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Abstract

Network-oriented analysis of functional magnetic resonance imaging (fMRI), especially resting-

state fMRI, has revealed important association between abnormal connectivity and brain disorders 

such as schizophrenia, major depression and Alzheimer’s disease. Imaging-based brain 

connectivity measures have become a useful tool for investigating the pathophysiology, 

progression and treatment response of psychiatric disorders and neurodegenerative diseases. 

Recent studies have started to explore the possibility of using functional neuroimaging to help 

predict disease progression and guide treatment selection for individual patients. These studies 

provide the impetus to develop statistical methodology that would help provide predictive 

information on disease progression-related or treatment-related changes in neural connectivity. To 

this end, we propose a prediction method based on Bayesian hierarchical model that uses 

individual’s baseline fMRI scans, coupled with relevant subject characteristics, to predict the 

individual’s future functional connectivity. A key advantage of the proposed method is that it can 

improve the accuracy of individualized prediction of connectivity by combining information from 

both group-level connectivity patterns that are common to subjects with similar characteristics as 

well as individual-level connectivity features that are particular to the specific subject. 

Furthermore, our method also offers statistical inference tools such as predictive intervals that help 

quantify the uncertainty or variability of the predicted outcomes. The proposed prediction method 

could be a useful approach to predict the changes in individual patient’s brain connectivity with 

the progression of a disease. It can also be used to predict a patient’s post-treatment brain 

connectivity after a specified treatment regimen. Another utility of the proposed method is that it 

can be applied to test-retest imaging data to develop a more reliable estimator for individual 

functional connectivity. We show there exists a nice connection between our proposed estimator 

and a recently developed shrinkage estimator of connectivity measures in the neuroimaging 

community. We develop an expectation-maximization (EM) algorithm for estimation of the 

proposed Bayesian hierarchical model. Simulations studies are performed to evaluate the accuracy 

of our proposed prediction methods. We illustrate the application of the methods with two data 

examples: the longitudinal resting-state fMRI from ADNI2 study and the test-retest fMRI data 

from Kirby21 study. In both the simulation studies and the fMRI data applications, we 
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demonstrate that the proposed methods provide more accurate prediction and more reliable 

estimation of individual functional connectivity as compared with alternative methods.
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1 Introduction

Brain functional connectivity research based on fMRI, especially resting-state fMRI (rs-

fMRI), has become an important approach for understanding brain organization and has 

revealed intrinsic neural functional connections that can be found consistently across groups 

of subjects and in repeated scanning sessions (Smith et al., 2009; Damoiseaux et al., 2006; 

Shehzad et al., 2009). Clinically, functional connectivity has also shown great promises for 

studying pathophysiology of the development and progression of psychiatric diseases and 

their response to treatments (Biswal et al., 1995; Greicius et al., 2003; Fox et al., 2005; 

Smith et al., 2009 among many others). Numerous studies have identified distinct patterns of 

functional connectivity in brain networks among subjects with psychiatric disorders as 

compared to a healthy comparison population that support a neuropathophysiology of 

cognitive/behavioral problems associated with these disorders (Wang et al., 2007; 

Woodward and Cascio, 2015). Studies report mental disorders such as Alzheimer’s disease 

affect brain functional connections across time with the disease progression (Damoiseaux et 

al., 2011; Yao et al. 2014). Furthermore, several studies have found significant pre- to post-

treatment changes in brain connectivity following psychiatric treatments (Gay et al., 2014; 

Sarpal et al., 2015). These collective findings strongly implicate alterations in functional 

connectivity in the pathophysiology of psychiatric disorders and their responses to medical 

schooltreatment. This provides motivation for the potential utility of forecasting disease 

progression-related and treatment-related brain functional connectivity reflected in fMRI.

There has been some work aimed to link baseline brain connectivity to disease progression 

or the eventual clinical response to treatment (Damoiseaux et al., 2011; Yao et al. 2014). In a 

related manner, several authors (Brody et al., 1999; Goldapple et al., 2004; Kennedy et al., 

2001; Lee et al., 2005; Mayberg et al., 2000, 2001; Moresco et al., 2000) showed that 

changes in brain activity across time were associated with disease progression or treatment 

response. Hence, important insights can be gained for disease progression or treatment 

response by evaluating baseline and follow-up scans. However, in clinical practice, these 

insights are offset due to the unavailability of follow-up scans at the early phase of disease 

occurrence or at the time when a clinician makes treatment decision for a particular patient. 

This pragmatic shortcoming suggests the utility of developing a statistical framework to 

predict disease-related or treatment-related brain alterations, which could then be combined 

with baseline scans and patients’ relevant risk factors to help inform clinical decision-

making.

In this work, we present a general framework for predicting individual future resting-state 

functional connectivity (RSFC) based on his/her baseline rs-fMRI and relevant clinical and 
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demographic characteristics, such as disease stage or treatment group. The proposed 

prediction method provides a useful tool to predict the changes in an individual’s brain 

connectivity with the progression of the disease or normal aging. It can also be applied to 

predict a patient’s brain connectivity after a specified treatment regimen to help inform 

individualized treatment plan. The proposed predictive model could potentially have 

important clinical applications by helping implement early intervention based on predicted 

disease progression trajectory to prevent severe outcomes from mental illnesses. The method 

can also help guide the development of a more effective individualized treatment plan by 

taking into account both the population-level effects as well as a patient’s distinct neural 

connectivity characteristics. Another utility of the proposed method is to provide a more 

reliable estimator for individual RSFC than the noisy subject-specific estimator in test-retest 

rs-fMRI data. A reliable RSFC estimate can provide important information about the 

properties of brain networks and is the basis for many complex network-related analyses. 

For example, Shou et al. (2014) and Mejia et al. (2015) have shown that by improving the 

reliability of RSFC estimates, one can improve the reproducibility of individual brain 

parcellation, which is generated from the RSFC.

The remainder of this paper is organized as follows. In the method section, we first present a 

general modeling and prediction framework for individual functional connectivity, and then 

illustrate the model specification for two types of imaging studies: longitudinal imaging 

studies which investigate disease progression and treatment-related changes in functional 

connectivity, and test-retest studies which aim to investigate and improve the reliability of 

estimates for individual RSFC. We conduct simulations studies to evaluate the accuracy of 

the proposed method using the K-fold cross-validation approach. We also illustrate the 

application of the proposed method using two imaging datasets: the longitudinal resting-

state fMRI from ADNI2 study and the test-retest fMRI data from Kirby21 study (Landman 

et al., 2011).

2 Method

The need to predict a subject’s future brain connectivity often arises in medical research and 

clinical practice. Some examples include prediction on how neural connectivity pattern will 

be affected across time with the progression of a brain disorder or prediction on post-

treatment brain connectivity due to treatment-related alterations on neural processing. A 

subject’s future brain connectivity depends on various factors including current disease 

status, type of treatment, his/her baseline brain connectivity and other relevant subject 

characteristics such as age, gender and family history, etc. Our aim is to develop an 

algorithm that utilizes information related to these relevant factors to provide accurate 

individualized prediction for future brain connectivity. Our approach is to develop a 

statistical model for characterizing the changes in functional connectivity using a training 

data set that includes both baseline and follow-up imaging scans. We then derive a 

prediction algorithm for future brain connectivity using a subject’s baseline images and 

clinical/demographic characteristics based on the developed statistical model. Once the 

prediction algorithm is established, researchers or clinical practitioners can apply it to 

predict the future brain connectivity for a new subject by inputting information derived from 

the subject’s baseline scans and relevant individualized traits. With the predicted future brain 
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connectivity, researchers or clinical practitioners can find helpful information in forecasting 

alterations in a patient’s brain networks with the progression of the disease or in deciding 

whether a treatment is appropriate for a particular patient in the way that it can lead to 

favorable therapeutical alteration on the patient’s brain connectivity. We summarize our 

proposed approach for developing and applying the prediction algorithm in Figure 1. Prior to 

presenting our prediction algorithm, we describe the statistical model underlying the 

formulation of our prediction framework.

