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Abstract

Biomarkers for dementia of Alzheimer's type (DAT) are sought to facilitate accurate

prediction of the disease onset, ideally predating the onset of cognitive deterioration.

T1-weighted magnetic resonance imaging (MRI) is a commonly used neuroimaging

modality for measuring brain structure in vivo, potentially providing information

enabling the design of biomarkers for DAT. We propose a novel biomarker using

structural MRI volume-based features to compute a similarity score for the individ-

ual's structural patterns relative to those observed in the DAT group. We employed

ensemble-learning framework that combines structural features in most discrimina-

tive ROIs to create an aggregate measure of neurodegeneration in the brain. This

classifier is trained on 423 stable normal control (NC) and 330 DAT subjects, where

clinical diagnosis is likely to have the highest certainty. Independent validation on

8,834 unseen images from ADNI, AIBL, OASIS, and MIRIAD Alzheimer's disease

(AD) databases showed promising potential to predict the development of DAT

depending on the time-to-conversion (TTC). Classification performance on stable ver-

sus progressive mild cognitive impairment (MCI) groups achieved an AUC of 0.81 for

TTC of 6 months and 0.73 for TTC of up to 7 years, achieving state-of-the-art results.

The output score, indicating similarity to patterns seen in DAT, provides an intuitive

measure of how closely the individual's brain features resemble the DAT group. This

score can be used for assessing the presence of AD structural atrophy patterns in

normal aging and MCI stages, as well as monitoring the progression of the individual's

brain along with the disease course.
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1 | INTRODUCTION

Clinically diagnosed dementia of Alzheimer's type (DAT) is a neurode-

generative syndrome caused by Alzheimer's disease (AD) pathology in

the brain. DAT is the most common type of dementia affecting elderly

and is characterized by cognitive deterioration with atrophy typically

starting in the medial temporal lobes, then progressively migrating

to the rest of the brain. Reductions in memory are the first hallmark

signatures, and with progressive deterioration, individuals become

completely dependent on caregivers for even basic daily functions.

DAT is the most common form of dementia, affecting 1 in 9 people

over the age of 65 years (Alzheimer's Association, 2015) and as many

as 1 in 3 people over the age of 85 (Hebert, Weuve, Scherr, &

Evans, 2013). As of 2015, there was an estimated 46.8 million demen-

tia afflicted growing to reach 131.5 million in 2050 (Prince, Comas-

Herrera, Knapp, Guerchet, & Karagiannidou, 2016), projecting a very

sizable effort on healthcare systems and caregivers worldwide. Bio-

markers that signal the onset of pathological changes in the brain, seg-

regate individuals based on disease severity, as well as being able to

directly measure the progressive degeneration caused due to AD, are

highly desirable.

Various biomarkers have been studied for AD, such as the deposi-

tion of pathological amyloid (Aβ) and tau in the cerebrospinal fluid

(CSF; Fagan et al., 2007; Li, Dong, Xie, & Zhang, 2013; Maruyama

et al., 2001; Ritchie et al., 2017; Tapiola et al., 2009), the brain

metabolic change derived from fluorodeoxyglucose positron emission

tomography (FDGPET; Lu, Popuri, Ding, Balachandar, & Beg, 2018;

Popuri et al., 2018), and the structural change in the brain morphology

measured from the magnetic resonance imaging (MRI; Frisoni, Fox,

Jack, Scheltens, & Thompson, 2010). MRI offers a direct measurement

of brain structure in exquisite detail and offers the potential to distill

the MRI-visible degeneration patterns into a biomarker score that can

indicate the extent to which the individual's brain is “close” to a nor-

mal control brain, or to a DAT brain. Being a commonly available

modality in clinical centers worldwide, MRI-based biomarkers, once

validated, offer the potential to be widely utilized.

Numerous studies have been conducted to explore the potential

of MRI-based DAT biomarkers (Weiner et al., 2017). These have been

facilitated by the recent availability of a large database of individuals

with DAT in the Alzheimer's Disease Neuroimaging Initiative (ADNI)

and other openly available databases. Initial attempts to distinguish

between the extremes of normal controls (NC) and DAT have been

followed by attempts to predict which of the mild-cognitive impaired

(MCI) individuals will progress to DAT (Mitchell & Shiri-Feshki, 2008;

Sun, van de Giessen, Lelieveldt, & Staring, 2017). A great effort was

placed on developing automated methods, to scale with the demand

of large numbers of images that needed to be processed, as well as

harness the power of computer algorithms to detect diffuse patterns

of change that may not be humanly possible to detect. Local region-

of-interest (ROI) scores such as based on automatically generated

medial temporal lobe atrophy using image intensity and texture

(Chincarini et al., 2014) and hippocampal texture have been proposed

(Sørensen et al., 2016). Coupe et al. (2015) introduced a hippocampal

grading score using a patch-based framework to measure the nonlocal

similarity between subject and a training population consists of

healthy subjects and AD patient, and achieved an accuracy of 72.5%

for 7-years’ prediction while training on ADNI dataset and test on an

independent dataset. Combined hippocampal subfield volumes were

shown to be more effective than the total hippocampal volume for

predicting 1-year MCI converters (Khan et al., 2015). The corpus cal-

losum's atrophy and shape change have been proposed as another

identifiable feature that the converter and nonconverter MCI patient

(over 1-year's period) showed significant statistical difference change

rate (Elahi, Bachman, Lee, Sidtis, & Ardekani, 2015). MCI converters

(over 3-year period) also showed significantly lower gray/white matter

contrast compared to the nonconverter, but not for the cortical thick-

ness and the hippocampus volume (Jefferson et al., 2015). Other stud-

ies have tried to incorporate longitudinal morphological change as

features to train the classifier and improve the classification accuracy

(Fiot et al., 2014; Liu, Zhou, Shen, & Yin, 2013; Lorenzi, Pennec,

Frisoni, & Ayache, 2014; Sun et al., 2017; Zhang et al., 2012).

However, to provide a clinically relevant index for early diagnosis

of DAT, it is important to assess a model's prediction accuracy on

patient groups at various stage of the disease progression spectrum,

over different ranges of time to conversion (TTC) before the disease

onset. Current literatures have yet to address these two important

aspects. In addition, no current studies have performed a comprehen-

sive independent testing over populations that are assembled across

all the currently available database.

Our proposed approach in this article is based on mining the

whole brain 3D MRI image for patterns that measure similarity to the

two extremes, the NC group on one hand that represent normal

healthy aging, and the DAT group, on the other hand, have been clini-

cally diagnosed with AD. Confidence in clinical diagnosis in these two

groups is high relative to the other groups, and they represent the

two extremes that are of interest; relatively lower neurodegeneration

expected in the cognitively normal individuals versus the relatively

fuller extent of neurodegeneration expected in DAT. Hence, these

are used to train an ensemble-learning based classifier to identify

these extremal patterns. The ensemble consists of a bank of classifiers

assessing similarity to the NC and DAT group patterns. Each classifier

generates a probabilistic score regarding membership of the given
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input to the two training classes. A composite ensemble score is gen-

erated across all the ensemble classifiers by averaging to represent

the aggregate overall probability of belonging to the NC or the DAT

groups. A low score represents “closeness” to the NC group patterns

whereas a high score represents “closeness” to the DAT group pat-

terns. This MRI-based DAT score, which we term as the MRDATS,

can be interpreted as a similarity metric defined between the subject's

MRI structural patterns and the DAT patterns, with low scores imply-

ing a higher similarity to nondemented structural patterns, and higher

scores implying a higher similarity to demented structural patterns.

Comprehensive validations of the MRDATS is performed over several

independent datasets to showcase the performance of the ensemble-

classifier trained on ADNI stable NC and stable DAT subjects to be

able to classify unseen novel images taken from entirely separate

databases.

2 | METHODS

2.1 | Experimental data

The MRI data for training and validating the proposed ensemble-

learning based classifier was obtained from 5 publicly available data-

bases, namely ADNI (Petersen et al., 2010), Australian Imaging Bio-

markers and Lifestyle Study of Aging (AIBL; Ellis et al., 2009), Open

Access Series of Imaging Studies (OASIS): Cross-sectional arm (OASIS1;

Marcus et al., 2007), longitudinal arm (OASIS-2; Marcus, Fotenos,

Csernansky, Morris, & Buckner, 2007), and Minimal Interval Resonance

Imaging in Alzheimer's Disease (MIRIAD; Malone et al., 2013) data-

bases. The ADNI dataset was used in the training phase, whereas

images taken from the other four databases were solely used for the

purpose of independent validation. Demographic details of the ADNI

database are given in Tables 1 and 2 shows the demographic details of

the other independent validation databases.

