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Preface

The 14th Iberoamerican Congress on Pattern Recognition (CIARP 2009, Con-
greso IberoAmericano de Reconocimiento de Patrones) formed the latest of a now
long series of successful meetings arranged by the rapidly growing Iberoamerican
pattern recognition community.

The conference was held in Guadalajara, Jalisco, Mexico and organized by
the Mexican Association for Computer Vision, Neural Computing and Robotics
(MACVNR). It was sponsodred by MACVNR and five other Iberoamerican PR
societies. CIARP 2009 was like the previous conferences in the series supported
by the International Association for Pattern Recognition (IAPR).

CIARP 2009 attracted participants from all over the world presenting state-
of-the-art research on mathematical methods and computing techniques for pat-
tern recognition, computer vision, image and signal analysis, robot vision, and
speech recognition, as well as on a wide range of their applications.

This time the conference attracted participants from 23 countries, 9 in Ibero-
america, and 14 from other parts of the world. The total number of submitted
papers was 187, and after a serious review process 108 papers were accepted,
all of them with a scientific quality above overall mean rating. Sixty-four were
selected as oral presentations and 44 as posters. Since 2008 the conference is
almost single track, and therefore there was no real grading in quality between
oral and poster papers. As an acknowledgment that CIARP has established
itself as a high-quality conference, its proceedings appear in the Lecture Notes
in Computer Science series. Moreover, its visibility is further enhanced by a
selection of a set of papers that will be published in a special issue of the journal
Pattern Recognition Letters.

The conference program was highlighted by invited talks by four interna-
tionally leading scientists, Maria Petrou, Peter Sturm, Walter G. Kropatsch and
Ioannis A. Kakadiaris, with topics on imaging architectures, 3D geometric mod-
eling, pyramid representations and methods for analyzing CT data. Professors
Petrou, Sturm and Kropatsch also contributed to the overall goal of promoting
knowledge in the field in their tutorials on texture analysis, geometric meth-
ods in computer vision and pyramid representations. In two additional tutorials
Eduardo Bayro-Corrochano and Dietmar Hildebrand presented insights on ap-
plying and implementing geometric algebra techniques in robot vision, graphics
and medical image processing.

The full-day CASI 2009 Workshop on Computational Advances of Intelli-
gent Processing of Remote Satellite Imagery, co-sponsored by IEEE GRSS and
chaired by Yuriy Shkvarko, CINVESTAV, Unidad Guadalajara, was held in con-
nection with the conference. For the CASI 2009 Workshop, after a double-blind
review proces, 12 papers were accepted.



VI Preface

Another event that increaded the interest of the conference was the preceding
first Mexican Workshop on Pattern Recognition (MWPR 2009). MWPR 2009
was organized by the Mexican Association for Computer Vision, Neural Com-
puting ad Robotics (MACVNR). It was sponsored by the Computer Science
Department of the National Institute of Astrophysics, Optics and Electronics
(INAOE), and the Center for Computing Research of the National Polytechnic
Institute (CIC-IPN). The aim of MWPR 2009 was to be a forum for exchanging
scientific results and experiences, as well as sharing new knowledge, and increas-
ing the co-operation between research groups in pattern recognition and related
areas, in México.

As co-organizers of CIARP 2009, we would like to express our gratitude to
both the supporting organizations and all those who contributed to the confer-
ence in other ways. We gratefully acknowledge the support from CINVESTAV
and MACVNR and the other five Iberoamerican PR societies supporting the
main meeting, as well as the support offered by the International Association for
Pattern Recognition. We also extend our thanks to the organizations supporting
our workshops.

We are particularly grateful to the Organizing Committee and the Program
Committte for their devoted work leading to an impeccable review process. A
special thanks must inevitably go to the members of the organizing Committee,
who made this conference an excellent event through their serious work.

Finally, a conference is only as good and fruitful as the participants make
it. We therefore, last but certainly not least, extend our deepest gratitude to all
those who by their presence and contributions made this an excellent conference.
We hope they enjoyed the meeting as much as we did.

September 2009 Eduardo Bayro-Corrochano
Jan-Olof Eklundh
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Mexico
Castelán Mario Centro de Investigación y Estudios Avanzados del

I.P.N., Mexico
Castellanos Sánchez

Claudio LTI, Cinvestav - Tamaulipas, Mexico
Cheng Da-Chuan China Medical University, Taiwan
Dawood Mohammad University of Münster, Germany
Del Bimbo Alberto Universita degli Studi di Firenze, Italy
Denzler Joachim Friedrich-Schiller University of Jena, Germany
Du Buf Hans University of Algarve, Portugal
Duin Robert P.W. Delft University of Technology, The Netherlands
Dunham Margaret Southern Methodist University, USA
Enrique Sucar Luis Inst. Nac. Astronomı́a, Óptica Electrónica,
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Mexico
Escolano Francisco University of Alicante, Spain
Facon Jacques Pontif́ıcia Univ. Católica do Paraná, Brazil
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Electronics, Mexico
Grana Manuel University of the Basque Country, Spain
Grau Antoni Universidad Politécnica de Cataluña, Spain
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Haindl Michal Czech Academy of Sciences, Czech Republic
Hanbury Allan Vienna University of Technology, Austria



X Organization

Hancock Edwin University of York, UK
Hernando Javier Univ. Politecnica de Catalunya, Barcelona, Spain
Heutte Laurent Université de Rouen, France
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Pizlo Zygmunt Purdue University, USA
Pla Filiberto Universitat Jaime Castelló, Spain
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Shirai Yoshiaki Ósaka Univ. at Suita -Ritsumeikan Univ., Japan
Shkvarko Yuriy CINVESTAV, Mexico
Sossa Azuela Humberto National Polytechnic Institute, Mexico
Stathaki Tania Imperial College London, UK
Sturm Peter INRIA, France
Sugimoto Akihiro National Institute of Informatics, Japan
Taboada Crispi Alberto Univ. Central Marta Abreu de Las Villas, Cuba
Tao Dacheng The Hong Kong Polytechnic University,

Hong Kong
Tombre Karl Inst. Nat. Polytechnique de Lorraine, France
Torres-Méndez Luz Abril CINVESTAV Unidad Saltillo, Mexico
Valev Ventzeslav Saint Louis University, USA
Vallejo Aguilar J. Refugio Universidad de Guanajuato, Mexico



XII Organization

Vilasis Xavier Universitat Ramon Llull, Barcelona
Wang Shengrui University of Sherbrooke, Quebec, Canada
Westenberg Michel Eindhoven University of Technology,

The Netherlands
Whelan Paul F. Dublin City University, Ireland
Zamora Julio Intel Research Center, Mexico
Zhou Zhi-Hua Nanjing University, China



Table of Contents

I Keynote 1

An Imaging Architecture Based on Derivative Estimation Sensors . . . . . . 3
Maria Petrou and Flore Faille

II Image Coding, Processing and Analysis

Landmark Real-Time Recognition and Positioning for Pedestrian
Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Antonio Adán, Alberto Mart́ın, Enrique Valero, and Pilar Merchán

A Binarization Method for a Scenery Image with the Fractal
Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Hiromi Yoshida and Naoki Tanaka

Selective Change-Driven Image Processing: A Speeding-Up Strategy . . . . 37
Jose A. Boluda, Francisco Vegara, Fernando Pardo, and
Pedro Zuccarello

Coding Long Contour Shapes of Binary Objects . . . . . . . . . . . . . . . . . . . . . 45
Hermilo Sánchez-Cruz and Mario A. Rodŕıguez-Dı́az
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Milton Garćıa-Borroto
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Unified Experiment Design, Bayesian Minimum Risk and Convex
Projection Regularization Method for Enhanced Remote Sensing
Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013

Yuriy Shkvarko, Jose Tuxpan, and Stewart Santos

Intelligent Experiment Design-Based Virtual Remote Sensing
Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021

Yuriy Shkvarko, Stewart Santos, and Jose Tuxpan

XIX CASI 2009 Workshop II: Intelligent Fussion and
Classification Techniques

Optimizing Classification Accuracy of Remotely Sensed Imagery with
DT-CWT Fused Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031

Diego Renza, Estibaliz Martinez, and Agueda Arquero

Filter Banks for Hyperspectral Pixel Classification of Satellite Images . . . 1039
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An Imaging Architecture Based on Derivative
Estimation Sensors

Maria Petrou and Flore Faille

Imperial College London, SW7 2AZ, UK

Abstract. An imaging architecture is proposed, where the first and sec-
ond derivatives of the image are directly computed from the scene. Such
an architecture bypasses the problems of estimating derivatives from
sampled and digitised data. It, therefore, allows one to perform more ac-
curate image processing and create more detailed image representations
than conventional imaging. This paper examines the feasibility of such
an architecture from the hardware point of view.

1 Introduction

In many image processing and computer vision operations we have to use the
brightness derivatives of the observed scene. Examples of such operations include
all methods that rely on gradient estimation, Laplacian estimation or estimation
of higher order fluctuations. Applications include edge detection, multiresolu-
tion image representation using the Laplacian pyramid, all methods that rely on
anisotropic (or isotropic) diffusion and even wavelet-based methods. In all these
cases the derivatives needed are calculated from the discrete data. Discretisa-
tion, however, introduces significant errors in the calculation of differentials. An
example is shown in figure 1, taken from [26], where the discrete and the contin-
uous wavelet transform of a signal are shown. We can easily appreciate how gross
a frequency representation the wavelet transform computed from the sampled
version of the signal is.

The importance of processing in the analogue domain has become more ev-
ident in the recent years. Splines [28] is a very versatile and powerful tool for
representing the discrete data in the continuous domain. Joshi [24] has shown
that much improved histogram estimates of the data may be obtained by upsam-
pling and interpolating the data before calculating the histograms. There have
also been cases where people try to go back to the continuous domain by emulat-
ing “continuous” sensors. In [27] virtual cameras were introduced, with spectral
responses in between the discrete spectral responses of actual cameras, in order
to improve colour segmentation. In [23] virtual sensors measuring the potential
at border points of a 2D vector field were introduced in order to improve the
vector field reconstruction using the inverse Radon transform.

It is not necessary, however, for the extra sensors introduced to measure the
same quantity as the existing sensors. It is true, that a much denser array of
CCDs will sample the brightness of the scene much better than a not so dense
array, and it will make the estimated derivatives approach more the true ones

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 3–18, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



4 M. Petrou and F. Faille

Fig. 1. The discrete (left) and continuous (right) wavelet transform of a signal

that refer to the continuous scene. There is another, option, however: it may be
possible to use extra sensors that measure the desired quantities directly from the
continuous scene. We started by mentioning the significant role differentiation
plays in image processing. We would suggest that we may incorporate sensors in
our imaging devices that measure the first and second derivatives of the scene
directly, as they measure the brightness of the scene. This may be done densely
and for different colour bands. The information from the derivative sensors may
be used for subsequent processing, as extra information alongside the brightness
information, for example in the form of extra image bands, or it may be used to
construct a very accurate representation of the scene, much more accurate than a
single layer of brightness sensors may do on their own. This interlacing of sensors
of different types and different sensitivities appears to sound too complicated,
but it may be what nature has implemented for us. In [25], a connection of such
a scheme to the architecture of the human retina was made. Some aspects of the
retina structure could be explained by the scheme and some predictions were
made concerning the photosensitivity of the retinal cells.

In this paper, we attempt to answer the question concerning the feasibility of
such an imaging system, from the hardware point of view. We present an overview
of existing hardware systems for estimating first and second order derivatives di-
rectly from continuous signals. This paper is organised as follows. In Section 2 we
present the theoretical underpinnings of the proposed scheme. In Section 3 we con-
sider how such a device might be realised in hardware. We conclude in Section 4.

2 Theoretical Considerations

Reconstructing an image from its derivatives requires the integration of the field
of derivative values. In this section we consider the process of integration in the
continuous and the digital domain and the role the constants of integration play
in the process.

2.1 Constants of Integration

Assume that we know the second derivative d2f(x)/dx2 of a function f(x). What
are the values of function f(x)? We have to integrate d2f(x)/dx2 twice: first we
find the first derivative of the function

df(x)
dx

=
∫

d2f(x)
dx2 dx+ c1 (1)
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where c1 is a constant of integration. Then we have to integrate df(x)/dx once
more to derive function f(x)

f(x) =
∫ (∫

d2f(x)
dx2 dx+ c1

)
dx+ c2

=
∫ (∫

d2f(x)
dx2 dx

)
dx+ c1x+ c2 (2)

where c2 is another constant of integration.
Note that the constants of integration appear because we perform an indefinite

integral. When we perform definite integrals between pre-specified lower and
upper limits, say a and b, the result we get is a numerical value of the area
under the curve of the integrand between these two limits.

Now, let us consider digital integration. In the digital domain, differentia-
tion is replaced by differencing and integration by summation. The summation,
however, is between specific values of the summation index, and so it really corre-
sponds to the definite integration of the continuous domain. What in the digital
domain corresponds to the indefinite integration of the continuous domain is
the recovery of the values of the differenced function at all sample positions, by
propagating a starting value. We shall explain this with a specific example.

Assume that the true values of a function in a succession of sampling points
are:

x1, x2, x3, x4, . . . , xN (3)

Assume that we are given only the first difference values at each of the sampling
points, defined as di ≡ xi − xi−1:

?, d2, d3, d4, . . . , dN ≡
?, x2 − x1, x3 − x2, x4 − x3, . . . , xN − xN−1 (4)

Here the question mark means that we do not have the value at the first point
due to the definition we used for di. To recover the values of the original sequence,
from the knowledge of the d values, we hypothesise that the first value of the
sequence is c1. Then, the recovered values are:

c1, c1 + d1, c1 + d1 + d2, c1 + d1 + d2 + d3,

c1 + d1 + d2 + d3 + d4, . . . , c1 + d1 + d2 + . . . + dN (5)

This process corresponds to the indefinite integration of the continuous case,
with constant of integration the guessed original value c1.

There are three important observations to make.

– Without the knowledge of c1 it is impossible to reconstruct the sequence.
– To recover the value at a single point we need to add the values of several

input points.
– As the sequence is built sample by sample, any error in any of the samples is

carried forward and is accumulated to the subsequent samples, so the Nth
sample will be the one with the most erroneous value.
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There are two conclusions that can be drawn from the above observations.

– Such reconstructions cannot be too long, as very quickly the error of recon-
struction accumulates and the reconstruction becomes useless. So, for the
reconstruction of a long sequence, one has to consider many small sequences
in succession, and possibly with overlapping parts.

– If one has a series of sensors that return the local difference value of the
observed scene, one needs another series of sensors that return the value
of c1 every so often in the sequence, ie at the beginning of every small
reconstruction sequence.

Next, assume that the array of sensors we have does not measure the first differ-
ence of the sequence, but the second difference, ddi ≡ di − di−1. Then we must
apply the above process of reconstruction once in order to get the sequence di

and then once more to get the xi values. Note that this implies that we must
have a series of sensors that every so often in the long sequence of ddi will supply
the starting constant we need, which in this case is denoted by c2. This constant
is actually a first difference, so these sensors should measure the first difference
at several locations.

2.2 The Basic Idea of the Imaging Device in 1D

A device that functions according to the principles discussed above, has to consist
of five layers, as shown in figure 2.

The function of this structure effectively repeats twice: below the dashed line
we have the first integration, outputting above the dashed line the values of
the first difference it computes, and above the dashed line we have the second
integration, integrating the first differences it receives and outputting the signal
values.

2.3 Extension to 2D

The analysis done in the previous two sections is in 1D. However, images are
2D. This has some serious implications, particularly for the c2 sensors.

From the mathematical point of view, once we move to 2D, we are dealing with
2D integrals, not 1D. A 2D integration implies spatially dependant constants of
integration. For a start, a 2D function f(x, y) has two spatial derivatives, ∂f/∂x
and ∂f/∂y. Let us assume that we know both of them and we wish to recover
function f(x, y) by integration. Integrating the first one of them will yield

f(x, y) =
∫

∂f

∂x
dx+ cx(y) (6)

where cx(y) is a function of y, which, as far as integration over x is concerned,
is a constant. Differentiating result (6) with respect to y should yield ∂f/∂y,
which is known, and this can help us work out constant cx(y) as a function of y.
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There is an alternative route to work out f(x, y). Integrating the partial
derivative with respect to y we get

f(x, y) =
∫

∂f

∂y
dy + cy(x) (7)

where cy(x) is a function of x, which as far as integration over y is concerned,
is a constant. Differentiating result (7) with respect to x should yield ∂f/∂x,
which is known, and this can help us work out constant cy(x) as a function of x.

Obviously, both routes should yield the same answer. In the digital domain,
this corresponds to reconstruction of the 2D signal either line by line or column
by column. So, let us assume that the true values of the 2D digital signal are
gij . However, we do not have these values, but we are given instead the first
differences of the digital signal along both directions. So, we assume that we
have dxij ≡ gij − gi−1,j and dyij ≡ gij − gi,j−1. We can construct the signal
column by column as follows. First column:

g12 = dy12 + cy(1)
g13 = dy13 + dy12 + cy(1)

. . .

Second column:

g22 = dy22 + cy(2)
g23 = dy23 + dy22 + cy(2)

. . .

And similarly for the rest of the columns. This is shown in figure 3a. In a similar
way, the signal may be reconstructed along rows. First row:

g21 = dx21 + cx(1)
g31 = dx31 + dx21 + cx(1)

. . .

Second row:

g22 = dx22 + cx(2)
g32 = dx32 + dx22 + cx(2)

. . .

And similarly for the rest of the rows. This is shown in figure 3b.
Of course, these reconstructions should be equivalent, ie one expects that

g22 = dy22 + cy(2) = dx22 + cx(2). One may also reconstruct the signal by using
a combination of rows and columns, and again, the reconstruction should be the
same irrespective of the path followed. This is shown in figure 3c.

There are two problems with the above analysis: in practise the alternative
reconstructions are never identical due to noise. This is something well known
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Fig. 2. Sensors dd measure the second derivative, while sensors c2 the first derivative
(the constant of integration for the first integration) and sensors c1 the value of the
function (the constant of integration for the second integration)

from digital image processing. The other problem is the use of two directions
which creates an anisotropic grid, as there are two preferred orientations. Along
these two orientations, the samples used are at a fixed distance from each other.
However, if we consider samples that are aligned along the diagonal of these two
orientations, their distance is

√
2 times that of the samples along the preferred

orientations. This anisotropy is not desirable.

2.4 The Basic Idea of the Proposed Architecture in 2D

The above approach is compatible with the conventional CCD sensors that con-
sist of rectangular cells, ie rectangular pixels. The cones in the fovea region of
the retina, however, have a hexagonal structure, as shown in figure 4a. At first
sight this does not look very useful. However, instead of considering the cells,
consider their centres as the sampling points of a grid. The nodes in the grid
shown in figure 4b are the points where the reconstruction has to take place.

This sampling grid at first sight does not appear hexagonal, but rather based
on equilateral triangles. However, several hexagons of various scales can be per-
ceived here.