2.1 Bayesian Hierarchical Model (BHM) and Estimation

One of the most commonly used measures for functional connectivity in the neuroimaging 

community is pair-wise correlation between fMRI Blood-oxygen-level dependent (BOLD) 

signals obtained from pairs of brain locations or regions, which are called the nodes in the 

connectivity network (Biswal et al., 1995; Grecius et al., 2003; Fox et al., 2005, Fransson 

and Marrelec, 2008). We illustrate the proposed prediction method using correlation as the 

measure of functional connectivity but our method is general enough to be readily applied to 

alternative connectivity measures. We derive our predictive framework for brain functional 

connectivity using a Bayesian hierarchical model (BHM). The BHM is developed using 

subjects’ repeatedly measured brain connectivity derived from both baseline and follow-up 

imaging scanning sessions. The first level of BHM models within-subject session-specific 

connectivity measures obtained at multiple scans in terms of subject-specific effects, and the 

second level models subject-specific effects in terms of population parameters modulated by 

covariate effects. An expectation-maximization (EM) algorithm is developed to estimate the 

parameters in the model. The prediction algorithm is then derived based on the BHM model. 

The proposed method is applicable to various study designs. Specifically, our method can be 

applied to longitudinal studies where there are relatively long time intervals between 

different imaging scanning sessions and hence temporal changes are expected between 

connectivity measures at different sessions. The proposed method can also be applied to test-

retest studies where repeated scanning sessions are very close to each other in time and 

hence no significant temporal changes are expected between the repeatedly measured 

connectivity. We start with presenting a general model structure and later we will provide 

detailed examples of how to adapt the proposed model to specific study designs.

Let i = 1, … , N index subjects, m = 1, … , M index nodes in the connectivity network, and 

k = 1, … , K index scanning sessions. For any node pair (m, m′), we denote the observed 

connectivity estimated using subject i’s brain images from the K scanning sessions as ri(m, 

m′) = (ri1(m, m′), … , riK(m, m′))T. In the paper, we illustrate our model using the 

commonly used correlation coefficient as the measure of brain connectivity and rik(m, m′) 

represents the Fisher’s z transformation of the correlation between the two node-specific 

fMRI time series extracted from images obtained at the kth scanning session. One can also 

select other measures such as partial correlation as the connectivity measure and rik(m, m′) 

would then represent the selected connectivity measure after proper transformation. The 

first-stage of BHM models the within-subject session-specific connectivity for a node pair 

(m, m′) as follows,
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(1)

where  is the first-level covariate matrix with the dimension of K × q matrix and 

contains q session-specific covariates such as the time point corresponding to each of the K 

scanning sessions. Note that  includes time-varying covariates that can change across the 

K scanning sessions. Ri(m, m′) is a q × 1 vector of subject-specific effects of interest 

corresponding to  is the random 

error vector and is assumed to follow a zero-mean multivariate normal distribution N (0, 

Σ(1)(m, m′)). We assume that Ri(m,m′) and  are independent across all subjects. 

In the first-level model (1), Ri(m, m′) is a random variable, which represents the underlying 

connectivity between nodes m and m′ for subject i and captures the within-subject 

correlations among the session-specific connectivity measures repeatedly obtained across the 

K sessions. The random error  reflects the session-specific random variabilities 

after accounting for subject-specific connectivity characteristics. We assume that the random 

errors are independent across sessions, i.e. Σ(1)(m, m′) is a diagonal matrix, since within-

subject correlations across session are already accounted for by the subject-specific effects. 

The variability of the random errors can be the same or different across various sessions 

depending on the study design. For example, if subjects’ images in different sessions are 

acquired under similar conditions (e.g. under the same protocol) and sessions are conducted 

very close in time such as in test-rest studies, it is reasonable to assume the variability of the 

random errors remain the same across sessions, hence the covariance matrix can be specified 

as Σ(1)(m, m′) = λ(1)(m, m′)IK , where λ(1) is the covariance hyper-parameter and IK is the 

identity matrix of order K. On the other hand, in longitudinal studies where sessions are 

conducted across relatively long time intervals, we can specify different error variability 

level to accommodate potentials temporal changes, e.g. for 

where  represents the error variability at the jth session (j = 1, 2).

At the second stage, we focus on modeling the subject-specific effects with respect to 

population parameters of interest, such as disease status, treatment assignment or other 

relevant patient characteristics (e.g., gender, age). The second-stage model is specified as 

follows

(2)

where  is the second-level covariate matrix that contains subject-specific covariates that 

may be relevant to brain functional connectivity, such as disease status, treatment group, age, 
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gender, etc. Unlike the first level covariate matrix  which contains time-varying 

covariates, the second-level covariates  include subject-specific covariates that remain 

the same across sessions. β(m, m′) represents the population effects of interest 

corresponding to . The random variability  represents the deviation 

of subject-specific effects from the population mean adjusted with covariate effects. We 

assume the subject random variability follows a zero-mean multivariate normal distribution 

with the covariance matrix Σ(2)(m, m′). The specification of Σ(2)(m, m′) depends on the 

subject-specific effects Ri that we are interested in modeling. We will provide details on how 

to specify the covariance matrix for different study designs such as longitudinal studies and 

test-rest studies in the following sections. We note that the Level 2 model focuses on 

modeling subject-specific effects in terms of non-time varying covariates. In some studies, 

certain subjects’ covariates may vary across sessions such as clinical variables measured at 

each session, we can model their effects on connectivity via Level 1 model in equation (1). 

Specifically, we can either include these time-varying covariates in  to model their 

effects via subject-specific effects or include them as additional covariates in Level 1 model 

which are associated with population-level parameters.

For the population level parameters β, we specify prior distributions given by N (ηβ, Σβ), 

where Σβ is a diagonal covariance matrix. If there is information available regarding β from 

previous studies, one can take a full Bayesian approach and treat the population parameters 

as know, i.e. by setting Σβ = 0. In practice, we usually have little, if any, prior information 

for these parameters and a parametric empirical Bayesian scheme with Σβ = ∞ (i.e. the 

diagonal variance terms are ∞) is appropriate (Friston et al., 2002). In this case, the prior 

expectations ηβ does not need to be specified (Appendix). In this case, the hyperparameters 

for our Bayesian hierarchical model only include the parameters in the covariance matrices 

Σ(1)(m, m′) and Σ(2)(m, m′), which we denote as λ(m, m′). These hyperparameters can be 

estimated from the data under parametric empirical Bayes scheme (Carlin and Louis, 2000; 

Friston et al., 2002).

The proposed Bayesian hierarchical model can be estimated using the expectation-

maximization (EM) algorithm (Dempster et al., 1977 and 1981). Please see the Appendix for 

details. The EM algorithm offers a convenient approach to estimate both the parameters and 

hyperparameters in the model from the data. The E-step of EM algorithm involves 

estimating the conditional distribution of the parameters given the observed data, holding the 

hyperparameters λ(m, m′) fixed. The M-step finds the maximum likelihood estimates of 

hyperparameters, i.e.  that maximizes the marginal likelihood of the observed 

connectivity measures, where the marginal likelihood is obtained by integrating over the 

conditional distribution of the parameters obtained from the E-step. For a linear model under 

Gaussian assumptions such as ours and with the parametric empirical Bayes, the EM 

algorithm outputs the expectation and the covariance of the Gaussian posterior distribution 

of the parameters and the marginal maximum likelihood estimates of the hyperparameters 

(Appendix). The EM algorithm can also be adopted for full Bayes and maximum likelihood 

estimation (Carlin and Louis, 2000; Friston et al., 2002).
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Under certain conditions, the proposed Bayesian hierarchical model can be rewritten in 

terms of a frequentist Linear Mixed Model (LMM) allowing for an unequal spacing of the 

time points and both baseline and time-varying covariates. One appealing feature related to 

BHM is that it provides the possibility of incorporating prior information, if available, into 

the models.

