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Abstract

Alzheimer's Disease (AD), a severe type of neurodegenerative disorder with progressive 

impairment of learning and memory, has threatened the health of millions of people. How to 

recognize AD at early stage is crucial. Multiple models have been presented to predict cognitive 

impairments by means of neuroimaging data. However, traditional models did not employ the 

valuable longitudinal information along the progression of the disease. In this paper, we proposed 

a novel longitudinal feature learning model to simultaneously uncover the interrelations among 

different cognitive measures at different time points and utilize such interrelated structures to 

enhance the learning of associations between imaging features and prediction tasks. Moreover, we 

adopted Schatten p-norm to identify the interrelation structures existing in the low-rank subspace. 

Empirical results on the ADNI cohort demonstrated promising performance of our model.

1 Introduction

Alzheimer's Disease (AD), the most common form of dementia, is a neurodegenerative 

disorder which severely impacts patients’ thinking, memory and behavior. Current 

consensus has emphasized the demand of early recognition of this disease, with which the 

goal of stoping or slowing down the disease progression can be achieved [8]. The 

effectiveness of neuroimaging in predicting the progression of AD or cognitive performance 

has been studied and reported in plentiful research [4,12]. However, many previous research 

merely paid attention to the prediction using the baseline data, which neglected correlation 

among longitudinal cognitive performance. AD is a progressive neurodegenerative disorder, 

thus it is significant to discover neuroimaging measures that impact the progression of this 

disease along the time axis.

In the association study of predicting cognitive scores from imaging features, the input data 

usually consists of two matrices: the imaging feature matrix  and the cognitive score 

matrix . If we denote the number or samples as n; the number of features as d while the 

number of different measures of a certain cognitive performance test as m, then  and 

can be formed in the following format:  corresponds to the 
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imaging features at T consecutive time points where  is the imaging marker matrix 

at the t-th time point;  corresponds to the cognitive scores at T 

consecutive time points with  denoting the measurement at the t-th time point.

Let's consider the prediction of one cognitive measure at one time point to be one task, then 

the association study between cognitive scores and imaging features can be regarded as a 

multi-task problem. Apparently, in our setting of the longitudinal association study, the 

number of tasks is mT. The goal of the association study is to find a weight matrix 

, which captures the relevant features for predicting the cognitive 

scores.

A forthright method is to perform linear regression at each time point and determine Wt 

separately. However, the linear regression treats all tasks independently and ignores the 

useful information reserved in the change along the time continuum. Since AD is a 

progressive neurodegenerative disorder and cognitive performance is an intuitive indication 

of the disease status, we can reasonably regard the various tasks to be possibly related. In 

one cognitive experiment, the result of a certain measure at different time points may be 

correlated and also different cognitive measures at a certain time point may have mutual 

influence. To excavate the correlations among the cognitive scores, several multi-task 

models are put forward.

One possible method is the longitudinal ℓ2,1-norm regression model [6,11]. In this model, the 

introduced ℓ2,1-norm regularization enforces structured sparsity, which helps to detect 

features related to all the cognitive measures along the whole time axis. Moreover, with the 

assumption that imaging features may be correlated with each other thus gain an overlap in 

their effects on brain structure or disease progression, we can use the trace norm (also 

known as nuclear norm) regularization to impose a low-rank restriction. Also, there are 

models combining these two regularization terms to enforce the structured sparsity as well 

as low-rank constraint [13,14].

Indeed, these models impose trace norm regularization to the whole parameter matrix, such 

that the common subspace globally shared by different prediction tasks can be extracted. 

However, the longitudinal prediction tasks can be interrelated as different groups. The 

straightforward way to discover such interrelated groups is to conduct the clustering analysis 

first and extract the group structures. However, such a heuristic step is independent to the 

entire longitudinal learning model, thus the detected group structures are not optimal for the 

longitudinal learning process.

To address this challenging problem, we propose a novel longitudinal structured low-rank 

learning model to uncover the interrelations among different cognitive measures and utilize 

the learned interrelated structures to enhance cognitive function prediction tasks.

2 Longitudinal Structured Low-Rank Regression Model

In our multi-task problem, suppose these mT tasks come from c groups, where tasks in each 

group are correlated. We can introduce and optimize a group index matrix set Q = {Q1, 
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Q2, . . . Qc} to discover this group structure. Each Qi is a diagonal matrix with Qi ∈ 
{0,1}mT×mT showing the assignment of tasks to the i-th group. For the (k, k)-th element of 

Qi, (Qi)kk = 1 means that the k-th task belongs to the i-th group while (Qi)kk = 0 means not. 

To avoid overlap of groups, we constrain .

Since each group of tasks share correlative dependence, we can reasonably assume the latent 

subspace of each group maintains a low-rank structure. We impose Schatten-p norm as a 

low-rank constraint to uncover the common subspace shared by different tasks. According to 

the discussion below, Schatten p-norm makes a better approximation of the low-rank 

constraint than the popular trace norm regularization [7].

For a matrix , suppose σi is its i-th singular value, then the rank of A can be written 

as , where 00 = 0. And the definition of p-th power Schatten p-

norm (0 < p < ∞) of A is: . Specially, when p = 1, 

we find the Schatten p-norm of A is exactly its trace norm: 

.