Imagine now, that we have a device centred at the centre of one of these
hexagons. Imagine that the device vibrates along the paths shown. Imagine that
this device hangs from a vertical nail above the centre of the hexagon, and
consists of three types of sensor hanging from the same string: the bottom one
measures second differences, the middle one first differences, and the top one
just values. As the string swings like a pendulum, the bottom sensor swings
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Fig. 3. Reconstruction from first difference values in 2D can proceed along columns
(a), or rows (b), or along any path (c). The answers should be equivalent.

path A
path B
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Fig. 4. (a) The arrangement of cells in the mammalian retina. (b) The hexagonal
sampling grid.

more, the middle less and the top not at all (see left of figure 2). This will be
consistent with the notion that the second difference sensor needs to see larger
part of the scene to do its job than the first difference sensor, while the fixed
sensor does not need to swing at all to do its job. Note: it is mathematically
impossible to calculate any derivative if you consider only a single sample. So,
a device like the one shown in figure 2 swinging along one direction, will allow
the reconstruction of the signal along that direction for several sampling points.
The amplitude of the swing and the range of reconstruction performed by each
single set of sensors are two different things. The amplitude of the swing is for
measuring locally what is needed for the reconstruction. Swinging along another
direction, will measure the first and second differences along that direction, and
the signal will be reconstructed along that direction, by using the propagation
techniques we discussed in the 1D case.

There are many advantages of this approach: the reconstruction grid is isotro-
pic; we have no preferred directions; the hexagons fit nicely with each other at all
scales; the reconstruction along the lines of one hexagon can be complemented
by the reconstruction along the lines of other hexagons that may be directly
underneath other sets of sensors hanging from our swinging strings; overlapping
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reconstructions are expected to add robustness and super-acuity (ie resolution
higher than the sampling distance as determined by the spacing of the sensors);
the reconstruction is expected to be complete and very accurate.

3 Hardware Considerations

The proposed imaging framework consists of three types of sensor: brightness
sensors and sensors that measure spatial first and second order derivatives. These
spatial derivatives are obtained by moving the photosensors and computing tem-
poral first and second order derivatives. The photosensor motion is fast and of
small amplitude. This is inspired from the microsaccades in the human visual
system. After the data acquisition, the image may be reconstructed by using the
values of the derivatives, as well as the brightness values.

In a hardware realisation of such an imaging device, brightness values would
be acquired with photodiodes, which transform the energy received by photons
into electrical charges. Detector motion could be realised by moving the optic
or a masking element in front of the photoreceptors, using microsized actuators,
like the piezoelectric actuator presented in the micro–scanning device in [8]. As
far as imaging technology is concerned, CMOS should be used because charges
are transformed into voltages or currents directly at the pixel. This allows one to
start the processing (the derivative estimation in our case) before any read–out
is performed. However, CMOS technology suffers from higher noise sensitivity
than CCD cameras. Typical problems are fixed pattern noise, which results from
transistor mismatches on the chip, and higher noise sensitivity in dark lighting
conditions when the chip has a low fillfactor (ratio of the photosensitive chip area
over the total chip area). Image quality is typically improved using processing
like the double sampling technique against fixed pattern noise and by keeping
the fillfactor as high as possible [16].

In our application, brightness values, as well as first and second order deriva-
tives must be measured with a good precision in order to achieve good image
reconstruction quality. Brightness sensors can be implemented like typical pix-
els in a CMOS camera, with double sampling to reduce fixed pattern noise (see
e.g. [16]). For the first and second order derivative sensors, the photodiode signal
must be processed to estimate the temporal derivatives. To keep the fillfactor
high and to allow a high density of derivative sensors, the circuit for deriva-
tive estimation should be as small as possible if processing is performed in situ.
Derivatives will not be affected by fixed pattern noise.

Three possible technologies can be used to estimate temporal derivatives from
the photodiode signals: fully digital processing, discrete time analog processing
and fully analog processing. Digital processing offers the best robustness against
electronic noise but it requires a large circuit size and the power consumption is
high. On the contrary, a fully analog solution allows a small and energy–efficient
circuit, at the cost of a higher sensitivity to electronic noise and parasitic effects
caused e.g. by transistor mismatches. Discrete time analog processing offers an
intermediate solution: photodiode values are sampled at regular time intervals
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but they are not digitised. Processing is performed with analog circuits. The
three subsections that follow describe existing systems that estimate derivatives
using one of these three technologies. Most of these systems deal with imaging
sensors or audio applications. In particular, many VLSI based motion sensors can
be found, because the high volume of the data generated by such applications can
be handled more easily by parallel hardware, like a VLSI chip, than by standard
serial processors. We could not find any existing systems computing temporal
second order derivatives. However, they can be built similarly to the first order
derivatives for fully digital processing and for discrete time analog processing.
For analog processing, they can be obtained by putting two first order derivative
circuits in series.

3.1 Digital Circuits

In fully digital circuits, signals are sampled in time and digitised during acquisi-
tion. As a result, signals are affected by aliasing and discretisation noise. Digital
circuits are however a lot less sensitive to electric noise and distortions because
values are encoded as binary and because transistors are only used in their satu-
rated and blocked states. Digital circuits have a high power consumption and are
most of the time large circuits. Digital processing is the method of choice when
data acquisition and processing can be performed at different time instants and
on different systems (e.g. the processing is performed on an external processor).

Here, however, processing (derivative estimation) should be performed on the
chip, if possible near the photodiode. Thanks to the constant size reduction of
the electronics (Moore’s law), the first intelligent cameras (also named artificial
retinas) with in situ digital processing have become a reality. One such system
is described in [20]. Each pixel is composed of a photodiode, a simple analog to
digital converter and a tiny digital programmable processing element. It com-
prises about 50 transistors. The processing element has a local memory and can
perform boolean operations. The chip has a fillfactor of 30%. Due to the limited
number of transistors, brightness values can only be encoded with few grey lev-
els (8 grey levels in the examples given in the paper), resulting in low precision.
A few simple applications have been implemented on the system: motion de-
tection, segmentation and shape recognition. However, our application requires
high precision. Even though the control signals, necessary for programmability,
can be avoided in our case, it would be difficult to obtain the necessary precision
in the circuit space available near each pixel. Therefore, fully digital processing
seems not appropriate for our application at the moment, except if derivative
computations are performed externally (on a separate processor). However, this
defeats the purpose of our approach, which is the direct and in situ estimation
of the derivatives.

3.2 Discrete Time Circuits

For these systems, the photodiode signals are sampled at given time instants and
they are stored in local analog memories or sample-and-hold units. Processing is
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performed using the stored pixel values on analog circuits. Like for the fully digi-
tal circuits, the system operates in two phases: sampling, followed by processing.
Such circuits represent an intermediate solution between fully analog and fully
digital systems. Like digital systems, they might be affected by temporal aliasing
(which corresponds to spatial aliasing in our case, because spatial derivatives are
estimated using sensor motion and temporal derivatives). However, brightness
values are not digitised, so there is no discretisation noise. Control signals for
the sampling should be generated and synchronised to the sensor motion. Like in
analog systems, computations are less robust to electronic noise and distortions
than in fully digital systems. Noise and distortions are caused, for example, by
active filter elements, like amplifiers, by transistor mismatches and other element
inaccuracies, by parasitic capacitors, by leakage currents, etc.

Discrete time intelligent camera systems started being designed when CMOS
cameras became popular. Early systems only added local memories to pixels
(analog memories or sample-and-hold units, composed, for example, of two tran-
sistors, used as switches, and a capacitor to store the value [16]). Processing was
performed during the image read out phase, just before analog to digital conver-
sion [6,16]. This is used in [6] to perform spatial convolutions with 5× 5 kernels
with coefficients in {−1, 0, 1}. In [16], the designed camera can deliver either
normal images or differences between consecutive frames. More recent systems,
based on the same organisation (separated photosensitive and processing areas),
can perform more elaborate processing, like optical flow computation in [18] or
saliency detection in [9]. The separation of photosensitive and processing areas
allows high fillfactors (e.g. 40% in [9]). However, processing is performed row
by row, which limits the achievable frame rate. These last two systems [18,9]
compute temporal derivatives by subtracting pixel values at two time instants,
t and t + ∆t: d(t) = I(t) − I(t − ∆t), where ∆t is different from the sampling
period of the camera. In [18], a calibration scheme is included to suppress the
distortions caused by mismatches between the p and n elements.

A more recent system, where temporal derivatives are estimated by differen-
tiating the sensor values at two different time instants, is given in [21]. Sample-
and-hold units are implemented with switched capacitor technology, which allows
high accuracy and programmability of the capacitances. In addition to differen-
tiation, sample values are also amplified with a simple inverting amplifier. This
system implements an audio application, with which sound sources can be lo-
calised. Space is therefore not an issue for them, unlike for imaging systems. A
recent intelligent camera is presented in [4], in which processing is performed
in situ. Each pixel is composed of a photodiode and 38 transistors. It contains
two analog memories (to allow the acquisition of the next image during the pro-
cessing of the current image) and a simple analog arithmetic unit (to perform
spatial convolution with integer based kernels). As a result of this organisation
(in situ processing), a high framerate of several thousands of images per second
can be achieved even when image processing is performed. The fillfactor is 25%.

This last example shows that analog computation of derivatives could be
performed in situ if a discrete time circuit is chosen for the implementation of
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our imaging sensor. None of the papers gives any indication about noise level
or whether distortions influence the precision of the results. However, the time
discretisation allows one to reduce the circuit complexity: derivation is replaced
by a simple subtraction of two sampled values. The results should therefore
be quite accurate. Second order derivatives can be implemented similarly by
sampling data at three time instants and by performing two additions and one
subtraction: dd(t − ∆t) = I(t − 2∆t) + I(t) − (I(t − ∆t) + I(t − ∆t)). The
signals required to control the sample-and-hold units could be generated from
the signals used to control the actuators, therefore synchronising sampling and
sensor motion.

3.3 Analog Circuits

In fully analog systems, analog signals are processed in continuous time. The
circuit usually consumes low power and is of small size. However, analog pro-
cessing is the most sensitive to electronic noise and distortions, which are caused
by active elements, like amplifiers, element inaccuracies, transistor mismatches,
frequency response of the circuits, parasitic capacitances, current leakage, etc.
The difference between idealised model and practice is the biggest for analog
circuits due to the complexity of the underlying physical phenomena. Analog
circuits have the advantage of not being limited by the camera frame rate, as
they are working in continuous time. Therefore they are not affected by alias-
ing or discretisation noise. The classical method of computing derivatives in an
analog circuit is through the use of a capacitor for which I = C dV

dt . However, an
ideal differentiator would require high power for high frequency signals, as the
ideal transfer function of a capacitor is:

H(jω) =
Iout

Vin
= jωC. (8)

This is physically unrealisable and in a real system, some resistance will always
limit the current. This results in the well–known RC filter shown in figure 5. The
derivative of a signal can be measured as the voltage through the resistor. The
transfer function for this system is:

H(jω) =
Vout

Vin
=

jRCω

1 + jRCω
=

jτω

1 + jτω
. (9)

For low frequencies (ω � 1/τ), the RC filter is a good approximation of the
ideal differentiator: H(jω) ≈ jτω. For high frequencies (ω � 1/τ), the transfer
function becomes approximately 1. This simple RC filter is the basis of all analog
circuits used to estimate derivatives.

In practice, amplification may be required or active resistors (i.e. non–linear
resistance circuits based on transistors) may be necessary to obtain the desirable
time constant τ = RC with the manufacturable circuit elements (see e.g. [19,17]).
Therefore, real circuits are more complicated than a simple RC filter. Many
applications do not require an accurate estimation of the derivatives. Therefore,
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Fig. 5. RC filter used to estimate first order derivatives

many systems only detect changes in the input signal using high pass filters which
are easier to realise than a good differentiator. This solution is used for example
in [17,2,1,19,5]. In [17], it is shown that such an approximation can increase
the robustness of a circuit (see e.g. the developed hysteretic differentiator). This
approach is enough for applications aiming only at detecting motion in visual
input. It is, however, not appropriate in our case, because precise derivatives are
necessary for image reconstruction.

Another approach to estimate the current going through a capacitor using
transistors is proposed in [12]. Instead of measuring the voltage through a re-
sistor, the current flowing through a capacitor is copied using transistors. The
photosensitive circuit and the temporal derivative circuit proposed in [12] have
been extended and used in applications by the authors in [10,13] and by others
in [7,3]. The temporal derivative circuit contains an amplifier and a feedback
loop with a capacitor and the circuit for measuring the current going through it.
As the current through the capacitor is measured, the output is, in theory, pro-
portional to the derivatives of the light energy hitting the photodiode, as shown
in [13]. The system delivers two currents: one representing negative changes in
the input and one representing positive changes in the input. It is based on a
functional model of the auditory hair cells that sense the motion of the basilar
membrane in the cochlea. The results are quite noisy, mainly due to the am-
plifier [13,3]. The non–linearities and inaccuracies in the transistors also cause
an asymmetric response: the signal representing negative changes reacts slightly
differently from the signal representing positive changes for changes of the same
amplitude [7]. Despite the noise level, the results allow one to estimate velocity
in 1D in [10,13], in 2D [7] and to compute optical flow at each pixel in [3].

The same principle (measuring the current through the capacitor using tran-
sistors) is used in [14,11,15,22]. In these more recent papers, much simpler circuits
are used. In particular, the amplifier is realised with fewer transistors, probably
because less gain is necessary or because the transistors are of better quality.
The simplest circuits are used in [14,15]. These two applications do not aim at
obtaining precise derivatives but only at detecting changes in the input signal.
The authors hence did not pay much attention to noise and distortions during
circuit design. In [14] the resulting noise level is too high even for their applica-
tion, so the authors conclude that their differentiator circuit must be improved.
Therefore, the circuits in [14,15] are not appropriate for our application. The
circuits in [11,22] are designed to estimate the temporal derivative of the photo-
diode signal as accurately as possible. Both systems use the same circuit element



An Imaging Architecture Based on Derivative Estimation Sensors 15

to read out the current through a capacitor, but the feedback loop to the ampli-
fier is designed slightly differently in the two circuits. The results in [22] seem to
be more symmetrical (the responses for positive and negative changes are more
similar). However, this might be due to the fact that the article shows fewer
results. The results in [11] are of much better quality than the previous papers
[13,3]: the noise level is significantly reduced. However, the output signals are still
far from ideal. In particular, the asymmetry between outputs for positive and
for negative changes is problematic. None of the papers gives any estimation of
the noise level, probably because it is influenced by many factors. Both systems
in [11,22] can be implemented with one capacitor and less than 10 transistors,
which is a very small circuit size.

3.4 Discussion

Three different kinds of system can be used to estimate first and second order
temporal derivatives from the output of a photodiode: fully digital systems,
discrete time analog systems and fully analog systems. Here we gave an overview
of existing systems that estimate derivatives using any of these methods. The
goal is to find a system which would be suitable to use in order to implement
the new derivative based imaging sensor in hardware.

Fully digital systems offer the best robustness to electronic noise and distor-
tions at the cost of high power consumption and large circuit areas. Only one
fully digital imaging system with in situ processing could be found in the litera-
ture. It had a very limited number of grey values, which results in low precision.
As a result, a fully digital in situ derivative estimation cannot be realised with
today’s technology. So, fully digital systems could only be used if processing
would be performed on an external processor like a DSP system.

Fully analog systems have a low power consumption and more importantly
they can be implemented with few transistors (in [11,22] first order derivatives
are estimated with one capacitor and less than 10 transistors). On the other
hand, the signals are sensitive to electronic noise and distortions caused by the
non–linearities and parasitic effects in the circuits. The circuits in [11,22] allow
in theory to estimate the first order derivatives accurately. The results shown
are encouraging in comparison with previous works. However, they are still far
from accurate. In addition to the moderate noise level, the circuit responses
to positive and to negative input changes of the same amplitude are slightly
different. It is therefore not certain whether a fully analog system would be
accurate enough to allow a good image reconstruction. Another problem is that
no circuit could be found to estimate second order temporal derivatives. These
could be estimated by putting two differentiators in series, but this would also
amplify noise and distortions, reducing even more the accuracy of the estimated
second order derivatives.

Discrete time analog systems represent an intermediate solution. The photodi-
ode signals are sampled at given time instants and stored in an analog memory or
sample-and-hold unit. The first and second order derivatives can be estimated by
subtracting the stored values. These operations are performed with analog circuits.
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The resulting analog circuit is much simpler than a fully analog system, reducing
problems like electronic noise and distortions. Such systems have been used re-
cently to develop intelligent cameras (or artificial retinas) which perform not only
image acquisition but simple image processing operations as well. The system in
[4] shows that as many as 38 transistors can be integrated in each pixel for pro-
cessing, while keeping the fillfactor at a reasonable value. This would be enough
to allow the computations of first or second order derivatives. The signals used to
control the actuators could be used to synchronise data sampling and sensor mo-
tion. As a result, we conclude that a discrete time analog system would be the most
appropriate to be used in order to implement the proposed imaging system.

4 Conclusions

The proposed imaging architecture has several advantages over conventional ar-
chitectures that measure only scene brightness:
(i) it allows the direct and accurate estimate of the first and second image deriva-
tives directly from the scene;
(ii) it allows the increase of sensor resolution if the image is upsampled with the
use of its local derivative values.
The viability of such a device rests on two fundamental questions.
1) Can we develop sensors that can estimate the first and second derivatives
directly from the scene? In this paper we reviewed the current technology and
concluded that discrete time analog systems are a promising direction for devel-
oping such a device. There are already sensors that can estimate the first spatial
derivative of the scene, and although there are no sensors that can estimate the
second spatial derivative, we do not think that such a development is too difficult
or beyond the state of the art of current sensor technology.
2) Will the outputs of these sensors be more accurate and resilient to noise than
the calculations of the derivatives from the sampled data? This question cannot
be answered until such a device has actually been realised in hardware.
Actually, both the above questions have to be answered by sensor scientists, as
they cannot be answered theoretically. There is no doubt that if the answer is
“yes” to both these questions, the image processing that we shall be able to
do with such devices will be much more reliable and accurate than the image
processing we are doing now.
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Abstract. The aim of this paper is to propose a new monocular-vision strategy 
for real-time positioning under augmented reality conditions. This is an impor-
tant aspect to be solved in augmented reality (AR) based navigation in  
non-controlled environments. In this case, the position and orientation of the 
moving observer, who usually wears a head mounted display and a camera, 
must be calculated as accurately as possible in real time. The method is based 
on analyzing the properties of the projected image of a single pattern consisting 
of eight small dots which belong to a circle and one dot more at the center of it. 
Due to the simplicity of the pattern and the low computational cost in the image 
processing phase, the system is capable of working under on-line requirements. 
This paper presents a comparison of our strategy with other pose solutions 
which have been applied in AR or robotic environments.  

Keywords: augmented reality, camera pose, landmark, occlusion, real-time.  

1   Pose through Perspective Projection Techniques 

One of the key points in augmented reality systems for autonomous navigation con-
sists of obtaining an accurate camera pose as quickly as possible. Although there are 
positioning and tracking systems in controlled environments - for example, technolo-
gies based on inertial devices or on networks with a signal receiver/emitter allow 
3/6DOF in small environments - for autonomous systems, positioning must be solved 
with new solutions. Consequently, this issue continues to be an open research field in 
which innovative solutions are suggested every year. 