2.2 | Group stratification

To account for longitudinal clinical diagnoses, such as an NC individual

converting to MCI, or to DAT in the future, we employed a database

stratification based on the following seven subgroups (Figure 1; Popuri

et al., 2018). In this stratification scheme, each image is assigned a

membership in the form of “prefixGroup”, where “Group” is the clinical

diagnosis of the subject at imaging visit, and “prefix” signals past or

future clinical diagnoses. For example, an image is designated as unsta-

ble NC (uNC) if the subject was assigned a NC diagnosis at that particu-

lar imaging visit, but the subject converts to MCI at a future timepoint.

An image is designated as progressive NC (pNC) if the subject was

assigned an NC diagnosis at that particular imaging visit, but the subject

converts to DAT at a future timepoint. The early DAT (eDAT) images

are associated with a current diagnosis of DAT, but this subject had

received an NC or MCI status during previous visits (conversion within

the study window, hence early DAT). The stable DAT (sDAT) images

belong to the subjects with a consistent clinical diagnosis of DAT

throughout the study window; hence, these individuals already had a

confirmed diagnosis to DAT at the point of recruitment to the study.

Note that the images are associated with a clinical diagnosis. As

such, one individual can span one or more clinical diagnoses, such as

when converting from NC, to MCI, and to AD and therefore can have

images at different clinical diagnoses. Specifically, one subject can have

images that are labeled pNC ! pNC ! pMCI ! eDAT, another can

have images labeled sNC ! sNC ! sNC ! sNC; another subject could

have images labeled uNC ! uNC ! sMCI! sMCI, another could have

images labeled pMCI! pMCI! eDAT! eDAT and still another could

have images that are sDAT ! sDAT ! sDAT ! sDAT and so on. In

comparison, the traditional stratification based on subjects being identi-

fied as one of NC, MCI or DAT subgroups is sub-optimal with regards

to identifying their images along an evolving clinical trajectory. To

recap, we will use a novel seven-subgroup database stratification

(Popuri et al., 2018) for assigning images to the following groups.

• sNC (stable NC): Images belonging to the sNC group are from sub-

jects diagnosed as NC at imaging time and stay as NC throughout

the observation window of the study.

• uNC (unstable NC): Images belonging to the uNC group are from

subjects diagnosed as NC at imaging time and transition to MCI

during the observation window of the study.

• pNC (progressive NC): Images belonging to the pNC group are from

subjects diagnosed as NC at imaging time and convert to DAT dur-

ing the observation window of the study.

• sMCI (stable MCI): Images belonging to the sMCI group are from

subjects diagnosed as MCI at imaging time and remain clinically

diagnosed as MCI throughout the observation window of the

study.

• pMCI (progressive MCI): Images belonging to the pMCI group are

from subjects diagnosed as MCI at imaging time and convert to

DAT during the observation window of the study.

• eDAT (early DAT): Images in the eDAT group belong to subjects

with a clinical diagnosis of DAT at imaging time, but had a clinical

diagnosis of NC or MCI in an earlier visit, reflecting their recent

conversion to DAT during the observation window of the study.

• sDAT (stable DAT): Images in the sDAT group belong to subjects

with a clinical diagnosis of DAT at imaging time, and DAT at earlier

visits, reflecting their conversion to DAT prior to the observation

window of the study.

The DAT− group of images are from those subjects that did

not convert to DAT during the observational window of the study

(i.e., the images in the sNC, uNC, and sMCI groups). The DAT+ group

of images are from subjects that have a future clinical diagnosis of

DAT (i.e., the pNC, pMCI, eDAT, and the sDAT subgroups).

By shifting the focus from subjects to images, this stratification

scheme can incorporate past and future clinical diagnosis within an

individual's trajectory. The task then becomes that of predicting

whether an image belongs to the DAT− trajectory (that subject will

not see a future diagnosis of DAT) or the DAT+ trajectory (that
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subject will convert to DAT in the future) regardless of the clinical

diagnosis at the imaging time. The outcome of relevance is therefore

not a prediction of the current clinical diagnosis associated to an

image (such as NC or MCI), but whether this image is a harbinger of a

future conversion to DAT (DAT+ trajectory) or if this individual will

stay nondemented in the future (DAT− trajectory).

2.3 | MRI processing

The T1-weighted MRI images were segmented into the gray matter

(GM), white matter (WM), and cerebrospinal fluid (CSF) tissue regions

(Dale, Fischl, & Sereno, 1999) using the FreeSurfer software package

version 5.3 (surfer.nmr.mgh.harvard.edu). A rigorous quality control

TABLE 1 Stratification of ADNI images and associated demographic, clinical, and biomarker details

Dementia

trajectory Group name

Clinical diagnosis

at imaging

Clinical

progression

Subjects

[M:F]

Images

[1.5 T:3 T]

Agea

[years]

CSFa,b

[t-tau/Aβ1-42]

DAT−c sNC:Stable NCd NCb NC ! NC 197:226 929:939 76.25 (6.22) 0.38 (0.27)

DAT− uNC:Unstable NC NC NC ! MCI 37:23 175:59 78.12 (4.89) 0.45 (0.22)

DAT− sMCI:Stable MCI MCIb NC ! MCI or

MCI ! MCI

315:220 845:1350 74.58 (7.73) 0.51 (0.42)

DAT+c pNC:Progressive NC NC NC ! MCI ! DAT 11:13 108:10 77.27 (4.23) 0.71 (0.40)

DAT+ pMCI:Progressive MCI MCI NC ! MCI ! DAT or

MCI ! DAT

188:133 754:274 75.43 (7.20) 0.79 (0.50)

DAT+ eDAT:Early DAT DATb NC ! MCI ! DAT or

MCI ! DAT

171:122 569:181 76.69 (6.87) 0.77 (0.43)

DAT+ sDAT:Stable DATe DAT DAT ! DAT 182:148 603:372 75.70 (7.80) 0.85 (0.45)

Note: The stratification was based on two criteria, clinical diagnosis of subjects at the time of MRI image acquisition and their longitudinal clinical progres-

sion. Each image is assigned a membership of the form “prefixGroup”, where “Group” is the clinical diagnosis at imaging visit, and “prefix” signals past or
future clinical diagnoses. For example, an image is designated as pNC if the subject was assigned a NC diagnosis at that particular imaging visit, but the sub-

ject converts to DAT at a future timepoint. The eDAT images are associated with the diagnosis of DAT, but the subject had received NC or MCI status dur-

ing previous ADNI visits (conversion within ADNI window). Whereas, the sDAT images belong to subjects with a consistent clinical diagnosis of DAT

throughout the ADNI study window, hence these individuals have progressed to DAT prior to their ADNI recruitment. DAT: not on the DAT trajectory and

will not get a DAT diagnosis in the ADNI window.
aThe mean (standard deviation) age and CSF measure values within each group are given CSF measures were only available for a subset of images in each

of the groups: four sNC (573), uNC (79), sMCI (634), pNC (41), pMCI (315), eDAT (154), sDAT (329).
bCSF, cerebrospinal fluid; DAT, dementia of Alzheimer's type; MCI, mild cognitive impairment; NC, normal controls; t-tau: total tau, Aβ1-42: beta amy-

loid 1–42.
cDAT+: On DAT trajectory, that is, at some point in time, these subjects will be clinically diagnosed as DAT. DAT−: not on the DAT trajectory and will not

get a DAT diagnosis in the ADNI window.
dBaseline sNC: N = 423, Age: 73.87 (5.78), MMSE: 29.06 (1.15), CSF: 0.39 (0.28). Follow-up sNC: N = 1,445, Age: 76.95 (6.17), MMSE: 29.02 (1.25),

CSF: 0.37 (0.26).
eBaseline sDAT: N = 330, Age: 74.93 (7.83), MMSE: 23.16 (2.06), CSF: 0.84 (0.44). Follow-up sDAT: N = 645, Age: 76.08 (7.76), MMSE: 20.94 (4.61),

CSF: 0.88 (0.45).

