
R E S E A R CH A R T I C L E

Nonlinear biomarker interactions in conversion from mild
cognitive impairment to Alzheimer's disease

Sebastian G. Popescu1,2 | Alex Whittington1,3 | Roger N. Gunn3,4,5 |

Paul M. Matthews5,6 | Ben Glocker2 | David J Sharp1,6 | James H Cole1,7,8,9 |

for the Alzheimer's Disease Neuroimaging Initiative†

1Computational, Cognitive & Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK

2Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK

3Invicro Ltd, London, UK

4Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, UK

5Department of Brain Sciences, Imperial College London, London, UK

6Care Research & Technology Centre, UK Dementia Research Institute, London, UK

7Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK

8Centre for Medical Imaging Computing, Computer Science, University College London, London, UK

9Dementia Research Centre, Institute of Neurology, University College London, London, UK

Correspondence

James H Cole; Postal address: Centre for

Medical Image Computing, University College

London, 90 High Holborn, London, WC1V 6LJ,

UK.

Email: james.cole@ucl.ac.uk

Funding information

Engineering and Physical Sciences Research

Council; Medical Research Council, Grant/

Award Number: UKRI Innovation Fellowship;

National Institute for Health Research; Imperial

College London; University of Southern

California; Northern California Institute for

Research and Education; Foundation for the

National Institutes of Health; Canadian

Institutes of Health Research; Takeda

Pharmaceutical Company; Novartis

Pharmaceuticals Corporation; Meso Scale

Diagnostics; Johnson & Johnson; GE

Healthcare; F. Hoffmann-La Roche Ltd; Eli Lilly

and Company; Bristol-Myers Squibb Company;

National Institute of Biomedical Imaging and

Bioengineering; National Institute on Ageing;

US Department of Defence, Grant/Award

Number: W81XWH-12-2-0012; National

Institutes of Health, Grant/Award Number:

Abstract

Multiple biomarkers can capture different facets of Alzheimer's disease. However,

statistical models of biomarkers to predict outcomes in Alzheimer's rarely model

nonlinear interactions between these measures. Here, we used Gaussian Processes

to address this, modelling nonlinear interactions to predict progression from mild cog-

nitive impairment (MCI) to Alzheimer's over 3 years, using Alzheimer's Disease Neu-

roimaging Initiative (ADNI) data. Measures included: demographics, APOE4

genotype, CSF (amyloid-β42, total tau, phosphorylated tau), [18F]florbetapir, hippo-

campal volume and brain-age. We examined: (a) the independent value of each bio-

marker; and (b) whether modelling nonlinear interactions between biomarkers

improved predictions. Each measured added complementary information when

predicting conversion to Alzheimer's. A linear model classifying stable from progres-

sive MCI explained over half the variance (R2 = 0.51, p < .001); the strongest inde-

pendently contributing biomarker was hippocampal volume (R2 = 0.13). When

comparing sensitivity of different models to progressive MCI (independent biomarker

models, additive models, nonlinear interaction models), we observed a significant

improvement (p < .001) for various two-way interaction models. The best performing

model included an interaction between amyloid-β-PET and P-tau, while accounting
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for hippocampal volume (sensitivity = 0.77, AUC = 0.826). Closely related biomarkers

contributed uniquely to predict conversion to Alzheimer's. Nonlinear biomarker inter-

actions were also implicated, and results showed that although for some patients

adding additional biomarkers may add little value (i.e., when hippocampal volume is

high), for others (i.e., with low hippocampal volume) further invasive and expensive

examination may be warranted. Our framework enables visualisation of these interac-

tions, in individual patient biomarker ‘space', providing information for personalised

or stratified healthcare or clinical trial design.
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1 | INTRODUCTION

Rapid increases in the prevalence of Alzheimer's disease over the 21st

century are predicted (Brookmeyer, Johnson, Ziegler-Graham, &

Arrighi, 2007), hence there is a pressing need to develop disease modi-

fying treatments. Research diagnostic criteria have been proposed,

reflecting key biological facets of Alzheimer's such as cerebral amyloid-

β deposition, altered levels of proteins in CSF and neurodegeneration

(Dubois et al., 2014; Sperling et al., 2011). It is hoped that these biologi-

cal characteristics can be measured in people prior to symptoms man-

ifesting, identifying at-risk individuals and enabling interventions to be

targeted at slowing disease progression and delaying symptom onset.