Depending on each specific application and environment, several factors should be 
taken into account before choosing the most appropriate technique. The majority of 
the authors do not make any reference concerning the performance of their method 
when the landmark is occluded [1], [2], [3], [4], [5], [6], [7], [8]. The authors that take 
into account occlusion circumstances assume that the landmark is partially occluded 
but in a non-critical sense. Therefore, those cases correspond to non-severe occlusion. 
They use natural features [9], [10], [11] or artificial landmarks [12], [13], [14]. Some 
authors only mention that the system works under occlusion but they do not properly 
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prove that fact ([14]) whereas others ([10], [11]) deal with the problem in depth. In 
[12], the designed patterns consist of a common vertical barcode and an unique hori-
zontal barcode that distinguish it from any other. In the performed tests, all landmarks 
are correctly detected in despite of partial occlusions. In [13], several patterns appear 
in the scene. If one of them is partially occluded, pose estimation can be easily han-
dled by using any non-occluded pattern in the image. In [15], a robust pose method 
analyzes the geometric distortions of the objects under changes in position. Under 
real-time requirements, fast image processing may be the key of the general pose 
approach. There are several authors who provide detailed information concerning this 
matter [12], [4], [15], [5], [14], [7], [10], [11]. Most of the systems argue to work in 
real-time conditions: specifically rates are 36-81 fps [12], 30 fps [15], [5], 10 fps [14], 
7.3-8.1 fps [7], 15-25 fps [10], [11]. The size of the image, the kind of camera as well 
as the image processing can have an influence on the final rate of the pose system. For 
instance, in [4], the system works between 4.2 to 7.2 fps, depending on the kind of 
camera chosen. In [7], the performance of the system depends on the number and size 
of potential fiducials in the image.  

With regard to the adaptability of the pattern being used in wide distance intervals, 
most of the referenced methods are designed for use indoors and they seem to work 
with short and constant ranges.  

In any case, very little information is offered in these terms. Exceptions are: [4] 
where the camera itself establishes a variable range from 0.85 to 1.7 or 3.3 meters and 
[7] where a tracking procedure works for distances from 50 cm to 5 meters, depend-
ing on multi-ring fiducial diameter. 

In this paper, the used landmark consists of eight dots corresponding to the vertices 
of an octahedron and one more double-size dot located at the center of the octahedron. 
As we will demonstrate in this paper, the system is capable of dealing with severe 
occlusion of the landmark. Additionally, this landmark allows us to work in a flexible 
range from 30 centimeters to 7 meters providing similar accuracy than that of most of 
the referenced approaches. Under realistic conditions, a rate of 30 fps can be 
achieved.  There are no restrictions about the location and orientation of the landmark 
neither the pose of the camera. Thus the landmark can be set on the floor, ceiling, wall 
or wherever suitable place.    

2   Parameters Definition and Pose Strategy 

Before presenting the pose calculation we will outline the framework, the general 
pose strategy and the parameters to be calculated. 

Suppose a human is wearing an AR system composed of a camera integrated into a 
head-mounted display (see Figure 1) and a laptop in the backpack. The reference 
systems to be considered are as follows: world reference system (Sw), human refer-
ence system (Sh), camera reference system (Sc), image reference system (Se), com-
puter reference system (Ss) (which is the digital image reference system) and land-
mark reference system (S0). Note that the relationship Sw/S0 is imposed when the 
landmark is positioned in a specific place and that Sh/Sc is established by the user 
himself. Moreover, relationship Sc/Se and Se/Ss are established by the intrinsic calibra-
tion of the camera. As a result, the pose problem is reduced to find the transformation 
S0/SC, which varies as the human moves.  
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Fig. 1. Right and top) AR based navigation: Reference systems and occlusion of the landmark.  
Down) Parameters ψ, φ, θ  and D’ in the pattern reference system. 

The autonomous procedure presented in this paper is based on the fact that, for 
any view of the pattern, the outer dots of the pattern belong to an ellipse E which 
changes as the person (camera) moves. Through geometric analysis of E and the 
location of the dots in it, we are able to extract the angular parameters swing (ψ), 
tilt (φ), pan (θ) as well as the distance D’ between the origin of S0 and the image 
plane of the camera. From this point forward, we will call the dots (or the center of 
the dots) Pi , i=1,2....9. (See Figure 1 to consult the pattern reference system and the 
parameters). 

Changes in the position of the user cause changes in ellipse E. Thus, variation 
of ψ causes the rotation of the major axis of the ellipse in the image; changes in 
parameter φ imply changes in the ellipse eccentricity; when θ≠0, dots 
{P1,P3,P5,P7,} are located outside the axes of the ellipse and, finally, a variation of 
D' makes the length of the major axis of the ellipse change following a quasi-
lineal relationship. 

Using the camera model presented in Figure 1 down, we establish the transforma-
tion between S0 and Se reference systems as follows: 
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3   Pose Calculation with Occlusion 

As was mentioned in section 1, occlusion circumstances frequently occur in real envi-
ronments. This pattern has been designed to be used in a wide distance range (from 30 
cm to 700 cm away from the user) using the same algorithm. For this reason, it is 
formed by small circles which in turn belong to an outer circle. Thus, for long dis-
tances, the pattern has a set of single marks belonging to a circle whereas for short 
distances, the pattern is seen as a set of circles. Occlusion is dealt with in this manner.  

The pose algorithm with occlusion is established depending on the number of miss-
ing dots. We distinguish between several levels of occlusion.  
Level 1. When one or two outer dots of the pattern are missing in the image, we cate-
gorize it as soft occlusion.  

Assume that )zx( i,si,s  are the coordinates of the dots viewed in the image and that 

coefficients C1, C2, C3, C4, C5  (taking coefficient C6=1) of the general equation of a 
conic can be calculated solving the overdetermined system 
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Being (xs,zs) computer coordinates and I the 1x6 unit matrix. As was previously 
mentioned, swing angle corresponds to the angle (ψ) between the major axis of the 
ellipse and the vertical reference axis Zs. Swing angle ψ  can be easily determined 
from the estimated parameters , C1, C2 and C3 from equation:               
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The camera-pattern distance can be calculated through the focal and the major axis, 
(See Figure 2), where a is the major axis of the ellipse the image plane of the camera, 
f is the focal of the camera and R is the distance from P9 to whatever external dot.  
This expression proves that the camera-pattern distance does not depend on the other 
angular parameters (Figure 2 right). 
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Tilt angle is obtained from the eccentricity of the ellipse following the last equation. 
Details about obtaining of this parameter can be found in [16].   

esin =φ  

e being the ellipse eccentricity. Therefore, tilt angle is obtained from the eccentricity 
of the ellipse fitted to the external points of the pattern. Values of φ  are in the interval 
[0, 90º]. When e=0 , φ=0 and the points are fitted to a circle whereas when e=1, 
φ=90º and the ellipse is converted into a segment. 

Finally, pan parameter is obtained through the position of P1 in the ellipse coordi-
nate system. Let 

eSeee zyx )1,,,( 111  and 
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the pattern coordinates of P1. Using the transformation M we obtain 
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Equation (3) is maintained. Although dot P1 was one of the missing dots in the image, 
equation (8) is maintained for the dual dot P5 and parameter θ can be obtained. Even 
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Fig. 2. Analysis of a circle projected in the image and invariance of the major axis length in a 
sphere around the pattern 
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Fig. 3. Left) Images of the landmark from first and 
second quadrant and ellipses fitted to the dots (in red). 
Right) Aspect of the fitted ellipse depending on the 
quadrant in which the camera captures the image. 

Table 1. Correction of parameter θ 
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When ψ≠0, non-rotated coordinates x's and z's must be substituted in the last equa-
tion. Equation (8) yields indeterminate values of θ. This problem can be solved by 
knowing the quadrant (in the system S0), where the camera is placed. This quadrant is 
established through the sign of ψ  and the position of the point P9 in the minor axis.  It 
can be proved that, due to projective reasons, P9 is displaced with respect to the theo-
retical ellipse center. As a consequence of this, distances d1 and d2 from P9 to the 
ellipse, in the minor axis direction, are different. Therefore, we can infer whether the 
pattern is viewed from the left (case d1 > d2) or from the right (case d1 < d2). Figure 3 
illustrates the displacement of P9. Table 1 shows the quadrant as well as the applied 
correction of parameter θ . 

 

Level 2. This happens when more than two outer dots are occluded but the internal dot 
P9 is in the image. In this case, equation (2) does not converge and a new strategy 
must be implemented. This frequently occurs for short user-pattern distances where 
the view angle of the camera is reduced and a small head movements made by the 
user can generate loss of the dots in the image. Since any visible circular dot can be 
viewed as an ellipse, we adapt the pose strategy presented in level 1 for dot P9. 

 

Fig. 4. Examples of several occlusion levels. As we can see, the landmark reference system 
retroprojected on the image according to the calculated camera positioning.  

Level 3. More than two outer dots are occluded and the internal dot P9 is also missing. 
This is the highest occlusion level and occurs when the user is near the pattern. After 
having identified several dots in the image and calculated the pose parameters for 
each one, we take a weighted mean as the best pose approximation where the weight 
depends on how close the dot is to the center of the image. Note that in this case, an 
error is introduced because the pose is calculated in a coordinate system which is 
translated with respect to S0. Figure 4 shows examples of different occlusion levels. 

4   Experimental Results 

In order to prove the applicability of our method under real conditions, we have tested 
the pose algorithm imposing soft and severe occlusion. The approach was imple-
mented in an autonomous augmented reality system which consists of a Trivisio AR-
vision-3D HMD binocular head-mounted display with a color camera and a Quan-
tum3D Thermite portable computer.  

A user wearing the portable AR system searches for the pattern when he wants to 
know its current position in the world coordinate system. Then, the user can see, 
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through one of the two displays of the HMD, the image of the camera and its current 
position in real-time. The other display is used for superimposing virtual information 
on the real scene. 

The followings phases are repetitively executed on board: I) find/track the pattern 
in the image, II) segmentation of dots, III) calculate pose parameters. Depending on 
the occlusion level, we have parameters ψ, φ, θ, D' (levels 1 and 2) or parameters for 
each outer dot ψi, φi, θi, Di' (level 3), IV) obtain a unique pose solution. 

The system works with 640x480 images and spends 45 ms to take one frame, proc-
ess the image and calculate the pose. Thus, the performance average rate is 23 
frames/second. Two different environments - indoors and outdoors - have been tested 
while imposing occasional occlusions. The pattern was occluded by obstacles or peo-
ple walking in front of the user’s viewpoint. Several occlusion circumstances also 
occurred due to the proximity of the pattern or the user’s rapid head movements. 

Some information about the performance of the method is included below. Tables 2 
and 3 summarizes statistical results of the errors obtained for each estimated user’s 
coordinate and user-pattern distance for both no occlusion and occlusion cases. Abso-
lute and relative errors are presented in two sub-tables. For each case, average, stan-
dard deviation, greatest and smallest errors are presented as well. Promising results 
has been obtained in both cases. Note that position error average was below 5cm for 
non-occluded case and below 7cm in case of partial occlusions. These results are 
acceptable enough in the framework we are carrying out in where the user observes 
the overlaps virtual models from distances always highest than one meter.  

We have also designed similar patterns with higher dimension and with a color 
code which can easily identify each pattern in an extensive environment but this ex-
perimental report concerns non-colored patterns and performance under occlusion. 

Table 2. Experimental results without occlusion    Table 3. Experimental results with occlusion 

Abs. Errors (cm) e(X) e(Y) e(Z) e(D’) 
Average 2,4 2,33 4,76 2,60 
Std.Dev 3,1 1,71 4,51 1,96 
Greatest 10,1 6,5 13,6 5,6 
Smallest 0,2 0,3 0,1 0,3 

R. Errors (%) e(X) e(Y) e(Z) e(D’) 
Average 0,60 0,64 6,53 1,52 
Std.Dev 0,51 0,45 6,49 1,56 
Greatest 1,76 1,42 20,80 5,69 
Smallest 0,03 0,06 0,17 0,11 

Abs. Errors (cm) e(X) e(Y) e(Z) e(D’) 
Average 6,3 5,9 7,0 5,7 
Std.Dev 4,0 3,0 3,7 2,1 
Greatest 12,2 10,2 14,1 7,0 
Smallest 1,1 0,4 2,0 0,91 

R. Errors (%) e(X) e(Y) e(Z) e(D’) 
Average 1,31 1.67 4,43 1,98 
Std.Dev 1,23 1,66 3,14 1,03 
Greatest 3,05 5,02 15,23 3,77 
Smallest 0,92 1,02 0,34 0,76 

 

5   Conclusions 

The method presented in this paper solves the location problem using a single camera 
on board an AR reality system. Until now, the majority of based-on-vision pose solu-
tions concern mobile robots applications where the camera is onboard the robot hav-
ing slow and controlled movements. For augmented reality applications, like ours, the 
camera is carried over a human head which involves quick and unexpected camera 
movements. In this sense, we propose a pose method in an unusual environment.      

The pose is calculated after analyzing the projected image of an artificial landmark 
consisting of nine dots. Due to the simplicity of the pattern and the low computational 
cost in the image processing phase, the system is capable of working under on-line 
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requirements in AR-based navigation applications. Furthermore, opposite to most of the 
landmark-based positioning solutions, the system works in severe occlusion circum-
stances and for a wide distance range which makes it more robust than other solutions. 

Our approach is being used for AR systems in autonomous navigation for humans 
yielding excellent results. Experimentation, advantages and restriction of this tech-
nique have been illustrated in the paper. 
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Abstract. We propose a new binarization method suited for character
extraction from a sign board in a scenery image. The binarization is
thought to be a significant step in character extraction in order to get
high quality result. Character region of sigh board, however, has many
variation and colors. In addition to it, if there exists high frequency tex-
ture region like a mountain or trees in the background, it can be a cause
of difficulty to binarize an image. At the high frequency region, the bi-
narized result is sensitive to the threshold change. On the other hand, a
character region of sign board consists of solid area, that is, includes few
high frequency regions, and has relatively high contrast. So the binarized
result of character region is stabile against an interval of the threshold
value. Focusing attention on this point, we propose a new method which
obtains a threshold value based on the fractal dimension to evaluate both
region’s density and stability to threshold change. Through the proposed
method, we can get a fine quality binarized images, where the characters
can be extracted correctly.

Keywords: Binarization Fractal dimension Blanket method.

1 Introduction

Binarization of gray level image is a significant step in region extraction and
a number of binarization methods have been proposed. Trier[1] evaluated 15
binarization methods as promising by the procedure called goal-directed evalu-
ation, and showed that Niblack’s method[2] has the best performance as a local
adaptive method and Otsu method[3] is the best in global methods. In these
15 methods, threshold value is selected based on the local or global statisti-
cal information of the gray level such as gray level histogram. Scenery image
which contains sign board consists of many regions such as high or low texture,
solid area, and have a contrast perturbation. In an image which has much color
variation, the binarization methods which use gray level information only can
generate poor results. So we introduce evaluating method of a binarized image
using fractal dimension. The FD has relatively large peaks for texture regions
and a stable interval for a character string region, i.e. sign board, respectively.
� Corresponding author.
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By detecting the stable interval of a FD, we can obtain a threshold value which
is the best value to obtain a fine binarized character string. That the fractal di-
mension can evaluate the fineness of a binarized result is reported by Yoshida[4].
The method detects cracks from considerably noisy road surface images.

The proposed method corresponds to a preprocessing step of character ex-
traction method in a scenery image which contains a sign board. The proposed
new binarization method uses a fractal dimension for evaluating binarized image
to find a threshold value. By using our method, we can evaluate the density of
regions and stability to threshold change, that is, connected components which
are close to each other and consist of sold areas in input images. First, about
fractal dimension is described. Then, we show algorithm of our technique and
its experimental result.

2 Associated Technique

Fractal dimension was proposed as a method of texture analysis named ”Blanket
method” by SHUMEL[5] in 1984. The range of the dimension is from 2 to 3 and
is obtained from expression1,2,3 and 4.

Uε = max{Uε−1(i, j) + 1, max
|(m,n)−(i,j)|≤1

Uε−1(m,n)} (1)

bε = min{bε−1(i, j)− 1, min
|(m,n)−(i,j)|≤1

bε−1(m,n)} (2)

A(ε) =

∑
i,j(Uε(i, j)− bε(i, j))

2ε
(3)

A(ε) = Fε2−D (4)

where ε is the number of blanket. Fractal dimension is calculated globally and
also locally with a window. Noviant[6] proposed optimal range of the fractal
dimension and adapts it locally to image and get a local fractal dimension (LFD)
image. LFD image has a feature that brightness of region is proportional with
frequency of texture region. Example of LFD images are shown at Fig.1. Window
size for LFD is 3x3 and the blanket number is 44.

3 Binarization Algorithm

Proposed algorithm has 5 step procedures as follows.

– Step1: Binarize the input image I(x) with every threshold values from 0
to 255, and obtained the 256 binarized images Ibi(x) (i = 0, 1, ..., 255)
respectively.

– Step2: The FD(i) values can be calculated on Ibi(x) images by the Blan-
ket method.
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(a) Input image (b) LFD image

Fig. 1. Example of LFD image

– Step3: We treat the FD(i) to be a function respect to i. Then, smooth
the FD(i) to remove noise of the function, and find the stable interval of
FD(i) by taking the first derivation.

– Step4: In a stable interval, detect the minimum FD(i)(which is not
smoothed) as the threshold value θ.

– Step5: Final binarization Image B(x) can be obtained using the threshold
value θ.

In the step3, we define the stable interval as follows: differentiate the smoothed
FD(i) with respect to i, and count the number of δ

δi
FD(i) which is equal 0

or nearly equal to 0 until it turns larger than 0. δ
δi

FD(i) is calculated from
expression 5.

δ
δi

FD(i) = FD(i + 1) − FD(i) (5)

The longest interval where δ
δi

FD(i) is flat defined as the stable interval. Ex-
ample of graph of FD(i) is shown at Fig.2.

4 Experiment

4.1 Experimental Parameter

Table 1 shows the parameters used in the experiment.
Noviant showed that appropriate range of ε is from 34 to 53. So we selected 44

as median of the range. Since ε in FD(i) relates to evaluating the density of a
regions, the binarized results are gradually changing. Fig.3 showed how changing
the binarized results. In the implementation , we use a ”double-precision floating-
point data type” for FD(i) to decide a threshold value θ precisely.
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(a) Input image (b) Output image

(C) FD graph

Fig. 2. Graph of F D(i)

Table 1. Experimental parameter

smoothed F D(i) F D(i)

ε 44 44
Range of quantization 100 100.0000
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(a)Input image (b)Output image(ε = 44)

(c)ε = 5 (d)ε = 10

(e)ε = 25 (f)ε = 45

Fig. 3. The examples of difference result due to change of blanket number

4.2 Experimental Result

Binarized images by proposed algorithm are shown at Fig.4. And processed
results by Otsu’s method and Niblack’s method are also shown for comparison
at Fig.5. We select these two methods because they have the best performance
a promising binarization method using gray level information. The former is a
local method; the latter is a global one.



34 H. Yoshida and N. Tanaka

(a)Input image (b)Output image(ε = 44)

Fig. 4. The examples of binarized images by proposed method
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(a)Otsu’s method (b)Niblack’s method

Fig. 5. The examples of binarized images by Otsu’s method and Niblack’s method

5 Conclusion

Result of experiment shows that the proposed method can be a promising bina-
rization step of character detection method from sign board in a scenery image.
Some noises are still remaining in binarized image. This is because our proposed
method belongs to global techniques, that is, only one threshold value is applied
for whole image. So we will develope a local adaptive binarization method based
on this technique, and hope to get still improve the results.
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Abstract. Biologically inspired schemes are a source for the improve-
ment of visual systems. Real-time implementation of image processing
algorithms is constrained by the large amount of data to be processed.
Full image processing is many times unnecessary since there are many
pixels that suffer a small change or not suffer any change at all. A strategy
based on delivering and processing pixels, instead of processing the com-
plete frame, is presented. The pixels that have suffered higher changes
in each frame, ordered by the absolute value of its change, are read-out
and processed. Two examples are shown: a morphological motion detec-
tion algorithm and the Horn and Schunck optical flow algorithm. Results
show that the implementation of this strategy achieves execution time
speed-up while keeping results comparable to original approaches.