TABLE 2 Demographics summary of each stratified groups for all the independent validation dataset

Group name

Dataset Clinical measure sNC uNC sMCI pNC pMCI eDAT sDAT

AIBL Subjects [M:F]

Images [1.5 T:3 T]

140:179

174:447

8:7

21:5

37:33

24:76

4:1

0:9

11:10

10:17

10:10 2:29 30:42

22:80

Age (years) 73.45 (6.69) 72.73 (7.48) 75.97 (7.09) 73.22 (4.97) 77.78 (6.57) 79.45 (6.30) 73.79 (8.17)

OASIS-1 Subjects [M:F]

Images [1.5 T:3 T]

119:197

336:0

31:39 70:0 10:20 30:0

Age (years) 43.80 (23.75) 76.21 (7.19) 78.03 (6.91)

OASIS-2 Subjects [M:F]

Images [1.5 T:3 T]

20:50

183:0

4:9

17:0

27:24

104:0

7:6

13:0

7:6

16:0

5:6

26:0

Age (years) 76.89 (8.13) 79.34 (7.35) 78.07 (6.89) 72.69 (4.57) 74.33 (4.16) 76.31 (8.13)

MIRIAD Subjects [M:F]

Images [1.5 T:3 T]

12:11

243:0

19:27

465:0

Age (years) 69.86 (6.94) 69.56 (6.86)

Note: Not all datasets contain all the stratified subgroups.

4130 POPURI ET AL.

http://surfer.nmr.mgh.harvard.edu


procedure was used to manually identify and correct any errors in the

automated tissue segmentations following FreeSurfer's troubleshoot-

ing guidelines. Subsequently, the GM and CSF tissue regions were

parcellated into 91 different anatomical ROIs using FreeSurfer's corti-

cal (Desikan et al., 2006) and subcortical (Fischl et al., 2002) labeling

pipelines. A multi-atlas segmentation approach was used to derive the

total intracranial vault (TIV) segmentation for each of the MRI images

(Ma et al., 2019).

2.4 | Data harmonization and W-score-based
volume features

When analyzing heterogeneous data, it is important to first ensure that

the data is harmonized (Fortin et al., 2017; Fortin et al., 2018; Fortin,

Sweeney, Muschelli, Crainiceanu, & Shinohara, 2016; Jahanshad et al.,

2013; Kochunov et al., 2015; Potvin, Dieumegarde, & Duchesne, 2017;

Potvin, Mouiha, Dieumegarde, & Duchesne, 2016; Rozycki et al., 2017;

Thompson et al., 2017; Yu et al., 2018), that is, removing individual vari-

ability due to such as sex, scanner field strengths, scanner type, and TIV,

and only preserve differences due to effect of interest – AD-induced

volume change. The data harmonization was achieved using generalized

linear model (GLM) framework introduced in our previous publication

(Ma, Popuri, et al., 2019) where the raw structure volume (i.e., the

dependent variable) is considered as the linear combination of all other

covariates (i.e., independent or predictive variables including sex,

scanner field strength, scanner type, and TIV) plus a residual term

(Equation (1)):

Vi = β0 +
XR

r
βrxr,i + εi ð1Þ

where the xi are covariates including sex, TIV, scanner field-strength,

and scanner type of each scan of subject i, and R is the total

number of independent variables. The εi is the residual term for each

image data after fitting the measurements from the reference group

to the GLM using the multivariate linear regression. Here, we use the

baseline measurements from the sNC group as the reference group.

The standardized residual, also known as the w-score

(Equation (2)) was then calculated as the feature to train the machine-

learning classifier for computing the MRI DAT score.

W i = εi−μεsNC

� �
=σεsNC ð2Þ

where μεsNC
and σεsNC are the mean and standard deviation of the GLM-

regressed residual in the reference group (sNC). The standardized

residual has been shown to better identify group-dependent differ-

ences when assessing the structural changes such as atrophy (Collij

et al., 2016; la Joie et al., 2012; O'Brien & Dyck, 1995).

2.5 | MRI DAT score computation via supervised
ensemble learning

We adopted the well-established ensemble learning framework to com-

pute the proposed MRI-based DAT score from the w-score volume fea-

tures (Dietterich, 2000), which combines multiple trained classifiers to

achieve a more robust classification instead of relying on the outcome

of a single classifier. We previously applied such an ensemble learning

framework to derive fluorodeoxyglucose positron emission tomography

(FDG-PET) imaging-based predictive scores for early identification of

the MCI to AD converters in the ADNI database, and achieved the

state-of-the-art performance (Popuri et al., 2018). The baseline images

from the sNC (N = 423) and sDAT (N = 330) groups in the ADNI data-

base were used for training the classifier as those represent the

extremes of the disease spectrum with a high clinical diagnosis certainty.

The baseline images from the sDAT group of images are the ones in

later stages of DAT and hence represent the DAT+ group. The baseline

images from the sNC represent the nondemented (DAT−) group.

In the training phase, we extracted volume w-scores of the

91 FreeSurfer ROI volumes as to the training features. To prevent

F IGURE 1 The schematic diagram of the group stratification.
Each image is assigned a membership in the form of “prefixGroup”,
where “Group” is the clinical diagnosis at imaging visit, and “prefix”
signals past or future clinical diagnoses. The beginning of each arrow
marks the point when the participant entered the ADNI study. Each
box represents the stratified group that is assigned to an image for the
current visit of the subject. The green boxes represent the stratified
groups that belong to the DAT− trajectory, while the red boxes
represent the stratified groups that belong to the DAT+ trajectory.
The sNC and sDAT groups are enclosed with red border indicating
that their baseline images are used as the training dataset. Noted that
some of the DAT− participants may switch over to DAT+ in future
follow-ups
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over-fitting to the training data, we used the sub-bagging technique

(Buhlmann, Akritas, & Politis, 2003) by randomly generating F = 100

subsets of the training data, with a sampling ratio of 0.8. Data were

sampled in a stratified fashion by choosing the same number of sam-

ples from each class (based on the smaller of the two classes in train-

ing; here sDAT) to keep the classes balanced in each training strata,

that is, Ntrain = 2 × b0.8 × 330c = 528 samples in each of the F training

subsets.

A probabilistic multi-kernel classifier, Variational Bayes Probabilis-

tic Multi-Kernel Learning (VBpMKL; Damoulas & Girolami, 2008a)

was trained on each the F subsets of the training data. In this method,

each probabilistic classifier was defined as a kernel (Shawe-Taylor &

Cristianini, 2004)—A function to map the data onto high-dimensional

feature space to achieve linear separation of the features using the

Kernel trick (Scholkopf & Smola, 2018). The VBpMKL classifier is able

to apply different kernels (e.g., Gaussian, second-order polynomial)

from each feature space and embed into one single composited fea-

ture space, and learns the weight for each kernel for different feature

through the variational Bayesian approximation without the need for

explicit parameter tuning, and output a probabilistic estimation to

each class for each data.

To obtain the largest reduced dimensionality and avoid overfitting,

the maximum number of Kmax features that can be used to train the clas-

sifier with an Ntrain example in the training dataset is Kmax = Ntrain × 2p(e)

where p(e) is the probability of error (Fitzpatrick & Sonka, 2000;

Loew, 2000). To keep p(e) below 5%, Kmax = Ntrain × (2 × 0.05) =

Ntrain/10 (Raamana, Weiner, Wang, & Beg, 2015). Therefore, the top

k = bNtrain/10c = 52 ROIs with the most discriminative features were

selected based on a ranking of the t-statistic in each of these F subsets

of training data to reduce the input feature dimension from 91 to 52.

The training output of each individual probabilistic kernel classifier gives

the probability pi � [0 1], i = {1,…,F} that the input feature belongs to the

positive (DAT+) class. We then define the MRI DAT score (in short, the

MRDATS) as the mean of all the probabilistic predictions over the entire

F classifiers.

The classifier ensemble output is a scalar number MRDATS that

can be interpreted as a similarity measure of the volumetric MRI-derived

features to the sNC and the sDAT groups in the training set. In a clinical

context, the continuous score can be evaluated in conjunction with

other clinical variables and need not be thresholded at an arbitrary mid-

way threshold. However, for the purposes of evaluation, the MRDATS

can be thresholded at 0.5 to create a diagnostic label of DAT− or DAT+

(either the image is from DAT+ trajectory or it is not).

Once a class label of DAT+/DAT− has been assigned, sensitivity,

specificity, accuracy, and balanced accuracy are obtained by comparing

to the clinical diagnosis. The trained ensemble model was then evalu-

ated on the remaining stratified subgroups, where pNC, pMCI, eDAT,

and sDAT are deemed members of DAT+ trajectory whereas sNC, uNC,

and sMCI are not. Balanced accuracy, an average of sensitivity and spec-

ificity, is a better reflection of accuracy of classification in the presence

of class imbalance. The area under the curve is also calculated by scan-

ning the threshold from 0 to 1 and is an indication of the separation of

the class (DAT+/DAT−) histograms.