This goal is complicated by the highly heterogeneous nature of the

Alzheimer's population (Tatsuoka et al., 2013). For example, although

the accumulation of amyloid-β plaques is a defining pathological feature

of Alzheimer's, many cognitively-normal older adults also have elevated

amyloid-β plaque levels (Villemagne et al., 2011). Seemingly, amyloid-β

deposition is not solely sufficient to cause dementia (Aizenstein

et al., 2008). Furthermore, while CSF tau was found to positively corre-

late with severity of cognitive impairment (Shaw et al., 2009), increased

CSF tau appears to indicate neuronal injury and neurodegeneration in

different diseases (Schoonenboom et al., 2012). Indeed, a broad range

of potential biomarkers are available for Alzheimer's. This includes hip-

pocampal volume, whole-brain volume and as well as apparent ‘brain-

age'. Previous work has shown that having an older-appearing brain is

associated with conversion to Alzheimer's within 3 years, and is more

statistically informative than hippocampal volume (Franke &

Gaser, 2012; Franke, Ziegler, Klöppel, & Gaser, 2010; Gaser et al.,

2013). We have previously used the brain-age paradigm to demon-

strate abnormal brain-ageing after a traumatic brain injury, in treatment

resistant epilepsy, multiple sclerosis and Down's syndrome (Cole

et al., 2017; Cole et al., 2020; Cole, Leech, & Sharp, 2015; Pardoe

et al., 2017). Brain-age also relates to cognitive performance and mor-

tality risk in older adults from the general population (Cole et al., 2018),

suggesting that this metric reflects something of the brain's sensitivity

to more general health. The range of available biomarkers indicates the

biological heterogeneity of Alzheimer's and more work is needed to

incorporate this heterogeneity into predictive models of disease

progression. This should improve specificity and better enable treat-

ment decisions to be made at the individual level, to aid in clinical prac-

tice and evaluate potential treatments.

To improve specificity in the use of biomarkers for staging

Alzheimer's, multiple measures are likely to be necessary. This way,

complementary information from different biological sources can be

combined to build a more comprehensive picture of the underlying dis-

eases processes, and capture disease heterogeneity more accurately.

An essential consideration when combining these multiple sources of

information is how they interact. For instance, while amyloid-β deposi-

tion may precede and potentially drive subsequent neurodegeneration

in some instances, the magnitude of amyloid-β deposition is likely to be

key. An individual may be ‘positive' for amyloid-β on a PET scan but

remain below some latent threshold for neuronal or glial loss (Fricker,

Tolkovsky, Borutaite, Coleman, & Brown, 2018). Once over that thresh-

old, neurodegeneration might occur, though if they remain below this

threshold, neurodegeneration may be driven by other factors, or not

occur at all. This accords with Jack et al. (2016) who proposed a multi-

state transition model, with two distinct pathways to Alzheimer's; one

where cerebral amyloid-β deposition occurs prior to neu-

rodegeneration, and one where neurodegeneration occurs prior to

amyloid-β deposition. In this second pathway, individuals may never

accumulate sufficient amyloid-β to cross the threshold to amyloid-

mediated neurodegeneration. However, they may have been exposed

to negative genetic or environmental factors, not necessarily

Alzheimer's related, that have influenced the rate of age-associated

change in brain structure. On this backdrop of poorer brain health,

potentially only minimal Alzheimer's-specific pathology is necessary to

drive disease progression. The presence of such thresholds in how two

biological processes interact is inherently nonlinear, however, nonlinear

relationships are under-studied in neurology and remain in the domain

of systems biology, for example in modelling cell signalling networks

(Sung & Hager, 2012). Nonlinear models that incorporate thresholds,

plateaus and other complex patterns are theoretically better positioned

to detect such relationships, and machine learning analysis offers a

range of tools for modelling nonlinearities.

Machine learning is an increasingly popular approach to predict

conversion from mild cognitive impairment (MCI) to Alzheimer's using

POPESCU ET AL. 4407



biomarkers (Pellegrini et al., 2018; Sarica, Cerasa, & Quattrone, 2017).

Machine learning emphasises out-of-sample prediction and is readily

able to incorporate high-dimensional data, hence is well-suited to

making individualised predictions of disease outcomes. However, only

a limited number of studies have specifically modelled interactions

between biomarkers and crucially, these have only been linear

(a)

(b)

(c)

(d)

F IGURE 1 Legend on next page.
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interactions (Bilgel et al., 2018; Caroli et al., 2015; Fortea et al., 2014;

Li et al., 2014; Pascoal et al., 2017; Pascoal et al., 2017). For example,

Pascoal, Mathotaarachchi, Shin, et al. (2017) showed that being posi-

tive for both amyloid-β-PET and CSF phosphorylated-tau (P-tau) was

associated greater cognitive decline and greater risk of disease pro-

gression in people with MCI, than being positive for either biomarker

in isolation. However, when dichotomising the continuous measures

of amyloid-β-PET and CSF P-tau into positive or negative, it is not

possible to detect more complex relationships between biomarkers.

Hence, this motivates research into alternative methods that enable

both linear and nonlinear interactions to be modelled.

One approach to modelling nonlinear interactions is Gaussian Pro-

cesses, a family of models that assigns a nonparametric Gaussian

smoothing function to each biomarker (Figure 1). These ‘kernels' can

then be combined, allowing nonlinear effects in both additive (i.e., main

effects) and interactions to be modelled (an example of nonlinear main

effects is shown in Supplementary Figure S1). Here, we tested the

hypothesis that the conversion from MCI to Alzheimer's can be better

predicted bymodelling biomarkers interactions (linear or nonlinear), than

by using the additive sum of independent effects on disease progression.

Using the ADNI data set, we analysed people with stable and pro-

gressive MCI to investigate: (a) the independent value each biomarker

has in predicting conversion; and (b) whether modelling nonlinear

interactions between biomarkers could improve the fit of classifica-

tion models that predict conversion to Alzheimer's. We included mul-

tiple biological indices, to capture different facets of Alzheimer's:

APOE genotype, CSF measures of amyloid-β42, total tau and P-tau,

PET measure of amyloid-β deposition, and structural MRI measures of

global ‘brain age' and of hippocampal volume.

2 | METHODS

A high-level overview of the methods used in the study is included in

Figure 1.