1 Introduction

Full image processing is usually the classical approach for general image sequence
processing, where each image is a snapshot taken at regular intervals. The normal
procedure implies the application of the processing algorithm for each image in
the sequence. Biological systems work in a different way: each sensor cell sends its
illumination information independently. It is possible to reduce processing time
by taking into account that images usually change little from frame to frame,
especially if the acquisition time is short. This is particularly true in motion
detection algorithms with static cameras.

A biologically inspired camera would send pixel information asynchronously
when changes are produced, rather than full acquired images. Following this
ideas, it is also possible to implement a change-driven data-flow policy in the
algorithm execution, processing only those pixels that have changed. Paying
attention only to those pixels that change is not new and this principle has been
employed to design some image sensors with on-plane compression [1]. These
image sensors only deliver the pixels that change, decreasing the amount of data
coming from the camera. This strategy will decrease the total amount of data to
be processed; consequently also it will decrease the number of instructions and
thus the computer execution time.

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 37–44, 2009.
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A biologically motivated global strategy for speeding-up motion detection
algorithms is presented. The system includes a change-driven camera that deliv-
ers pixels change instead of synchronous full images, and a data-flow algorithm
adaptation for the image processing algorithm.

2 Change-Driven Camera and Processing

2.1 Change-Driven Camera

Biological visual systems has been already partially emulated taking into ac-
count its asynchronous nature [2]. Each pixel works independently in this visual
sensor and the available output bandwidth is allocated according to pixel out-
put demand. In this kind of sensors the change event signaling depends on a
contrast sensitivity threshold, which is also found in biological vision systems. A
pixel change greater than this threshold is considered as a change, consequently
this pixel is read out and processed. This threshold has already been successfully
employed to accelerate differential movement algorithms [3].

A Selective Change-Driven (SCD) camera with pixel delivering for high-speed
motion estimation is under construction [4]. In this camera every pixel has an
analogue memory with the last read-out value. The absolute difference between
the current and the stored value is compared for all pixels in the sensor; the pixel
that differs most is selected and its illumination level and address are read out for
processing. With this strategy, every pixel that has changed will be sent sooner
or later, and thus processed in a data-flow manner, ordered by its illumination
change.

2.2 Data-Flow Processing

A generic image processing algorithm can be programmed as an instruction
sequence within a classical control flow computing model. The data-flow model
works in a totally different way: instructions are fired when the data needed for
these instructions are available [5]. One of the main advantages of this model is
the reduction of the instructions to be executed when little changes are produced
in input data.

Motion detection algorithms (and as a particular case, differential algorithms)
greatly benefits from the approach of firing instructions of an algorithm only
when data changes. Often only few pixels change from frame to frame and usually
there is no need to execute any instruction for unchanged pixels. The classical
approach performs the same calculation for all the pixels in an image for every
image in a sequence, even if the pixel did not change at all. It is possible to save
many calculations if only those pixels that have changed are delivered by the
SCD camera and fire the related instructions.

Any image processing algorithm would need to be rebuilt in order to be im-
plemented following the SCD strategy. Extra storage to keep track of the inter-
mediate results of preceding computing stages is needed by this methodology.
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3 Motion Detection Algorithms

The change-driven delivering and processing has been tested in several motion
detection algorithms that have been rebuilt in a data-flow manner. Two examples
are included in this paper.

3.1 Traffic Detection Algorithm

This motion detection algorithm has already been utilized serving as an example
of how the use of a change sensitive threshold can accelerate differential motion
detection algorithms [3].

A detailed description of the original sequential procedure can be seen at [6],
where It is the input sequence and Mt is the estimated background value. The
estimate background is increased by one at every frame when it is smaller than
the sample or decreased by one when it is greater than the sample. The absolute
difference between It and Mt is the first differential estimation ∆t, that is used
to compute the pixels motion activity measure, employed to decide whether the
pixel is moving or static. Vt is used as the dimension of a temporal standard
deviation. It is computed as a Σ − ∆ filter of the difference sequence. Finally
in order to select pixels that have a significant variation rate over its temporal
activity, the Σ−∆ filter is applied N = 4 times. A simple common edges hybrid
reconstruction is performed to enhance ∆t as shown in equation (1). The inputs
are the original image It and the Σ −∆ difference image ∆t.

∆′
t = HRec∆t

α (Min(‖∇(It)‖, ‖∇(∆t)‖)) (1)

The gradient modules of ∆t and It are computed by estimating the first Sobel
gradient and then computing the Euclidean norm. Min(‖∇(It)‖, ‖∇(∆t)‖) acts
as a logical conjunction, retaining the edges that belong both to ∆t and It.

The common edges within ∆t and with α as structuring element (a ball with
radius=3) are reconstructed in order to recover the object in ∆t. This is done by
performing a geodesic reconstruction of the common edges (marker image) with
∆t as reference. Thus, after ∆t has been reconstructed, Vt and Dt are computed.

Change-Driven Data-Flow Algorithm. The original algorithm has been
modified using the change-driven data-flow processing strategy. With this pro-
cedure as soon as the SCD camera delivers a pixel that has changed ∆I(x, y) the
related instructions are fired, and the intermediate images are updated. Fig. 1
shows the data-flow and the intermediate stored images.

An initial image is stored in the computer as the current image. Any absolute
difference of the current image pixel with the stored image fires the intermediate
images computation. Moreover, these updates must be done taking into account
that the change of an input pixel may modify several output variables. For
example, if a pixel is modified then its contribution to 6 pixels for the Sobel
gradient image Gx and also for 6 pixels for image Gy must be updated. It may
appear that a single pixel modification can produce too many operations, but
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Fig. 1. Change-driven motion detection algorithm

theese are simple additions (and sometimes a multiplication by two) per pixel
and they can be reutilized. In the original algorithm for each pixel the Sobel
gradient images Gx and Gy are computed in any case; with six additions per
pixel with the corresponding multiplications.

3.2 Horn and Schunk Optical Flow Computation

Optical flow is one of the main methods to estimate movement of objects and
its calculation provides valuable information to artificial and biological systems.
Unfortunately it is computationally intensive which constrains its use in real-
time applications; despite of this, its high scientific interest motivates research
on new strategies and hardware approaches to reduce its calculation time [8].

Differential techniques are applied under global restrictions in the Horn and
Schunck method. Several global approximations are assumed as the conserva-
tion of intensity. Additionally, a method of global restriction that minimizes the
squared magnitude of the gradient of the optical flow is introduced. A mask
is used for Laplacian calculation of the mean values (ū, v̄) of the optical flow
components at any point (x, y), which are used in the equations that relate the
optical flow vector from the image Laplacian and the spatial-temporal gradients:

u = ū− Ix
Ixū+ Iy v̄ + It
λ2 + I2

x + I2
y

v = v̄ − Iy
Ixū+ Iy v̄ + It
λ2 + I2

x + I2
y

(2)

Final classical determination of the optical flow is done from these equations
through an iterative full image processing over pairs of consecutive images.

Data-Flow version. The change-driven data-flow implementation of the Horn
and Schunck algorithm uses the equations that treat only the data which are
involved because of the variation of a given pixel, differently to the calculation
of optical flow in the whole image. The procedure is as follows:

– Initial gradient and optical flow maps are computed for the whole image
following the classical Horn and Shchunk method described before.
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– Then, the changing pixels sent by the SCD sensor are processed in decreasing
order of variation and for each received pixel the following operations are
performed:
• Recalculate the spatial and temporal gradients for those pixels of the

image that are under the influence of the pixel that has changed.
• Recalculate (ū, v̄) for all pixel involved by the variation of pixel (i, j).

4 Experimental Results

Since the construction of the SCD camera is still in progress, the synchronous
delivering of the pixels that have changed has been simulated by software. The
comparison between the original algorithms and the change-based data-flow ver-
sions follows.

4.1 Traffic Detection Algorithm Results

The original traffic detection algorithm and the change-driven data-flow ver-
sions have been implemented. Both algorithms have been tested using several
traffic sequences downloaded from the professor H. H. Nagel public ftp site:
http://i21www.ira.uka.de/image sequences/ at the University of Karlsruhe.
Fig. 2(a) shows a sequence frame of 740× 560 pixels. Fig. 2(b) shows the origi-
nal version with a full frame processing (414,400 pixels per frame). The change-
driven data-flow algorithm results are shown in Fig. 2(c) with a mean of 80,000
pixels (roughly a 20% of image pixels). In this experiment, it has been simulated
that the SCD camera has delivered out, ordered by the absolute magnitude of
its change, a mean of 80,000 pixels.

Both result images shown at Fig. 2 are almost the same. There are no evident
differences in terms of detected moving points between the original and the
change-driven implementations. The executed time decreases significantly as Fig.
4 (left) shows (speed-up of 1.57). In this way, it must be appointed that the
change-driven data-flow implementation gives similar results as the original, but
with lower computational cost.

The execution time decreases because only changing pixels are processed.
Moreover, if there are bandwidth limitations, the pixels with a bigger change

Fig. 2. (a) Original sequence, (b) Original algorithm results, (c) Change-Driven mod-
ified algorithm with 80,000 pixels (20%)
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are processed first leaving as no processed the pixels with a lower change. The
question in the application to this algorithm is whether there is a limit to de-
creasing the number of pixels and therefore to the algorithm speed-up versus the
original full processing implementation. The answer is that if very few points are
processed there is not a systematic background update, and moreover, moving
points with a small gray value difference are not detected. This property pro-
duces two effects that limit the change-driven data-flow strategy. If there are
more changes than pixels that the SCD camera can deliver due to bandwidth
limitations, fewer correct moving points are detected and, otherwise, more false
positives are detected. Values under a 10% of the image total number of pix-
els make this approach unfeasible and therefore further pepper noise filtering is
required for Dt, disappearing the change-driven data-flow speed-up.

4.2 Change-Driven Optical Flow Results

The well known Rubik sequence has been downloaded from the ftp public site of
the Department of Computer Science (ftp://ftp.csd.uwo.ca/pub/vision/)
at the University of Ontario. Each frame has 61,440 pixels (256×240). Classical
parameters have been used to calculate the optical flow: 10 iterations for each
frame; only the flow vectors with modulus bigger or equal than 0.2 have been
represented; the value of the Lagrange multiplier for the regularization term has
been taken as λ = 5. Results are shown in the Fig. 3 for the classical algorithm
implementation and for the change-driven implementation with 4,000 pixels,
roughly a 7% of the image size.

Table 1 shows the mean angular deviation (in degrees) between the original
Horn and Schunk algorithm and the change-driven implementation for different
number of processed pixels. This angular deviation ΨE between the real velocity
vector components (uc, vc) and the calculated velocity vector (ue, ve) has been
computed through the optical flow error equation:

ΨE = arccos

(
ucue + vcve + 1√

(u2
c + v2

c + 1)(u2
e + v2

e + 1)

)
(3)
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Fig. 3. (a) Original sequence, (b) Original optical flow results, (c) change-driven optical
flow computed with 4000 pixels
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Table 1. Mean error and standard deviation with different number of pixels

No of pixels Mean error (o) Standar deviation (o)

1000 18 8
2000 16 8
3000 15 8
4000 14 7
5000 13 7

The error shown at table 1 decreases as long as the number of pixels increases.
In this algorithm, for a number of pixels under a 10%, result seems not very good
but are not far from most optical flow algorithms with greater complexity. In
this case, a lower number of pixels processed than in the traffic algorithm can
give acceptable results. The Rubiks sequence has been taken in a controlled
environment, giving less changing pixels.

Experimental measured speed-up of the change-driven optical flow algorithm
referenced to the classical one is shown in Figure 4 (right). The optical flow is
calculated for every received pixel as long as there is sufficient time until the
next integration period. If not all received pixels can be processed, those with a
bigger change in their luminance are processed first, since this is the way they
will arrive from the sensor. This can be interpreted as an optical flow calculation
at the pixel level instead of at the frame level. As expected, for a low number of
processed pixels, there is a significant speed-up. If the number of pixels increases,
the speed-up decreases. With 4,000 pixels there is still a speed-up of 1.2 with an
error of 14◦ which can be useful for real-time applications.
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Fig. 4. Speed-up for the traffic detection (left) and the optical flow (right) algorithms
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5 Conclusion

A biologically inspired strategy for speeding-up motion detection algorithms has
been presented. The system includes an SCD camera that sends the pixel changes
instead of sending sequentially full frames. Following these ideas, a generic image
processing algorithm must be rebuild in a data-flow manner. The change-driven
data-flow strategy is based on processing the pixels that have changed ordered
by its absolute difference value.

The implementation of this methodology requires several algorithm adapta-
tions and extra storage to keep track of the intermediate results. Two motion
analysis algorithms have been chosen to test the change-driven data-flow policy:
a morphological traffic detection algorithm and the Horn and Schunk optical
flow algorithm. Change-driven data-flow algorithm implementations show a use-
ful speed-up giving similar results of the original implementation.
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Abstract. This is an extension of the paper appeared in [15]. This time, we com-
pare four methods: Arithmetic coding applied to 3OT chain code (Arith-3OT), 
Arithmetic coding applied to DFCCE (Arith-DFCCE), Huffman coding applied 
to DFCCE chain code (Huff-DFCCE), and, to measure the efficiency of the 
chain codes, we propose to compare the methods with JBIG, which constitutes 
an international standard. In the aim to look for a suitable and better representa-
tion of contour shapes, our probes suggest that a sound method to represent con-
tour shapes is 3OT, because Arithmetic coding applied to it gives the best results 
regarding JBIG, independently of the perimeter of the contour shapes.  

Keywords: Efficiency, Arithmetic coding, Chain code, Contour, Shapes, Bina-
ry objects. 

1   Introduction 

The shape representation of binary objects, is an active research in computer vision, 
pattern recognition and shape analysis. Binary objects can be seen as bi-level images, 
because they also are composed of two tones: black and white (B/W). Chain code 
techniques can be used to represent shape-of-objects in a right discretized fashion. It 
has been reported interesting applications using chain codes, for example: Mckee and 
Aggarwal [1] have used chain coding in the process of recognizing objects. Hoque et 
al. [2]  proposed an approach to classify handwritten characters, based on a directional 
decomposition of the corresponding chain-code representation. 

A chain code can be viewed as a connected sequence of straight-line segments with 
specified lengths and directions [3]. Chain codes can also be used to identify corners 
in shapes [4]. Salem et al. [5] discuss the capabilities of a chain code in recognizing 
objects. In [6], Sánchez-Cruz and Rodríguez-Dagnino proposed a code contour shape, 
called 3OT, and they found better compression properties than Freeman codes.  

To compress binary objects, Liu and Zalik proposed the Differential Freeman Chain 
Code of Eight Directions (DFCCE) by using Huffman algorithm [7].  Liu et al. [8] in-
troduced three new chain codes based on the VCC [9]. The main reason for the popular-
ity of chain codes is their compression capabilities. There are two main categories for 
image compression algorithms, namely algorithms with loss of information such as 
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MPEG, JPEG, etc., and lossless compression algorithms, such as JBIG, Huffman, 
Arithmetic and Lempel-Ziv (LZ). For instance, LZ algorithms are some of the most 
successful methods for text compression [10] and [11]. Aguinaga et al. [12], compared 
different entropy coding schemes applied to bi-level images by using run-length codes. 

Another evidence to support that is better to codify contours shapes with 3OT 
codes instead than DFCCE, is by considering next analysis. In [8], three codes were 
introduced: EVCC, VVCC and C_VCC, in such a paper, C_VCC is found as the best 
compressor. In the spirit to look for better performance than C_VCC, Sanchez-Cruz, 
et al. [13], compared C_VCC with 3OT by doing some assignments, when changing 
appropriately the length of the 3OT chains. The procedure is easy: when contours are 
coded by 3OT, for every five consecutive 0's,  a symbol "3" is introduced; for every 
five consecutive 1's the symbol "4" is introduced; and for every substring 0110 in the 
3OT, a "5" symbol is introduced in a new alphabet: M_3OT = {0,1,2,3,4,5}, where 
each symbol has been obtained by doing the next assignments from 3OT chains: 

 

                                                
 

These new assignments permit us to improve the most recent code known as C_VCC. 
So, this fact constitutes another evidence that supports to utilize 3OT chain code to 
represent contour shapes. 

An international committee has generated a standard image compressor for bi-level 
images called Joint Bi-level Image Experts Group (JBIG), which was primarily de-
signed for compression without loss of information, [14]. JBIG has already been im-
proved and the new standard is now called JBIG2 (see [16] and [17]). Sanchez-Cruz 
et al., [15] compared seven recent chain codes, including the 3OT and, also, JBIG; 
after they applied Huffman coding to the chains. Their experiments gave better results 
than the JBIG compressor. They found that the best codes to represent binary objects 
was DFCCE in comparing with JBIG, if considering a threshold, no more than about 
13000 in Perimeter-8. We developed our research by using DFCCE (Differential 
Freeman Chain Code of Eight Directions) and 3OT (Three Orthogonal Change Direc-
tions), because they were the two best codes in [15], and were also compared with 
JBIG standard. 3OT is composed of three symbols, and we probe here that is suitable 
to be handled by Arithmetic coding, better than those composed with more symbols, 
including DFCCE, which has eight symbols. The contribution of our work is to find 
that there is not a limit in the contour shapes to be represented by 3OT code, whereas 
in [15] it was found that DFCCE was the best, however, an evident limit in contour 
perimeters were reported in such a paper. 

In this work, we utilized Arithmetic coding to 3OT and DFCCE chains; we found 
that this method has better performance than JBIG, and compress efficiently irregular 



 Coding Long Contour Shapes of Binary Objects 47 

 

objects in a 100%, of so large contours, even larger than the obtained until now, in-
creasing the limit in perimeter found by [15].  

We want to make it clear, we are not proposing replace JBIG by our method, but to 
use it as a standard to compare the efficiency of chain codes.  

In Section 2, we explain the method proposed, whereas in Section 3 we give the re-
sults, and in Section 4 we give conclusions and further work. 

2   Applying 3OT and DFCCE Chain Codes to Bi-Level Images 

With the objective to compare the results with that found in [15], in this work, we 
calculate the perimeter-8 of a shape, that is given by squares as resolution cells and 8-
connected neighborhoods.  Fig. 1 shows the 3OT and  DFCCE codes to represent the 
contours using resolution cells, as explained in [15]. 

 

 
   (a)     (b) 

Fig. 1. The utilized codes: a) 3OT and b) DFCCE 

Once the 3OT and DFCCE codes are obtained, we apply Arithmetic algorithm to the 
resulted chain. To compare with the proposed compression based on Huffman algorithm 
applied to DFCCE, we also computed such a method. Thus, we obtain an amount MCODE, 
given in bytes. Also, we apply the JBIG compressor and obtain MJBIG, in bytes too. 

We encode and represent contour shapes for a variety of irregular sample objects, 
given in Fig. 2. The original size information is given in Table 1.  

