheres with a
bank of 3-D log-Gabor filters and save all directional responses.
Next, by constraining the region of interest (ROI) to the hippocam-
pal region using a binary template mask, we compute the first four
statistical moments (mean, variance, skewness, and kurtosis) of the
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Table 1
Cohort demographics of the dataset used in this study.

CN MCI AD

No. of subjects 302 251 209
Age (l� r; range) 75.79 � 4.14 (70–85) 76.80 � 4.30 (70–85) 77.12 � 4.43 (70–85)
MMSE (l� r; range) 29.56 � 0.50 (29–30) 27.04 � 0.82 (26–28) 22.15 � 2.76 (4–25)
Gender (F:M) 151:151 80:171 94:115

MMSE stands for Mini-Mental State Examination.

Fig. 1. Overview of the proposed method.
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filtered hemisphere images to characterize the intensity distribu-
tion inside the ROI. For each brain hemisphere, we save the values
of each computed moment in a vector. Later, we compute the nor-
malized cross-correlation between the corresponding left and right
vectors of each statistical moment and check the asymmetry index
(AI) among the diagnosis groups using ANOVA. Finally, we use all
the moments showing significant statistical differences among
the classes to train SVM classifiers for the image classification task.
3.1. Preprocessing

In this study, we first processed all MR images for noise reduc-
tion using the Non-Local Means technique [41], followed by bias
field correction with the N4-ITK technique [42] and image inten-
sity standardization using the histogram matching algorithm pro-
posed in [43], with the T1-w template image from the NAC
dataset [39] used as a reference image. We then aligned the study
(ADNI) images to the NAC T1-w template image using spatial affine
transformations provided by the Nifty-Reg image registration tool
[44]. Next, we performed brain extraction on all images using the
ROBEX [45] technique. Finally, to properly delimit the hippocampal
regions, we conducted a deformable image registration [46]
between the NAC T1-w template and all study images. Different
from the first image registration, we used each study image as a
reference to get the transformation, which we then applied to
the provided hippocampal mesh models for defining the regions
of interest.
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3.2. Brain hemispheres extraction

The precise identification of the symmetry plane is a crucial
task for a correct evaluation of hemisphere-wise asymmetries
[6]. In this study, we first detected the midsagittal plane (MSP) in
the brain MR images using the phase congruency technique pro-
posed by Ferrari et al. [47]. Then, we translated the brain for its
gravity center and rotated it to keep the MSP parallel to the sagittal
coordinates. Finally, we flipped the left hemisphere to keep both
hemispheres at approximately the same spatial location.

3.3. Directional filtering

In this study, we conducted image filtering in the frequency
domain using a bank of 3-D log-Gabor filters designed in the Four-
ier domain following the mathematical formulation proposed by
Dosil et al. [48]. Besides having zero DC components and, therefore,
not responding to regions with constant intensities, the log-Gabor
filters have extended tails covering high frequencies, which allows
getting a wide bandwidth that can provide uniform coverage of the
frequency domain.

3.3.1. Log-Gabor filters
Each 3-D log-Gabor filter is defined by the multiplication of a

radial and an angular term as

G q;xs;gb;hi;/i;j

� �
¼ exp � log2 qk k=xsð Þ

2log2gb

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
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where a q; hi;/i;j

� � ¼ arccos2 v�q
qk k

� �
, q ¼ u; v;wð Þ is a point in the

Fourier domain, and v ¼ cos hi cos/i;j; cos hi sin/i;j; sin hi
� �

contains
the spherical coordinate system angles, with hi and /i;j being the
elevation and azimuth angles of the filter, respectively. Additionally,
the filter frequency coverage can be modified by changing the
parameters xs, which is the central frequency for scale
s ¼ 0;1; . . . ;Ns � 1f g, and gb ¼ rx=xs and ra, which controls the
frequency bandwidth and angular spread of the filter, respectively.

