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Abstract

A polyT repeat in an intronic polymorphism (rs10524523) in the TOM M40 gene, which encodes an outer mitochondrial membrane
translocase involved in the transport of amyloid-f and other proteins into mitochondria, has been implicated in Alzheimer’s disease and
APOE-TOM M40 genotypes have been shown to modify disease risk and age at onset of symptoms. Because of the similarities between
Alzheimer’s disease and sporadic inclusion body myositis (s-IBM), and the importance of amyloid-f and mitochondrial changes in
s-IBM, we investigated whether variation in poly-T repeat lengths in rs10524523 also influence susceptibility and age at onset in a
cohort of 90 Caucasian s-IBM patients (55 males; age 69.1 4 9.6). In carriers of APOE &3/¢3 or £3/e4, genotypes with a very long
(VL) poly-T repeat were under-represented in s-IBM compared to controls and were associated with a later age at symptom onset,
suggesting that these genotypes may be protective. Our study is the first to suggest that polymorphisms in genes controlling
mitochondrial function can influence susceptibility to s-IBM and have disease modifying effects. However, further studies in other
s-IBM populations are needed to confirm these findings, as well as expression studies of different TOM M40 alleles in muscle tissue.
© 2013 Elsevier B.V. All rights reserved.
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mitochondrial dysfunction and oxidative stress [1-4].
However, studies to date have shown differences in
genetic susceptibility for the two diseases. Whereas in AD
apolipoprotein APOE €4 is a strong risk factor [5], in
s-IBM there is no recognised association with APOE
genotype [6,7], although APOE has been shown to
co-localise with B-amyloid in vacuolated muscle fibres [8].
The strongest genetic association in s-IBM is with the
HLA-DRBI and secondary HLA-DRB loci in the central
MHC region [9-11]. In addition, in a phylogenetic
analysis of mtDNA variants we demonstrated an
association with the 4336G and 4580A D-loop variants in
s-IBM, but not in AD [12].

The ‘Translocase of Outer Mitochondrial Membrane 40’
homologue (TOM M40) gene is adjacent to and in linkage
disequilibrium with the APOE locus on chromosome 19.
TOMMA40 encodes the mitochondrial pore protein
Tom40, which is part of the TOM complex and is
involved in the passage of peptides and importation of
amyloid-B into mitochondria [13]. Roses et al [14] first
reported that in late-onset Alzheimer’s disease (LOAD),
carriers of the APOE €3/e4 genotype, with a VL-[very
long] poly-T repeat from the €3 strand and a L [Long]
poly-T repeat from the €4 strand at rs10524523 in intron
6 of TOM M40 had a higher disease risk and an earlier
age at onset than individuals with the S [Short] poly-T on
the APOE-TOMMA40 linkage disequilibrium region. An
association between carriage of the VL allele per se and
disease risk was subsequently also found in other AD
populations [15], but in the opposite direction, with
carriage of the VL allele being found to be protective
[16]. Subsequent observations demonstrated that the
genotypes of both inherited alleles are in fact important
in determining the age-at-onset, with homozygotes of the
VL allele having the oldest age-at-onset curve and other
genotypes being associated with an earlier onset [17].

In this study we investigated whether genetic variation
in APOE-TOMMA40 also influences disease susceptibility
and the age of symptom onset in s-IBM. Our hypothesis
was that genetic variants of TOMM40 may have
differential effects on mitochondrial function in muscle
that may impact on the risk of developing s-IBM and the
tempo of the disease, and that some alleles of TOM M40
may have a protective effect.