 
Table 1. Size of the bi-level images 

 

Object Size 
Ant 235×250 

Bat 551×267 

Btrfy 667×822   

Btrfly2 600×451 

Bus 300×250 

Camel 640×726 
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Table 1. (Continued) 

Object Size 
Snail 640×633 

Coco 302×87 

Football 640×850 

Dog 694×851 

Horse 814×600 

Lion 382×380 

Plane 1801×1039 

Map 648×648 

Moto 960×738 

Skull 1391×1333 
 

   Ant Bat Bus 

Btrfly Btrfl2 Camel Snake   

Coco Dog Football  

Horse Lion Plane        

Map        Moto             Skull 

Fig. 2. Sample object shapes represented by chain codes. The actual scales appear in Table 1. 
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Of course, in the bi-level image, shape-of-objects are confined in a minimal rec-
tangle of size M×N. Notice that the smallest image corresponds to the Ant object, 
whereas Moto's shape almost fill a typical current screen of 14 inches (with a resolu-
tion of 1024×768 pixels, for example), and Plane and Skull do not fix into such a 
screen.  

3   Results 

To analyze our results, let us define the compression efficiency, regarding JBIG. 

Definition. Let 
JBIGCODE MMEfficiency /1−=  be the compression efficiency of 3OT 

code with regard to the JBIG standard.  

In Table 2 and 3 are reported the main results of this work. The values of perimeter-8 
are given, also the storage memory due to 3OT, DFCCE and JBIG and the relative 
efficiency of 3OT with regard to JBIG. As can be seen Arithmetic to 3OT and to 
DFCCE improve compression levels, and are better than both: Huff-DFCCE and 
JBIG. 

 
Table 2. Length chains, given in perimeter-8, of the coded contour shapes, the storage memory 
in bytes, and also, Efficiency regarding JBIG of the different codes 

Object P-8 JBIG DFCCEM
(Huffman)  

DFCCEM
(Arith) 

OTM 3

(Arith) 

Efficiency     
(Arith-3OT) 

Efficiency     
(Aritc-

DFCCE) 

Efficiency      
(Huffman-
DFCCE) 

Ant 1484 398 336 311 309 0.22 0.22 0.16 

Bat 1444 392 323 297 284 0.28 0.24 0.18 

Btrfly 2682 694 608 532 507 0.27 0.23 0.12 

Btrfl2 1473 439 328 306 283 0.36 0.30 0.25 

Bus 653 205 133 129 115 0.44 0.37 0.35 

Camel 3446 746 715 662 659 0.12 0.11 0.04 

Snail 2557 658 548 512 502 0.24 0.22 0.17 

Coco 773 230 159 154 145 0.37 0.33 0.31 

Football 3482 817 728 674 702 0.14 0.18 0.11 

Dog 4634 1101 1001 936 883 0.20 0.15 0.09 

Horse 3679 776 783 722 680 0.12 0.07 -0.01 

Lion 1577 435 356 338 322 0.26 0.22 0.18 

Plane 9591 2211 2190 1957 1789 0.19 0.11 0.01 

Map 4140 1031 847 793 848 0.18 0.23 0.18 

Moto 5954 1391 1315 1211 1133 0.19 0.13 0.05 

Skull 6861 1453 1358 1210 1298 0.11 0.17 0.07  
 

 
We can see, in Fig. 3, that there exists a linear relationship between Arithmetic 

coding, applied to 3OT, Huffman and Arithmetic coding to DFCCE and JBIG, vs. 
Perimeter-8. Whereas Fig. 4 shows an exponential relationship between Efficiency 
and Perimeter-8. For the case of Huff-DFCCE, similar behavior appears in [15], in 
which Efficiency of DFCCE and Perimeter-8 were plotted, and Huffman algorithm 
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was applied. However, the improvement now, is that the graph plotted is farther from 
the zero efficiency, and is given by Arith-3OT. On the other hand, compression effi-
ciency for 3OT can be approximated by an approximated Gaussian function: 

∑
=

−−
3

1

)/)(( 2

i

cbx
i

iiea where 1a = 2.2 x 1010, 1b = -75.69, 1c  = 140.5; 2a = 2.42, 2b = -

5693, 2c = 4226; 3a =0.1603,  3b = 6892, 3c = 18840.  

Observe in Fig. 4, that the trend of Huff-DFCCE suggests it will cross with the 
trend of JBIG, of course further than 9000 units in perimeter-8 (similar behavior was 
found in Sanchez-Cruz, et al, 2007 for Huff-DFCCE). However, the trend of Arith-
3OT and Arith-DFCCE suggest that they never will cross with the trend of JBIG, 
even more, the slope of the fitted function of Arith-3OT is the smallest. This analysis 
allow us to say that is better to use 3OT code to represent bi-level images, whenever 
irregular shapes are into the images. This analysis and the trend of efficiency, sug-
gests that for all perimeter contour coded by 3OT, in which Arithmetic coding is ap-
plied has better performance than JBIG, including for larger perimeter contour than 
the found in (Sanchez-Cruz, et al., 2007) in which Huffman algorithm was more ef-
fective to compress binary objects.  

Of course, for each hole some extra bits are needed to represent the starting. In 
case of Moto shape (with the largest amount of holes) 24 holes were coded. Each 
code will require two starting coordinates, in the "worst case" 960 columns and 738 
lines can be coded by 20 bits, multiplied by 24, gives 480bits. So, 60 extra bytes, will 
be required  to codify the Moto shape. Obviously, not the 24 holes have the (960,738) 
coordinates, this amount is a "worst case", and, even though, this does not change the 
trends found. 

 
 

 

Fig. 3. Linear relationship between Arithmetic coding to 3OT, Huffman algorithm and Arith-
metic coding to DFCCE and JBIG, vs. Perimeter-8 
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Fig. 4. Approximated functions to the obtained data 

4   Conclusions and Further Work 

To represent shape of binary objects, we have used the Arithmetic coding applied to 
different codes, we compared the results with JBIG compressor to measure their effi-
ciency. Undoubtedly, Arithmetic applied to 3OT and DFCCE chain codes, brings 
better compression levels if comparing with JBIG and with Huffman applied to 
DFCCE, however, 81% of our sample objects were better compressed for Arithmetic 
to 3OT than Arithmetic to DFCCE. An interesting detailed study in this differences is 
suggested to be investigated between this class and the remaining19%, to see whether 
some common features are present. It is evident that the whole distribution follows 
the showed trends, which represents an improvement of  a recent work in literature. 
So, our main contribution is to find that 3OT code constitutes best code to represent 
binary images with no limitation in contour perimeters. in general, about coding 
scheme Freeman [18] states: they "must satisfy three objectives: (1) it must faithfully 
preserve the information of interest; (2) it must permit compact storage and be con-
venient for display; and (3) it must facilitate any required processing. The three objec-
tives are somewhat in conflict with each other, and any code necessarily involves a 
compromise among them”. So, we consider that 3OT has the three characteristics. 

There are several methods to code a 2D object, it would also be important to com-
pare the proposed method with other invariant algorithms in order to assess the suit-
ability of the method in more complex scenes and real world problems. 

Considering the superiority of JBIG2 over JBIG, as a future work, comparison of 
3OT and DFCCE versus JBIG2 is suggested to be investigated, and also the possible 
application to maps, trees, text documents, and fractal images. 
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Abstract. When we look at images taken from outdoor scenes, much
of the information perceived is due to the ligthing conditions. In these
scenes, the solar beams interact with the atmosphere and create a global
illumination that determines the way we perceive objets in the world.
Lately, exploration of the sky like the main illuminance component has
began to be explored in Computer Vision. Some of these studies could be
classified like color-based algorithms while some others fall in the physics-
based category. However most of them assume that the photometric and
geometric camera parameters are constant, or at least, that they could
be determined. This work presents a simple and effective method in order
to find images with similar lighting conditions. This method is based on
a Gaussian mixture model of sky pixels represented by a 3D histogram
in the La∗b∗ color space.

1 Introduction

Nowadays, the Internet has become an interactive system that allows anyone
with a compact camera to share their visual experiences. This fact has been
the starting point for large online image databases such as Flickr or Picasaweb.
Computer vision scientists have not taken too much time to make use of these
tools, and the development of new algorithms that exploit them is an activity in
progress. Among these works, an excellent example is the PhotoTourism project
[16]. The main goal is to make a sparse 3D reconstruction of a popular mon-
ument from thousands of images using structure-from-motion type algorithms.
Applications like that allow the user to explore unstructured photo collections.

The work presented in this article is also motivated by another kind of appli-
cation that could exploit the richness of the photometric information available.
For example in photomontage applications human intervention is often necessary
to create realistic images. If one wants to insert an object from a photo into an
environment determined in a second photo, both images should show up as if
they had been taken under the same conditions. In that case, a human expert
could retouch the images and force them to match illumination conditions and

� Supported by the Programme Alβan, the European Union Programme of High Level
Scholarships for Latin America, scholarship No. E07D402742CO.
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shadows [1,3]. Our work is developed on the basis that we can exploit the above
freely accessible collections and try to find a group of images that depict similar
illumination conditions.

In a general context, one of the most successful approximations to extract
information about the illumination is to use a spherical object in such a way that
it can reflect and capture the light distribution when the photo is taken [17]. The
main disadvantage of this method is that it requires access to the scene at the
moment of the click. In his thesis [13], Love did some observations that let us
think that the sky is a very important illumination source and, as consequence,
one of the essential factors involved in the color perception of outdoor scenes.
Some other researchers have proposed to find the behavior of the sky illumination
using only images for example, using physically-based models [12], or other ones
using advanced techniques for color correlation [11,10]. If one does not limit
analysis to photos including sky portions, there are several works in the image
completion context (hole filling or inpainting) [6,19] and in the context of color
classification using raw pixels [14,18]. Some of the researchs that explore the
sky as information source show restricted constraints, for example the use of a
single camera or an a priori knowledge about the calibration (in the photometric
and geometric sense). These constraints try to reduce the number of variables
involved in the color perception process (surface reflectance, light sources, sensor
response). For instance, the work of Lalonde et al. [12] proposes an algorithm to
find similar sky images given the intrinsic camera parameters and a physically-
based sky model. The main idea consists in finding a sky model for each given
image and to compare the features that define these models. This process can
only be applied to images taken with a static camera, for example time lapse
sequences. In [11], an automatic photomontage system that uses a presegmented
object library is described. The method used by the authors to determine the
global illumination matching consists of calculating the χ2 distance between
3D-histograms that represent the sky. Short distances are recognized as possible
matches. In our experiments, this metric presents a low performance due to the
high dependance to the color workspace.

The present work aims to find the matches between sky zones of multiple
images in a large image collection using minimum information about the camera
parameters. For this, we propose the union and improvement of three stages pre-
viously developed in other contexts. The first one, a preamble stage that allows
the sky pixels segmentation. A second stage where the pixels are represented
by a sum of Gaussians in the La∗b∗ space (section 2.1). Finally a third stage
that compares the estimated models (section 2.2). The final part of this article
(section 3) presents some results and discusses the algorithm proposed.

2 Representation and Comparison of Sky Regions

2.1 Sky Model in the La∗b∗ Color Space

In the literature, it is common to find physically-based models that express the
sky luminance as a function of diverse variables, among them, sun position and
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atmospheric turbulence [9,15]. These models have been used in Computer Vision
under some constraints, like a fixed point of view. In the present work the images
are extracted from a large database and came from different cameras. This fact
increases dramatically the problem complexity because we do not have any in-
formation about the geometry of the scene. Moreover, we do not know how the
data captured by the sensors was modified during the acquisition process (most
cameras apply post-processing algorithms to enhance the “perceptual quality” of
the images). Our methodology is based on the camera’s final output, a jpeg file,
assuming that most of the time this image does not represent faithfully the real
world illumination at the acquisition time. To accomplish the goal of this work,
the first stage consists in extracting the sky pixels for each image. The application
described in [8] allows us to make an automatic segmentation of the image sky.

To determine a model from sky pixels is a decisive step in the formulation of
our problem. For that reason, the choice of the color space plays an important
role. The CIE (Commission Internationale de l’Éclairage) [4] have created several
standards and nowadays, the last model published (CIECAM02) has reached
an excellent performance as well as a high degree of complexity [5]. This color
appereance model allows a trustworthy representation of the real world. However
the parameters required are, in some cases, impossible to acquire. The La∗b∗

space and the xyY space used by [11] and [12] are simpler models derived from
the CIE’s works. Although these color spaces are used in a vast number of
works, it is important to take precautions when they are applied. For example,
the spaces above mentioned are always attached to a predetermined “reference
white”, usually unknown. In this work we use the La∗b∗ color space because
of its good results in distinguishing color differences, but under the assumption
that all the images were taken using a natural global illumination. That means
that the “reference white” used in the transformation is the same for all images
(Illuminant D65). Following the work done by Lalonde et al. [11], we build color
histograms for the sky region in each image. These histograms are probability
distributions of the colors in terms of the variables L, a∗ and b∗. Figure 1 shows
some of those histograms in their 3D space. Color and point size represent the
bin magnitude1. One can note that the pixels are spread mainly on the negative
part of the b∗ axis which corresponds to variations between yellow and blue.
On the other hand, the histograms of images, where the sky is white and/or
partially cloudy, are distributed throughout the space and they are not easily
distinguishable using this representation. We believe that these histograms have
different modes, and that they could be modeled using a mixture of Gaussians.

According to our observations, the sky in each image is modeled following the
next equation:

M(x) =
∑K

k=1
πkN (x|µk,Σk) , (1)

for an undetermined K (in our implementation we limit this value to 4). One
well-known method to find the parameters in equation (1) is the Expectation-
Maximization algorithm (EM) [2]. The output of this method corresponds to the

1 For figures, the reader is kindly invited so see the electronic version.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Sky 3D-histograms and ellipsoids for the corresponding MoG models. (a) Image
with sunny sky, (b) completely cloudy sky, (c) partially cloudy sky. (d) Model with
four Gaussians. (e) Model with two Gaussians. (f) Model with four Gaussians.

variables πk, µk, Σk that describe the model in such a way that the probability of
the solution is maximized. Our model is formulated in terms of a joint probability
distribution of the sky pixels X, the latent variables Z and the goal is to find the
set of values θ that maximize the likelihood function (θ represents the variables
πk, µk and Σk). The values La∗b∗ of the sky pixels xn are organized in the
matrix X in which the nth row is given by xT

n. In order to briefly summarize
this algorithm, an iterative 2 step process runs until it reaches a convergence
parameter. The E step calculates the joint probability distribution P (Z|X, θlast):

P (Z|X, θlast) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj,Σj)

,

and the M step updates the values of πk, µk, Σk. The model dimension is a
crucial factor. In our case, the number of Gaussians used in the mixture is deter-
mined based on the Akaike information criterion (AIC) [2]. Different values of K
in the equation (1) are evaluated and, the model that maximizes the likelihood
is chosen. In figure 1, the ellipsoids that form the Gaussian Mixture model are
shown for a constant variance.
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2.2 Comparison between Histograms of the Sky

Once the sky model for each image is estimated, we proceed to compare different
models. In the present case, it is necessary to measure the difference between
two or more probability distributions. In our context, the well-known Kullback-
Leibler divergence (KL) should be a good option, although it does not possess
the property of symmetry. Given two probability distributions p(x) and q(x) the
KL divergence is defined by:

KL(p||q) = −
∫

p(x)ln
{
q(x)
p(x)

}
dx . (2)

It is widely proven that when the distributions are Gaussian, equation (2) can
be expressed in closed-form. However, in the case of a Gaussian mixture, it is
difficult to find an analytically tractable expression or even more, a computer
algorithm to solve this problem efficiently. According to the work of Hershey
and Olsen [7], the only method for estimating KL(p||q) with arbitrary accuracy
when p(x) and q(x) are mixtures of Gaussians, is the Monte Carlo simulation.
Nevertheless, other approximations may be valid, depending on the context. For
example, a commonly used approximation is the simplification of the Gaussian
mixtures p(x) and q(x) by simple Gaussians p̃(x) and q̃(x). In this case, the
mean and covariance estimated are:

µp̃ =
∑

a
πaµa

Σp̃ =
∑

a
πa

(
Σa + (µa − µp̃)(µa − µp̃)

T
)

. (3)

The KL divergence (KLsim) is calculated using the estimated mean (µp̃) and
variance (Σp̃). Hershey and Olsen use variational methods to find a better ap-
proximation of the KL divergence. One of their contributions is a measure that
satisfies the symmetry property but not the property of positivity. In this case,
the approximated divergence KLapp(p||q) is given by:

KLapp(p||q) =
∑

a

πa log
∑

a′ πa′e−KL(p||p′)
∑

b ωbe−KL(p||q) . (4)

This value could be seen as a measure of dissimilarity between two distributions.
Hershey and Olsen’s contribution allows us to compare two sky models keeping
the variables for each Gaussian that composes the mixture.

3 Results

This section shows some results of the experiments developed using the models
estimated and the comparison measure described in the last section. To test our
method, we re-create a database with 4250 images of Sacre Cœur’s Cathedral
(Paris) downloaded from the Flickr website2. Images that do not correspond to
2 http://www.flickr.com/
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Fig. 2. Mean values for the intra-class and inter-class divergence, (a) using the KLsimple

divergence and (b) using the KLapp divergence

Table 1. Average of the inter and intra-class divergences for all images in the class si

Average KLsimple Average KLapp

si class 45.60 4.27
pci class 351.63 97.87
cci class 50.95 13.73

the desired scenes or are taken during the night or using artificial lighting had
been removed.

Our goal is to compare two or more outdoor images using the above methods
applied on sky regions. To test our approach, we classified 500 images from the
database by hand according to: sunny (si), partially cloudy (pci) and completely
cloudy (cci). It is important to emphasize the subjective nature of this “ground
truth”. The main idea consists in comparing the distances between one selected
image and the other ones that belong to the same class (intra-class distance)
and those belonging to other classes (inter-class distance). Figure 2 shows the
intra-class and inter-class mean distances computed for 70 images from the class
si using the KLsim divergence and the KLapp divergence. For these two mea-
sures, we find that the class cci differs clearly from the other two by medium
values of greater amplitude. However, among the class si and the class pci the
difference is not sufficient when using the measure KLsim. As we may expect, the
approximated KLapp divergence shows a better performance and discrimination
is easier. Table 1 presents the average of the inter and intra-class divergences for
all images in the class si according to the two measures described. The difference
between images belonging to classes si and cci is clearer when we use the KLapp
divergence. Once again, it can be explained by a better approximation of the KL
divergence.

Another experiment was developed in order to find the success rate of the
algorithm when running on 500 images using the KLapp divergence. The objective
this time is to find the closest images and whether or not they belong to the
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Table 2. Success rate on 500 images

Images 1st Image 2nd Image 3rd Image 4th Image
All 78.7% 75.4% 72.0% 71.2%
Class cci 77.3% 74.6% 70.8% 68.7%
Class si 64.0% 68.8% 64.8% 59.1%
Class pci 93.2% 82.0% 79.9% 84.8%

Fig. 3. Subset of typical results. In the first column we observe the query image. The
following columns from left to right, show the images closest to the query image.

same class that the query image, according to the ground truth (see table 2).
Figure 3 shows the four most similar images found for three query images.