Parameters description and values. The central frequency xs is
computed asxs ¼ xmax=cs, where c is a scaling factor (in the radial
direction) between successive filters in the bank. The elevation
angle is computed as

hi ¼ pi
2 Ne � 1ð Þ ; ð2Þ

where i ¼ 0;1; . . . ;Ne � 1f g and Ne correspond respectively to the
indices and the number of elevation angles. In our implementation
of the 3-D log-Gabor filter bank, the elevation is uniformly sampled,
while azimuth varies as a function of elevation to keep the density
of filters constant. This is achieved by keeping an equal arc-length
between adjacent azimuth values over the unit radius sphere
instead of taking uniform angular distances [48]. Therefore, the
number of filters varies with the elevations as
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Na ið Þ ¼ Na;0 cos hi; ð3Þ
where Na;0 is the number of azimuth angles in the equator of a unit-
radius sphere. Once the number of azimuth filters per elevation is
obtained, a central azimuth angle /i;j, for the ith elevation, can be
computed as

/i;j ¼
pj
Na;0

; if i ¼ 0
2pj
Na ið Þ ; otherwise

8<
: ; ð4Þ

where j ¼ 0;1; . . . ;Na ið Þ � 1f g.
In our study, the shape of the 3D log-Gabor filters was visually

defined with the help of a Matlab tool, designed (and kindly pro-
vided to our group) by Dosil et al. [48], as illustrated in Fig. 2.
The main goal of our filter bank design was to create isotropic fil-
ters since we are not interested in filtering any particular orienta-
tion of the hippocampal structures in the MR image. The parameter
values that best achieved the uniform spectral coverage using iso-
tropic filters with minimum overlap were the following: scaling
factor (c ¼ 1:2), filter bandwidth (gb ¼ 0:55), and angular deviation
(ra ¼ 1:2).

To define the number of scales (Ns), azimuth angles (Na;0), eleva-
tion angles (Ne), and maximum central frequency (xmax), we con-
ducted an exploratory experiment using 40 MR images (20 CN
and 20 AD) not included in the test group. For that, we performed
an analysis using all combinations of the following parameter val-
ues Ns ¼ 2;3; and 4;Na;0 ¼ 4;6; and 8, Ne ¼ 3;4; and 5 and
xmax ¼ 0:25;0:30;0:35; and 0:4. In addition, similar to the work
of Padilla et al. [31], we used the Fisher discriminant function
[49], computed for each statistical measure (mean, variance, skew-
ness, and kurtosis), as the figure of merit to be maximized. The best
results were obtained for the variance measure with the following
combination of parameters (Ns ¼ 3;Na;0 ¼ 6;Ne ¼ 4 and
xmax ¼ 0:25; or 0:3), so we refined our search for the xmax in the
[0.25–0.30] interval, with a step of 0.01. As a result, we found
xmax ¼ 0:28 as the best parameter value. Such parameters resulted
in 23 filter orientations per scale, represented here asHs ¼ hi;/i;j

� �
.

Fig. 2 shows a visual representation of the bank of log-Gabor filters
constructed with these parameters.

3.3.2. Filters responses
The filtering process was performed using the brain hemi-

spheres encephalon (right and left flipped) to avoid artifacts on
the resultant filtered image that can be caused by the abrupt
boundary truncation. The hippocampal binary mask was further
used to restrict the region of interest for the analysis.

For each orientation, we computed the directional resulting
image by taking the largest pixel-wise magnitude response,
AHs xð Þ, across all scales, defined as

DRH xð Þ ¼ max
06s<Ns

AHs xð Þð Þ; ð5Þ
Fig. 2. Illustration of the bank of 3-D log-Gabor filters used in this work.
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where x ¼ i; j;kð Þ denotes a spatial location in the image domain.
Second-order moment. Having the summarized directional

responses, denoted as DRH xð Þ, we also calculated a map of 3-D
moments of order pþ qþ r according to the formula

Mp;q;r xð Þ ¼
X
H

xpH xð ÞyqH xð ÞzrH xð Þ; ð6Þ

where

xH xð Þ ¼ DRH xð Þ cos hi cos/i;j;

yH xð Þ ¼ DRH xð Þ cos hi sin/i;j;
ð7Þ

zH xð Þ ¼ DRH xð Þ sin hi:

From 6, we can write a 3� 3 matrix of second-order moments
of inertia can be written as

MDRH xð Þ ¼
M2;0;0 xð Þ M1;1;0 xð Þ M1;0;1 xð Þ
M1;1;0 xð Þ M0;2;0 xð Þ M0;1;1 xð Þ
M1;0;1 xð Þ M0;1;1 xð Þ M0;0;2 xð Þ

2
64

3
75; ð8Þ

which gives a notion of the covariance of the DRH moments in the
variables xH xð Þ, yH xð Þ and zH xð Þ. The principal moments of inertia
can be closely approximated by the eigenvalues of the MDRH xð Þ
matrix (which are denoted by k0 xð Þ P k1 xð Þ P k2 xð Þ P 0) and pro-
vide a sense of local direction (at position x) along which the data
has the largest variance.

For devising the asymmetric attributes for the image classifica-
tion, we use both the summarized directional filter responses DRH,
where H ¼ 0;1; . . . ;22f g, and the eigenvalue maps k0 xð Þ; k1 xð Þ, and
k2 xð Þ. Fig. 3 shows the sagittal view of the brain as a visual repre-
sentation of the directional filtering step. The four values ofH illus-
trated in the image correspond to the first azimuth angle combined
with each one of the four elevations (e.g., H0 ¼ /0; h0ð Þ, . . .,
H22 ¼ /0; h3ð Þ).

3.4. Hippocampal asymmetry analysis

The first step of our directional hippocampal asymmetry analy-
sis is a finer modification of the binary mask used to delimit the left
and right hippocampal regions. Then, we compute statistics for the
pixel intensities inside the mask for both regions and compare
them via normalized cross-correlation.

3.4.1. Hippocampal regions
We combined the right and left hippocampal masks to account

for spatial variations of the regions and to ensure encompassing all
hippocampal structures in our asymmetry analysis. For that, we
applied the union operator, in a voxel-wise manner, to the masks
and expanded the resulting mask with a morphological dilation
operation, using a 3-D sphere of 2 voxels radius as the structuring
element.

3.4.2. Extraction of statistical attributes
After the directional filter stage, we obtained 26 images (23 DRH

+ the eigenvalue maps k0; k1, and k2), as illustrated in Fig. 3. Then,
the first four statistical moments (mean, variance, skewness, and
kurtosis) were computed from the voxel intensities inside the hip-
pocampal mask, resulting in four attribute vectors (of size N ¼ 26,
each) per hemisphere.

3.4.3. Normalized cross-correlation between attribute vectors of brain
hemispheres

To measure how similar the attributes extracted from each
brain hemisphere are, we perform the normalized cross-
correlation between the corresponding left (aL) and right (aR) attri-
bute vectors, both of size N ¼ 26. For that, we first have equally
zero-padded the right vector on both sides by N

2 units, resulting
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in a new vector aR� of size 2� N. Next, the left attribute vector was
slided over the right one, performing an element-wise multiplica-
tion with the part of the input currently on, summing up the
results, and normalizing the values into a single output pixel. This
operation is represented by

NCC xð Þ ¼
PN�1

i¼0 aL i½ � � aR� iþ x½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�1
i¼0 aL i½ �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�1
i¼0 aR� iþ x½ �2

q ; ð9Þ

where x ¼ 0;1; . . . ;N � 1.
Note that this operation helps to identify the nature of the asso-

ciation between the two hemispheres and how they correlated
with each other. By using such an approach, we intend not just
to compare each directional response alone but to assess the over-
all pattern of asymmetry that each subject might have.

3.5. Statistical attributes analysis

Following the pipeline of our proposed method in Fig. 1, we first
tested whether our attributes have asymmetry within the three
diagnosis groups (CN, MCI, and AD), and then checked if we can
classify CN � AD and CN � MCI based uniquely on the asymmetri-
cal attributes devised from the study images.