2. Materials and methods
2.1. Subjects

DNA was collected from 90 Caucasian s-IBM patients
(55 males; age 69.1 +£9.6) recruited at the Australian
Neuromuscular Research Institute in Perth, the Royal
Melbourne Hospital and Monash Medical Centre in
Melbourne, and the Concord Repatriation and Royal
North Shore Hospitals in Sydney, who fulfilled the

diagnostic criteria for definite or probable s-IBM [2,18].
All patients had a detailed clinical history taken,
including the age-at-onset of the initial symptoms of limb
muscle weakness, and a full neurological examination
with grading of muscle strength on an expanded (10-
point) Medical Research Council scale. The age-at-onset
was determined from the recollection of the patients, and
when available their spouses, of the year in which they
first became aware of symptoms of lower limb or hand
weakness, and ranged from 37 to 83years (mean
60.4 4+ 9.7 years). The mean disease duration at the time
of DNA collection was 8.7 years. Muscle biopsy reports,
and when necessary the biopsy slides, were reviewed. The
study was approved by the Sir Charles Gairdner Hospital
Human Ethics Committee (Approval Number 2006-073).

The control group comprised 205 individuals (mean age
76.0 + 5.2 years) from the  Alzheimer’s Disease
Neuroimaging Initiative (ADNI) Database. The ADNI
was launched in 2003 by the National Institute on Aging,
the National Institute of Biomedical Imaging and
Bioengineering, the Food and Drug Administration and
private pharmaceutical companies. The primary goal of
ADNI has been to test whether serial magnetic resonance
imaging, positron emission tomography, other biological
markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild
cognitive impairment and early Alzheimer’s disease. The
Principal Investigator is Michael W. Weiner, MD, VA
Medical Center and University of California — San
Francisco. ADNI is the result of efforts of many
co-investigators from a broad range of academic
institutions and private corporations, and subjects have
been recruited from over 50 sites across the U.S. and
Canada.

2.2. Genotyping

DNA samples were plated on 96-well plates for long-
range PCR and sequencing which was performed at
Polymorphic DNA Technologies (Alameda, CA, USA), as
described previously by Roses et al. [14] and Linnertz et al.
[19]. Based on the length of the PCR product, alleles of
rs10524523 were classified using the convention established
by Roses et al for determining alleles: Short (S), <19; Long
(L) 20-29; Very Long (VL) =30 [14,19]. APOE
genotyping was performed as described previously [19].

2.3. Statistical methods

Frequencies were compared by chi-square or stratified
Mantel-Haenszel tests as appropriate. Distributions of
ages at onset adjusting for gender were compared via
Cox proportional hazards models. Analyses were carried
out using the TIBCO Spotfire S+ package ver 8.2
(TIBCO Software Inc., Palo Alto, California).
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3. Results
3.1. APOE genotypes

The majority (85/90) of s-IBM patients were carriers of
APOE £3. Of these, 50 were homozygous, 26 carried £3/¢4,
and nine carried €2/¢3. The remaining five s-IBM cases
carried €2/e4 (2), e4/ed (2) or £2/¢2 (1).

3.2. Poly-T repeat lengths in s-IBM and controls

In keeping with the findings of Roses et al. [14], the
distribution of poly-T repeat lengths among those
homozygous for APOE €3 was strongly bimodal, with a
gap between 17 and 25 repeats (Fig. 1). Analyses were
confined to carriers of €3/e3 and €3/e4, within which
carriage of VL was likely associated with APOFE ¢€3.
Numbers of cases and controls carrying the VL repeat
length according to the two APOE genotype groups are
shown in Table 1. The odds ratios within the two groups
are not significantly different (p =0.44), while the
combined Mantel-Haenszel odds ratio estimate of 0.47 is
significantly less than one (p =0.019, 95% CI 0.25-0.88).
Carriage of a VL poly-T repeat length within these
groups is thus significantly associated with protection.

3.3. Poly-T repeat length and AAO of s-IBM

The boxplots in Fig. 2 show the ages at onset for the
four subgroups of s-IBM patients defined as £3/e4 or €3/
€3 carrying or not carrying VL. Note that there are only
7 individuals in the group e3/e4 with VL and these
display more variability than the remaining subgroups.
Kaplan—Meier plots demonstrating the age at onset
distributions for individuals carrying and not carrying a
VL poly-T length are given in Fig. 3. Whilst gender was
not significant (p = 0.2), after adjusting for gender those
with VL had a later age at onset overall (p = 0.038).
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Fig. 1. Bimodal distribution pattern of poly-T repeat lengths in the s-IBM
patient cohort.