4 Conclusions

In this paper, we proposed a 3-steps pipeline (segmentation, modelisation and
comparison) for grouping outdoor images with similar lighting conditions, based
on techniques previously developed. The model choosen for the sky pixles has
been a mixture of Gaussian, based on the observations of histograms with mul-
tiple modes. This distribution allows us to accurately model the pixels, especially
for images where the sky is not of uniform color. On the other hand, the computa-
tion of the KL divergence has proven to be an adequate tool to group similar skies,
despite the approximations made in the operation. These approximations must be
carefully chosen in order to keep the benefits of using a multimodal distribution
as model. For a finer grouping, other factors may be considered such as the posi-
tion of the sun, clouds, shadows or information about the camera parameters that
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could be extracted from the metadata. Also, to obtain credible photomontages,
information about the geometry of the scene could be valuable. The inclusion of
these variables might produce natural and realistic compositions.
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Abstract. The estimation of parametric global motion has had a significant at-
tention during the last two decades, but despite the great efforts invested, there
are still open issues. One of the most important ones is related to the ability to
simultaneously cope with viewpoint and illumination changes while keeping the
method accurate. In this paper, a Generalized least squared-based motion esti-
mator model able to cope with large geometric transformations and illumination
changes is presented. Experiments are made on a series of images showing that
the presented technique provides accurate estimates of the motion and illumina-
tion parameters.

1 Introduction

Image registration could be defined as the process to transform an image to match an-
other image as correctly as possible. This process is necessary when we want to com-
pare or to integrate the data information from the two images (see [18] for a review
of image registration methods). During image acquisition of a scene, many factors in-
tervene: the position and the distance from the camera (or sensor) to the scene, the
illumination, the nature of the objects to be imaged, etc. Any change in these factors
implies that the data in the corresponding images are not directly comparable. Dur-
ing the last few years, a special interest has emerged in relation to the need to cope
with simultaneous viewpoint and illumination changes ([11], [13], [1], [2], to cite a few
works). Interesting examples could be found in image databases where we can obtain
images of the same place acquired with different cameras and with different acquisition
conditions.

In general, the direct geometric registration problem can be solved minimizing an
error function in relation to the difference in the pixel values between an image that
may be called Test image and the Reference image. In particular, it can be formally
written as:

min
g

∑
q∈R

‖I1(qi)− I2(G(qi;g))‖2 (1)

� This work has been partially funded by projects AYA2008-05965-C04-04 and CSD2007-
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where I1 and I2 are two input images, qi = (xi, yi)T are the pixel coordinates, g is
the vector of motion parameters and G is the function to transform the pixel coordinates
from one image to the other. The function G is expressed, for instance, in an affine
motion (Eq. 2) as follows:

G(qi;g) =
(
a1xi + b1yi + c1
a2xi + b2yi + c2

)
,g = (a1, b1, c1, a2, b2, c2). (2)

If photometric changes are also considered, these may be modeled by a transformation
P with parameter vector p and the minimization would therefore be:

min
g

∑
q∈R

‖I1(qi)− P(I2(G(qi;g));p)‖2 (3)

To solve the problem shown in Eq. 3, Bartoli developed the Dual Inverse Composi-
tional (DIC) estimation technique [2] considering Eq. 3 and then applying an inverse
compositional update rule for both the geometric and photometric transformations. See
[2] for details on the steps of the algorithm used to assess the geometric registration and
illumination compensation parameters.

In this paper a generalized least squares-based non-linear motion estimation tech-
nique that incorporates the capability to deal with color illumination changes is pre-
sented (it will be called the GLSIC method), where illumination changes are modeled
considering an affine transformation framework. The method is based on the General-
ized Least Squares (GLS) motion estimation method introduced by Montoliu and Pla
in [12], and where a new criterion function is proposed, incorporating these illumina-
tion changes. The GLS method is applied on this criterion function, deriving a new set
of equations whose solutions allow the simultaneous assessment of the geometric and
affine illumination transformation parameters. It is shown that the proposed method pro-
vides better results than the method recently described in [2]. This method is used since
it is, for the best of our knowledge, the most relevant technique that simultaneously
estimates the motion and the illumination transformation parameters in color images.

The rest of the paper is organized as follows: Section 2 justifies the use of a com-
plete affine transform to model illumination changes. In Section 3, the GLS for general
problems is briefly introduced. Section 4 presents the GLSIC method. Section 5 shows
the experiments and results obtained by the proposed method. Conclusions are drawn
in Section 6.

2 Illumination Compensation Model

Illumination compensation is closely related to chromatic adaptation in human colour
vision. The first chromatic adaptation experiments started in the late 1940s. A few years
later, Wyszecki and Stiles proved in a human asymmetric matching experiment [16]
that a diagonal linear matrix transform would be enough to reproduce the experiment
of asymmetric matching. However, West and Brill [15] and others proved later that
for a given set of sensor sensitivities a diagonal transform could only cover a restricted
group of object colours and illuminant spectra. Finlayson et al [3] argued that a diagonal
transform would be enough for the modeling of an illumination change if the camera has
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extremely narrow-band sensors, which is often not the case. There are other cases where
diagonal illumination compensation can fail, for instance, if there are other processes
happening like bias in the camera, or saturated colours in the scene. In the latter case,
some colours would fall in (and outside of) the camera gamut boundary [4]. This is
the reason why the use of a complete (full) affine transform in the form Ω · I(q) + Φ
is justified (see, for example, [6], [9], [17], to cite a few), where Ω ∈ R

3×3 is a full
matrix, with elements ωkl, (k, l = 1, . . . , 3), and Φ ∈ R3, a vector with elements φk,
(k = 1, . . . , 3).

3 Generalized Least Squares Estimation for General Problems

In general, the GLS estimation problem can be expressed as follows (see [12] for more
details):

minimize {Θυ = υTυ} subject to ξ(χ, γ) = 0, (4)

where:

– υ is a vector of r unknown residuals in the observation space, that is, υ = γ − γ̃,
where γ and γ̃ are the unperturbed and actually measured vector of observations,
respectively.

– χ = (χ1, . . . , χm)T is a vector of m parameters;
– γ formed by r elements γi, γ = (γ1, . . . , γr)T , each one is an observation vector

with n components γi = (γ1
i , . . . , γ

n
i )T

– ξ(χ, γ) formed by r elements ξi(χ, γi), ξ(χ, γ) = (ξ1(χ, γ1), . . . , ξr(χ, γr))T ,
each one is, in general, a set of f functions that depend on the common vector of pa-
rametersχ and on an observation vector γi, ξi(χ, γi) = (ξ1

i (χ, γi), . . . , ξ
f
i (χ, γi))T .

Those functions can be non-linear.

Thus, the solution of (4) can be addressed as an iterative optimization process starting
with an initial guess of the parameters χ̂(0). At each iteration j, the algorithm estimates
∆̂χ(j) to update the parameters as follows: χ̂(j) = χ̂(j − 1) + ∆̂χ(j). The process is
stopped if the improvement ∆̂χ(j) is lower than a threshold. The improvement ∆̂χ(j)
can be expressed as follows:

∆̂χ(j) = (AT QA)−1AT Qe, (5)

where Q = (BBT )−1. Equation 5 can also be expressed as:

∆̂χ(j) =

( ∑
i=1...r

Ni

)−1( ∑
i=1...r

Ti,

)
, (6)

with Ni = At
i(BiBt

i)
−1Ai and Ti = At

i(BiBt
i)

−1ei, where Bi is an Rf×n matrix

with elementes bi(kl) = ∂ξk
i (χ̂(j−1),γi)

∂γl
i

(k = 1, . . . , f ; l = 1, . . . , n); Ai is an Rf×m

matrix with elements ai(kl) = ∂ξk
i (χ̂(j−1),γi)

∂χl (k = 1, . . . , f ; l = 1, . . . ,m); and finally

ei is an R
f vector with elements ei(k) = −ξk

i (χ̂(j − 1), γi) (k = 1, . . . , f ).
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Table 1. Ai matrix for affine motion. First part.

Function ∂a1 ∂b1 ∂c1 ∂a2 ∂b2 ∂c2

ξ1(χ, γi) xiR
x
2 yiR

x
2 Rx

2 xiR
y
2 yiR

y
2 Ry

2

ξ2(χ, γi) xiG
x
2 yiG

x
2 Gx

2 xiG
y
2 yiG

y
2 Gy

2

ξ3(χ, γi) xiB
x
2 yiB

x
2 Bx

2 xiB
y
2 yiB

y
2 By

2

Table 2. Ai matrix for affine and projective motion. Second part.

Function ∂α11 ∂α12 ∂α13 ∂α21 ∂α22 ∂α23 ∂α31 ∂α32 ∂α33 ∂β1 ∂β2 ∂β3

ξ1(χ, γi) −R1 −G1 −B1 0 0 0 0 0 0 -1 0 0
ξ2(χ, γi) 0 0 0 −R1 −G1 −B1 0 0 0 0 -1 0
ξ3(χ, γi) 0 0 0 0 0 0 −R1 −G1 −B1 0 0 -1

4 GLS-Based Color Motion Estimation under Illumination
Changes

In the GLSIC formulation of the motion estimation problem, the function ξi(χ, γi) is
expressed as follows:

ξi(χ, γi) = I2(q′
i)− P−1(I1(qi);p) (7)

with I1(qi) = (R1(qi), G1(qi), B1(qi))T and I2(q′
i) = (R2(q′

i), G2(q′
i), B2(q′

i))
T ,

where q′
i has been introduced to simplify notation as: q′

i = G(qi;g). Note that in this
case the number of functions f is 3. Eq. 7 can also be writen in a more convenient way
as follows:

ξ1
i (χ, γi) = R2(q′

i)− (R1(qi)ω11 +G1(qi)ω12 +B1(qi)ω13 + φ1)

ξ2i (χ, γi) = G2(q′
i)− (R1(qi)ω21 +G1(qi)ω22 +B1(qi)ω23 + φ2)

ξ3i (χ, γi) = B2(q′
i)− (R1(qi)ω31 +G1(qi)ω32 +B1(qi)ω33 + φ3)

(8)

whereR1(qi),G1(qi) andB1(qi) are theR,G andB, components of the first color im-
age in the sequence (Reference image) at the point qi, and R2(q′

i), G2(q′
i) and B2(q′

i)
are the R, G and B, components of the second color image in the sequence (Test im-
age) at the transformed point q′

i = G(qi;g). In this case, each observation vector γi is
related to each pixel qi, with r being the number of pixels in the area of interest.

Let us define the observation vector as γi = (R1(qi), G1(qi), B1(qi), xi, yi). The
vector of parameters is defined as follows: χ = (g,p)T . Due to the high dimensionality
of the parameter vector it is difficult to describe Ai, Bi using matrix form. Tables will
be used instead. For affine motion, Ai is shown in Tables 1 and 2; Bi is shown in Tables
3 and 4. For projective motion, Ai is shown in Tables 5 and 2; Bi is shown in Tables 3
and 6.

In Tables 1 to 6, Rx
1 , Ry

1 , Gx
1 , Gy

1 , Bx
1 , By

1 , Rx
2 , Ry

2 , , Gx
2 , Gy

2 , Bx
2 and By

2 have been
introduced to simplify notation as follows: Rx

1(qi), R
y
1(qi), Gx

1(qi), G
y
1(qi), Bx

1 (qi),
By

1 (qi) (components of the gradient of the R, G, B bands of the reference image at
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Table 3. Bi matrix for affine and projective motion. First part.

Function ∂R1 ∂G1 ∂B1

ξ1(χ, γi) −α11 −α12 −α13

ξ2(χ, γi) −α21 −α22 −α23

ξ3(χ, γi) −α31 −α32 −α33

Table 4. Bi matrix for affine motion. Second part.

Function ∂x ∂y

ξ1(χ, γi) (a1Rx
2 + a2R

y
2 ) − (α11Rx

1 + α12Gx
1 + α13Bx

1 ) (b1Rx
2 + b2R

y
2 ) − (α11R

y
1 + α12G

y
1 + α13B

y
1 )

ξ2(χ, γi) (a1Gx
2 + a2G

y
2 ) − (α21Rx

1 + α22Gx
1 + α23Bx

1 ) (b1Gx
2 + b2G

y
2 ) − (α21R

y
1 + α22G

y
1 + α23B

y
1 )

ξ3(χ, γi) (a1Bx
2 + a2B

y
2 ) − (α31Rx

1 + α32Gx
1 + α33Bx

1 ) (b1Bx
2 + b2B

y
2 ) − (α31R

y
1 + α32G

y
1 + α33B

y
1 )

Input: Images I1 = (R1, G1, B1)T and I2 = (R2, G2, B2)T

Output: χ̂, the vector of estimated motion parameters.
1. Calculate image gradients.
2. j = 0.
3. Set Ω(0) = I, Φ(0) = (0, 0, 0)T and g(0) = FeatureStep(I1, I2).
4. χ̂(0) = (g(0),p(0))T , with p(0) = (ω11(0), . . . , ω33(0), φ1(0), . . . , φ3(0)).
5. repeat
6. j = j + 1.
7. Update matrices Ai, Bi and ei using χ̂(j − 1).
8. Estimate ∆̂χ(j).
9. χ̂(j) = χ̂(j − 1) + ∆̂χ(j).

10. until |∆̂χ(j)| is small enough.
11. χ̂ = χ̂(j).

Algorithm 1. The GLSIC algorithm

point qi), Rx
2(q′

i), R
y
2(q

′
i), G

x
2(q′

i), G
y
2(q

′
i), B

x
2 (q′

i) and By
2 (q′

i) (components of the
gradient of the R,G,B bands of the test image at point q′

i), respectively.
In addition, Nd, N1, N2, N3, N4, N5 and N6 would be:

Nd = (dxi + eyi + 1), N1 = a1xi + b1yi + c1, N2 = a2xi + b2yi + c2

N3 =
a1Nd − dN1

N2
d

, N4 =
a2Nd − dN2

N2
d

, N5 =
b1Nd − eN1

N2
d

, N6 =
b2Nd − eN2

N2
d

(9)

The estimation process is summarized in Algorithm 1. A Feature-based Step is used
to initialize the motion estimator (whenever the deformation between images is quite
large a good initial vector of motion parameters is needed). It mainly consists of a SIFT-
based technique [10] to detect and describe interest points, where for each interest point
belonging to the first image a K-NN search strategy is performed to find the k-closest
interest points in the second image. Finally, for estimating the first approximation of the
motion parameters a random sampling technique is used [14].

Regarding the illumination parameters at χ̂(0), they have initially been set to: Ω = I
and Φ = (0, 0, 0)T .
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Table 5. Ai matrix for projective motion. First part.

Function ∂a1 ∂b1 ∂c1 ∂a2 ∂b2 ∂c2 ∂d ∂e

ξ1(χ, γi)
xRx

2
Nd

yRx
2

Nd

Rx
2

Nd

xR
y
2

Nd

yR
y
2

Nd

R
y
2

Nd

−xiRx
2N1−xiR

y
2N2

N2
d

−yiRx
2N1−yiR

y
2N2

N2
d

ξ2(χ, γi)
xGx

2
Nd

yGx
2

Nd

Gx
2

Nd

G
y
2

Nd

yG
y
2

Nd

G
y
2

Nd

−xiGx
2 N1−xiG

y
2N2

N2
d

−yiGx
2N1−yiG

y
2N2

N2
d

ξ3(χ, γi)
xBx

2
Nd

yBx
2

Nd

Bx
2

Nd

xB
y
2

Nd

yB
y
2

Nd

B
y
2

Nd

−xiBx
2 N1−xiB

y
2 N2

N2
d

−yiBx
2 N1−yiB

y
2 N2

N2
d

Table 6. Bi matrix for proyective motion. Second part.

Function ∂x ∂y

ξ1(χ, γi) (N3Rx
2 + N4R

y
2 ) − (α11Rx

1 + α12Gx
1 + α13Bx

1 ) (N5Rx
2 + N6R

y
2) − (α11R

y
1 + α12G

y
1 + α13B

y
1 )

ξ2(χ, γi) (N3Gx
2 + N4G

y
2 ) − (α21Rx

1 + α22Gx
1 + α23Bx

1 ) (N5Gx
2 + N6G

y
2 ) − (α21R

y
1 + α22G

y
1 + α23B

y
1 )

ξ3(χ, γi) (N3Bx
2 + N4B

y
2 ) − (α31Rx

1 + α32Gx
1 + α33Bx

1 ) (N5Bx
2 + N6B

y
2 ) − (α31R

y
1 + α32G

y
1 + α33B

y
1 )

Table 7. Results of the registration using the four similarity measures

NAAE NCC ISC SCC
GLSIC 0.9469 0.9662 0.7499 0.9648

DIC 0.9341 0.9515 0.7204 0.9528

5 Experiments and Results

In order to test the accuracy of the proposed motion estimation technique, several ex-
periments were performed using a set of challenging images (some of them are shown
in Fig. 1) obtained from several sources, including: Bartoli’s example1, Brainard’s ex-
amples2, Simon Fraser University Computational Vision Lab’s examples3 and Oxford’s
Visual Geometry Group’s examples4. The first three images in the first row of Figure
1 were acquired by ourselves using a conventional digital camera and varying the illu-
mination conditions. In all image pairs there exists a simultaneous geometric and pho-
tometric transformation. The GLSIC method was tested against the DIC method [2].
For each image pair, first, the Feature-based step was performed to obtain a good inital
motion parameters vector. Then, both algorithms were applied using this initialization,
obtaining two output parametersχGLSIC andχDIC . With the estimated parameters, the
Test image can be geometrically and photometrically transformed. Then if the parame-
ters have been correctly estimated, the resulting images (IGLSIC and IDIC ) should be
very similar to the corresponding reference images.

Figure 2 shows the results obtained with the proposed technique for Bartoli’s image,
used in [2]. The first two images are the Test and the Reference image. The third is
a panoramic image with the result of the registration. Note how the motion and the
illumination parameters have been correctly estimated.

1 http://www.lasmea.univ-bpclermont.fr/Personnel/Adrien.Bartoli/
Research/DirectImageRegistration/index.html

2 http://color.psych.upenn.edu/brainard/
3 http://www.cs.sfu.ca/c̃olour/data/objects under different
lights/index.html

4 http://www.robots.ox.ac.uk/˜vgg/research/affine/index.html

http://www.lasmea.univ-bpclermont.fr/Personnel/Adrien.Bartoli/Research/DirectImageRegistration/index.html
http://www.lasmea.univ-bpclermont.fr/Personnel/Adrien.Bartoli/Research/DirectImageRegistration/index.html
http://color.psych.upenn.edu/brainard/
http://www.cs.sfu.ca/~colour/data/objects_under_different_lights/index.html
http://www.cs.sfu.ca/~colour/data/objects_under_different_lights/index.html
http://www.robots.ox.ac.uk/~vgg/research/affine/index.html
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Fig. 1. Some of the images used in the experiments

(a) Test Image (b) Reference Image (c) Panoramic Image

Fig. 2. Registration result using Bartoli’s Example in [2]

Four image similarity measures were used to assess the quality of the estimation: the
Normalized Correlation Coefficient (NCC [5]), the Increment Sign Correlation coef-
ficient (ISC [7]), the Selective Correlation Coefficient (SCC [8]) and the Normalized
Average of Absolute Errors (NAAE) defined as:

NAAE(aae) =
{

0 if aae > TH
TH−aae

TH otherwise
, (10)

where aae is the average of the absolute errors for all the corresponding pixels in the
images, and TH is a constant. The four measures produce values from 0 (low simi-
larity) to 1 (high similarity). Table 7 shows the average of the values obtained for all
experiments. Note how the proposed estimation technique overcomes Bartoli’s method
[2] for all similarity measures.