3.5.1. Statistical analysis
In our statistical analysis, we propose a new hippocampal

asymmetry index (AI) defined as

AI ¼ 1� 1
N

XN�1

i¼0

NCC xð Þ; ð10Þ

with AI ranging from 0 to 1, being 0 when the attribute vectors are
identical (symmetry case) and 1 when there is a complete lack of
correlation between the attribute vectors (asymmetric case).
Fig. 3. Visual representation of the filters
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One-way ANOVA test was used to test the statistically signifi-
cant differences between the AI scores of our statistical attributes
for the diagnosis groups (CN, MCI, and AD). For that, we inspected
all AI residuals for normality and variance homogeneity. Here, all
four attributes passed on the normality test but failed the variance
homogeneity, except for the variance attribute. Therefore, to miti-
gate this problem, we applied the Yeo-Johnson power transforma-
tion [50], defined as

w kb;AIð Þ ¼

AIþ1ð Þkb�1
kb

; if kb – 0;AI P 0

log AI þ 1ð Þ; if kb ¼ 0;AI P 0
� �AIþ1ð Þ2�kb�1½ �

2�kbð Þ ; if kb – 2;AI < 0

� log �AI þ 1ð Þ; if kb ¼ 2;AI < 0

8>>>>><
>>>>>:

; ð11Þ

where kb is the value that maximizes the log-likelihood function.
The ANOVA test allows us to test the null hypothesis (all means

are equal) against the alternative hypothesis (at least one mean
differs) with a specified value of a ¼ 0:05. However, when using
ANOVA to test the equality of at least three groups means, the
results do not identify which particular differences between pairs
of means are significant. Therefore, to examine the significant pair-
wise mean differences between groups, we use the post hoc test
Tukey’s honestly significant difference (HSD) [51], with at ¼ 0:05.

3.6. Image classification

For the image classification in CN � MCI and CN � AD diagnosis
groups, we used the asymmetrical attributes, computed for each
statistical measure, and which passed the ANOVA test to train
SVM classifiers with different kernel types (linear, polynomial,
and radial basis function (RBF)). We conducted the classification
using the attributes individually and with all combinations of hor-
izontal concatenations. Also, since we have a slightly unbalanced
responses for the sagittal brain view.
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dataset, we have automatically adjusted the model weights to be
inversely proportional to class frequencies in the input data using
the class_weight4 parameter from the scikit-learn python library.

We determined the hyper-parameters of the SVMs using a grid
search and considering the area under the receiver operating char-
acteristic (ROC) curve (AUC) as a performance criterion for the
CN � MCI and CN � AD classification, where the AUC values were
estimated in 10-fold nested cross-validation [52]. We finally calcu-
lated the classification results using accuracy (ACC), balanced accu-
racy (BACC), F1-score (F1), and the AUC metrics. A detailed
description of these metrics can be found in [53].
4. Experimental results and discussions

In the statistical analysis, we used the four AI values corre-
sponding to the normalized cross-correlation function (NCC xð Þ) of
each statistical measure. We illustrated the results for the compar-
ison of the diagnosis groups and presented the p-values of the
ANOVA and post hoc tests. In the classification, we conducted
seven classification experiments for CN � MCI and CN � AD with
all combinations (vector concatenations) of the statistical attri-
butes that survived to the ANOVA test.
4.1. Statistical analysis

We tested the significant differences of our AI statistical mea-
sures for diagnosis groups and sex differences.
4.1.1. AI vs. diagnosis groups
We summarize the ANOVA results for each statistical measure