2.6 | Evaluation on the ensemble-learning-based
MRDATS prediction on independent datasets

The performance of the classifier is evaluated over independent test

images taken from four publicly available datasets: AIBL, OASIS-1,

OASIS-2, and MIRIAD. The demographic details of these databases

are given in Table 2. MRI processing and w-scoring were performed

using the same procedures performed on the ADNI data. The w-

scores of volumes from the same ROIs were used as features and

fed to the F-ensemble classifier trained on ADNI training data and

the MRDATS were obtained for each test image. Note that not only

were these databases never included in training, the demographics

and scanning parameters are slightly different from each, and there-

fore provide a good validation of the generalizability of the MRDATS

to new samples.

2.7 | Comparison between MRDATS with CSF
biomarker

The t-tau to beta-amyloid ratio (t-tau/Aβ1–42) in the CSF is a poten-

tial biomarker of AD pathology (Fagan et al., 2007). Therefore, we

evaluated the proposed MRDATS by analyzing the correlation

between the MRDATS and the t-tau/Aβ1–42 to assess whether the

proposed structural imaging-based score is correlated to a measure

of pathology.

2.8 | Assess the effect of demographic- and
scanner-related variables on MRDATS

It has been shown that both demographic-related (sex and age) as well

as the scanner-related (field strength) variables might influence the out-

comes of an analysis involving MRI-based volume features (Ma, Popuri,

et al., 2019). Therefore, we explored the effect of demographic-related

(sex and age) as well as the scanner-related variables (field strength) on

MRDATS.

3 | RESULTS

3.1 | W-score harmonization

The w-scores of each ROI volume were obtained by regressing out

the influence of scanner field strength, sex, and TIV to harmonize the

databases against these variables. Figure 2 shows a visualization of

the w-score volume feature for each stratified group before (top

panel, raw volumes as heatmap) and after (bottom panel, w-scores as

heatmap) the data harmonization, with each column being a single

subject and each row being a single ROI. The figure shows that

within-group variation is greatly reduced after harmonization with the

w-score, and therefore, signals of structural atrophy important for

intergroup discrimination are likely enhanced.
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3.2 | Salient ROI selection for MRDATS
computation

Automatic selection of the 52 most discriminative ROIs was achieved

through a t-statistic based feature selection procedure by each of

the individual classifiers in the ensemble. Table 3 lists the overall set

of ROIs that were selected by the classifier ensemble along with the

corresponding selection frequency for each selected ROI. The ROI selec-

tion frequency represents the percentage of times an ROI was selected

by the classifiers in the ensemble model. Figure 3 shows a surface-based

visualization of the selection frequency for each of the cortical ROIs.

3.3 | MRDATS distribution among training groups
(sNC and sDAT)

During the training phase, only the baseline images from subjects with

the most diagnostic certainty, namely, the sNC and sDAT groups, were

used to train the ensemble classifier. The MRDATS values for these

baseline images were determined using the out-of-bag prediction

approach to avoid biased estimates (Popuri et al., 2018). In this

approach, the MRDATS for a given baseline image was computed by

only fusing predictions from classifiers in the ensemble that did not

have the given baseline image as part of their subagging training sub-

set. Figure 4, top panel, shows the histogram distribution of the

MRDATS among the sNC and sDAT groups, that is, the classifier is

used to predict the scores for the data it was trained with. The histo-

gram shows considerable separation between the DAT+ (blue) and

F IGURE 2 Visualization of the ROI volumes taken from the ADNI
database (total of 7,168 images). Top panel: Raw volumes before
covariate harmonization; bottom panel: w-score of the raw volume
with respect to the sNC group, after harmonization. Each column

represent one subjects’ image, and each row represents one ROI in
the brain

TABLE 3 Most discriminative ROIs
determined by the ensemble
classification model

ROI Name
Frequency (%)
[left | right] ROI Name

Frequency (%)
[left | right]

Accumbens-area 100.00 | 100.00 Temporal pole 100.00 | 100.00

Amygdala 100.00 | 100.00 Lateral occipital 96.00 | 100.00

Banks sts 100.00 | 100.00 Isthmus cingulate 93.00 | 95.00

Entorhinal 100.00 | 100.00 Lateral orbitofrontal 94.00 | 77.00

Fusiform 100.00 | 100.00 Insula 56.00 | 92.00

Hippocampus 100.00 | 100.00 Putamen 20.00 | 96.00

Inferior–lateral-ventricle 100.00 | 100.00 Pars orbitalis 25.00 | 87.00

Inferior parietal 100.00 | 100.00 Third-ventricle 100

Inferior temporal 100.00 | 100.00 Thalamus 31.00 | 66.00

Lateral-ventricle 100.00 | 100.00 Caudal middle frontal 80.00 | 3.00

Middle temporal 100.00 | 100.00 Posterior cingulate 66.00 | 2.00

Para hippocampal 100.00 | 100.00 Medial orbitofrontal 0.00 | 42.00

Precuneus 100.00 | 100.00 Lingual 31.00 | 2.00

Rostral middle frontal 100.00 | 100.00 Pars triangularis 21.00 | 0.00

Superior frontal 100.00 | 100.00 Postcentral 19.00 | 2.00

Superior parietal 100.00 | 100.00 Precentral 3.00 | 0.00

Superior temporal 100.00 | 100.00 Transverse temporal 0.00 | 1.00

Supramarginal 100.00 | 100.00

Note: The ROIs are listed in descending order of their total (left and right averaged) selection frequency.

POPURI ET AL. 4133



DAT− (green) classes, with the mean MRDATS being 0.154 for the

sNC images, and 0.818 for the sDAT images. The AUC is 0.952 and

approximately 60% of the sNC group was assigned a MRDATS below

0.1, and slightly less than 60% of the sDAT group was assigned an

MRDATS above 0.9. The sensitivity is 0.873 specificity is 0.913 accu-

racy is 0.895 and balanced accuracy is 0.893.

The follow-up images of the subjects in the sNC and sDAT

groups were then analyzed by the same classifier trained on the base-

line sNC and sDAT images. These images are correlated with the

training group of images; therefore, this is just a better estimate of

the training error since the longitudinal follow-up images are, if only,

slightly different from the training images. The mean MRDATS for the

sNC follow-up images at 0.200 is higher than that for the baseline

sNC images at 0.154, with a smaller 50% of the follow-up sNC group

getting MRDATS score below 0.1. The mean MRDATS of follow-up

sDAT group was 0.884 as compared to that of the baseline sDAT

images at 0.818, with more than 70% of the follow-up sDAT images

being assigned a MRDATS above 0.9 (Figure 4, bottom panel).

3.4 | MRDATS distribution in ADNI test groups

The trained ensemble model was evaluated on the remaining stratified

subgroups (i.e., uNC, sMCI, pNC, pMCI, and eDAT) from the ADNI data-

base. These images are unseen by the classifier as none of these sub-

jects’ images are used in classifier training. Figure 5, top panel, shows

the distribution of the MRDATS among the unseen validation sub-

groups in ADNI and provides insights into the test (or generalization)

performance of the classifier. A midway threshold of 0.5 on MRDATS

was used to assign each image to either the DAT− or the DAT+ trajec-

tory. The uNC and sMCI images are considered as belonging to the

DAT− trajectory since they do not include a terminal clinical diagnosis

of DAT. The pNC, pMCI, and eDAT belong to the DAT+ trajectory as

they include a terminal clinical diagnosis of DAT. The MRDATS histo-

gram shows a less pronounced class separation between DAT− and

DAT+, with AUC being 0.964, as compared to 0.952 on the training

data in Figure 4. The mean MRDATS for the DAT+ trajectory groups

(0.867 for eDAT, 0.678 for pMCI) is much higher than that of the DAT

− trajectory groups (0.350 for uNC, and 0.384 for sMCI). The exception

is the pNC group, with a smaller sample of 118 images, which, although

on the DAT+ trajectory, shows a group mean MRDATS of 0.329.