6 Conclusions

In this paper, a new method able to assess the geometric and photometric transformation
between image pairs has been presented. It uses a Generalized Least Squares estimation
framework combined with an affine transform illumination model. It has been tested in
a series of images from different sources overcoming what is considered the reference
method for registration with color illumination compensation [2].
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Abstract. Nowadays, background model does not have any robust so-
lution and constitutes one of the main problems in surveillance systems.
Researchers work in several approaches in order to get better background
pixel models. This is a previous step to apply the background subtrac-
tion technique and results are not as good as people expect. We propose
a novel approach to the background subtraction technique without a
strong dependence of the background pixel model. We compare our al-
gorithm versus Wallflower algorithm [1]. We use the standards deviation
of the difference as an independent initial parameter to reach an adjusted
threshold for every moment. This solution is more efficient computation-
ally than the wallflower approach.

1 Introduction

Surveillance systems are interested in the problem of segmenting moving objects
in video sequences. Background subtraction technique is one of the most used
approaches. This algorithm compares the current image versus a background
image obtained by a previous processing of the pixel history. The pixels where
the difference was greater than a threshold are marked as foreground pixels. That
is the main principle for this technique. In our opinion this kind of algorithms
may be separate in two main steps: background maintenance and segmenting
criteria.

The background maintenance is the step where the background is modeled.
Next, it is predicted an expected image according to his model. In general, this
is the main feature that distinguishes methods. The current models report a lot
of errors to predict the background. Some researchers have produced states of
the art of the existent methods in last years[1], [2],[3] and [4].

The second step (segmenting criteria) has evolved since a simple priori thresh-
old [5] to a more complex system as [1].In general, this step is based on the first
one. Some variables are inferred from the background maintenance phase in order
to obtain an automatic threshold to segment foreground pixels.

One of the most popular algorithms is the Gaussian mixture model. In [6], the
authors explain a detailed version of it. At present, there are authors trying to
improve this method because it has a great number of advantages.For example,
the authors of [7] propose an approach that combines the Gaussian mixture

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 69–76, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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model with a Markov random fields smoothness. That algorithm has a great
computational cost. It fixes a lot of parameters. That become the method in
a scene depended method. A survey with a great amount of approaches can
be found in [8]. Most of them try to solve the problem of robust background
maintenance, but the number of situations that can be observed in an image
sequence is colossal.

The main problems are presented in [1]. We are going to focus our work in
seven of them: moved object, time of day, light switch, waving trees, camouflage,
bootstrap and foreground aperture. There are works which try to solve other
problems. For example [9] shows an algorithm to solve the shadows in the image.

We propose a novel method to solve the problems of background subtrac-
tion technique. Our algorithm does not have a strong dependence of background
maintenance. Algorithms like Cutler and Wallflower [4] use a general threshold
in order to segment the difference between the current images and the back-
ground. However, the Cutler uses a fixed value calculated offline for all frames.
Wallflower is more similar to our method because its threshold is calculated dy-
namically, but taking into account p previous frames. In our case, we only use
the standard deviation of the difference as an independent initial parameter to
reach an adjusted threshold for every moment.

This paper is divided in 4 sections. Section 1 is an overview of this work.
Section 2 describes our algorithm and some theoretical topics about it. Section
3 presents how we use our approach and the comparison of our results versus
Wallflower algorithm. Lastly, section 4 contains the conclusions and future work.

2 Our Approach

Nowadays, the researchers are modeling at pixel level. After that, they subtract
the current image from the background (”subtracted image”). Lastly, they ap-
ply a threshold(obtained in modeling phase) for each pixel and classify those
pixels as foreground or background. Then, they process the obtained images at
region and frame levels. At region level, they use connected component anal-
ysis, morphological and texture tools, among others. But there are not robust
mathematical models at those levels.

We present a novel approach for the detection problem in video image se-
quences. It is based on the background subtraction. The focus is not based on
a new modeling tool at pixel level. We are going to use a simple background
maintenance strategy.

For predicting the value of one pixel we are going to use the mean of this
pixel in the time(this is a very simple model at pixel level). For this purpose we
calculate the mean per pixel of the N first frames as initial background, using
an update mechanism as follows:

µr,c(t + 1) = µr,c(t) ∗
N − 1
N

+
Ir,c(t)
N

(1)

Where µr,c(t) and Ir,c(t) are the estimated mean and the pixel value, in the
pixel (r, c) (row, column) in the frame t, respectively. Also, we present a very
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similar correction to the defined in [1]. If the average of an image decreases
until exceeds certain threshold T, the algorithm calculates a second background
automatically, independent of the first, keeping both in memory to use them
later in two directions, when average is over T and below it. The application of
this correction makes the algorithm works fine for fast illumination changes.

We need to subtract the background in order to apply our model. We start
from a calculated background, using the equation (1). Next, we are going to
obtain the ”subtracted image” (Sr,c) as:

Sr,c(t + 1) = Ir,c(t+ 1)− µr,c(t + 1) (2)

Only two cases can be observed: the current image is a background image or
there are objects in the scene.

In the first case(background image) we suppose there is only noise or illumina-
tion changes. This way, when numerical values of the resulting image(”subtracted
image”) are plotted, we should obtain a Gaussian distribution centered in zero
if only exists noise or centered in δ, if there was an illumination change, being δ
the magnitude of this change.

Our hypothesis is that it is possible to define an automatic threshold which
depends on the global image noise to detect the moving objects.

The three channel colors (R,G,B) of the values of Sr,c are adjusted to a three
Gaussian with parameters µR (mean of the channel R), µG (mean of the channel
G), µB (mean of the channel B), σR (standard deviation of the channel R), σG

(standard deviation of the channel G) and σB (standard deviation of the channel
B) that characterize them.

Figure 1a shows the obtained result, adjusting the ”subtracted image” from
a video sequence without object presence, with the obtained background from
the preceding frames. None of the obtained adjusts had a regression coefficient
under 0.9. Our gaussian distribution is centered in zero because there are only
noise.

Figure 1b shows an illumination change. Notice that mean is not in zero.
Then, we propose an automatic threshold T = k ∗ σ dependent on the global

image noise level to segment the objects.
The binary image is obtained as:

Br,c(t + 1) =

⎧
⎨
⎩

1 if |Sr,c(t + 1)− δ(t + 1)| ≥ k ∗ σ(t + 1)

0 if |Sr,c(t + 1)− δ(t + 1)| < k ∗ σ(t + 1)
(3)

Where Br,c is the binary image obtained as a first level of detection. We calculate
δ(t+1)(magnitude of change) as the mean of the matrix Sr,c(t+1). The detected
objects are labeled with value 1. In other words, when a pixel is out of our interest
region, we say this is a pixel which does not belong to our distribution and we
label it as foreground.

After, we performance a correction in the histogram displacement by the effect
of illumination changes(|Sr,c(t + 1) − δ(t + 1)|), this distribution is centered in
zero. We may find two kind of noise’s extreme behavior in the subtracted image.



72 W.I. Guerra and E. Garćıa-Reyes

Fig. 1. A ”Subtracted image” adjusted to a Gaussian distribution function centered in
zero(only noise is observed). b ”Subtracted image” adjusted to a Gaussian distribution
function centered in δ(illumination change).

One, the current image has very low noise level which show a narrow histogram,
in this case with a threshold near to zero we assure low false positive rate for the
pixel label as background. Second, the current image has very high noise level
and with a threshold more distant to zero we assure low false positive rate for
the pixel label as foreground. In other words, if we fix k, when the current image
has a lot of noise we obtain a T value (k ∗σ) so big that all pixels will belong to
our gaussian distribution model and they will be classified as background pixels
and when the current image is free of noise our threshold will tend to zero, then
most of the pixels will be out of the interest region and will be classified as
foreground.

Then, we need an adaptive threshold in order to deal with different noise levels.
The following step will try to apply a regional analysis to solve the confusion
re-labeling the pixels whose values are higher than the threshold in the first case
and the pixels lower than the threshold in the second one.

Then, we defined k dependent on σ.

k = exp(−(
σ(t + 1)− 0.23 ∗ n

0.12 ∗ n )2) + 3 ∗ exp(−(
σ(t + 1)
0.08 ∗ n )2) (4)

Where n is the color scale(256 in our case).
This is a semi-empiric equation constructed in order to solve the problem

explained before. Notice that if σ is a big value, k is going to be a small value
to smooth the noise effect.

If σ value is small then k is going to be big(for example k > 3 ) and we can
ensure, according to our gaussian model(see figure 2), that more than 99,7% of
pixels belongs to our model are inside our interest region and all pixels do not
belong to our distribution are foreground pixels.

In the second case, if σ value is big then k is going to tend to zero. This
reduces a lot our interest region and we can ensure that all pixels belong to our
distribution are background pixels.
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Fig. 2. Dark blue is less than one standard deviation from the mean. For the normal
distribution, this accounts for about 68% of the set (dark blue) while two standard
deviations from the mean (medium and dark blue) account for about 95% and three
standard deviations (light, medium, and dark blue) account for about 99.7%. Extracted
from [10].

We need to relabel the pixels, at region level, in order to recover foreground
pixels that belong to gaussian distribution (in the first case) and the background
pixels do not belong(in the second case).

The processing continues convolving the image with a filter of 3x3 to remove
isolated pixels. Next, we apply a connected components algorithm. We keep the
regions greater or equal than a size estimated for a person (suitable for each
scene) and with more than 30 % of foreground pixels inside the minor convex
polygon that surround the component. The binary image obtained from this step
is designated as Pr,c.

In order to relabel, we are going to join the connected components with certain
degree of similarity. For this purpose, we define a criteria to relabel the pixels
taking into account the mean color of the object and the spatial distance of the
pixel to the object.

Mr,c(t + 1) = Er,c(t + 1) +R ∗ Cr,c(t + 1) (5)

Cr,c(t + 1) = |Ir,c(t+ 1)−m(t+ 1)| (6)

m(t+ 1) =
1

N0(t+ 1)

∑
r,c

Pr,c(t+ 1) ∗ Ir,c(t+ 1) (7)

Where N0 is the number of pixels distinct of zero in the binary image Pr,c(t+1)
and R is a constant that depends of the pedestrian dimension in the surveillance
scene. Thus, m is the mean of pixel values labeled as object, in the binary image
P, in the current image. Er,c is the minor distance from pixel (r, c) to a labeled
pixel as object(distance transform [11]). We threshold to obtain the binary image
A as:

Ar,c(t+ 1) =

⎧
⎨
⎩

1 if |Mr,c(t + 1)| ≤ R

0 if |Mr,c(t + 1)| > R
(8)
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Where A is the resulting matrix of our algorithm will return. As we can observe
in equations (5), (6) and (8) if Cr,c(t + 1) > 1 then Ar,c(t + 1) = 0. This is
because our criteria is very susceptible to color change.

3 Experimental Analysis

In order to apply our algorithm to the wallflower’s dataset [1], we adjust the
constant parameter R. As was mentioned above, this parameter depends on
the dimensions of the object we want to detect. We use two values of R in
this dataset because there are two different dimensions of the human body: the
first one, presented in the Waving Trees, Camouflage and Foreground Aperture
video sequences, which is bigger than the dimension presented in the other video
sequences.

With this correction, we apply our method. The results are shown in Table1.
Here we have the wallflower algorithm results [1] and ours over the wallflower
dataset.

In the figure 3, we compare our results versus wallflower’s results. Wallflower’s
algorithm is a very famous method and its dataset is one of the most used to
compare algorithms. The first row of pictures is hand-segmented images. Look at
the pictures and notice that our algorithm works much better than wallflower’s
method.

As we can observe in Table 1, our algorithm work better than wallflower
algorithm. It reduces to 56 % the total of errors they reported.

Fig. 3. Visual results from Wallflower and this paper
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Table 1. Comparison of Wallflower and this paper

Algorithm Error moved time light waving camouflage bootstrap foreground Total
Type object of day switch trees aperture Errors

Wallflower
false neg. 0 961 947 877 229 2025 320

11448
false pos. 0 25 345 1999 2706 365 649

This paper
false neg. 0 1030 1308 164 518 907 236

5906
false pos. 0 3 385 333 384 565 73

As we show in Table 1, in light switch image, there are a great amount of
false negative pixels. In our opinion, this does not constitute an error of our
algorithm because most of them are pixels belonged to a chair, that wallflower
dataset report as an object. We consider that the chair is background in the
scene.

4 Conclusions

In this paper, we present a novel approach to the background subtraction tech-
nique. The global threshold used to segmenting the moving objects is dependent
on the current image noise level and it is automatically calculated applying an
empirical formula. We need to set only one parameter (R) for our algorithm. We
experimentally compare our approach against the wallflower algorithm and we
obtained better results, as showed visually in figure 3, and numerically in table
1. Our future research direction is to combine our algorithm with a most robust
tool to model the pixel history.
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Abstract. Locally linear embedding (LLE) is a method for nonlinear
dimensionality reduction, which calculates a low dimensional embedding
with the property that nearby points in the high dimensional space re-
main nearby and similarly co-located with respect to one another in the
low dimensional space [1]. LLE algorithm needs to set up a free param-
eter, the number of nearest neighbors k. This parameter has a strong
influence in the transformation. In this paper is proposed a cost func-
tion that quantifies the quality of the embedding results and computes
an appropriate k. Quality measure is tested on artificial and real-world
data sets, which allow us to visually confirm whether the embedding was
correctly calculated.

1 Introduction

In many pattern recognition problems the characterization stage generates a big
amount of data. There are several important reasons for reducing the feature
space dimensionality, such as, improve the classification performance, diminish
irrelevant or redundancy information, find out underlying data structures, obtain
a graphical data representation for visual analysis, etc [2]. Several techniques for
dimensionality reduction have been developed, traditionally these techniques are
linear [3] and they can not correctly discover underlying structures of data lie on
nonlinear manifolds. In order to solve this trouble a nonlinear mapping method
called locally linear embedding (LLE) was proposed in [4,5].

This method requires to manually set up three free parameters, the dimen-
sionality of embedding space m, the regularization parameter α, and the number
of nearest neighbors k for local analysis [6]. There are two previous approaches
for choosing k. Kouropteva et. al [7] presented a hierarchical method for auto-
matic selection of an optimal parameter value based on the minimization of the
residual variance. Nonetheless, the residual variance can not quantify the local
geometric structure of data. Besides, Goldberg and Ritov [8] display a novel
measure based on Procrustes rotation that enables quantitative comparison of
the output of manifold-based embedding algorithms, the measure also serves as a
natural tool for choosing dimension-reduction parameters. The local procrustes
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measure preserves local geometric structure but does not consider the global
behavior of the manifold.

In this paper is proposed an automatic method for choosing the number of
nearest neighbors, which is done by means of computing a cost function that
quantifies the quality of embedding space. This function takes into account local
and global geometry preservation. Proposed approach is experimentally verified
on 2 artificial data sets and 1 real-world data set. Artificial data sets allow to
visually confirm whether the embedding was correctly calculated, and real-world
data set was used for visualization of multidimensional samples.

2 Locally Linear Embedding

Let X the input data p×nmatrix, where the sample vectors xi ∈ �p, i = 1, . . . , n
are had. Data live on or close to a non-linear manifold and that is well-sampled.
Besides, each point and its neighbors lie on a locally linear patch. LLE algorithm
has 3 steps. First, search the k nearest neighbors per point, as measured by
Euclidean distance. If k is set too small, the mapping will not reflect any global
properties; if it is too high, the mapping will lose its nonlinear character and
behave like traditional PCA [6]. Second, each point is represented as a weighted
linear combination of its neighbors [9], that is, we calculate weights W that
minimize reconstruction error

ε (W) =
n∑

i=1

‖xi −
n∑

j=1

wijxj‖2, (1)

subject to an sparseness constraint, wij = 0 if xj is not k−neighbor of xi, and
an invariance constraint

∑n
j=1 wij = 1. For a particular data point x ∈ �p and

its k nearest neighbors ηηη. Let G the Gram k× k matrix, where its elements are
Gjl =

〈(
x− ηηηj

)
, (x− ηηηl)

〉
, j = 1, . . . , k; l = 1, . . . , k. Then rewriting (1)

ε = w�Gw s.t.
∑n

j=1
wj = 1. (2)

The solution of (2) is obtained by solving an eigenvalue problem. Employing
Lagrange theorem w = (1/2)λG−11, where λ = 2

/(
1�G−11

)
. When Gram

matrix G is singular (or close), the result of least squares problem for finding w
does not have unique solution. So, it is necessary to regularize G before finding
w. In [1,5] is proposed to calculate the regularization of G as Gjl ← Gjl + α
where α = δjl

(
∆2
/
k
)
tr (G), being δjl = 1 if j = l and 0 in other case, ∆2 � 1.

However, ∆ must be empirically tuned, in [1] is advised to employ ∆ = 0.1.
In third step low dimensional embedding is calculated. Using W, the low

dimensional output Y is found by minimizing (3)

Φ (Y) =
n∑

i=1

‖yi −
n∑

j=1

wijyj‖2, (3)
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subject to
∑n

i=1 yi = 0 and
∑n

i=1 yiy�
i /n = Im×m, where Y is the embedding

data n×m matrix (being m ≤ p), and yi ∈ �m is the output sample vector.
Let M =

(
In×n −W�) (In×n −W), and rewriting (3) to find Y,

Φ (Y) = tr
(
Y�MY

)
s.t.

{
11×nY = 01×n
1
nY�Y = Im×m

(4)

it is possible to calculate m + 1 eigenvectors of M, which are associated to
m + 1 smallest eigenvalues. First eigenvector is the unit vector with all equal
components, which is discarded. The remaining m eigenvectors constitute the m
embedding coordinates found by LLE.

3 Measure of Embedding Quality

When dimensionality reduction technique is computed is necessary to establish
a criteria for knowing if its results are adequate. In LLE is searched a transfor-
mation that preserves the local data geometry and global manifold properties.

The quality of an output embedding could be judged based on a comparison to
the structure of the original manifold. However, in the general case, the manifold
structure is not given, and it is difficult to estimate accurately. As such ideal
measures of quality cannot be used in the general case, an alternate quantitative
measure is required [8].

In [7], the residual variance is employed as a quantitative measure of the
embedding results. It is defined as

σ2
R(DX, DY) = 1− ρ2

DXDY
, (5)

where ρ2 is the standard linear correlation coefficient, taken over all entries of
DX and DY; DX and DY are the matrices for Euclidean distances in X and Y,
respectively. DY depends on the number of neighbors selected k. According to
[7], the lowest residual variance corresponds to the best high-dimensional data
representation in the embedded space. Hence, the number of neighbors can be
computes as

kσ2
R

= argmin
k

(σ2
R(DX, DY)). (6)

On the other hand, in [8] is proposed to compare a neighborhood on the mani-
fold and its embedding using the Procrustes statistic as a measure for qualifying
the transformation. This measures the distance between two configurations of
points and is defined as P (X,Y) =

∑n
i=1 ‖xi −Ayi − b‖2, being A�A = I

and b ∈ �m. The rotation matrix A can be computed from Z = X�HY, where
H = I− 1

k11�, 1 is a n × 1 column vector, and H is the centering matrix. Let
ULV� be the singular-value decomposition of Z, then A = UV�, the trans-
lation vector b = x −Ay, where x and y are the sample means of X and Y,
respectively. Let ‖·‖F the Frobenius norm, so P (X,Y) = ‖H(X−YA�)‖2F .