in the diagnosis groups in Table 2, which includes the mean and
standard deviation of AI values, the ANOVA p-values, and the con-
clusions after running the Tukey’s HSD post hoc test. From these
analyses, we noticed the skewness has a p-value larger than 0:05,
which means this statistical measure showed no significant differ-
ence between means among the diagnosis groups. According to
Turkey’s HSD comparison, the pairwise diagnosis groups
CN � MCI and CN � AD presented statistically significant differ-
ences in all cases, but the skewness. For the MCI � AD case, the
ANOVA test showed statistically significant differences only for
the variance measure. Considering our post-roc conclusions, the
variance measure presented a noticeable trend of asymmetry, that
is, the AI variance values are lower in CN than MCI, and MCI than
AD. This trend, which has been reported in other papers in the neu-
rology literature [9,8], shows an increase in brain hemispheres
asymmetry as Alzheimer’s severity increases. Furthermore, the
conclusions for the mean and kurtosis measures, despite not hav-
ing reported results for the MCI � AD pairwise comparison, have
also reported this trend for the other two pairwise comparisons,
with lower AI values in CN than MCI and CN than AD. Fig. 4(a)
shows the boxplot of the variance measure for the population
stratified by diagnosis groups. In this case, it can be appreciated
that the AI values increase as Alzheimer’s severity increases.
4.1.2. AI vs. sex
Table 3 presents the mean and standard deviation of AI values

for sex analysis. The p-values by sex have present statistically sig-
nificant difference in all cases (p-value < 0.05), except for the skew-
ness (p-value > 0.05). In addition, we can notice that AI values are
slightly lower for the female group for measures passing the
ANOVA test. Fig. 4(b) shows the boxplot of the variance measure
for the population stratified by sex.
4 http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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4.2. Classification

In our statistical analysis of the attribute measures, the skew-
ness has shown no statistically significant mean differences
between groups and, therefore, since our purpose was to show
the predictive power of asymmetry attributes, we performed our
classification experiments using only the statistical measures that
survived at ANOVA, i.e., the mean, variance, and kurtosis measures.
In addition, we conducted classification only between CN � MCI
and CN� AD classes since the variancewas the onlymeasure show-
ing significant mean difference between the MCI � AD classes.

Although in our classification experiments we tested different
SVM kernel functions, the best results were obtained using the
polynomial kernel with degree = 1 and, therefore, we present
and discuss the classification results only for this kernel. The best
parameter C (in terms of maximizing the AUC value) of each
SVM classifier was determined in a coarse-grid search with a range
of values [2�5;210] and steps defined by a base of 2 with the expo-
nent incremented by 0.5, i.e., 2�5;2�4:5; . . . ;210; followed by a finer

search in the neighborhood of the best coarse-grid parameter, C
�
,

with a grid range of values [2 log2 C
�� �

�2; 2 log2 C
�� �

þ2] and steps defined
by a base of 2 with the exponent incremented by 0.25.

For classification using individually the three measures that
passed to the statistical symmetry analysis, we have the highest
classification result for the variance in both experiments
CN � MCI and CN � AD classifications, with AUC values of 0:74
and 0:88, respectively. Table 4 presents the average classification
results of the 10-fold nested cross-validation for all three
measures.

After the classification experiments using individual attributes,
we tested all combinations (vector concatenations) of the attribute
vectors. Table 5 shows the average classification results for the
10-fold nested cross-validation of this new experiment. For visual
simplicity, we have abbreviated the names of the statistical
attributes by concatenating parts of them, e.g., Mean&Var&Kurt,
meaning concatenations of the mean, variance, and kurtosis
attribute vectors. Analyzing the results in Table 5, we can notice
that attribute vectors concatenation has a positive influence on
the AUC results. Particularly, the concatenations involving the vari-
ance attribute have provided higher gains. The improvement also
happens when all measures are considered together, resulting in
AUC values of 0:76 and 0:90 for the CN � MCI and CN � AD classi-
fications, respectively.

Fig. 5(a) and (b) show the ROC curves and their corresponding
AUC values for the CN � MCI and CN � AD classification, respec-
tively. These ROC curves referred to the results in Table 5. From
these curves, we can notice that although our accuracy values
are lower than some of the results reported in the literature, we
obtained high AUC values. This can be explained by considering
that the experiments were performed using a slightly unbalanced
dataset, and unlike accuracy, the AUC is insensitive to this class
ill-balance [54]. Overall, the results from our proposed approach
are very encouraging if we take into account the classification
experiments used only asymmetric hippocampal attributes.
4.3. Comparison with a common ROI-based method

Different from other methods that develop indices and metrics
based on the volumes of the hippocampus and its respective sub-
fields for statistical analysis of asymmetries in CN, MCI, and AD
subjects [9,8], our method aims to classify MR images using asym-
metrical features extracted from the hippocampal regions, without
the requirement of image segmentation and volume assessment.
However, we have not found other methods in the literature



Fig. 4. Boxplots of AI mean differences of the variance measure by (a) diagnosis groups and (b) gender.