2.1 | Participants

Participants were drawn from the publicly-available ADNI data set.

Inclusion criteria included the availability of all biomarkers (genetic,

fluid, PET, MRI), a diagnosis of MCI at baseline imaging assessment

and the availability of clinical follow-up 3 years after the imaging

assessment to determine disease progression. Stable MCI participants

were those who still met the criteria for MCI after 3 years; progressive

MCI participants met the criteria for a clinical diagnosis of dementia at

or before the three-year assessment. The diagnostic criteria for MCI is

based on a mini-mental state exam score between 24 and 30 (inclu-

sive) and a clinical dementia rating = 0.5 with a memory box score of

at least 0.5, indicating that general cognition and functional perfor-

mance are sufficiently preserved such that a diagnosis of Alzheimer's

disease cannot be made by the site physician at the time of the

screening visit.

In total, n = 206 people with MCI were included in the analysis;

stable MCI n = 158 (age range 55–89 years, median age =

71.60 years), progressive MCI n = 48 (age range 55–84 years, median

age = 73.85 years). Further participant details are included in Table 1.

Only participants with complete data for all biomarkers were

included.

ADNI was launched in 2003 as a public-private partnership, led

by Principal Investigator Michael W. Weiner, MD. The primary goal of

ADNI has been to test whether serial MRI, PET and other biological

markers, and clinical and neuropsychological assessment could be

combined to measure the progression of MCI and early Alzheimer's

disease. For up to date information, see www.adni-info.org.

2.2 | Biomarker analysis

2.2.1 | Biomarkers: Genetics

APOE genotype was determined from a 10 ml blood sample taken

during study screening and sent overnight to the University of Penn-

sylvania ADNI Biomarker Core laboratory for analysis. The APOE

genotype of each participant was recorded as a pair of numbers indi-

cating which two alleles were present; either ε2, ε3, or ε4. For the pur-

poses of our study we used a categorical variable recording the

presence (1.0) or absence (0.0) of an ε4 allele.

2.2.2 | Biomarkers: Fluid

Samples of 20 ml of CSF were obtained from participants by a lumbar

puncture with a 20- or 24- gauge spinal needle, around the time of

F IGURE 1 Overview of study methods. (a) Raw T1-weighted MRI scans are pre-processed via the DARTEL pipeline in SPM12 to obtain grey
matter and white matter volume maps. These are fed into a pretrained Gaussian Processes Regression based ‘brain-age' prediction software to
arrive at an estimation of Brain-PAD, which is the difference between chronological age and neuroimaging-predicted ‘brain-age'. (b) CSF features

and hippocampal volume alongside genetic and demographic information are also used as biomarkers; (c) Subsampling stable MCI to overcome
the class imbalance. Repeated random subsampling of the stable MCI group 100 times for Gaussian Processes based models; (d) Partitioning of
total variance explained into independent and shared variance explained for each biomarker; Gaussian Processes that allow just for main effects
of biomarkers to be modelled are constructed by adding all the univariate squared exponential kernels corresponding to each biomarker. Full-
order interactions between all biomarkers considered are captured through a single multivariate squared exponential kernel; Full set of statistics
(sensitivity, specificity, accuracy, AUC) are computed for each replicate. Paired t-tests are conducted between accuracy scores stemming from main
effects models and a model containing a multivariate kernel to assess if the increase in generalisation to unseen data are statistically significant
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their baseline scan. All samples were sent same-day on dry ice to the

University of Pennsylvania ADNI Biomarker Core laboratory. There,

levels of the proteins (amyloid-β42, total tau, and P-tau) were mea-

sured and recorded, as described previously (Shaw et al., 2009). By

design, only a subset of ADNI participants had measurement of CSF

levels.

2.2.3 | Biomarkers: PET

Cerebral amyloid-β deposition was indexed using the PET tracer [18F]

florbetapir (F-AV45). PET imaging was performed within 2 weeks of

the baseline clinical assessments, as described previously (Jagust

et al., 2015). In brief, four late-time 5-minute frames are co-registered

and averaged. The resulting image is converted to a 160 × 160 × 96

voxel static image with voxel dimension of 1.5mm3. Finally, an 8 mm

full-width half-maximum (FWHM) Gaussian kernel was applied

(corresponding to the lowest resolution scanner used in the study).

These primary data were downloaded from the ADNI database and

used in the subsequent analyses.

F-AV45 data were nonlinearly registered into Montreal Neurologi-

cal Institute 152 space (MNI152 space) using DARTEL

(Ashburner, 2007). Initially the structural MRI images were segmented

into grey matter and white matter using the Statistical Parametric Map-

ping (SPM12) software package (University College London, UK) and

registered to a group average template. The group average template

was then registered to MNI152 space. The F-AV45 standardised

uptake value ratio (SUVr) image for each participant was registered to

the corresponding T1-weighted MRI using a rigid-body registration.

Finally, the individuals' DARTEL flow field and template transformation

was applied without modulation resulting in F-AV45 images in MNI152

space. The normalised maps were spatially smoothed (8 mm FWHM

Gaussian kernel). A neuroanatomical atlas (Tziortzi et al., 2011) and a

grey-matter probability atlas in MNI152 space were employed to

calculate regional SUVr values. SUVr values were quantified using the

grey matter cerebellum as the reference region (defined as the inter-

section between the cerebellum region from the anatomical atlas and

the grey-matter atlas, thresholded at p > .5). The mean uptake value for

cerebellar grey matter was obtained and each image was divided by this

to generate an SUVr image for each participant. Finally, an average cor-

tical SUVr value was obtained by calculating the mean SUVr value for

all cortical regions (weighted by regional volume).