3.5 | Correlation between MRDATS and CSF
t-tau/Aβ1–42 using ADNI data

We also investigated the association between MRDATS and CSF

t-tau/Aβ1–42 measures through Pearson correlation analysis

F IGURE 3 Visualization of the cortical ROIs chosen by the
ensemble classification model as being the most discriminative for
sNC versus sDAT. The ROIs are colored in decreasing order of their
D-statistic, a measure of separation between the ECDFs of the sNC
and the sDAT volume w-score measures

F IGURE 4 MRDATS distribution among the sNC and sDAT
images and classification performance obtained in assigning images to
either the DAT− or DAT+ trajectory using a binarizing 0.5 MRDATS
threshold. The top panel presents the MRDATS on the baseline
images used for training the ensemble model. The bottom panel
shows ensemble model predictions on the follow-up images of the
sNC and sDAT individuals. The follow-up images were not part of
training the MRDATS computation. The (number of images: mean
MRDATS) is shown for each subgroup. Balanced accuracy is the mean
of the sensitivity and specificity measures
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within the ADNI database. Figure 6 shows the correlation results

for the different stratified subgroups in both the DAT+ (left col-

umn) and DAT− trajectory (right column) in the training (sNC

and sDAT) and the validation (uNC, sMCI, pNC, pMCI, and

eDAT) subsets of the ADNI database respectively. Significant

positive correlation (p < .05) was noted between the MRDATS

and the t-tau/Aβ1–42 for the sNC and sDAT (including both the

baseline training and follow-up validation data). Similarly, a sig-

nificant correlation was detected for the eDAT and sMCI sub-

groups. On the contrary, for more challenge cases in the uNC,

pNC, pMCI, and sDAT groups, no significant correlation was

detected.

3.6 | Testing using independent databases

We further evaluated the ADNI-trained ensemble models on four

independent, publicly available datasets namely the AIBL, OASIS-1,

OASIS-2, and MIRIAD databases. We stratify these database images

also into sNC, uNC, sMCI, pNC, eDAT, and the sDAT subgroups based

on their longitudinal trajectory of clinical diagnosis.

Table 2 shows the demographic information of each stratified

groups for all the datasets. Not all datasets contain all the stratified

subgroups. For example, OASIS-1 only contains sNC, sMCI, and sDAT,

since the study is mainly focused on cross-sectional data; and MIRIAD

only contains sNC and sDAT, due to the recruitment criteria as well as

the short time window of the study.

The Zscape in Figure 7 showed the w-score, which is the harmo-

nized feature of ROI volume for each stratification group, with sub-

jects combined from all databases (ADNI, AIBL, OASIS-1, OASIS-2,

and MIRIAD). The individual images (columns) in each stratification

group are sorted according to their calculated MRDATS.

For each stratification group, the empirical cumulative distribu-

tion function (ECDF) of the w-score feature from the 91 ROIs vol-

ume, ranked and sorted in a descending order of the discriminative

power (in terms of selection frequency as shown in Table 3), followed

with the final MRDATS were shown in Figure 8. The MRDATS

showed significantly improved discriminative power among different

stratification groups compared to the w-scores for each individual

structure.

The predicted MRDATS of each stratified group across all the test

datasets is shown in Table 4. Although variation exists among differ-

ent databases, there is a general trend of increasing MRDATS across

the stratified groups in the order of their severity along the DAT longi-

tudinal trajectory spectrum (severity in ascending order: sNC, uNC,

sMCI, pNC, pMCI, eDAT, and sDAT) across all the databases. In addi-

tion, there is a clear distinction of the predicted MRDATS among each

stratified group across all the databases, indicating potential for gener-

alization of the MRDATS across different datasets. One exception is

the pNC group. In ADNI, the mean MRDATS of pNC (0.329) is smaller

than that of the sMCI group (0.384), despite the fact that it belongs to

the DAT+ class versus the DAT− class that the sMCI group belongs

to. On the contrary, the pNC group in AIBL showed higher MRDATS

(0.791) than the pMCI group (0.677). It should be noted that the pNC

group contains much smaller sample number (118 for the ADNI and

9 for the AIBL). Nevertheless, the larger variation in the MRDATS in

pNC group shows the challenge of classifying this specific stratified

group due to the uncertainty and variation embedded among these

early-stage AD subjects.

Table 4 bottom panel shows the prediction accuracy with the pro-

posed ensemble-learning-based classification. The stratified groups

that belong to the far end of the DAT trajectory spectrum (i.e., sNC

and uNC from DAT− class, and eDAT and sDAT from the DAT+ class)

showed higher classification accuracy than other stratified groups that

are situated in the middle of the DAT trajectory spectrum (i.e., sMCI,

pNC, and pMCI), which align with the Figures 4 and 5. This is true not

only for the ADNI database, in which the sNC and sDAT comprise the

F IGURE 5 The top panel shows the MRDATS distribution
among independent validation images/subjects taken from the
ADNI database. The bottom panel shows the MRDATS distribution
among independent validation databases namely the AIBL, OASIS-1,
OASIS-2, and MIRIAD databases. The classification performance
was obtained by determining dementia trajectories (DAT− or DAT+)
for each image using a 0.5 MRDATS threshold. The MRDATS
histograms corresponding to the DAT− (sNC, uNC, sMCI) and the
DAT+ (pNC, pMCI, eDAT, sDAT) trajectories are stacked together
respectively. The (number of images: mean MRDATS) for each group
is shown
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training data, but also for other independent validation databases,

likely representing a general property of the stratified data.

An exception is again observed for the pNC group, which showed

very low classification accuracy for the ADNI group (0.229), and very

high classification accuracy for the AIBL group (0.889). This can also

be explained both by the small sample size as well as the large varia-

tion among pNC subjects.

3.7 | MRDATS versus time to conversion in
progressive image groups

Table 5 reveals the relationship between the MRDATS and the time

of conversion (TTC) for the converters in the DAT+ trajectory

(i.e., pNC and pMCI group), both in terms of the average MRDATS

(left panel) as well as the corresponding prediction accuracy (right

panel), which shows a trend towards decreasing MRDATS concomi-

tant with a drop in prediction accuracy, as the time to conversion

increases. This is likely reflecting the increasing difficulty of

prognosis for images acquired earlier in the disease trajectory. In

addition, comparing with the pNC group, the pMCI group consis-

tently showed not only higher MRDATS (which matches with their

definition in the DAT+ trajectory), but also higher prediction accu-

racy, likely because the pMCI are closer to the DAT+ side of the

spectrum (an exception is the 0–1 year conversion where the pNC

only has one sample subject).

3.8 | MCI conversion prediction—Comparison with
state-of-the-art

Finally, we compared our methods with several state-of-the-art

methods in the literature for the classification between the sMCI and

pMCI subgroups within the MCI group. The AUC is used as this is

the common performance metric reported among all methods. Table 6

showed a comparison of our method with some state-of-the-art

methods. This comparison shows that our proposed method improves

upon the state-of-the-art.

F IGURE 6 Pearson correlation between CSF t-tau/Aβ1-42 and MRDATS across different stratified groups in the ADNI database. The
CSF t-tau/Aβ1-42 measures were only available for a subset of images and their numbers are shown in parentheses. A previously published
64 threshold of 0.52 was used to differentiate the low-risk (t-tau/Aβ1-42 ≤ 0.52) from the high-risk (t-tau/Aβ1-42 > 0.52) group. The solid dots
represent the data with CSF t-tau/Aβ1-42 measurement equal or above the 0.52 threshold, and the hollow dots represent the CSF t-tau/Aβ1-42
measurement below the 0.52 threshold. The statistical significance threshold for correlation coefficient (r) was set at p < .05. First row: Correlation
for the DAT− groups. Second and third row: Correlation for the DAT+ groups. Significant correlation between the MRI DAT score and the t-tau/
Aβ1-42 were observed in the sNC, sMC group along the DAT− trajectory, and in the eDAT and sDAT in the DAT+ trajectory. Note that most of
the sNC images with small t-tau/Aβ1-42 also show small MRDATS, whereas those from sDAT subgroup with high t-tau/Aβ1-42 also show high
MRDATS
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4 | DISCUSSION

Brain MRI images provide a direct visualization of in vivo neuroanatomi-

cal structure that may reflect the underlying patterns of disease-specific

pathology. This paper proposes a novel method to quantify the struc-

tural patterns from a brain MRI to develop a score for similarity to pat-

terns seen in DAT images. It is important to regress out the important

confounding covariates of sex (male/female), total intracranial volume,

and field strength (Ma, Popuri, et al., 2019) while analyzing multicenter

databases, and not analyze the raw volume features. We trained the

proposed ensemble-classifier only on the subjects at the extremes of

the DAT spectrum (clinically non-demented sNC vs. demented sDAT)

where clinical diagnosis certainty is the highest. The trained ensemble

classifier model outputs a continuous MRDATS score for a given test

image, and this MRDATS score was thresholded at 0.5 to create a diag-

nostic label of DAT− (sNC, uNC, sMCI) or DAT+ (pNC, pMCI, eDAT,

sDAT) for each of the test images. From this automated prediction,

sensitivity, specificity, accuracy, and balanced accuracy measures are

obtained by comparing to the clinical diagnosis.