Table 2
Mean and standard deviation of AI values by diagnosis group and results of ANOVA (a ¼ 0:05) and post hoc comparisons survived at Tukey HSD (at < 0:05).

Asymmetry ANOVA
Index CN MCI AD p-value post hoc

Mean 0:6332� 0:0099 0:6389� 0:0073 0:6382� 0:0075 < 0:001 CN < MCI, CN < AD
Variance 0:7120� 0:0083 0:7162� 0:0088 0:7182� 0:0095 < 0:001 CN < MCI, MCI < AD, CN < AD
Kurtosis 0:6776� 0:0716 0:7099� 0:0803 0:7165� 0:0869 < 0:001 CN < MCI, CN < AD
Skewness 0:3198� 0:0313 0:3235� 0:0321 0:3209� 0:0315 0:399 Not significant

Table 3
Mean and standard deviation of AI values by sex along with the results of ANOVA
(a ¼ 0:05).

Asymmetry ANOVA
Index F M p-value

Mean 0:6209� 0:0105 0:6236� 0:0079 < 0:001
Variance 0:7033� 0:0093 0:7048� 0:0096 0:033
Kurtosis 0:6707� 0:0763 0:6997� 0:0870 < 0:001
Skewness 0:2962� 0:0331 0:2945� 0:0326 0:497
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performing classification of MR images in Alzheimer’s disease
using only asymmetric features.

For comparison, we have implemented a region of interest (ROI)
based method, which is frequently used as a baseline in many pub-
lished papers in the literature [55,2,36,56,57], and applied it to the
same image dataset used in this study to assess the relative perfor-
mance of our asymmetrical attributes. To this end, we have
extracted ROI-specific features from the MR images using the GM
normalized volume of ninety ROIs (forty-five for each hemisphere)
as features for the SVM classification. Specifically, the brain images
are segmented into three different tissue types (i.e., gray matter
(GM), white matter (WM), and cerebrospinal fluid (CSF)), using
the FAST technique [58] implemented in the FSL package.5 Then,
using a deformable registration algorithm [46] included in the Nifty
Reg software,6 we aligned all ninety pre-defined ROIs in the cere-
brum, provided by the anatomical automatic labeling (AAL) atlas
[59], to each subject of our database. The AAL map is originally
defined on the Montreal Neurological Institute (MNI) single subject
brain MR image [60]. Next, we computed the volumes of the GM,
WM, and CSF tissues inside each of those ninety ROIs. Finally, the
GM volumes were normalized by the total intracranial volume and
used as a feature representation of each MR image. The total
5 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki.
6 http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg
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intracranial volume was estimated by the summation of GM, WM,
and CSF volumes from all ROIs.

For a fair comparison, we have performed a grid-search on the
SVM hyperparameters to achieve the best results for this method,
since the number of subjects is different from the aforementioned
papers using this method. In this case, we have trained the SVM
models using 10-fold nested cross-validation and performed the
hyper-parameters search for the same kernels and parameter
intervals used in our experiments.

The best result obtained for the CN � AD using the ROI-based
method was 0:91� 0:04 of AUC, with 81:61%� 6:48% of ACC,
80:72%� 6:84% of BACC, and 0:77� 0:08 of F1-score. This result
was achieved with the SVM classifier using a polynomial kernel
of degree one. For the CN � MCI experiment, the best result was
0:8� 0:05 of AUC, with 72:68%� 4:08% of ACC, 72:82%� 3:78%
of BACC, and 0:71� 0:04 of F1-score, and it was obtained using
the SVM classifier with an RBF kernel.