2.2.4 | Biomarkers: Structural MRI

Three-dimensional T1-weighted MRI scans were acquired at either

1.5T (ADNI-1) or 3T (ADNI-2 and ADNI-GO) using previously

described standardised protocols at each site 2008. All MRI scans

were pre-processed using SPM12. This entailed tissue segmentation

into grey matter and white matter, followed by a nonlinear registra-

tion procedure using DARTEL (Ashburner, 2007) to MNI152 space,

subsequently followed by resampling to 1.5 mm3 with a 4 mm Gauss-

ian FWHM kernel.

Processed grey matter and white matter images were then

entered in the Pattern Recognition for Neuroimaging Toolbox

(PRoNTo) software (Schrouff et al., 2013). Using a previously trained

model that predicts chronological age from structural neuroimaging

data, as per our previous work (Cole et al., 2015; Cole et al., 2017;

Cole et al., 2018; Cole, Annus, et al., 2017), we generated a brain-

predicted age value for each participant. This step used a Gaussian

Processes regression model with a linear kernel, with processed neu-

roimaging data as the independent variables, and age as the depen-

dent variable. The training data set used to define the model included

n = 2001 health adults aged 18–90 years; further details have been

reported previously (Cole et al., 2017). Finally, we generated brain-

predicted age difference (brain-PAD) values; chronological age sub-

tracted from brain-predicted age (i.e., the model's predictions).

TABLE 1 Participant characteristics and biomarker values

Characteristic/biomarker Stable MCI Progressive MCI p-value (group comparison)

n 158 48

Age, mean (SD), years 71.32 (7.24) 73.35 (6.76) .076

Gender % (n), female/male 41.77 (66/92) 45.83 (22/26) 0.74

APOE genotype % (n), ε4 carrier/no ε4 allele 39.24 (62/96) 70.83 (34/14) <.001

Follow-up time, mean (SD), years 3.05 (0.12) 3.02 (0.08) 0.11

Amyloid-β42, mean (SD) 190.8 (199.5) 139.32 ± 35.36 <.001

Total tau, mean (SD) 74.83 (41.73) 118.12 (55.84) <.001

Phosphorylated tau, mean (SD) 33.15 (18.58) 54.15 (27.94) <.001

Amyloid-β-PET SUVR, mean (SD) 1.34 (0.23) 1.56 (0.23) <.001

Hippocampal volume, bilateral mean (SD), mm3 7,268 (1,056.87) 6,219.23 (1,016.33) <.001

Brain-PAD, mean (SD), years −2.94 (7.93) 2.26 (8.37) <.001

Note: Paired T-test were carried out to assess group differences. p values were uncorrected for multiple comparisons.

Abbreviations: APOE4, apolipoprotein e4; Brain-PAD, brain predicted age difference.
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2.3 | Statistical analysis

2.3.1 | Hierarchical partitioning of variance

We examined the independent contribution of each biomarker for dis-

tinguishing between stable and progressive MCI participants in a multi-

variate model, using hierarchical partitioning of variance (Chevan &

Sutherland, 1991). Here, a hierarchical series of logistic regression

models are fit, with all possible combinations of biomarkers. By compar-

ing the variance explained by each model across all possible models, an

unbiased approximation of the variance attributable to each variable

can be derived, both that independent of all other variables and that

shared with other variables (due to the correlations between them).

Hierarchical partitioning of variance was carried out using the R

package ‘hier.part' with the following variables: age, sex; genetics

(APOE4 genotype); CSF (amyloid-β42-CSF, total tau, P-tau); PET

(amyloid-β-PET); structural MRI (hippocampal volume, brain-PAD).

The number of variables was limited to nine as per Olea, Mateo-

Tomás, and De Frutos (2010) to avoid inconsistent results. Thus,

robust estimates of independent variance explained are obtained for

each biomarker, which enabled assessment of the utility of including

each biomarker when adjusting for all other biomarkers.

2.3.2 | Multivariate biomarker models

Given the six imaging or fluid variables of interest, 20 different combi-

nations of three-way interactions are available. To reduce this number

and focus the analysis, we limited this to three models motivated by

previous literature. This includes Caroli et al. (2015), who found

greater disease progression rates in subjects ‘positive' for both CSF

amyloid-β42 and hippocampal atrophy compared to those with just

one of these factors. Next, Bilgel et al. (2018) found that hippocampal

volume and amyloid-β-PET have a synergistic effect on future cogni-

tive impairment measures. Meanwhile, Pascoal, Mathotaarachchi,

Mohades, et al. (2017) suggested that the interactions between voxel-

level amyloid-β-PET SUVR and CSF phosphorylated-tau (P-tau) levels

were important for predicting 2-year metabolic decline in certain brain

regions. This interaction is further supported by Gonneaud and

Chételat (2018) who advocate for the exploration of possible syner-

gistic effects of CSF P-tau with neurodegeneration and amyloidosis.