2.2 Prediction Algorithm

Based on the proposed Bayesian hierarchical model, we develop a prediction algorithm for 

forecasting individual brain connectivity in future scans. We arrange the connectivity vector 

across all scanning sessions as . Here, ri1(m, m′) 

= (ri1(m, m′), … , riK1(m, m′))T is a K1 × 1 vector representing the earlier observed 

connectivity such as baseline or pre-treatment connectivity and ri2(m, m′) = (riK1 +1(m, m
′), … , riK(m, m′))T representing the later connectivity we are interested in predicting such 

as connectivity in follow-up or post-treatment scans. The proposed algorithm uses 

information from the subject’s connectivity estimated from earlier scans ri1(m, m′) and also 

takes into account relevant subject’s characteristics such as disease status or treatment 

groups.

By collapsing the two levels of the proposed hierarchical model in (1) and (2), we first 

derive the following non-hierarchical marginal distribution for functional connectivity across 

all sessions,

(3)

where  and 

. The marginal covariance 

matrix Σ⋆(m, m′) is the sum of the error covariance matrix Σ(1)(m, m′) from the first-stage 

model and the error covariance matrix Σ(2)(m, m′) from the second-stage model projected 

onto the measurement space by the first-stage design matrix . Therefore, 

consists of the variability of ri(m, m′) from both levels of the hierarchical model.

Based on the joint marginal distribution of ri1(m, m′) and ri2(m, m′) in (3), we derive the 

prediction algorithm for the later connectivity ri2(m, m′). The prediction algorithm provides 

the predictive distribution of ri2(m, m′) given the earlier connectivity ri1(m, m′),

with
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(4)

and

(5)

where  and  are the subvectors of  that correspond to the 

mean of ri1(m, m′) and ri2(m, m′), respectively. And 

 and  are the submatrices of 

Σ⋆(m, m′) that correspond to the variances and covariances of ri1(m, m′) and ri2(m, m′).

By plugging in the estimator of the hyperparameters  and the posterior mean of 

the parameters provided from the EM algorithm into Equations (4) and (5), we obtain the 

estimated conditional mean  and conditional variance . Based on 

the estimated conditional distribution, we propose the following BHM predictor for future 

connectivity,

(6)

From Equation (6), one can see that the BHM predictor of a subject’s future connectivity 

consists of two components. The first component  is the expected later 

connectivity based on subject’s relevant characteristics coded in  which may include 

disease group, treatment assignment, age etc. This part represents the population-level 

expectation for the subject based on his/her characteristics and is shared by the 

subpopulation of subjects who have the same traits. The second component in (6) represents 

the adjustment to the population-level prediction for the particular subject using subject-

specific effects revealed from his/her earlier observed scans. More specifically, subject-

specific effects are estimated by the deviation of the subject’s earlier connectivity estimates 

from his/her earlier population-level expectation, i.e. . The 

amount of the adjustment depends on the variability of earlier connectivity estimates and the 
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association between earlier and later connectivity estimates: the lower the variability of the 

earlier connectivity estimates and the higher association they have with the later connectivity 

estimates, the larger the effect the earlier connectivity estimates have on the later 

connectivity prediction. Additionally, we can also construct a 100(1 − α)% prediction 

interval for ri2(m, m′) based on the estimated conditional variance .

In the following section, we will illustrate how to specify the hierarchical model for two 

commonly seen study designs involving repeated-measures fMRI, which are longitudinal 

studies and test-retest replication studies.

2.3 BHM Model Specification for Various Types of Studies

2.3.1 Model Specification for Longitudinal Studies—In longitudinal imaging 

studies, subjects are scanned repeatedly in multiple sessions that are separated by relatively 

long time intervals and temporal changes in neural processing across the sessions are 

expected and of interest. For example, longitudinal studies may be conducted to evaluate 

how brain functional connectivity changes with the disease progression or 

neurodevelopment. In other cases, longitudinal studies are used to investigate treatment-

related changes by repeatedly scanning subjects at pre-treatment and post-treatment periods. 

When applying the proposed the BHM model to longitudinal studies, we model the 

population and subject effects on temporal change in connectivity as well as baseline 

connectivity. Specifically, suppose the longitudinal measurements of the connectivity ri(m, 

m′) = (ri1(m, m′), … , riK(m, m′))T are obtained at time TK = (t1, … , tK )T where t1 = 0 

indicates the baseline. Assuming a constant change rate in the connectivity over time, the 

proposed BHM model in (1) and (2) can be specified as follows for the longitudinal study,

(7)

where RiB(m, m′) and RiΔ(m, m′) are the subject-specific baseline and change rate of 

connectivity, XiB and XiΔ include subjects’ covariates relevant to the baseline and change 

rate, respectively, βB(m, m′) and βΔ(m, m′) are population effects of interests related to the 

baseline and change rate. In this BHM model, we first model the repeatedly measured 

connectivity in terms of subject-specific baseline and change rate and then we model the 

subject-specific effects in terms of population parameters modulated by subjects’ covariates. 

For the random errors from first-level model, we assume that 

 with Σ(1)(m, m′) = λ(1)(m, m′)IK. The random 
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errors  of the second-level model represent the deviation of 

the subject-specific baseline and change rate from the population mean after adjusting for 

subjects’ covariates effects. These random errors are assumed to follow a zero-mean 

multivariate normal distribution with the covariance matrix 

, where 

and  represents the between-subject variabilities in the baseline and change rate, 

respectively.

2.3.2 Model Specification for Test-retest Reliability Studies—In test-retest 

reliability studies, subjects are scanned repeatedly in multiple sessions that are separated by 

very short time intervals. The studies are usually conducted to quantify the reproducibility of 

the results obtained from statistical analysis using the scan-rescan imaging data. In recent 

years, there has also been strong interest in using test-retest imaging studies to develop more 

reliable estimator or predictor for individual neural features such as connectivity (Shou et al., 

2014; Mejia et al., 2015). In test-retest studies, no disease-related or treatment-related 

temporal changes are expected given the short time interval between scanning. The proposed 

BHM model in (1) and (2) are hence specified as follows,

(8)

where Ri(m, m′) is the subject-specific connectivity, Xi contains relevant subjects’ clinical or 

demographic characteristics that may be affect functional connectivity. In the BHM model 

(8), the level 1 model takes the similar form as the classical measurement error model 

(Carroll et al., 2006) where repeated measurements in ri(m, m′) from subject i are modeled 

in terms of the true underlying connectivity for the ith subject, i.e. Ri(m, m′), and 

measurement errors . Here, the measurement errors are assumed to follow a 

zero-mean multivariate Gaussian distribution with Σ(1)(m, m′) = λ(1)(m, m′)IK . At level 2 

of the hierarchical model, we model the subject-specific connectivity in terms of population 

parameters modulated by a subject’s covariate effects. And the random error 

represents between-subject variability and follows zero-mean normal distribution with a 

variance of λ(2)(m, m′).