Comparing the above results with the ones from our method in
Table 5, we observed that our method has comparable classifica-
tion results for the CN � AD case, but its performance is still lower
than the baseline method for the CN � MCI case. Despite the
results, our method uses only information extracted for the hip-
pocampi regions, while the ROI-based method uses image informa-
tion from ninety ROIs, and it heavily relies on the success of the
image segmentation method being used.
5. Conclusions and future work

In this paper, we propose a new technique to perform the clas-
sification of MR images for AD using only structural hippocampal
asymmetrical attributes from directional responses of 3-D log-
Gabor filters. For that, we developed a new asymmetry index and
used it to test each proposed statistical attribute to verify whether
they could be meaningful to assess hippocampal asymmetries and,
therefore, to aid the diagnosis of AD.

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg


Fig. 5. ROC curves and corresponding AUC values for the (a) CN � MCI and (b) CN � AD classification results, respectively.

Table 5
Average � std classification results of the nested 10-fold cross-validation for the combinations of the statistical measures.

CN � MCI CN � AD

Statistics AUC ACC %ð Þ BACC %ð Þ F1� score %ð Þ AUC ACC %ð Þ BACC %ð Þ F1� score %ð Þ
Mean&Var 0:76� 0:05 65:65� 4:47 65:64� 4:48 0:63� 0:05 0:89� 0:04 80:42� 5:43 80:35� 5:16 0:77� 0:06
Mean&Kurt 0:74� 0:07 68:53� 5:57 68:36� 5:99 0:65� 0:08 0:85� 0:04 78:09� 5:12 77:59� 5:30 0:74� 0:06
Var&Kurt 0:75� 0:06 66:53� 6:43 66:39� 6:32 0:64� 0:07 0:89� 0:04 81:04� 6:80 80:74� 6:56 0:77� 0:07
Mean&Var&Kurt 0:76� 0:06 69:44� 4:58 69:31� 4:85 0:66� 0:07 0:90� 0:04 82:59� 6:49 81:36� 6:64 0:78� 0:08

Table 4
Average � std classification results of the nested 10-fold cross-validation for each statistical measure.

CN � MCI CN � AD

Statistics AUC ACC %ð Þ BACC %ð Þ F1� score %ð Þ AUC ACC %ð Þ BACC %ð Þ F1� score %ð Þ
Mean 0:71� 0:05 67:44� 6:01 67:76� 6:25 0:66� 0:08 0:82� 0:03 73:77� 4:58 73:83� 4:51 0:70� 0:05
Variance 0:74� 0:04 68:18� 4:65 68:36� 4:84 0:67� 0:06 0:88� 0:03 80:42� 5:43 80:63� 5:24 0:77� 0:06
Kurtosis 0:70� 0:08 65:47� 6:06 64:52� 6:08 0:59� 0:08 0:79� 0:07 76:33� 6:48 75:33� 6:96 0:70� 0:09
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Most methods proposed in the literature exploring hippocam-
pal asymmetries in MR images for AD [9,8] use the volume of sub-
field structures, thus depending on the success of image
segmentation techniques, and focus on the development of
biomarkers for the AD progression, not exploring the asymmetrical
attributes for the AD classification. Instead, our method extracts
asymmetric attributes via image filtering and uses them for image
classification.

Our technique achieved accuracies of 69:44% and 82:59%, and
AUCs of 0:76 and 0:90, respectively, for the CN � MCI and
CN � AD classification. Although these results are not as high as
some other reported results (e.g., accuracy values around 80% for
CN � MCI and 90% for CN � AD), we would like to emphasize that
in this study we have only used structural hippocampal asymmet-
rical attributes for the MR image classification and the number of
subjects used to assess our method was larger than most of the
published works. Besides, we believe our method could be used
as a complementary approach to other methods that do not take
into account hippocampal asymmetry in their analysis.

Despite the encouraging results, further investigation should be
conducted to explore new attributes to characterize hippocampal
asymmetries. Special attention will be given to find attributes cap-
able of classifying MR images between MCI and AD groups.
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