4. Discussion

This is the first study to investigate the influence of
polymorphism in the TOMM40 gene in s-IBM. Our
findings show that among carriers of APOE €3 there is a
significant association between carriage of rs10524523
genotypes including a very long (VL) poly-T repeat length
allele and a reduced risk of s-IBM as in the case of AD
[16]. Moreover, carriage of APOE-TOMM40 genotypes
with a VL allele was associated with a later age at onset of
symptoms. These findings therefore both point to the
possibility that these genotypes have a protective effect
and warrant further investigation.

Mitochondrial abnormalities are an important part of
the pathological phenotype of s-IBM, and include ragged-
red and cytochrome oxidase (COX) deficient muscle fibres,
ultrastructural abnormalities, and multiple somatic
mtDNA deletions which are associated with defective
synthesis of COX and other components of the respiratory
enzyme chain [20-22]. Mitochondrial dysfunction and
oxidative stress, which is increased in s-IBM muscle fibres
[23-25], are known to stimulate aggregation of
amyloidogenic proteins [26]. Moreover, over-expression of
BAPP and accumulation of amyloid-} are early changes in
muscle fibres prior to the development of structural
abnormalities [27], and over-expression of BAPP in human
myoblasts in vitro leads to the development of structural
mitochondrial abnormalities and loss of COX activity [28].
Increased transport of amyloid-p into mitochondria, or
arrest of BAPP in the mitochondrial import pores, as has
been demonstrated in AD [29,30], could interfere with
COX activity and lead to increased generation of reactive
oxygen species (ROS) [31]. Genetic variants of TOM40
could be associated with altered mitochondrial pore
function and transport of PAPP/amyloid-B and other
proteins into mitochondria. This could in turn lead to
changes in energy metabolism and increased generation of
ROS, which could contribute to impaired mitochondrial
integrity and muscle fibre degeneration.

The rs10524523 locus may influence susceptibility to AD
and s-IBM by modulating expression levels of TOMM 40
or APOE. Expression studies of TOMM 40 alleles with
different poly-T repeat lengths in brain have produced
varying findings. The study by Cruchaga et al. [16] on a
small number of AD brain samples failed to show any
differences in TOM40 cDNA levels with different
rs10524523 alleles. However, in a more detailed analysis
of a larger number of samples, Linnertz and colleagues
have shown that the VL allele is associated with higher
expression levels of TOMM40 and APOE mRNA, both
in normal and AD brain specimens (unpublished).
Similar studies have yet to be performed on muscle
samples from s-IBM and normal subjects and will be
important in determining if expression levels in muscle
are also altered by carriage of VL allele bearing genotypes.

The present findings support our previous suggestion
that multiple genes, both immune and non-immune, may
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Table 1
Frequency of carriage of VL poly-T repeat length in £€3/¢3 and €3/¢4 individuals.
€3/e3 €3/e4
VL carriage No VL carriage VL carriage No VL carriage
sIBM: 34 16 7 19
ADNI: 95 25 24 22
Odds ratio: 0.56 0.34

Mantel-Haenszel combined OR = 0.47 (p = 0.019).
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Fig. 2. Box-plots of the ages at disease onset in subgroups of £3/¢4 or £3/€3 s-IBM carriers, with or without VL alleles, showing a later age at onset in 3/

€3 homozygotes with a VL allele.
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Fig. 3. Kaplan—-Meier plots showing a significantly later age at disease onset in individuals with genotypes carrying a VL allele.

contribute to susceptibility to s-IBM [3]. However, the
findings need to be confirmed in other s-IBM patient
cohorts and should also be investigated in patients of
other genetic and racial backgrounds. In particular, the

association with age at onset requires further
confirmation, in view of the potential limitation of
self-reported data on the age of symptom onset in s-IBM.
Identification of new genes and polymorphisms that
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influence disease risk and have disease-modifying effects
will provide a better understanding of the molecular
pathogenesis of s-IBM and may lead to new therapeutic
targets being identified for treatment of the disease.
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