Based on the hierarchical model (8), we can quantify the reproducibility of the estimated 

individual functional connectivity in the scan-rescan imaging data. Specifically, we can 

evaluate the reproducibility using the intraclass correlation coefficient (ICC) which is a 

commonly used reproducibility index. ICC ranges between 0 and 1 with higher ICC 

indicating the more reproducible a measurement is within a subject. From the BHM model, 

ICC for the connectivity measure between node pair (m, m′) can be derived as 
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, which is the ratio of between-subject 

variability λ(2)(m, m′) to the total variability which includes the between-subject and 

within-subject variability, i.e. λ(1)(m, m′) + λ(2)(m, m′).

The proposed Bayesian hierarchical model and prediction algorithm can also help achieve 

another goal in test-retest imaging study, that is to develop more reliable estimator for 

individual functional connectivity. The approach is to develop an estimator for individual 

connectivity based on his/her first scan and evaluate it accuracy in estimating the subject’s 

connectivity in the second scan (Shou et al., 2014; Meija et al., 2015). Using our proposed 

methods, we can first train the Bayesian hierarchical model (8) using the scan-rescan data in 

the training data set and then apply the proposed predictor in equation (6) to derive an 

estimator for a new subject’s connectivity in the second scan based on his/her connectivity 

measured from the first scan. The proposed estimator for individual connectivity has the 

potential to improve the subject-specific connectivity estimate by not only using information 

from the subject’s own measurement from the first scan but also ”borrowing” strength from 

the group of subjects who shall similar characteristics with the current subject. To illustrate 

this, we consider a simple test-retest study with two scanning sessions (K = 2), in which 

researchers are interested in estimating subjects’ second-session connectivity based on their 

first-session fMRI scans. After fitting the Bayesian hierarchical model in (8), we can apply 

the predictor in (6) as an estimator of a subject’s functional connectivity in the second scan 

based on the data in the first scan. We show the predictor in (6) can be rewritten as follows,

(9)

where  is the estimated connectivity for subject i in the second scan, ri1(m, m′) is 

the observed connectivity measured from the ith subject’s first scan,  is the 

estimated ICC obtained by plugging in the BHM model-based estimates of the between- and 

within-subject variability, i.e. . Equation (9) 

shows the BHM estimator of the individual connectivity is a weighted average of the 

subject-level connectivity measurement, ri1(m, m′), and covariate-adjusted population 

expectation, . The ICC weight , which ranges between 0 and 1, 

represents the relative weight assigned to the subject-level estimate as compared to 

population expectation. The higher ICC, i.e. the more reproducible the within-subject 

connectivity estimates are, we would assign more weight to the same subject’s own 

connectivity estimate. On the other hand, with low ICC or low within-subject 

reproducibility, our predictor would place more weight on the population-level expected 
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connectivity in estimating the subject’s connectivity. The implications from Equation (9) are 

that the BHM estimator for subject i’s connectivity not only depends on the subject’s own 

connectivity measured in the first scan but also borrows strength from the population-level 

expectation based on the subject’s covariates Xi, and that the relative weights assigned to the 

two parts are automatically adjusted based on the level of within-subject reproducibility.

In the empirical Bayes literature, the proposed estimator (9) is often known as 

the ”shrinkage estimator” (Efron and Morris, 1975; James and Stein, 1961), which has been 

shown to improve upon traditional estimators by shrinking the estimators towards some 

fixed constant value. In addition, the proposed estimator is similar to the best linear unbiased 

predictor (BLUP) of random effects in linear mixed models, except in the latter case, the 

weights depend on unknown values of variance components, which are replaced by sample-

based estimates (Henderson, 1975 and Liu et al., 2008). The weight  is referred 

to as the shrinkage factor since it controls how much we shrink the subject-level estimator 

towards the population mean. As ICC increases, subject-level information is more reliable 

and hence more weight is assigned to the subject-level estimate ri1(m, m′). On the contrary, 

as ICC decreases, subject-level information is less reliable and we should benefit more 

by ”borrowing” information from the population. As a shrinkage estimator, our predictor in 

(9) has a nice connection with the recently proposed shrinkage estimator (Shou et al., 2014; 

Mejia et al., 2015) for predicting future brain connectivity in test-retest imaging studies. 

Specifically, Shou et al. (2014) and Mejia et al. (2015) proposed a shrinkage estimator for 

individual functional connectivity as follows,

(10)

where  is the sample mean of first-session estimate of connectivity across all 

subjects and γS(m, m′) is a shrinkage factor that takes value in [0, 1]. Shou (2014) and 

Mejia (2015) proposed a shrinkage factor estimator as 

. where  and 

are moment estimators for within-subject and between-subject variance.

From (9) and (10), we can see the proposed BHM estimator  is closely related to 

the shrinkage estimator  by Shou et al. (2014) and Mejia et al. (2015). However, 

there are two major differences between the two methods. First, the population expectation 

in Shou’s estimator is the sample mean connectivity across all subjects. The population 

expectation in the BHM predictor is the model-based subpopulation mean based on subject’s 

covariates pattern. By taking into account covariate effects in population mean estimation, 

the BHM predictor can potentially provide more precise covariate-adjusted population-level 

expectation for a subject based on his/her clinical and demographic characteristics. 

Secondly, Shou’s shrinkage factor is derived empirically based on the moment estimators of 
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the variance. In comparison, the shrinkage factor in BHM predictor is derived from the 

model-based variance estimates.

3 Experimental Methods

We illustrate the proposed BHM method and compare it with existing methods on simulated 

data and also on two real-world fMRI data examples.

3.1 Simulation Studies

We conducted two sets of simulation studies to evaluate the performance of the proposed 

BHM method in comparison with alternative methods for predicting brain connectivity for 

longitudinal imaging studies and test-retest reliability studies. Under each simulation 

scenario, we generated 100 data sets each with 100 subjects. We evaluated the accuracy of 

the prediction methods using the K-fold cross-validation. Specifically, we split the data into 

K = 5 subsets. In each iteration, we assigned K − 1 subsets as training data and the one 

remaining subset as the test data. The training data were used to develop the prediction 

algorithms based on the proposed BHM method and alternative methods and the test data 

were then used to evaluate the prediction accuracy. For example, to evaluate the prediction 

accuracy based on the proposed Bayesian hierarchical model, we first fit the model to the 

training data then predict the connectivity for subjects in the testing data using the estimated 

parameters from the training data. We repeated this procedure for the K different training 

and test data assignments to compute the predicted connectivity for all subjects. We 

measured the prediction error using average prediction mean square error (PMSE) between 

the true underlying connectivity and the predicted connectivity.

In the first setup, we simulated longitudinal data with three connectivity measurements 

within each subject from the hierarchical model in (7). For Level 2 model in (7), we 

considered two subject groups. We assume subjects from the two groups had the same 

baseline connectivity βB but potentially had different change rate across time with βΔ = 

[βΔ1, βΔ2]′. We considered three levels of between-group differences in the change rate with 

(βΔ1, βΔ2) specified as (0.2, −0.2), (0.1, −0.1), (0, 0), representing large, small and no group 

difference, respectively. The between-subject variability in the baseline and change rate, i.e. 

 and , were set at 0.03 and 0.01 respectively to mimic the real data. For Level 1 model 

in (7), the within-subject variance λ(1) was chosen so that the variance ratio of between-

subject variance and total variance at baseline, i.e. , varied from 0.1 to 0.9. 