So when 0 < p < 1, Schatten p-norm is a better low-rank regularization than trace norm. 

Accordingly, our longitudinal structured low-rank regression model is:

(1)

In Problem (1), the grouping structure tends to be unstable when p is small, so we add a 

power parameter l to the regularization term and make our model robust. It is diffcult to 

solve this new non-convex and non-smooth objective function. In next section, we will 

propose a novel alternating optimization method for Problem (1).

3 Optimization Algorithm for Solving Problem (1)

According to the property of Qi that Qi
2 = Qi, Problem (1) can be rewritten as:

(2)

where Di is defined as:

(3)
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We can solve Problem (2) via alternating optimization method.

The first step is fixing  and solving Q, and then Problem (2) becomes:

(4)

Letting , then the solution of Qi is:

(5)

The second step is fixing Q and solving , and then Problem (2) becomes:

(6)

Denote Qi in the format that Qi = diag(Qi1, Qi2, . . . , QiT). Since 

, we can decouple Problem (6) for each t:

(7)

Problem (7) can be further decoupled for each column of Wt as follows:

(8)

Taking derivative w.r.t. (wt)k in Problem (8) and setting it to zero, then we get:

(9)

We can iteratively update Q,  and D with the alternating steps mentioned above and the 

algorithm of Problem (2) is summarized in Algorithm 1.
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Convergence Analysis

Our algorithm uses alternating optimization method, whose convergence has already been 

proved in [1]. In Algorithm 1, variables in each iteration has a closed form solution and can 

be computed fairly fast. In the following experiments on the ADNI data, the running time of 

each iteration is about 0.005 s and our method usually converges within one second.

4 Experimental Results

In this section, we evaluate the prediction performance of our proposed method by applying 

it to the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.

4.1 Data Description

Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.usc.edu). Each MRI T1-weighted image was first anterior commissure (AC) 

posterior commissure (PC) corrected using MIPAV2, intensity inhomogeneity corrected 

using the N3 algorithm [10], skull stripped [16] with manual editing, and cerebellum-

removed [15]. We then used FAST [17] in the FSL package3 to segment the image into gray 

matter (GM), white matter (WM), and cerebrospinal fluid (CSF), and used HAMMER [9] to 

register the images to a common space. GM volumes obtained from 93 ROIs defined in [5], 

normalized by the total intracranial volume, were extracted as features. Longitudinal scores 

were downloaded from three independent cognitive assessments including Fluency Test, 

Rey's Auditory Verbal Learning Test (RAVLT) and Trail making test (TRAILS). The details 

of these cognitive assessments can be found in the ADNI procedure manuals. The time 

points examined in this study for both imaging markers and cognitive assessments included 

baseline (BL), Month 6 (M6), Month 12 (M12) and Month 24 (M24). All the participants 

with no missing BL/M6/M12/M24 MRI measurements and cognitive measures were 

included in this study. A total of 385 sample subjects are involved in our study, among which 

we have 56 AD samples, and 181 MCI samples and 148 health control (HC) samples. Seven 

cognitive scores were included: (1) RAVLT TOTAL, RAVLT TOT6 and RAVLT RECOG 

scores from RAVLT cognitive assessment; (2) FLU ANIM and FLU VEG scores from 

Fluency cognitive assessment; (3) Trails A and Trails B scores from Trail making test.

4.2 Performance Comparison on the ADNI Cohort

We first evaluate the ability of our method to predict a certain set of cognitive scores via 

neuroimaging marker. We tracked the process along the time axis and intended to find the 

set of markers which could influence the cognitive score over the time points. As the 

evaluation metric, we reported the Root Mean Square Error (RMSE) as well as the 

Correlation Coefficient (CorCoe) between the predicted score and the ground truth.

We compared our method with all the counterparts discussed in the introduction, which are: 

Multivariate Linear Regression (MLR), Multivariate Ridge Regression (MRR), Longitudinal 

Trace-norm Regression (LTR), Longitudinal ℓ2,1 norm Regression (L21R) and their 

combination (L21R + LTR). To illustrate the advantage of simultaneously conducting task 

correlation and longitudinal feature learning, we also compared with the method of using K-
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means to cluster the tasks first and then implementing LTR in each group (K-means + LTR) 

as the baseline.

We utilized the 10-fold cross validation technique and ran 50 times for each method. The 

average RMSE and CorCoe on these 500 trials are reported. For MLR and MRR, since they 

were not designed for the longitudinal tasks, we computed the weight matrix for each time 

point separately and then merged them to the final weight matrix according to the definition 

. Here in this experiment, the number of time points T is 4. Our initial 

analyses indicated that our model performs fairly stable when choosing parameter l from {2, 

2.5, . . . , 5} and choosing parameter p from {0.1, 0.2, . . . , 0.8} (data not shown). In our 

experiments, we fixed p = 0.1 and l = 3.