Consequently, we considered multiple statistical models, all with

group (i.e., stable or progressive MCI) as the outcome (i.e., dependent)

variable and with age, sex and APOE genotype as covariates. Each of

the six imaging or fluid biomarkers were evaluated separately, along-

side three different multivariate models, and a full model containing

all biomarkers:

1. Hippocampal volume + brain-PAD + amyloid-β42-CSF

2. Hippocampal volume + brain-PAD + amyloid-β-PET

3. Hippocampal volume + amyloid-β-PET + P-tau

4. Full model (hippocampal volume + brain-PAD + amyloid-β42-CSF

+ P-tau + total tau + amyloid-β-PET)

2.3.3 | Gaussian processes classification

Gaussian Processes are a supervised learning algorithm, that has

found applications in many fields including our previous neuroimaging

research (Cole et al., 2015), due to its Bayesian and non-parametric

properties. The principal behind Gaussian Processes is that a mea-

sured (dependent) variable is modelled by defining a multivariate

Gaussian distribution, hence we can view them as being a distribution

over functions (Rasmussen & Williams, 2006).

To obtain Gaussian Processes models where our predictor variables

are independent, we assigned to each biomarker an individual squared

exponential kernel, and subsequently all kernels are added together to

derive a global kernel. To introduce interactions between biomarkers, we

used multiple covariates within a single squared exponential kernel.

Duvenaud, Nickisch, and Rasmussen (2011) proposed that this kernel

construction defines anm-order interaction over covariate space, where

m is the total number of covariates used in building the kernel. For exam-

ple, two-way interactions were constructed by assigning the respective

two biomarkers to a single kernel, subsequently adding this to the list of

univariate kernels specific to each biomarker. For all models we used the

nonsparse version of the Scalable Variational Gaussian Processes Classi-

fier (Hensman, Matthews, & Ghahramani, 2015). In terms of data pre-

processing, all input variables were whitened. We used the entire avail-

able data set, without excluding outliers. Continuous variableswere used

in their raw formwithout dichotomisation or cutoffs.

2.3.4 | Bootstrapping to adjust for class imbalance

The two groups of MCI patients were of differing size (progressive

MCI n = 48, stable MCI n = 158), resulting in a class imbalance. To

counter this imbalance, we subsampled the majority class (i.e., stable

MCI) to generate a balanced data set. To reduce the impact of sam-

pling bias on this approach, we used bootstrapping (100 iterations) to

randomly subsample the stable MCI group to create 100 different

subsets, each compared with the entire progressive MCI group.

2.3.5 | Model comparisons

Importantly, within each bootstrap, we used 10-fold stratified cross-

validation to generate a training, validation and testing set. We trained

our respective model on the training set until convergence of the log

likelihood calculated on the validation set. We retrieved the model

parameters at the moment of maximum log likelihood on the valida-

tion set and we compute the log likelihood for the testing set of this

fold. For each bootstrap, we then sum over the log likelihood values

across all testing set corresponding to the folds. Consequently, for

each model architecture we obtain 100 different sensitivity, specific-

ity, accuracy (which is balanced, thanks to the subsampling strategy),

area under the curve (AUC) and log likelihood values.

In order to detect two-way interactions, we assess the relative

improvement in log likelihood values of a model containing the main

POPESCU ET AL. 4411



effects plus the interaction term compared to the log likelihood values

stemming from main effects only. A paired t-test is used to test for

differences, with the significance level set at 0.05. In the case of

three-way interactions, the same procedure is applied with the differ-

ence that our null hypothesis model now consists of the main effects

plus all the pairwise two-way interaction terms stemming from combi-

nations of the three variables we intend to probe for a three-way

interaction. A visual depiction of this sequential interaction detection

process is provided in Supplementary Figure S2.

A list of the two-way and three-way interactions tested can be

found in Table 2. To determine whether Gaussian Processes for classifi-

cation resulted in improvements over less complex linear models, we

performed the same classification task using logistic regression, with

the same combination of different input variables and interaction terms

(Supplementary Table S1). When considering model performance, we

opted to focus on sensitivity to detecting progressive MCI as the chief

criteria, under the assumption that a false-negative classification of sta-

bleMCI, is clinically more deleterious than a false positive.

3 | RESULTS

A total of n = 158 stable MCI participants and n = 48 progressive MCI

participants were included in our study. The two different groups

were similar in age and gender. In terms of APOE4 status, there is a

significant difference, with 70.83% of progressive MCI being APOE4

positive, in comparison with 39.24% for stable MCI. Group differ-

ences were observed for all other biomarkers (Table 1).

3.1 | Biomarkers capture independent facets of
Alzheimer's progression risk

Hierarchical partitioning of variance was used to determine unique

contributions of different predictor variables as well as their shared

contribution towards prediction of conversion from MCI to

Alzheimer's after 3 years. The total variance explained by this additive

model was R2 = 0.51, p < 0.001. Independent R2 values were:

TABLE 2 Biomarker model performance for predicting conversion from MCI to Alzheimer's

Model Predictors Sensitivity Specificity Balanced accuracy AUC T-test log likelihood, P