We then applied various prediction methods to predict the connectivity at t3 based on the 

measurements observed at t1 and t2. For the longitudinal study, we compared the proposed 

BHM predictor with a raw predictor and a General Linear Model(GLM) predictor. Raw 

predictor predicted a subject’s future connectivity using the same subject’s baseline 

estimate. The GLM predictor was derived based on the following GLM model which models 

connectivity from all subjects with common population parameters and assumes 

independence among scans obtained at multiple sessions within a subject, i.e.,
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(11)

where ϵi(m, m′) ~ N (0, σ2(m, m′)I3). Estimates from the GLM are obtained using OLS. 

The predicted connectivity based on model (11) is 

, which only reflects group-level 

expectation and does not take into account of information obtained from the subjects’ 

previous scans.

In the second setup, we simulated data with two scan-rescan connectivity measurements for 

each subject from the test-retest BHM in (8). For Level 2 model in (8), we considered two 

subject groups with β = [β1, β2]′ representing the mean connectivity for group 1 and 2, 

specifically. We considered three levels of between-group differences with (β1, β2) specified 

as (0.6, 0.2), (0.4, 0.2), (0.2, 0.2), representing large, small and no group difference, 

respectively. We specified the between-subject variance λ(2) in Leven 2 model as 0.03, and 

let the within-subject variance λ(1) in Level 1 model vary so that the variance ratio of 

between-subject variance and total variance changed from 0.1 to 0.9. We applied the 

prediction methods to predict the connectivity in the second scan based on the measurement 

in the first scan. For the test-retest study setting, we compared the BHM estimator with the 

raw estimator, a mean estimator, the GLM estimator and the shrinkage estimator (Shou et al. 

(2014); Mejia et al. (2015)). Here, the mean estimator gave the prediction for a subject’s 

rescan connectivity using the group mean at the first scan. The GLM estimator is derived 

based on the following GLM,

(12)

where ϵi(m, m′) ~ N (0, σ2(m, m′)I2). The GLM estimator based on (12) is 

, which only reflects group-level expectation.

3.2 Application to Longitudi nal rs-fMRI data in ADNI2 Study

3.2.1 Longitudinal rs-fMRI in ADNI2 Study and pre-processing steps—We first 

applied the proposed BHM method to the longitudinal rs-fMRI data from the Alzheimer’s 

Disease Neuroimaging Initiative 2 (ADNI2) study. One of the main purposes of ADNI2 

project is to examine changes in neuroimaging and other biomarkers with the progression of 

mild cognitive impairment(MCI) and Alzheimer’s Disease(AD). Data used in our analysis 
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were downloaded from ADNI website (http://www.adni.loni.usc.edu) and included 

longitudinal rs-fMRI images from eighty subjects that were collected at screening, 6 months 

and 1 year. A T1-weighted high-resolution anatomical image (MPRAGE) and a series of 

resting state functional images were acquired with a 3.0 Tesla MRI scanner (Philips 

Systems) during longitudinal visits. The rs-fMRI scans were acquired with 140 volumes, 

TR/TE=3000/30 ms, flip angle of 80 and effective voxel resolution 3.3×3.3×3.3 mm. 

Additional image acquisition parameters are described in details on http://www.adni-

info.org. Quality control was performed on the fMRI images both by following the Mayo 

clinic quality control documentation (version 02-02-2015) and by visual examination. 

Among the 80 subjects, 23 were normal, 47 had MCI, and 10 were diagnosed with AD at 

baseline. Among normal/MCI/AC groups, 10(43%), 28(60%) and 4(40%) were male and the 

mean age was 73.7 ± 5.6, 71.4 ± 6.4, 70.8 ± 7.8, respectively. No significant age or gender 

differences were found across disease status groups (Age: p = 0.30; Gender: p=0.31).

The rs-fMRI data were preprocessed using the modified preprocessing script released from 

the 1000 Functional Connectomes Project. Specifically, skull stripping was performed on the 

T1 images to remove extra-cranial material, then the first four volumes of the functional 

time series were removed to stabilize the signal, leaving 136 volumes for subsequent 

preprocessing. The anatomical image was registered to the 8th volume of the functional 

image (slice time corrected) and subsequently spatially normalized to the MNI standard 

brain space. These normalization parameters from MNI space were used for the functional 

images, which were smoothed with a 6mm FWHM Gaussian kernel. Motion corrections 

were applied on the functional images. A validated confound regression procedure 

(Satterthwaite et al., 2015) was performed on each subject’s time series data to remove 

confounding factors including motions, global effects, white matter (WM) and cerebrospinal 

fluid (CSF) nuisance signals. The confound regression contained nine standard confounding 

signals (6 motion parameters plus global / WM / CSF) as well as the temporal derivative, 

quadratic term and temporal derivative of the quadratic of each. Furthermore, motion-related 

spike regressors were included to bound the observed displacement. Lastly, the functional 

time series data were band-pass filtered to retain frequencies between 0.01 and 0.1 Hz which 

is the relevant frequency range for rs-fMRI.

3.2.2 Brain network construction—To construct brain network, we chose the 264-node 

cortical parcellation system defined by Power et al. (2011). Each node is a 10mm diameter 

sphere in standard MNI space representing a putative functional area, and the collection of 

nodes provides good coverage of the whole brain. It is a finer spatial resolution than the 

commonly used Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 

2002), but is not as granular as using a system of single voxels. This intermediate node 

scheme is recommended to balance the trade-off between increased spatial resolution and 

attenuate signal-to-noise ratio (Fornito et al., 2010; Power et al., 2011). Power et al. (2011) 

has shown that brain networks constructed based on the 264-node system demonstrated 

better reflection of brain organization than AAL-atlas based networks.

For our connectivity analysis of ADNI2 rs-fMRI data, we considered 258 of the 264 nodes 

that were within the gray matter mask derived from the data. To facilitate the understanding 

of the functional roles of the nodes, we assigned them to ten functional networks or modules 
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that correspond to the major resting state networks (RSNs) described by Smith et al. (2009). 

The RSN maps, determined by ICA decomposition of a large database of activation studies 

(BrainMap) and rs-fMRI data, are coherent during both task activity and at rest. The 

functional modules include medial visual network (Med Vis), occipital pole visual network 

(OP Vis), lateral visual network (Lat Vis), default mode network (DMN), cerebellum (CB), 

sensorimotor network (SM), auditory network (Aud), executive control network (EC), and 

right and left frontoparietal networks (FPR and FPL). To determine the module membership 

at each node, we found the RSN map with the largest z-value in the node, above a certain 

threshold (z > 3). 36 of the 258 nodes in the grey matter were not strongly associated with 

any RSN maps, and were therefore not included. Also, since too few nodes were contained 

in the cerebellum, this module and corresponding nodes were not included in the analysis as 

well. A visualization of the remaining 216 nodes that were used in subsequent analysis, 

classified by functional module, is shown in Figure 6. All brain visualizations were created 

using BrainNet Viewer (Xia et al., 2013).

To measure the connectivity between the nodes, we extracted the representative fMRI time 

series from each node by performing singular value decomposition (SVD) on the time series 

from all the voxels within that node. We then constructed a 216 × 216 symmetric 

connectivity matrix for each subject by calculating Pearson correlation between the 

representative time series extracted from each node. Fisher’s transformation was then 

applied to the correlation coefficients.