We present a visualization of the patterns of the ROI volume

w-scores across the entire MRI dataset used in this work (8,834 in total)

in Figure 7. It can be observed that the baseline sNC, baseline/follow-up

sDAT classes, and eDAT are found to be mostly homogeneous, with most

of the subjects categorized into either the DAT− or DAT+ trajectory,

respectively. The follow-up sNC and sMCI contain more proportion of

DAT+ trajectory subjects compared to baseline sNC, which may indicate

higher chance of the subject to develop AD at future timepoints after the

current study window. Conversely, a small proportion of the pMCI sub-

jects are associated with MRDATS that are smaller than 0.5, which may

reflect the difficulty for accurate predicting the pMCI subjects. The uncer-

tainty of diagnosis is highest in the MCI group and a larger heterogeneity

in structural volume patterns exists in this group as visualized in Figure 7.

4.1 | MRDATS as a biomarker

The MRDATS is a brain MRI-based summary statistic that condenses

the topographical 3D patterns within a structural T1MRI image into a

single scalar value that can be interpreted as a similarity metric of the

image patterns relative to those from DAT+ as compared to DAT−

trajectory. Biomarkers of a progressive disease such as AD necessarily

exist on a continuum. The MRDATS is a continuous scalar score,

between [0–1], that mimics the continuum influence of the AD

pathology in the alterations observed in brain MR structural patterns.

This opens the possibility that this score can directly be used to quan-

tify the neurodegeneration inherent in the structural patterns in the

3D MR image of the individual, and be interpreted in the context of

other clinical and biomarker scores for the individual to assess their

F IGURE 7 Visualization of thew-score of raw volume from 9,587 images combined across ADNI, AIBL, OASIS, andMIRIAD databases. The red

arrows point to the line of 0.5 cutoff for theMRDATS for that subgroup. Each column consists of FreeSurfer-derived ROI volume-based w-scores from
one subject. Each row represents one ROI in the brain across all images.Within each stratification subgroup, the images are sorted from left to right
according to their MRDATS. On the vertical axis, the ROIs are sorted according to the separation of the sample distribution between the sNC and sDAT
groups, calculated as the D statistic score of the K–S test. Note that the patterns forMRDATS greater than 0.5 resemble the demented (DAT+) patterns,
and those less than 0.5 resemble the nondemented (DAT−) patterns. The thick red vertical line indicate the separation of different stratification groups,
while the thin black vertical line with red arrow on top indicate the 0.5 cutoff point of MRDATS that separate the DAT+/DAT− patterns
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staging along the disease spectrum. The neurodegeneration biomarker

studied in Jack et al. (2017) is a surface-weighted average cortical

thickness in entorhinal, inferior temporal, middle temporal, and fusi-

form areas. Essentially, surface-area times the average ROI cortical

thickness is the volume of the ROI. Visualization of the ROI volume

measures in Figure 8 shows that these are the top eight cortical ROIs

(left and right) with the most separable ECDF of the w-scores of the

ROI volumes between sNC and sDAT subgroups as measured by the

Kolmogorov–Smirnov D-statistic. However, there are other ROIs with

similar or more separable ROIs that can be used to better mark the

neurodegeneration associated with AD.

A concern for biomarkers of neurodegeneration as measured via

MRI for AD has been the lack of specificity; and criticism of automated

image analysis algorithms has been that a small number of a priori

F IGURE 8 The empirical cumulative distribution function (ECDF) of the w-score feature from the 91 most discriminative ROI volumes, sorted
by the separation of the sample distribution between the sNC and sDAT groups, calculated as the D statistic score of the K–S test. For each
panel, the x-axis is the w-score in range [−4 to 4] and the y-axis is the ECDF of the w-score in the range [0, 1]. The lower right panel shows the
MRDATS for each stratification group pooling all databases (ADNI, AIBL, OASIS Cross-sectional, OASIS Longitudinal, MIRIAD). Note the sDAT
volume w-scores are clustered around lower values (leftward ECDFs) indicative of atrophy and reduced ROI volume relative to the sNC volume
w-scores which show higher values (rightward ECDFs). This trend is reversed for the lateral ventricles which are enlarged in AD (rightward
ECDFs). The sDAT MRDATS ECDFs in lower right panel are clustered toward higher values (rightward ECDFs) whereas the sNC MRDATS ECDFs
are clustered towards lower values (leftward ECDFs). The separation between the ECDFs indicates the extent of separation between these
stratification subgroups for that measure, and the MRDATS with a D-statistic of 0.8 shows a greater separation of the sNC/sDAT ECDFs as
compared to all the raw ROI volume ECDF separations
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selected ROIs are typically analyzed and therefore are insensitive to

the influence of non-AD etiologies on other ROIs contributing to low

specificity (Jack Jr., Barrio, & Kepe, 2013). With the availability of sta-

ble automated pipelines such as FreeSurfer for volumetric analysis, this

limitation can be overcome by analyzing all the ROIs in a data-driven

fashion to learn from the data which of the ROIs are most separable.

The visualization in Figure 8 reveals many ROIs with separable ECDFs

between sNC and sDAT, including subcortical ROIs. Hence, our

ensemble classifier uses 52 of these ROIs in a purely data-driven fash-

ion. Further, in the future, multi-class classifiers within the same frame-

work could be trained to discriminate confounding non-AD etiologies

helping overcome the nonspecificity issues.

Figure 4 shows that the ensemble-classifier-based proposed

MRDATS has mostly a unimodal distribution within each sNC and

sDAT subgroup, and good separation across the sNC and sDAT groups

(high AUC of 0.952 and 0.964 for the baseline and follow-up images in

Figure 4). There are sNC images that have higher MRDATS than 0.5

indicating that these individuals’ brain MR images have a topographic

3D volumetric pattern that is more similar to the DAT+ pattern, and

this is confirmed by Figure 7 that visualizes these volumetric patterns.

While this could be a normal overlap of class features due to the varia-

tion across individuals in each subgroup, it may also mean that these

images are indicative of preclinical AD in the brain, and may convert to

DAT in the future, or these are cognitive normal individuals who carry

a burden of AD pathology throughout their life with ongoing neu-

rodegeneration but without concurrent symptoms of cognitive impair-

ment (Aizenstein et al., 2008; Knopman, Boeve, & Petersen, 2003).

Similar mirror pattern is noted for the sDAT group where most images

scored higher than midway threshold but some images have lower

MRDATS scores indicating more similarity to the sNC patterns, and

these are also visualized in Figure 7. These observations are in concor-

dance with reports that a range of 10% to 30% of individuals clinically

diagnosed with DAT does not have AD at autopsy (Beach, Monsell,

Phillips, & Kukull, 2012).

In the sMCI group, the 0.5 threshold seems to separate the sMCI

group further into two distinct subsets based on their structural

degeneration patterns. The sMCI with MRDATS greater than 0.5

show patterns more resembling the sDAT patterns, and these individ-

uals may be at a higher risk of future conversion to DAT. For the

pMCI, those individuals with MRDATS less than 0.5 are showing pat-

terns more similar to the sNC patterns. They may be that select sub-

group that does not have volumetric degeneration typical of the sDAT

individuals. Hence, the MRDATS may be a useful construct to subdi-

vide clinically diagnosed groups further based on their structural volu-

metric patterns.

Figure 5 shows the distribution of MRDATS on independent valida-

tion images taken from the ADNI database (top panel) and AIBL, OASIS,

and MIRIAD databases (bottom panel). The MRDATS is lower for the

subgroups on the DAT− trajectory (sNC, sMCI, uNC) and higher for the

DAT+ trajectory (pMCI, eDAT, sDAT). The exception is lower MRDATS

for ADNI pNC images (top panel), while higher MRDATS for the other

independent validation database (bottom panel).

In this study, the MRDATS is derived from a probabilistic kernel

classifier which is a generative model (Damoulas & Girolami, 2008a;

Ng & Jordan, 2001). It would be interesting to also compare the per-

formance of different models when trained using the same features,

for example, comparing the generative models with the discriminative

models such as Support Vector Machines (SVM) and neural networks.