Individual biomarkers

Amyloid-β42-CSF 0.625 0.895 0.760 0.749 −51.10

Total tau 0.708 0.625 0.671 0.730 −58.88

P-tau 0.729 0.666 0.697 0.722 −58.57

Amyloid-β-PET 0.666 0.666 0.666 0.729 −58.09

Hippocampal volume 0.666 0.666 0.666 0.739 −57.84

Brain-PAD 0.645 0.604 0.625 0.637 −63.361

Main effects

1 Hippocampal volume, brain-PAD, amyloid-β42 0.712 0.842 0.777 0.866 −39.47

2 Hippocampal volume, brain-PAD, amyloid-β-PET 0.756 0.754 0.755 0.830 −45.44

3 Hippocampal volume, amyloid-β-PET, P-tau 0.770 0.762 0.766 0.830 −45.44

Full model 0.770 0.729 0.760 0.838 −46.58

Two-way interactions

1 Brain-PAD * amyloid-β42 0.708 0.848 0.778 0.864 −39.45, 0.797

Amyloid-β42 * hippocampal volume 0.713 0.846 0.780 0.865 −39.08, <0.001

2 Brain-PAD * amyloid-β-PET 0.759 0.749 0.754 0.826 −45.39, 0.46

Hippocampal volume * amyloid-β-PET 0.723 0.788 0.756 0.830 −44.60, <0.001

3 Amyloid-β-PET * P-tau 0.771 0.756 0.764 0.826 −45.26, 0.015

Hippocampal volume * amyloid-β-PET 0.733 0.806 0.769 0.840 −43.02, <0.001

P-tau * hippocampal volume 0.758 0.768 0.763 0.826 −45.114, 0.003

Three-way interactions

1 Hippocampal volume * brain-PAD * amyloid-β42 0.724 0.830 0.777 0.861 −39.422, 0.745

2 Hippocampal volume * brain-PAD * amyloid-β-PET 0.738 0.791 0.764 0.827 −44.712, <0.001

3 Hippocampal volume * amyloid-β-PET * P-tau 0.748 0.812 0.780 0.835 −43.232, <0.001

Note: T-tests (paired) based on comparison between accuracy and log likelihood scores on 100 bootstrapped sets are provided as a mean to assess the rela-

tive increase in generalisation attributable to the introduction of either two-way interactions or three-way interactions between biomarkers in comparison

to main effects only variants for two-way interactions, respectively main effects plus a summation of pairwise two-way interactions terms between the

three variables in question for three-way interactions.

Abbreviation: AUC, area under receiver operator characteristic curve.
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age = 0.028, sex = 0.004, APOE4 = 0.069, amyloid-β42-CSF = 0.063,

total tau = 0.054, P-tau = 0.045, amyloid-β-PET = 0.048, hippocampal

volume = 0.126, brain-PAD = 0.076. A substantial proportion of the

variance was shared between variables, indicating that these bio-

markers reflect some common as well as unique processes underlying

progression from MCI to Alzheimer's (Figure 2).

3.2 | Logistic regression does not benefit from
interaction terms

When using logistic regression to classify stable and progressive MCI

patients, performance was moderately accurate, with balanced accura-

cies ranging from 0.67–0.72 (see Supplementary Table S1). Notably, for

all models, classification sensitivity (range 0.61–0.65) was substantially

lower than specificity (range 0.86–0.88), indicating that the logistic

regression was better at identifying stableMCI patients than progressive

MCI patients.When comparing themodels containing interactions terms

with their additive counterparts, t-tests showed than none of the interac-

tion models were significant. This indicates that using standard logistic

regression methods, where interactions are linear, there is no improve-

ment in classification performancewhen including interaction terms.

3.3 | Nonlinear interactions between hippocampus
and amyloid-based biomarkers

Different models were compared to assess the influence of including

nonlinear interactions when classifying stable from progressive MCI

(Table 2). For the models using biomarkers separately, P-tau showed

the best sensitivity (0.729), while amyloid-β42-CSF had the highest

accuracy (0.760). However, the AUC values for all these independent

measures was broadly equivocal (AUCs range 0.722–0.749), except

for brain-PAD, which was lower (AUC = 0.637). For the additive

models of main effects, sensitivity ranged from 0.712 to 0.770, includ-

ing the full model containing all biomarkers. When adding interaction

terms for Model 1, we found that a bivariate interaction between hip-

pocampal volume and amyloid-β42-CSF significantly improves model

fit (i.e., significantly lowers log-likelihood). For Model 2, a two-way

interaction between hippocampal volume and amyloid-β-PET also

improved model fit. For Model 3, all three interactions improved

model fit. That is, amyloid-β-PET by P-tau; amyloid-β-PET by hippo-

campal volume; P-tau by hippocampal volume. Finally, the inclusion of

a three-way interaction between hippocampal volume, amyloid-β-PET

and CSF P-tau also improved model fit for Model 2 and Model 3, but

not Model 1. Notably, the sensitivity (range 0.708–771) and specific-

ity (range 0.749–0.848) of the interaction models was similar to those

of the additive main-effect models, despite the reductions in log-

likelihood.

3.4 | Visualising nonlinear interactions: Contour
plots

The greatest performance improvement occurred when including a

two-way nonlinear interaction between amyloid-β-PET and hippocam-

pal volume when adjusting for P-tau (Model 3). To investigate the

relationships between these three biomarkers we used ‘contour' plots
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to compare the decision boundaries between the main effects model,

including interaction terms (Figure 3, Supplementary Figures S3-S5). A

decision boundary can be defined as the point in measured space at

which the classification is equivocal, in other words where there is

greatest statistical uncertainty about which class (stable MCI or pro-

gressive MCI) an individual belongs to. The further away from the

decision boundary, the more certain the model is that an individual is

either stable MCI or progressive MCI, depending on the direction. In

Figure 3, red regions are points in space with a high certainty of being

progressive MCI, blue regions the equivalent for stable MCI. The deci-

sion boundaries are the white-coloured regions where the blue and

red contours converge. These contour plots are analogous to topo-

graphical maps of mountainous terrain; strong colours represent

mountain peaks, while white areas represent valleys, the decision

boundaries.