3.2.3 Bayesian hierarchical model for ADNI2 longitudinal study—We applied the 

proposed Bayesian hierarchical model in (7) to jointly model the longitudinal connectivity 

measures obtained at baseline, 6 months and 1 year at ADNI2 study. We modeled group 

effects in both change rate in connectivity across time as well as baseline connectivity. Let 

ri0(m, m′), ri1(m, m′) and ri2(m, m′) denote the connectivity measure between node m and 

m′ for subject i at at baseline, 6 months and 1 year, respectively. The hierarchical model for 

the ADNI2 study was specified as follows:

Here, in the first level of the BHM, we model the subject’s observed longitudinal 

connectivity measures in terms of subject-specific baseline effects and change rate 

represented by RiB(m, m′) and RiΔ(m, m′). In ADNI2 study, the longitudinal measurements 
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were obtained at baseline, 6 months and 1 year for subjects, hence ti0 = 0, ti1 = 0.5, ti2 = 1. In 

the second level of BHM, we model the subject-specific baseline RiB(m, m′) and change 

rate RiΔ(m, m′) in terms of population parameters that code effects for the three disease 

groups: Normal, MCI and AD. Here, IiN , IiM and IiA are binary group indicators which 

equals 1 if the ith subject was in the normal control, MCI and AD group, respectively, and 

zero otherwise. Therefore, our model can capture the group differences not only in baseline 

connectivity but also in its temporal changes across time.

3.3 Application to Test-retest rs-fMRI data in Kirby21 Study

In this section, we illustrate the utility of the proposed method in test-retest imaging 

reproducibility studies with the Kirby21 data (Landman et al., 2011) which was used in 

previous work (Shou et al. (2014); Mejia et al. (2015)) to develop estimators for individual 

functional connectivity. The data set contains two 7-minute scan-rescan resting-state fMRI 

images for 21 healthy adults (11 M/10 F, aged 22-61). Each scanning session took about one 

hour. After the first scan, each subject exited the scan room for a short break, and then 

reentered the scan room for an identical second scanning session. A T1-weighted anatomical 

image and a series of rs-fMRI were acquired using a 3T MR scanner. Resting-state fMRI 

were collected using 2D EPI sequence with SENSE partial-parallel imaging acceleration to 

obtain 3 × 3mm in-plane resolution in thirty-seven 3mm transverse slices with 1mm slice 

gap (TR/TE = 2000/30 ms, FA=75).

The rs-fMRI data was preprocessed using the standard rs-fMRI pre-processing procedure 

that was described in the previous section. We applied the proposed Bayesian hierarchical 

model for test-retest studies presented in equation (8) to model the Kirby21 data. We then 

applied the proposed BHM predictor presented in equation (9) to estimate a subject’s 

functional connectivity in the second scan based on the data in the first scan.

We used 7-fold cross validation to evaluate the reliability of the BHM connectivity 

estimators. The reliability was measured by prediction mean square error (PMSE) between 

the observed and estimated connectivity for the second scan. In comparison to the BHM-

based estimator, we considered four alternative methods: GLM, mean, raw and the shrinkage 

estimator.

4 Results

4.1 Simulation Studies

4.1.1 Simulation results for longitudinal studies—Figure 2 presents the average 

PMSEs across simulation runs to evaluate the prediction accuracy based on BHM, GLM and 

the raw estimator. We plot the PMSE against the variance ratio to see how the PMSE 

changes with respect to the between-subject variability in relative to the total variability. We 

evaluate the PMSE for the three simulation scenarios with large, low and no between-group 

differences in the change rate. Results show that the PMSE of the BHM predictor was 

always smaller as compared to GLM predictor and raw estimator. Specifically, both the 

BHM and GLM performed much better than the raw estimator when there is large between-

group differences in the connectivity change rate since BHM and GLM took into account of 
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the group information in the predictive model while the raw estimator doesn’t. Additionally, 

the PMSE of the BHM and GLM was also much lower than the raw estimator when the 

variance ratio is low indicating low within-subject correlation. This is because the raw 

estimator uses the same subject’s baseline connectivity to predict his/her follow-up 

connectivity and hence performs poorly when the baseline scan had a low correlation with 

the follow-up scan. Between BHM and GLM, we find that BHM performed better than 

GLM when the variance ratio increases, corresponding to higher within-subject correlation 

in the longitudinal measurements. This is because BHM takes into account of within-subject 

correlation while GLM doesn’t.

In addition to PMSE, We also present distributions of the predicted connectivity at t3 based 

on the three methods and compare them with the true distribution of the simulated 

connectivity (Figure 3). In Figure 3, the data were from the case where there was large 

between-group difference in the connectivity change rate and the variance ratio was 0.5. 

Results show that the box plots of the predicted connectivity based on the BHM predictor 

best resembled the true connectivity distribution at t3. In comparison, the GLM predictor did 

poorly in predicting individual-level connectivity although it successfully predicted the mean 

connectivity for the two groups. This is because GLM predictor didn’t account for individual 

variability in the prediction. The raw estimator failed to predict the difference between the 

two subject groups’ connectivity at time t3 due to the different change rates of the two 

groups. This is because the raw estimator simply used each subject’s baseline to predict 

his/her follow-up and didn’t account for any longitudinal changes across time in the 

connectivity. Due to the high within-subject as well as between-subject variability in rs-

fMRI measurements, it is a challenging task to model and predict individual trajectories in 

longitudinal resting state connectivity. The proposed BHM predictor is based on both the 

population-level expectation as well as subject-specific effects. This allows the BHM 

predictor to effectively capture the between-subject as well as within-subject variability. 

Therefore, it does a good job in predicting both the group effects as well as individual 

trajectories in longitudinal connectivity.

4.1.2 Simulation results for test-retest studies—We present the simulation results in 

a similar manner for test-retest studies. In Figure 4, we plot the average PMSEs to evaluate 

the prediction accuracy based on BHM, GLM, the raw estimator, the mean estimator and the 

shrinkage estimator. We evaluated the PMSE for the three levels of between-group 

difference and also for various variance ratio (ICC) levels. Results show that the PMSE of 

the proposed BHM predictor was the smallest as compared to the other methods under all 

settings. As ICC increases indicating higher within-subject correlation, the PMSE of BHM, 

shrinkage and raw predictors decreased, and difference among these three methods also 

decreased. In comparison, the PMSE of GLM and mean predictors remained the same with 

ICC increases because these two methods don’t take into account within-subject correlation 

in the connectivity. When there was larger difference between two group means, the benefits 

of BHM and GLM predictors were more obvious, since these two methods take into account 

the group effects. Among the five methods, the BHM estimator and the shrinkage estimator 

demonstrated best performance in general. When there is large between-group difference in 

connectivity, the BHM estimator out performed the shrinkage estimator. The reason is that 
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the BHM estimator takes into account group differences while the shrinkage estimator 

doesn’t. When there is no group difference but high ICC indicating high within-subject 

correlation among the same subject?s repeated measured scans, the raw estimator which is 

based on the same subject’s baseline scan actually had better performance than the GLM 

predictor which is a group-level predictor without exploiting the information from the same 

subject’s baseline scan.

Figure 5 presents the simulated distributions of connectivity at the scan and rescan time 

points and then present the distribution of the predicted connectivity at the rescan based on 

the five methods. The data were from the case where there was large between-group 

difference and the ICC was set at 0.5. The distribution of predicted values from BHM 

method best resembled that of the simulated data in terms of the group mean and between-

subject variability. GLM predictor successfully differentiated the population means for 

different groups but performed poorly on individual-level prediction. Raw estimator also 

captured the difference in group means but was more variable than the true distribution 

because it didn’t pool information across subjects in prediction. Pooled mean predictor 

performed the worst since it ignored the large between-group difference. The shrinkage 

estimator did well except that there is slight misalignment between the group means of the 

shrinkage estimator and those in the true distribution. This is because the shrinkage 

estimator doesn’t formally model between-group differences in the prediction. As in Figure 

3, Figure 5 shows that our proposed BHM predictor does a better job than the existing 

methods in accurately predicting both the group effects as well as individual trajectories in 

connectivity, because it models both the population-level effects as well as subject-specific 

effects.