TABLE 4 Summary of classification
performance

ADNI AIBL OASIS-1 OASIS-2 MIRIAD

MRDATS

sNC 0.200 (1445) 0.209 (621) 0.178 (336) 0.288 (183) 0.133 (243)

uNC 0.350 (234) 0.283 (26) 0.313 (17)

sMCI 0.384 (2195) 0.478 (100) 0.617 (70) 0.581 (104)

pNC 0.329 (118) 0.791 (9)

pMCI 0.678 (1028) 0.677 (27) 0.673 (13)

eDAT 0.867 (750) 0.878 (31) 0.865 (16)

sDAT 0.884 (645) 0.831 (102) 0.839 (30) 0.848 (26) 0.847 (465)

Accuracy

sNC 0.864 (1445) 0.878 (621) 0.938 (336) 0.792 (183) 0.951 (243)

uNC 0.714 (234) 0.846 (26) 0.765 (17)

sMCI 0.654 (2195) 0.580 (100) 0.343 (70) 0.413 (104)

pNC 0.229 (118) 0.889 (9)

pMCI 0.718 (1028) 0.741 (27) 0.615 (13)

eDAT 0.907 (750) 0.903 (31) 1.000 (16)

sDAT 0.932 (645) 0.902 (102) 0.900 (30) 0.923 (26) 0.903 (465)

Note: Top: Predicted MRDATS of each stratified group across all the independent unseen test images in

each dataset; bottom: The classification accuracy with the proposed ensemble-learning-based classifica-

tion (using a 0.5 threshold). The number in the bracket shows the corresponding sample number in each

stratified group.
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4.2 | Separation and asymmetry in selected
discriminative ROIs

The ECDF of the w-scores of the 91 ROI volumes are shown in Figure 8.

The ROIs are arranged in descending value of the D-statistic of the K–S

test, a measure of separation of the ECDFs of the sNC and sDAT groups

for that ROI. One interpretation of the D-statistic could be how far along

an ROI is in the disease process, over and above normal aging, as age

was not a covariate in the w-score regression model. Those ROIs with a

greater D-statistic were involved earlier and have been impacted more

than those ROIs with a smaller D-statistic, as learned from the database.

Further, there is left–right asymmetry noted in the involvement of these

ROIs. In some structures, left ROIs have higher ECDF separation (higher

D-statistic) whereas for others, right ROIs have higher ECDF separation.

These findings are consistent with previous findings of left–right asym-

metry in ROIs in AD (Shi, Liu, Zhou, Yu, & Jiang, 2009; Wachinger, Salat,

Weiner, & Reuter, 2016; Yang et al., 2017).

The frequency of selection of each ROI by the classifiers in the

ensemble shown in Table 3 also show a bilateral asymmetry in percent-

age of selection of some structures versus the others in the ensemble.

For example, the selection frequency are thalamus (31% vs. 66%), puta-

men (20% vs. 96%), caudal middle frontal (80% vs. 3%), posterior cingu-

late (66% vs. 2%), medial orbitofrontal (0% vs. 42%), lingual (31%

vs. 2%), and parstriangularis (21% vs. 0%). These generally agree with

the separation of the ECDFs and may indicate the asymmetric influence

of AD on these ROIs. Figure 3 shows a surface plot of the cortical ROIs

selected by the classifier, with the D-statistic color-coding the ROIs.

This visualization shows the involvement of the ROIs which is in agree-

ment with the known evolution of AD pathology.

4.3 | Correspondence with CSF pathology

Significant correlation was found between MRDATS and CSF pathol-

ogy burden via the t-tau/Aβ1–42, as shown in Figure 6. Here, the cut-

offs of 0.5 for MRDATS and 0.52 for t-tau/Aβ1–42 (Duits et al., 2014)

are indicated. For the sNC and sMCI group, most individuals were

both MRDATS- and t-tau/Aβ1–42−. Similarly, those with MRDATS+

could be explained by concurrent t-tau/Aβ1–42+ values as well. For

the sDAT group, and the eDAT groups, similarly, most points cluster

in quadrant with MRDATS+ and t-tau/Aβ1–42+, and those with

MRDATS-z can be explained by their t-tau/Aβ1–42− values as well.

However, no significant correlation between the MRDATS and the

t-tau/Aβ1–42 was found in the pNC, uNC, and pMCI groups.

The CSF data reveal considerable heterogeneity in the t-tau/

Aβ1–42 measures within the same sub-stratification groups. Importantly,

subjects that are clinically diagnosed as DAT are not all t-tau/Aβ1–42+.

At the moment, despite the efforts that have been made to push for-

ward the use of biological measurements as definition of Alzheimer's

disease in the research framework (Jack et al., 2018), the validation of

using biological measures, including CSF measurements, as biomarkers

to improve the diagnosis of Alzheimer's disease is still under investiga-

tion in terms of both clinical validities (Phases 2 and 3) as well as clinical

utility (Phases 4 and 5; Frisoni et al., 2017). A systematic review and

meta-analysis about the CSF t-tau/Aβ1–42 (Ritchie et al., 2017) also

noted heterogeneity in research results and concluded that there is

insufficient evidence to establish the use of CSF measures for the diag-

nosis of AD in the current clinical practice. Specifically, the presence of

abnormal CSF biomarkers in cognitively normal subject also increases

with age, which pose additional challenges for its clinical validation

(Toledo et al., 2015).

4.4 | Stratification within a diagnostic group

Postmortem histopathologic analyses in conjunction with clinical notes

remain the gold-standard for diagnosing AD in the brain. As such, clinical

diagnoses are known to be unreliable, with reports of as many as

10–30% of those clinically diagnosed with AD are found to not have

AD (Beach et al., 2012), and also many individuals that have no cognitive

impairment in life are postmortem found to have evidence of AD

(Ossenkoppele et al., 2015). Hence, our reliance on the sNC and the

sDAT images, representing the extremes of the data, is an effort to

TABLE 5 The effect of time to conversion (TTC) on MRDATS score
for the converters in the DAT+ trajectory (i.e., pNC and pMCI groups)

pNC pMCI

MRDATS

TTC (years) 0.362 (127) 0.678 (1,068)

0–1 0.537 (1) 0.770 (264)

1–2 0.479 (12) 0.712 (358)

2–3 0.472 (13) 0.669 (200)

3–4 0.440 (19) 0.593 (111)

4–5 0.386 (15) 0.545 (51)

5–6 0.358 (22) 0.573 (27)

6–7 0.285 (13) 0.395 (22)

7–8 0.306 (16) 0.477 (19)

8–9 0.213 (10) 0.398 (12)

9–10 0.123 (6) 0.293 (4)

Accuracy

TTC (years) 0.276 (127) 0.717 (1,068)

0–1 1.000 (1) 0.826 (264)

1–2 0.417 (12) 0.757 (358)

2–3 0.385 (13) 0.730 (200)

3–4 0.368 (19) 0.586 (111)

4–5 0.267 (15) 0.549 (51)

5–6 0.273 (22) 0.556 (27)

6–7 0.231 (13) 0.364 (22)

7–8 0.250 (16) 0.474 (19)

8–9 0.000 (10) 0.417 (12)

9–10 0.000 (6) 0.250 (4)

Note: The left two columns show the MRDATS, and the right two columns

show the corresponding classification accuracy. The number in the brackets

shows the number of images in the particular subgroup.
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mitigate the uncertainty associated with the clinical diagnoses. The

Zscapes visualization of w-scores of ROI volumes reveals that a 0.5

threshold of the proposed MRDATS can substratify each group

according to the presence of dementia-like patterns. For those in the

sNC group, those images with MRDATS greater than 0.5 could be show-

ing neurodegeneration patterns without associated cognitive complaints

in that individual. For those in the sDAT group, those images with

MRDATS less than 0.5 are indicating relative lack of neurodegeneration

patterns associated with DAT. What is considered an error on the part

of the classifier for this study may be a potential limitation of the current

clinical diagnoses. An MRDATS based directly in neuroanatomical

volumetric patterns may be further validated to potentially enrich the

groups with those that have confirmed patterns of neurodegeneration

corresponding to DAT+ and those whose patterns resemble the DAT−

patterns. Based on the MRDATS an intermediate transition zone

corresponding to MRDATS in the range [0.4–0.6] could also be defined.

4.5 | Data imbalance

When training a machine-learning model, it is important to ensure the

training data is balanced. In this work, we have ensured that the training

groups are balanced to mitigate the possibility of the classifier learning a

biased model. On the other hand, there is no impact of imbalance in the

unseen testing groups on the performance of the classifier. Unlike most

published classification studies that typically report aggregate accuracy

measures, we have reported the performance measures for each of the

five stratification subgroups which provide more detailed information

into the classification performance of the classifier (Figure 4).