From inspection of the contour plots it is evident that for differ-

ent levels of P-tau (based on this illustrative tertiary split), the relation-

ship between hippocampal volume and amyloid-β-PET changes. In

particular, for participants with medium P-tau levels, the contours are

a better fit to the distribution of stable (represented by crosses on

Figure 3) and progressive MCI participants (represented by dots) for

the interaction model compared to the additive model.

4 | DISCUSSION

Here, we modelled nonlinear interactions between a panel of bio-

markers (neuroimaging, genetic, CSF) to predict disease progression

from MCI to Alzheimer's disease. Statistical models that included

nonlinear interaction term explained conversion risk moderately
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better than additive linear models (in terms of model fit), though the

influence of these interaction models of the sensitivity to progressive

MCI was negligible. Importantly, our panel of biomarkers all indepen-

dently explained a proportion of the variance in a logistic classification

model. Though perhaps unsurprising, given evidence of the influence

of these biomarkers in Alzheimer's (Caminiti et al., 2018; Gaser

et al., 2013; Jack et al., 1999; Xu et al., 2013), this justifies the inclu-

sion of different sources of information, despite the evident shared

variance (i.e., bivariate correlations) between biomarkers. This is even

the case for measures of amyloid; whereby the PET-derived and CSF-

derived measures were correlated r = −0.54. Crucially, our results

show that a proportion of the non-shared variance between these

two biomarkers still relates to disease progression. This is in line with

previous findings (Mattsson et al., 2014), which showed that amyloid-

β42-CSF and amyloid-β-PET provide partially independent informa-

tion about a wide range of Alzheimer's measures. While a practi-

tioner's decision about whether to acquire PET or CSF measures of

amyloid for a single patient are likely influenced by cost and invasive-

ness, statistically including both will improve predictive accuracy.

We found that the nonlinear interaction between amyloid-β-PET

and hippocampal volume significantly increases our model fit on

unseen data, suggesting an element of synergy between the two bio-

markers. By inspecting the model's ‘contours' (Figure 3, Supplemen-

tary Figures S4, S5), we observe that this increased model fit is

attributable to ‘sharper' decision boundaries. The probability of con-

version for people with low hippocampal volume and high amyloid-

β-PET values was higher when compared to probability values

obtained from a model where the biomarkers are treated indepen-

dently, suggesting that modelling interactions explains more variance

and decreases statistical uncertainty. Our finding concurs with the

results from Bilgel et al. (2018), where an interaction was found

between hippocampal volume and amyloid-β-PET in predicting cogni-

tive decline, in their study of n = 171 older adults from the Baltimore

Longitudinal Study of Ageing. Additionally, we found evidence that a

three-way interaction between amyloid-β-PET, hippocampal volume

and P-tau further improves model fit compared to a main-effects

model, suggesting a three-way interaction between these biomarkers.

We also found evidence of nonlinear interactions between hippocam-

pal volume and: CSF P-tau, amyloid-β-PET, amyloid-β42-CSF. This

supports the idea that there is a ‘threshold effect' on hippocampal vol-

ume, whereby larger hippocampal volumes are associated with stable

MCI, irrespective of changes in other biomarkers, while with smaller

hippocampal volumes, the readouts of other biomarkers are more pre-

dictive of progressive MCI. Potentially, the presence of intact hippo-

campal networks enables functional compensation to ameliorate the

deleterious nature of amyloid and tau deposition, however, once hip-

pocampal atrophy crosses a certain threshold, the consequences of

abnormal protein deposition become clinically manifest.

Due to the nonparametric nature of Gaussian Processes, predic-

tion probabilities in biomarker ‘space' can be illustrated using contour

plots, which provide visual information about the relationship

between groups of biomarkers. When examining the contour plots

and respective decision boundaries for Model 1, we observed high

statistical ‘certainty' in classifying participants as stable MCI in the

case of high amyloid-β-CSF values, more specifically values above

192 pg/mL. Interestingly, this corresponds to the threshold proposed

by Shaw et al. (2009), who also used ADNI. Models including high

amyloid-β-CSF achieved high levels of specificity, with the individual

amyloid-β-CSF model having a specificity of 0.895. This means that

amyloid-β-CSF is useful for indicating that an individual is stable MCI,

but given the sensitivity of 0.625, is less valuable in identifying cases

of progressive MCI.

In practice, an individual patient could be located in this bio-

marker space, by using measurements of P-tau, hippocampal volume

and amyloid-β-PET. A clinician could use this plot to gain additional

understanding of whether an individual patient more closely resem-

bles a stable or progressive MCI patient, or whether they sit near the

decision boundary. The ‘sharper' the contrast between the red and

blue contours, the less uncertainty there is in a classification decision,

as is the case for the nonlinear interaction model compared to the

additive model depicted in Figure 3.