4.2 Results for ADNI2 longitudinal study

The proposed EM algorithm was applied to estimate the parameters in the Bayesian 

hierarchical model for the ADNI2 longitudinal rs-fMRI study. In Figure 7 and Figure 8, we 

present BHM model-based estimates of baseline connectivity and temporal change rate in 

connectivity across time for the three disease groups. Specifically, Figure 7 (a)-(c) illustrates 

the estimated 216 × 216 baseline connectivity matrices for the three disease groups. In 

general, we observe similar connectivity patterns across the three disease groups at baseline. 

For example, edges within the same functional network mostly demonstrate positive 

connections; we also observe positive between-network connections such as connections 

between the three visual networks and connections between the auditory and sensorimotor 

networks.

In Figure 7, we present edges that were found to have considerable differences between the 

MCI and control group (Fig.7 (d)-(e)) and between the AD and control group (Fig.7 (f)-

(g)).To identify edges that were different between the groups, we evaluate the posterior 

probability at each edge for having at least moderate between-group differences, which is 

defined as an absolute between-group difference in the correlation connectivity measure that 

is greater than 0.1. Edges that had an posterior probability of greater than 0.7 for having at 

least moderate between-group difference are shown in Figure 7 (d)-(g). To help understand 

the direction of the group differences, we present the results for positive and negative 
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connections separately. Results show that there were more differences in baseline 

connectivity between AD and controls than between MCI and controls, indicating the 

baseline connectivity in AD patients is more distinctive from the control group as compared 

to the MCI. Compared to the control group, both the MCI and AD disease groups 

demonstrated weaker positive connectivity within the auditory and sensorimotor networks 

and also weaker positive connections between these two networks. Some previous studies 

have found altered activity and connectivity in these two networks that are related to the 

Alzheimer disease (Agosta et al, 2010; Goll et al. 2012; Salustri et al. 2013; Terranova et al. 

2013; Ferreri et al. 2016).

In Figure 8, we compare the change rate in connectivity from baseline to one-year between 

the three disease groups. We first evaluate the posterior probabilities for demonstrating at 

least moderate temporal changes, which is defined as having an absolute change rate that is 

greater than 0.2. Figure 8 (a)-(c) show the edges where the posterior probabilities for 

demonstrating moderate or greater temporal changes are greater than 0.7. Results show that 

the AD group demonstrated much more significant temporal changes during the one year 

period as compared to the normal and MCI group. Specifically, we find very few edges had 

moderate or greater changes in the control and MCI group. While in the AD group, 

considerable changes were observed in many connections. To further illustrate the edges that 

showed significant changes across time, we selected 50 edges with the largest posterior 

probabilities for temporal changes in the AD group, and present their estimated connectivity 

at baseline and then one year in Figure 8 (d) and (e). In the figures, red lines and blue lines 

are used to denote positive and negative connections, respectively. The width of the lines 

reflects the magnitude of the estimated connectivity based on BHM. Some observations 

from these figures are that for the connectivity decreased between nodes in sensorimotor and 

auditory network and also between DMN and auditory network over the year for the AD 

patients.

We applied the proposed BHM prediction algorithm to forecast brain connectivity one year 

after baseline for each subject based on the subject’s observed images at baseline and 6 

months in the ADNI2 study. Figure 9 presents the prediction accuracy based on BHM 

measured by the prediction mean square error (PMSE) between the observed and predicted 

connectivity based on 5-fold cross validation. In comparison to the proposed method, we 

also present the prediction accuracy based on GLM and that based on the raw estimator. 

Figure 9 shows BHM demonstrated the highest prediction accuracy among the three 

methods, with the PMSE generally below 0.06 and the average (SD) for PMSE being 

0.045(0.011). GLM predictor, which used group mean for prediction, had an average PMSE 

of 0.050(0.014). The raw predictor, which used the subject’s baseline connectivity, 

demonstrated the worst performance with an average PMSE of 0.070(0.016). Another 

observation from these figures is that the prediction accuracy was lowest for forecasting 

connectivity within the executive control, frontoparietal left and right, and visual networks, 

indicating it is more challenging to accurately predict future connections in these networks 

as compared to the other networks. To further illustrate the prediction accuracy in individual 

subjects, we plotted the average PMSE across all edges for each subject based on the three 

methods in Figure 9(d)-9(f). Results show that our BHM-based predictor outperformed 

GLM predictor for most of the subjects (71 out of 80) and outperformed the raw predictor 
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for all subjects. In this paper, we present the results for predicting connectivity in one-year 

following-up scans in the ADNI2 study based on the longitudinal data that were available at 

the time of our data analysis. As a reviewer pointed out, when more longitudinal scans 

become available from the study, it will be helpful to predict connectivity after a longer 

follow-up period such as 3-5 years when more clinically significant changes due to the 

progress of the Alzheimer’s disease are expected.

We further examined the coverage probabilities of the 95% prediction intervals for 

predicting one-year functional connectivity based on the Bayesian hierarchical model. 

Across all edges, 94.1% (with a standard error of 2.2%) of the observed connectivity 

measurements fell within the 95% prediction intervals.

4.3 Results for Kirby 21 test-retest fMRI study

Similar as the results from the simulation studies, our BHM predictor and the shrinkage 

estimator demonstrated the highest reliability among the five methods for the Kirby 21 data, 

where BHM had slightly lower PMSE as compared to the shrinkage estimator. GLM 

predictor and mean estimator showed reasonable reliability. The raw predictor which only 

used the subject’s own first-session scan showed the lowest reliability. Across all edges, 

92.3% (with a standard error of 4.7%) of the observed connectivity measurements fell within 

the 95% prediction intervals for predicting individual functional connectivity based on the 

BHM method, indicating the proposed method produces satisfactory coverage level.

5 Discussion

In this paper, we present a general Bayesian hierarchical model for forecasting individual 

future functional connectivity based on the individual’s earlier fMRI scans and relevant 

clinical and demographical characteristics. The proposed method provide a general 

framework for investigating brain connectivity under various scenarios. The method can be 

applied to both task-related and resting state fMRI studies. Furthermore, our method can be 

applied to a range of connectivity metrics such as correlation, partial correlation, coherence 

after performing proper transformation on these metrics. The utility of the proposed 

approach is demonstrated for both longitudinal and test-retest imaging studies. Through 

simulation studies and a longitudinal imaging study, we show that the proposed method 

provides more accurate prediction and estimation for individual connectivity by both taking 

into account an individual’s distinct connectivity patterns and pooling information across the 

group of subjects who share similar characteristics. The predictive model can potentially 

have important applications in clinical practice. For example, by providing prediction for 

individual neural development trajectory, it can facilitate implementation of early 

intervention for brain disorders to mitigate a more severe mental illness evolving. The 

predictive model can also provide guidance for developing more effective individualized 

treatment plans by providing clinicians with predictive information concerning the effect of 

treatment on brain connectivity. A MATLAB toolbox for the proposed BHM predictive 

model will be made available at the website of the Center for Biomedical Imaging Statistics 

(CBIS) at Emory University.
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For the proposed BHM-based prediction algorithm, most of the computation time is spent on 

the prediction algorithm development stage, i.e. estimation of the BHM model using the 

training data. Once the prediction algorithm is established, applying the algorithm to predict 

a new subject’s brain connectivity is quite rapid. For example, for the ADNI2 longitudinal 

data example which involves about 80 subjects and 216-by-216 connectivity matrices, the 

computation time for training the BHM model was about 1.3 hours on a single processor 

with Intel Core i7 CPU (2.4 GHz) and 8 GB RAM. The prediction based on the BHM for a 

new subject took no more than one second on the same processor.