4.6 | Brain structural volume as the features for
measuring DAT severity, and potential extension to
other features

AD is widely considered as abnormal loss of gray matter, and brain

structural volumes is strongly associated with disease severity (Frisoni

et al., 2010; Jack et al., 1997; Ledig, Schuh, Guerrero, Heckemann, &

Rueckert, 2018; Ma et al., 2019; Min et al., 2017; Poulin, Dautoff,

Morris, Barrett, & Dickerson, 2011; Raji, Lopez, Kuller, Carmichael, &

Becker, 2009; Rusinek et al., 1991; Schmitter et al., 2015; Silbert

et al., 2003; Stout, Jernigan, Archibald, & Salmon, 1996; Thompson

et al., 2003; Wang et al., 2019; Yi et al., 2016). In this study, we used

brain structural volume as the predictive feature for measuring

DAT severity to train the kernel-based classifier to predict dementia

severity. Besides structural volumes, researchers have been trying to

extract other types of features from MRI data to enhance the predic-

tive power for AD, such as the image intensity and texture (Chincarini

et al., 2014; Sørensen et al., 2016), cortical thinning (Bhagwat, Viviano,

Voineskos, & Chakravarty, 2018; Corlier et al., 2018; Eskildsen

et al., 2013; Thompson et al., 2004), or image similarity to templates

(Coupe et al., 2015). These, and other features, separately, or taken

together, can form natural extensions for the application of the

MRDATS under the same ensemble learning framework to distill other

aspects of structural information available in T1-MR images.

Specifically, brain volume and cortical thickness are two types

of strongly correlated morphological features extracted from structural

MRI for measuring DAT severity. A large-scale survey ((Bhagwat, Viviano,

Voineskos, & Chakravarty, 2018)1 comparing the cortical thickness and

volume methods for measuring Alzheimer's disease severity showed that

volume- and thickness-based measures generally perform similarly for

separating clinically normal from AD populations”, and volume-based

measures are generally more reliable than thickness measures, although

cortical thickness measurement is less correlated to, and therefore

affected by, the variation of TIV. This indicates that the accuracy of TIV

estimation is crucial for the effectiveness of using brain volume to mea-

sure the severity of DAT (Schwarz et al., 2016). In this study, we esti-

mated the TIV using the multi-atlas-label-fusion method which has

shown state-of-the-art results outperforming both FreeSurfer and SPM

package in terms of either longitudinal consistency or test–retest reliabil-

ity (Ma, Popuri, et al., 2019). The accurate estimation of TIV, along with

GLM-based data harmonization methods and the use of standard resid-

ual, ensure the conversion of the structural brain MRI neurodegeneration

pattern into a dementia score with strong predictive power. Neverthe-

less, composite features combining cortical thickness may utilize the

complementary information in brain structural morphological change (Liu

et al., 2011), and worth further investigated in future studies.

4.7 | Choice of feature selection methods

Feature selection can be performed in a number of ways, ranging from

methods such as t tests (Chu, Hsu, Chou, Bandettini, & Lin, 2012;

Huffman, Sobral, & Teran-Hinojosa, 2019; Wang, 2012; Wang, Zhang,

Liu, Lv, & Wang, 2014; Zhou & Wang, 2007) to more complex methods

utilizing PCA, mutual information, L1 norms, regression [such as LASSO

(Zhao & Yu, 2006) and AdaBoost (Wang, 2012)], and so on. Our current

choice of using the t test as a way to rank and select the most separable

features is a standard method in the field as evidenced by existing litera-

ture (Damoulas & Girolami, 2008b; Shawe-Taylor & Cristianini, 2004;

Varol, Gaonkar, Erus, Schultz, & Davatzikos, 2012). Evidence that this

feature selection method is potentially robust to assumption violations is

provided by analyzing its performance on scoring and classification of

unseen test images (using top features selected during training). For

these significantly large numbers of unseen test images (a total of 8,834),

the calculated atrophy scores are an accurate representation of the neu-

rodegeneration patterns (as shown by the W-score visualization in

Figure 7 and ECDF in Figure 8), and images are classified demonstrated

results with state-of-the-art performance (Table 6).

4.8 | Comprehensive independent testing and
comparison

A comparison of our proposed MRDATS based approach with com-

peting methods for the sMCI versus pMCI discrimination task is
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shown in Table 6. In the study by Coupe et al. (2015), the hippocam-

pal grading score is calculated through the estimation of nonlocal simi-

larity between the subject and the training data. Chincarini et al. used

image similarity and texture within regions of temporal lobe atrophy

as the discriminating feature and built a classifier based on PCA

and SVM on the independent validation set DESCRIPA (Chincarini

et al., 2014; Li et al., 2013). Khan et al. constructed classifier by com-

bining atrophy information from multiple different hippocampal sub-

field, and achieve 81.1% correct prediction of pMCI but only 48.7%

correct prediction of sMCI using sevenfold cross-validation (although

no AUC is reported for the sMCI/pMCI classification; Khan et al.,

2015). Elahi et al. (2015) used corpus callosum atrophy and shape

change rate as a feature.

The strength of our validation is that we used all the images

taken from the publicly available ADNI, AIBL, OASIS-1, OASIS-2, and

MIRIAD databases, with a total of 8,834 images, excluding images

from sNC (423) and sDAT (330) groups in ADNI baseline which are

used as training data. Every image from the other databases was an

independent unseen test image, and thereby the results are likely a

good estimate of generalization of the classifier performance.

Despite the amazing effort from the providers of these rich data-

bases, the typical approach from those developing novel methods has

been to validate them on a subset of images to present the perfor-

mance of the proposed new methods. One of the drawbacks of a lim-

ited sample validation is that it is a missed opportunity to not test any

new method on the full spectrum of variations captured in these data-

bases. Another reason to choose a smaller subset is convenience;

some images may have sub-optimal initial automated segmentations.

Our experience is that about 10% of the FreeSurfer automated seg-

mentations have some variety of errors that require dedicated quality

control. Our in-house anatomical team invested significant time and

effort to manually correct and certify the images to be free of seg-

mentation errors. These hurdles are representative of the real-world

challenges any computational biomarker or classification algorithm

will likely face when deployed in a real-world setting. Hence, our

approach, to comprehensively include all the images from the avail-

able databases, is an effort to raise the threshold of biomarker perfor-

mance reporting and thereby advance the selection of promising

imaging biomarkers.

4.9 | Limitation of the current study

We note that, among all the stratified groups in the independent test-

ing set, the MRDATS of the pNC group did not always follow the

DAT trajectory. Although the pNC group is expected to be on the

DAT+ trajectory, the mean predicted MRDATS for pNC subjects in

the ADNI dataset (0.329) are found to be on the DAT− trajectory

(<0.5), resulting in a poor predictive accuracy (0.229). One possible

reason may be the smaller sample number (118) in the pNC group.

Furthermore, when investigating the MRDATS as a function of time-

to-conversion (TTC), a steady pattern can be observed (Table 5) show-

ing that shorter time to conversion corresponds to higher MRDATS

and higher accuracy, and both are reduced when the TTC increases.

This result may indicate that the MRDATS by itself may not be

enough to extract the neurodegenative patterns for the pNC group,

especially when the subjects are still in the stage with longer time to

conversion, and additional features such as genetic factors or CSF bio-

markers might be helpful for more accurate prediction of the DAT tra-

jectory for pNC subjects, especially during the early disease stage.

4.10 | Translation to end-users: Cloud-based
validation

We have made our method available for testing on our Cloud Engine

Resource for Accelerated Medical Image Computing for Clinical Appli-

cations (CERAMICCA) web portal https://ceramicca.ensc.sfu.ca. The

users can upload their brain MRI scans directly on this web platform,

and with a simple web-based form, launch the processing of their

database. Job progress can be viewed on the website, and job control

features are provided, such as viewing intermediate segmentations

and/or automatically re-launching failed jobs. By hiding the complex-

ity associated with accessing high-performance computing environ-

ments through a web-interface, the algorithms can be more easily

interrogated for validation.
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ENDNOTE
1 This study aims at developing clinical criteria and screening guidelines

for AD in the pre-dementia stage. Recruiting centers were selected from

EADC members in 11 European countries and included 20 memory

clinics specialized in the diagnosis and treatment of memory disorders

(Visser et al., 2008).
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