The performance of our Gaussian Processes method for

predicting MCI conversion was comparable to previous approaches

(see Jo, Nho, & Saykin, 2019; Rathore, Habes, Iftikhar, Shacklett, &

Davatzikos, 2017 for review). For example, Cheng et al. (2015) used a

multimodal manifold-regularised transfer learning with semi-

supervised learning on MRI, PET scans and CSF features to achieve

AUC = 0.852 (accuracy = 80.1%, sensitivity = 85.3%, specific-

ity = 73.3%). Korolev et al. (2016) used the probabilistic multiple ker-

nel learning classifier, obtaining AUC = 0.87 (accuracy = 80%,

sensitivity = 83%, specificity = 76%). Moradi et al. (2015) achieved an

AUC of 0.90 (accuracy = 82%, specificity = 74%, sensitivity = 87%)

using a univariate structural MRI biomarker alongside a variety of cog-

nitive scores. Besides these, Hor and Moradi (2016) implemented a

Scandent tree approach on T1-weighted MRI ROIs and global mea-

sures stemming from both FDG-PET and AV45-PET scans (accu-

racy = 0.815, sensitivity = 0.831, specificity = 0.803, AUC = 0.872). In

the current analysis, our best performing model (in terms of sensitivity

to progressive MCI) reached sensitivity = 0.771, specificity = 0.756,

accuracy = 0.764, AUC = 0.826. Direct comparison of these values is

complicated by the varying sample sizes in each study, generally based

on biomarker availability (e.g., fewer participants had amyloid-PET

scans). Our model performance results are sufficiently accurate to

enable reasonable scrutiny of relationship between variables. Never-

theless, no published model to date has reach sufficiently high sensi-

tivity to warrant clinic adoption for the prediction of developing

Alzheimer's in people with MCI, where values of 95% or greater are

likely to be necessary to influence clinical decision making.

Our study has some important strengths and weaknesses. Ours is

the first study to model nonlinear interactions between biomarkers in

predicting MCI conversion to Alzheimer's, properly utilising the avail-

able information in a more biologically-valid manner. Here, we

focused on model prediction, unlike previous work on interactions in

MCI conversion (Fortea et al., 2014; Pascoal, Mathotaarachchi, Shin,

et al., 2017), that relied on making inferences based solely on p-

values. Recently, Bzdok, Altman, and Krzywinski (2018) highlighted
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the diverging end results between classical statistics and machine

learning, with the former drawing population level inferences from

samples, whereas the latter is seeking to find generalisable predictive

patterns. In further work, Bzdok, Engemann, Grisel, Varoquaux, and

Thirion (2018) showed that low p-values do not necessarily translate

to generalisable biomarkers in out-of-sample data. Our model offers a

robust and interpretable framework by which we can visualise how

biomarkers dynamically interact and how those interactions affect the

decision boundaries of classifying participants as stable MCI or pro-

gressive MCI. For example, this framework could be used in designing

clinical trials to assess how much change in a given biomarker must

occur for an individual to move to from being at low risk from conver-

sion from MCI to Alzheimer's to being at high risk (i.e., moving from

blue regions to red in Figure 3).

Weaknesses of the current study include the limited sample size

and lack of a replication data set. While we did use ‘held-out' data to

test model generalisability, we were unable to test the predictive per-

formance of our models to truly independent data. This is one key lim-

itation of multi-modality prediction models, as beyond ADNI, data

sets containing MRI, amyloid-PET and CSF measures are challenging

to acquire and generally not openly-available to the research commu-

nity. Another limitation is that we focused on the MCI stage of the

disease. Evidence suggests that Alzheimer's pathogenesis commences

years prior to any cognitive symptoms, so future work should focus

on younger, at-risk groups, in order to maximise the window for inter-

ventions prior to Alzheimer's disease manifestation. Furthermore, the

diagnostic stages defined in ADNI are made clinically, while the gold

standard for AD diagnosis is postmortem. Potentially, some of the

clinical assessments are inaccurate.

In conclusion, our findings suggest that multiple underlying neu-

robiological processes both act independently and interact in a

nonlinear fashion during progression from MCI to Alzheimer's. By cap-

turing atrophy (hippocampal volume), amyloid-β deposition (using

PET) and neurofibrillary tangle formation (CSF P-tau) in a nonlinear

interactive model, we can better fit models to predict conversion than

independent effects alone, though main-effects multi-modality

models still offer reasonable performance. Our result highlighting

three-way interactions in Model 3 provides an unbiased quantification

of change in probability of progressing from MCI to Alzheimer's when

we modify the value of a certain covariate while maintaining the

others stable, in effect providing a quantitative extension to the

A/T/N classification framework detailed by Jack and colleagues

(2018) (see Supplementary Table S2). For example, the presence of

high amyloid deposition increases the chances of progression by

17.5% in tau-negative and neurodegeneration-positive patients. The

impact of modelling nonlinear interactions implies that threshold

effects and pathological ‘plateaus' are present during disease progres-

sion and that measuring multiple biomarkers will be necessary to best

predict outcomes. The current data do not suggest clinically meaning-

ful benefits of nonlinear-interaction models yet, though our novel

visualisation method (contour plots) could be helpful in clinical con-

texts and provides strong face validity for our approach. Finally, multi-

faceted therapeutic interventions are likely to be necessary, as simply

influencing the levels of a single biomarker will be insufficient to mod-

ify the disease in all individuals.
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