The proposed Bayesian hierarchical model has an important advantage in handling missing 

data in the longitudinal studies. Unlike many other methods, the BHM doesn’t require 

removal of subjects who have missing data at certain time points but rather can estimate the 

parameters using all the data that are available from the subject. Specifically, in the presence 

of missing data, we will estimate the model by using the EM algorithm to maximize the 

likelihood based on all the observed data. In this way, BHM can make use of all the available 

information from the observed data (Verbeke and Molenberghs, 2000).

For test-retest imaging studies, the proposed method can provide a more reliable estimator 

for individual brain connectivity than alternative methods. We show that there is a nice 

connection between the BHM estimator and the recently developed shrinkage estimator 

(Shou et al. 2014; Mejia et al. 2015). Both methods are essentially a weighting procedure 

that ”borrow”s strength from a larger population to improve individual estimates. Compared 

with the existing methods, the new contributions of the proposed method based on the 

Bayesian hierarchical model include the following: the proposed method can account for 

covariate effects and thus can potentially provide more accurate estimates for heterogeneous 

population, e.g., when the study cohort consists of both patients and healthy controls, the 

proposed predictor provides a unified and model-based approach for determining the 

weighting factor which controls the relative contribution from the population-level and 

individual-level effects, finally, the proposed method allows for hypothesis testing and 

prediction intervals which can help provide inference for the connectivity estimates.
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7 Appendix

This appendix describes an EM algorithm for estimating the proposed Bayesian hierarchical 

model. For a given node pair, the hierarchical model in (1) and (2) can be collapsed into the 

following representation for all N subjects:

where  is the connectivity from all N subjects. The covariate matrix 

W = [X(1), X(1)X(2)], where  for j = 1, 2. The parameter 

 with . The parameter θ contains the 

population-level parameters and the error terms in the secondary-level of the model. Based 

on the model specification, θ is assumed to follow Gaussian distribution with the mean ηθ = 

E(θ) = [0T, ηβT]T and the covariance  . The likelihood 

and priors under the Gaussian distribution assumptions are

which lead to a Gaussian posterior density for θ,

where  and 

.

When we adopt the empirical Bayesian scheme with Σβ = ∞, we have Σθ−1ηθ = 0 which 

means there is no need to specify the prior mean of β since they do not influence the 

posterior. Therefore, we only need to update the hyperparameters λ = [λ(1)T, λ(2)T]T in the 

error covariance matrices. To estimate the parameters and hyper-parameters in the above 

equations, we use the EM algorithm.

E Step

At the E step, we obtain the conditional distribution of the parameter θ given the observed 

data r and the current estimates of the hyper-parameters of the covariance components λ(m), 
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i.e., p(θ|λ(m), r). Based on the model specification, the conditional distribution is Gaussian 

distribution with the mean and covariance of  and 

 where  and  are based λ(m).

M Step

At the M step, we use the estimated conditional distribution of θ given r from the E-step to 

update the maximum likelihood (ML) estimates for the covariance hyper-parameters λ. 

Specifically, we find the λ(m+1) such that the log-likelihood F = lnp(r|λ) is maximized. This 

can be done using a Fisher-scoring iteration: 
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Figure 1. 
Schematic illustration of the development of the bayesian hierarchical model and 

construction of the proposed prediction algorithm for individual brain functional 

connectivity.
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Figure 2. 
The prediction mean square error (PMSE) for predicting future brain connectivity in the 

simulation study with longitudinal data. Results are based on the proposed Bayesian 

hierarchical model (BHM), GLM and raw estimator. We consider three scenarios: (a) large 

between-group difference in connectivity change rates: (−0.2, 0.2); (b) small difference: 

(−0.1, 0.1); (c) no difference: (0.0, 0.0).
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Figure 3. 
Comparison between the predicted connectivity distributions with the true connectivity 

distributions in the simulated data for longitudinal studies with large between-group 

difference in connectivity change rate. On the left panel, we present the distributions of 

simulated data for all three sessions in the longitudinal study. On the right panel, we present 

the distributions of predicted connectivity for session 3 by BHM, GLM and raw estimators.
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Figure 4. 
The prediction mean square error (PMSE) for predicting future brain connectivity in the 

simulation study with test-retest data. Results are based on the proposed Bayesian 

hierarchical model (BHM), GLM, raw, mean and shrinkage estimator. We consider three 

scenarios: (a) large between-group difference in mean connectivity: (0.2, 0.6); (b) small 

difference: (0.2, 0.4); (c) no difference: (0.2, 0.2).
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Figure 5. 
Comparison between the predicted connectivity distributions with the true connectivity 

distributions in the simulated data for test-retest studies with large between-group difference 

in mean connectivity. The horizontal reference lines correspond to the population means of 

connectivity for the two groups.
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Figure 6. 
Visualization of 216 nodes associated with nine resting state networks (RSNs) described in 

Smith et al. (2009).
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Figure 7. 
Group differences in baseline connectivity based on the bayesian hierarchical model (BHM) 

for ADNI2 study. Subfigures (a)-(c) present the BHM model-based estimates of 216 × 216 

baseline connectivity matrices for normal controls (NC), mild cognitive impaired (MCI) and 

Alzheimer patients (AD). Each element in the connectivity matrix represents a node-pair or 

edge where the nodes are defined based on the Power node system and grouped by 

functional networks. Red edges indicate positive connectivity and blue edges indicate 

negative connectivity. Subfigures (d)-(g) present the edges that showed significant 

differences in the baseline connectivity between NC and MCI/AD groups. Yellow edges 

indicate a posterior probability of greater than 0.7 that the baseline connectivity in the 

patient group has considerably larger magnitude than NC, and green edges indicate a 

posterior probability of greater than 0.7 that baseline connectivity in patient group had 

considerably smaller magnitude than NC.
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Figure 8. 
Group differences in connectivity change rate based on the bayesian hierarchical model 

(BHM) for ADNI2 study. Subfigures (a)-(c) present the BHM model-based estimates of 216 

× 216 thresholded posterior probability matrices for demonstrating significant connectivity 

changes over 1 year in the three disease groups. Dark blue indicates edges that demonstrated 

at least moderate temporal change, i.e. having an absolute change rate of greater than 0.2, 

with posterior probability greater than 0.7. Results show that the AD group demonstrated 

much more significant temporal changes during the one year period as compared to the 

normal and MCI group. Specifically, considerable amount of edges demonstrated high 

posterior probabilities of temporal changes in the AD group, while very few edges in NC 

and MCI showed significant change. In subfigures (d) and (e), we display the baseline and 

one-year connectivities for 50 edges with the largest posterior probabilities of temporal 

change in the AD group. Red edges indicate positive connectivity and blue edges indicate 

negative connectivity. The size of the edges reflects the strength of connectivity.
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Figure 9. 
Comparison of prediction mean square error (PMSE) for predicting one-year functional 

connectivity in ADNI2 study using different prediction methods. Subfigures (a)-(c) present 

the average PMSE matrices across all subjects using the BHM, GLM, and the raw estimator, 

respectively. Darker color represents larger PMSE, and lighter color represents smaller 

PMSE. In subfigures (d)-(f), we compare the performances of different prediction methods 

for each individual using average PMSEs across all edges. Results are presented separately 

for the normal control, MCI and AD disease groups.
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Figure 10. 
Comparison of prediction mean square error (PMSE) for predicting individual functional 

connectivity in Kirby21 study using the Bayesian hierarchical model (BHM), shrinkage 

estimator, GLM, mean estimator and raw estimator, respectively. Darker color represents 

larger PMSE, and lighter color represents smaller PMSE.
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