The experimental results are summarized in Table 1. From all the results, we can notice that 

our method outperforms all other methods consistently on all data sets. The reasons go as 

follows: MLR and MRR assumed the cognitive measures at different time points to be 

independent, thus didn't consider the correlations along the time. Their neglects of the 

longitudinal correlation within the data was detrimental to their prediction ability. As for 

L21R, LTR and their combination LTR + L21R, even though they take into account the 

longitudinal information, they cannot handle the possible group structure within the 

cognitive scores. That is why they overweigh the standard methods like MLR and MRR in 

most cases, but are inferior to our proposed method. For K-means + LTR, the clustering step 

is detached from the longitudinal association study, thus the learned interrelation structure is 

not optimal for the following longitudinal learning process. As for our proposed method, we 

not only captured longitudinal correlations among imaging features, but also detected group 

structure within cognitive scores. As was discussed in the theoretical sections, our model is 

able to find features which impact on the cognitive result at different stages and meanwhile 

cluster the cognitive results into groups. Thus, our model can capture features responsible 

for some, but not necessarily all, cognitive measures along the time continuum, which saves 

more effective information in the prediction.

4.3 Identification of Longitudinal Imaging Markers

We further take a special case, the RAVLT assessment, as an example to analyze results of 

our model. RAVLT is composed of three cognitive measures, which are: (1) the total number 

of words kept in mind by the testee in the first five trials, RAVLT TOTAL; (2) the number of 

words recalled during the 6th trial, RAVLT TOT6; and (3) the number of words recognized 

after a gap of 30 min, RAVLT RECOG. According to the common sense, these three 

measures should be interrelated with each other, thus clustered into the same group in our 

model. The result of our model shows a consistent obedience of this rule, i.e., no matter 

what the c value (number of groups) is, our model invariably put all these three measures to 

the same group, which is in line with reality. Specially, when c is larger than the real number 

of groups, the extra groups become empty.

Figure 1 shows the heat maps of the weight matrices learned by our method. The figures 

demonstrate the capture of a small set of features that are consistently associated to a certain 

group of cognitive measures (here the group includes all measures). Among the selected 

features, we found the top two are the hippocampal formation and thalamus, whose impacts 
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on AD have already been proved in the previous papers [2,3]. In summary, our model is 

competent to select a small set of features that consistently correlate with a certain group of 

cognitive measures along the time axis. And the effectiveness of the selected features can be 

confirmed by previous reports in the literature.

5 Conclusion

In this paper, we proposed a novel longitudinal structured low-rank regression model to 

study the longitudinal cognitive score prediction. Our model can simultaneously uncover the 

interrelation structures existing in different prediction tasks and utilize such learned 

interrelated structures to enhance the longitudinal learning model. Moreover, we utilized 

Schatten p-norm to extract the common subspace shared by the prediction tasks. Our new 

model is applied to ADNI cohort for cognitive impairment prediction using MRI data. 

Empirical results validate the effectiveness of our model, showing a potential to provide 

reference for current clinical research.
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Fig. 1. 
Heat maps of our learned weight matrices on the RAVLT cognitive assessment via MRI data. 

The weight matrices at four time points, BL, M6, M12 and M24, are plotted. We draw two 

matrices for each time point, where the left figure is for the left hemisphere and the right 

figure for the right hemisphere. For each weight matrix, columns denote neuroimaging 

features while rows represent three different RAVLT scores, which are RAVLT TOTAL, 

RAVLT TOT6 and RAVLT RECOG, respectively. Imaging features (columns) with larger 

weights possess higher correlation with the corresponding cognitive measure.
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Table 1

Cognitive assessment FLUENCY, RAVLT and TRAILS prediction comparison via RMSE and CorCoe. Better 

performance corresponds to lower RMSE or higher CorCoe value.

MLR MRR LTR L21R L21R + LTR K-means + LTR OURS

RMSE FLUENCY 0.352 0.350 0.343 0.339 0.345 0.351 0.316

RAVLT 0.469 0.447 0.458 0.445 0.448 0.459 0.417

TRAILS 0.571 0.554 0.564 0.551 0.567 0.557 0.511

CorCoe FLUENCY 0.504 0.499 0.516 0.528 0.513 0.503 0.579

RAVLT 0.872 0.880 0.877 0.879 0.879 0.874 0.891

TRAILS 0.541 0.551 0.548 0.558 0.547 0.562 0.600
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Algorithm 1

Algorithm to solve problem (2).

Input:

    Longitudinal imaging feature matrix 𝒳 = X1, X2, ⋯, XT ∈ ℝd × nT
, longitudinal cognitive score matrix 

𝒴 = Y1, Y2, ⋯, YT ∈ ℝn × mT
, parameter γ, and number of groups c.

Output:

    Weight matrix 𝒲 = W1, W2, ⋯, WT  where W t ∈ ℝd × m
 and c different group matrix Qi ∈ ℝmT × mT

 which groups the tasks 

into exactly c groups.

    Initialize 𝒲 by the optimal solution to ridge regression problem

    while not converge do

        1. Update Di ∣
i = 1
c

 according to the definition in Eq. (3).

        2. Update Qi ∣
i = 1
c

 according to the solution in Eq. (5)

        3. Update 𝒲, where the solution to the k-th column of Wt is displayed in Eq. (9).

        end while
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