In order to define how well an embedding preserves the local neighborhoods
using the Procrustes statistic PL(Xi,Yi) of each neighborhood-embedding pair
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(Xi,Yi). PL (Xi,Yi) estimates the relation between the entire input neighbor-
hood and its embedding as one entity, instead of comparing angles and distances
within the neighborhood with those within its embedding. A global embedding
that preserves the local structure can be found by minimizing the sum of the
Procrustes statistics of all neighborhood-embedding pairs [8], taking into ac-
count an scaling normalization, which solves the problem of increased weighting
for larger neighborhoods, so

RN (X,Y) =
1
n

n∑
i=1

PL(Xi,Yi)/ ‖HLXi‖2F , (7)

where HL = I− 1
k11�; 1 is a k × 1 vector. Therefore, the number of nearest

neighbors can be calculated as

kRN = arg min
k

(RN (X,Y)). (8)

In this work, we propose an alternative measure for quantifying the embedding
quality. This measure attempts to preserve the local geometry and the neigh-
borhood co-location, identifying possible overlaps on the low dimensional space.
And it is defined as
CI (X,Y) =

1
2n

n∑
i=1

⎧
⎨
⎩

1
k

k∑
j=1

(
D(xi,ηηηj) −D(yi,φφφj)

)2
+

1
kn

kn∑
j=1

(
D(xi,θθθj) −D(yi,γγγj)

)2

⎫
⎬
⎭,

(9)

where D is an standardized Euclidean distance to obtain a maximum value equal
to one. For example D(xi,ηηηj) is the distance calculated between the observation
xi and each one of its k neighbors on the input space.

Once the embedding, for each point yi ∈ �m a set βββ of k nearest neighbors
is calculated, and the projection φφφ of ηηη is found. The neighbors computed in βββ
that are not neighbors in ηηη conform a new set γγγ, that is γγγ = βββ − (βββ ∩φφφ). The
size of γγγ is kn. Besides, the projections of the elements of γγγ in X conform the
set θθθ of kn neighbors. In an ideal embedding CI (·) = 0.

The first term in (9) quantifies the local geometry preservation. The k nearest
neighbors of xi chosen on the high dimensional space X are compared against
their representations in the embedded space Y. The second term computes the
error produced by possible overlaps in the embedded results, which frequently
occurs when the number of neighbors is strongly increased, and global properties
of the manifold are lost. The number of nearest neighbors can be found as

kCI = arg min
k

(CI(X,Y)). (10)

4 Experimental Background

4.1 Tests on Artificial Data Sets

Two different manifold are tested, which allow to visually confirm whether the
embedding was correctly calculated. The Swiss Roll with Hole data set with
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Fig. 1. Artificial Data Sets

2000 samples (Fig. 1(a)) and the Fishbowl data set with uniform distribution in
embedding space and 1500 samples (Fig. 1(b)).

In order to quantify the embedding quality and find the number of nearest
neighbors needed for a faithful embedding, LLE is computed by varying k in the
subset k ∈ {3, 4, 5, . . . , 250}, fitting the dimensionality of the embedded space to
m = 2. The embedding quality is computed according to (5), (7) and (9). The
number of nearest neighbors is found by means of (6), (8) and (10).

In Figures 2(a), 2(b), and 2(c) are presented the embedding results for the
Swiss Roll with Hole data set using an specific number of neighbors in accordance
with each one of the criteria above pointed out. Similarly, in Figures 3(a), 3(b),
and 3(c) the embedding results for the Fishbowl data set are displayed. For these
artificial data sets only our approach (10) finds appropriate embedding results
preserving local and global structure. In the case of the Swiss Roll with Hole, the
criteria (6) and (8) produce overlapped embeddings. Besides, in Fishbowl, the
unfolding results obtained by means of (6) and (8) are wrong, those are similar
to PCA and then local structure is lost.

On the other hand, Figures 2(d), 2(e), 2(f), and 3(d), 3(e), 3(f), show curves
of the cost function value versus the number of neighbors. The full fill square on
the curves is the global minimum of the function and corresponds to the number
of nearest neighbors chosen for the embedding.

4.2 Tests on Real-World Data Sets

We use Maneki Neko pictures, which is in the Columbia Object Image Library
(COIL-100) [10]. There are 72 RGB-color images for this object in PNG format.
Pictures are taken while the object is rotated 360 degrees in intervals of 5 degrees.
The image size is 128× 128. In Fig. 4 are shown some examples. We transform
these color images to gray scale, next the images were subsampled to 64 × 64
pixels. Then, we have input space of dimension p = 8192 and n = 72.

In order to quantify the embedding quality and find the number of neighbors
needed for a faithful embedding, LLE is computed by varying k in the subset
k ∈ {3, 4, 5, . . . , 36}, fitting the dimensionality of the embedded space to m = 2.
In Fig. 5 are shown the embedding results for the Maneki Neko data set and
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Fig. 2. Results for the Swiss Roll with Hole Data Set
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Fig. 3. Results for the Fishbowl Data Set

its corresponding cost function curves, which allow to establish the number of
neighbors employed in the transformation, according to (6), (8) and (10).
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Fig. 5. Results of Maneki Neko Data Set

5 Discussion

From the obtained results on artificial data sets (Fig. 2(d) and 3(d)) employing the
cost function (6) proposed in [7], as a global trend, it is possible to notice if the size
of the neighborhood is augmented, the value of σ2

R is diminished. Because a trans-
formation employing a largenumber of neighbors results in a linear transformation
and the residual variance does not quantify the local geometric structure, then this
measure can not identify a suitable number of neighbors k. Figures 2(a) and 3(a)
show some examples of this situation. In this case, data in low-dimensional space
are overlapped and the cost function (6) does not detect it. Nevertheless Fig. 5(d)
does not display the trend above pointed out and allows to calculate an appropriate
embedding (Fig. 5(a)). The inconsistent results obtainedby using the residual vari-
ance make of it an unreliable measure. In [7] the ambiguous results are attributed
to the fact that Euclidean distance becomes an unreliable indicator for proximity.

On the other hand, the measure proposed in [8] takes into account the local
geometric structure but does not consider the global behavior of the manifold.
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Then, far neighborhoods can be overlapped in the low-dimensional space and this
measure shall not detect it, which can be seen in Fig. 2(b), 3(b), and 5(b). The
measure of embedding quality presented here (10) computes a suitable number
of neighbors for both artificial and real-world manifolds. Besides, the embedding
results calculated using this criterion are in accordance to the expected visual
unfolding (Fig 2(c), 3(c), and 5(c)). The proposed measure preserves the local
geometry of data and the global behavior of the manifold.

6 Conclusion

In this paper a new measure for quantifying the embedding quality using LLE
is proposed. This measure is employed as a criterion for choosing automatically
the number of nearest neighbors needed for the transformation. We compare
the new cost function against two methods presented in the literature. The
best embedding results (visually confirmed) were obtained using the approach
exposed, because it preserves the local geometry of data and the global behavior
of the manifold.
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Abstract. In this paper we report an approach for cryptographic key
generation based on keystroke dynamics and the k-medoids algorithm.
The stages that comprise the approach are training-enrollment and user
verification. The proposed approach is able to verify the identity of in-
dividuals off-line avoiding the use of a centralized database. The perfor-
mance of the proposed approach is assessed using 20 samples of keystroke
dynamics from 20 different users. Simulation results show a false accep-
tance rate (FAR) of 5.26% and a false rejection rate (FRR) of 10%. The
cryptographic key released by the proposed approach may be used in
several encryption algorithms.

Keywords: keystroke dynamics, biometrics, cryptography, k-medoids.

1 Introduction

The combination of biometrics and cryptography has attracted the attention of
some researches due to the fact that this combination can bring together the
better of the two worlds. The idea of combining biometrics and cryptography
is not new; however, the concept is poorly developed because several biometric
cryptosystems require maintaining the biometric information in a centralized
database. This fact has a serious impact in the social acceptance of the biomet-
ric cryptosystems. The first practical system that integrates the iris biometrics
into cryptographic applications is reported in [3]. A system that works using
fingerprint identification based on a token is presented in [1]. A successful com-
bination of face biometric and cryptography for key generation is also reported
in [2]. Another research that uses on-line handwritten signatures to generate
cryptographic keys is reported in [4]. Other approaches have also been reported
in [8,9]. However, these approaches have also reported a poor FAR and FRR.
Both performance metrics are crucial in determining if the combined system can
be implemented in real scenarios.

Keystroke dynamics can be defined as the timing data that describes when
a key is pressed and when a key is released as a user types at the keyboard.
The recorded timing data can be processed through an algorithm to determine a
primary timing pattern (PTP) for future verification. The PTP is used to verify
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c© Springer-Verlag Berlin Heidelberg 2009
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the identity of the individual. The design of the proposed approach considers
three security factors, namely, a user password, a behavioral biometric sample,
and a token. It works using a 3D random distribution of the biometric data
that assures also the randomness of the cryptographic key released. The 3D pat-
tern is extracted from the 3D random biometric pattern using the k-medoids
algorithm tested for different types of distances that measure similarity, namely,
Manhattan, Euclidean, Chebyshev and Markowski distance. The rest of the pa-
per is organized as follows. In Section 2, the k-medoids algorithm is described.
Section 3 presents the Minkowski distance for measuring similarity. Section 4
presents the keystroke dynamics and shows how the PTP is extracted to work
with the proposed approach. In Section 5, the design of the proposed approach
is explained, whereas in Section 6 simulation results are reported. Finally, con-
clusions are reported in Section 7.

2 K-Medoids Algorithm

The k-medoids algorithm is a clustering algorithm based on the k-means algorithm
and the medoidshift algorithm. Both, k-means and k-medoids, algorithms break
the dataset up into k clusters [5, 6]. Also, these algorithms attempt to minimize
squared error. The squared error can be defined as the distance between points la-
beled to be in a cluster and a point designated as the center of that cluster. The k-
medoids algorithm chooses datapoints as centers instead of computing the centers
as the k-means algorithm does. The k-medoids algorithm is a partitioning tech-
nique of clustering that clusters the data set of n objects into k clusters known a
priori. The k-medoids algorithm is more robust to outliers and noise compared to
the k-means algorithm [6]. A medoid is defined as that object of a cluster whose
average dissimilarity to the rest of the objects in that cluster is minimal. The par-
titioning around medoids (PAM) algorithm describes a common realization of the
k-medoid clustering algorithm. The PAM algorithm is as follows:

1. Arbitrary selection of k objects as medoid points out of n datapoints (n > k).
2. Associate each data object in the given data set to the most similar medoid to

form clusters. The similarity in this step can be computed using distance measure.
The distance measure used can be Euclidean, Manhattan, Chebyshev, or Minkowski
distance.

3. Randomly select a non-medoid object named R’ for each cluster.

4. Compute the total cost S of swapping initial medoid object to R’.

5. If S < 0, then swap initial medoid with the new one. Otherwise, the initial medoid
remains.

6. Repeat steps 2 to 5 until there is no change in the medoids.

The PAM algorithm is based on an iterative optimization process that evaluates
the effect of swapping between the initial medoid object and the non-medoid ob-
ject randomly selected. The principle of the PAM algorithm resides in step 5. It
can be seen that it may require trying all objects that are currently not medoids.
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Thus it represents an expensive computational cost, Cost(k(n − k)2), in each it-
eration. The PAM algorithm results in high quality clusters, as it may try every
possible combination, working effectively for small datasets. However, due to its
computational complexity, it is not practical for clustering large datasets [5,6].

3 Minkowski Distance

Formally, a similarity function aims at comparing two entities of a domain M
based on their common characteristics. Similarity can be measured in several
ways depending on the scale of measurement or data type. Based on the vector
representation the similarity can be calculated using the concept of distance.
In this paper, we use the Minkowski distance to do so. The selection of the
Minkowski distance is due to the fact that it is easy to implement in software
and hardware, its computational cost is lower compared with more complex
distances as Mahalanobis distance, and it fits better with the characteristics of
the proposed approach considering the type of data used. In general, the distance
dij between any two points, P = (x1, x2, ...xn) and Q = (y1, y2, ...yn) ∈ Rn, in
n-dimensional space may be calculated by the equation given by Minkowski as
follows [7]:

dij =
( n∑

i=1

|xik − xjk|p
) 1

p

(1)

with k being the index of the coordinates, and p determining the type of distance.
There are three special cases of the Minkowski distance:

– p = 1: this distance measure is often called city block distance, or Manhattan
distance.

– p = 2: with p equalling 2 the Minkowski distance is reduced to the well-
known Euclidean distance.

– p = ∞: with p equalling ∞ the Minkowski distance is reduced to the Cheby-
shev distance. In the limiting case of p reaching infinity, the resultant equa-
tion is as follows:

dij = lim
p→∞

( n∑
i=1

|xik − xjk|p
) 1

p

= max|xik − xjk|ni=1 (2)

4 A Behavioral Biometric: Keystroke Dynamics

Keystroke dynamics is defined as the timing data that describes when a key is
pressed or released as the user types at the keyboard. This behavioral biometric
uses the manner and the rhythm in which a user types characters. The keystroke
rhythms of a user are measured to develop a unique biometric pattern of the
users typing for future verification. The recorded timing data can be processed
through an algorithm to determine a PTP for future verification. The PTP is
used to verify or even try to determine the identity of the individual who is
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Fig. 1. Acquisition stage, a) Key pressing events pattern, b) Key releasing events pattern

producing those keystrokes. This is often possible because some characteristics
of keystroke production are as individual as handwriting or a signature.

The technique used to extract the PTP used in this paper considers partition-
ing the acquisition time in time slots. The size of the time slot affects directly
the FAR and FRR metrics. Several experiments performed showed that a size of
100ms for the time slot is good enough to minimize the FAR and FRR metrics
as it is shown in Section 6. Figure 1 shows the timing data of an individual. In
the top part, the timing data from the key pressing events is shown. The bot-
tom part shows the timing data from the key releasing events. As can be seen,
the key pressing process produces 9 events represented by the bold lines. The
key releasing process produces 10 events also represented by the bold lines. It
is important to notice that the first key pressed launches the acquisition stage
and also the timer. It is assumed that the first key pressed event is located at
zero in the time scale and thus the event is not considered in the computing of
the PTP. The rest of events are located in the time scale according to the value
that the timer has when the events take place. Figure 1 also depicts that the
events can occur at any time within a determined time slot however the time
value is rounded to the closest time slot value given in ms. This fact assures that
the extracted pattern only comprises a combination of the possible discrete time
values otherwise the possible time values that the event could take are infinite.

5 Proposed Approach

The successful recovering of the random cryptographic key depends on a cor-
rect combination of the user password, the behavioral biometric sample and the
token, which stores the user password hash, the encrypted random distribution
vectors (RDVs) used to reconstruct the 3D random biometric pattern, and the
3D pattern hash. The design presented here ensures that compromising two fac-
tors at most will not let to the attacker reveal the random biometric key.

The proposed approach is divided in two stages, namely, training-enrollment
and user verification. Figure 2 shows a detailed representation of the approach.
The first stage is executed when an individual is going to be enrolled for the
first time to the biometric cryptosystem. This stage produces through a sim-
ple training process the information needed to verify the user in the second
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stage. The training process uses the keystroke dynamics biometric information
obtained from the user at his enrollment. The first stage can also be executed
each time that the random biometric key needs to be revoked or renewed for any
security concern. The second stage, user verification, is executed each time that
the user needs to be identified before the biometric cryptosystem. The training-
enrollment stage consists of the following steps:

1. A 10-character password is required to the user. The user password p is hashed
using Message-Digest Algorithm 5 (MD5). The hash result H(p) is then directly
stored in the token.

2. The PTP is extracted as explained in the previous section. As a result of the timing
pattern extraction, two dataset are obtained, namely, key pressing pattern and key
releasing pattern. A third dataset is created taking the ASCII values of the password
characters. These datasets form a universe of 900 possible different combinations.
Notice that the PTP may vary even when the biometric information comes from
the same user. This is due to the fact that the user is not used to input the chosen
password or external factors affect his typing. Then, a training process is needed to
overcome these difficulties. The purpose of the training process is to make converge
and to generalize the PTP. The training process is as follows:

– The user is required to input ten times the 10-character password chosen. Each
time the PTP is extracted as explained previously.

– The 10 PTPs are compared each other point by point. If the two compared
points are separated each other for more than 4 time slots when the comparison
takes place, that timing pattern is automatically discarded.

– If at least six timing pattern survive this comparison process, the mean is cal-
culated for each point and the result is rounded to the nearest time slot value.
Otherwise, the training process must be restarted. Practical experiments showed
that a user used to type a password generates the same PTP at least 6 out of
10 tries.

– The resultant PTP obtained from this training process is considered as the
global PTP to be used with the proposed approach.

3. Three random vectors are generated of 160 values each one. The formed datasets by
the key releasing pattern and the ASCII password values are distributed according
to the generated RDV which contain pseudorandom values drawn from the standard
uniform distribution on the open interval (0, 10). The dataset that correspond to
the key pressing pattern is also distributed over generated RDV which contains
pseudorandom values drawn from the standard uniform distribution on the open
interval (0, 9). Each of the three random vectors corresponds to a coordinate in
a 3D plane. Figure 3 shows a 3D random biometric pattern generated using a
specific behavioral biometric with a determined random distribution vector. The 3D
pattern computed is formed for the resultant eight points obtained of performing the
k-medoids algorithm over the random distribution of datasets.

4. Once the k-medoids algorithm converges and the 3D pattern is extracted, the pat-
tern, k, is hashed using MD5 and the hash result H(k) is also saved into the token.

5. The RDVs used to construct the 3D random biometric pattern are encrypted using
the advanced encryption standard (AES) and stored in the token. The MD5 hash
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Fig. 2. The three security factor, user password, biometric behavioral sample and to-
ken, for the proposed approach

of the user password is used as the 128-bit key that the AES algorithm needs to
work. The training-enrollment stage can thus be defined as follows:

〈p, RDV, k〉−−−−−−−−−−−−−−−−−−−−−−−−→training − enrollment

⎡
⎣

H(p)
H(k)

RDVenc

⎤
⎦ (3)

Now, we proceed to a detailed description of the user verification stage. It must
be assumed that the user has the token with the three parameters stored in it.

1. A user password, psample, is required to the user who is claiming the identity. Then
the password provided for the user is hashed using MD5, H(psample), and compared
with the hash stored in the token H(p). If both hashes do not match, the stage ends.
Otherwise, the stage continues to step 2.

2. To perform AES decryption over the encrypted RDVs stored in the token using as
a key the MD5 hash of the password of the user already authenticated.

Fig. 3. A random biometric pattern generated using the biometric information with a
determined random distribution is shown. The bold line shows the convergence points,
3D pattern, after performing the k-medoids algorithm.
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3. To extract the PTP, of a keystroke dynamics sample presented by the user as
described previously.

4. To build the 3D random biometric pattern using as datasets the biometric infor-
mation obtained in step 3 and password in step 1 and as distribution the decrypted
RDVs obtained in step 2.

5. To apply the k-medoids algorithm over the 3D random biometric pattern built in
the previous step to extract the 3D pattern.

6. The 3D pattern recovered, krecovered, in the previous step is hashed using MD5,
H(krecovered) and compared to the hash stored in the token H(k). If both hashes do
not match, the stage ends. Otherwise, the stage continues to step 7.

7. The 3D pattern is added to the ASCII values of the password of the user, krecovered+
p. The result is hashed using MD5 H(krecovered + p) to obtain a 128-bit random
biometric key, k’. This is the cryptographic key that is released and belongs to the
verified user. The user verification stage can thus be defines as follows:

〈psample, PTPsample, T 〉−−−−−−−−−−−−−−−−−−−→user verification k′ (4)

Notice that in both, training-enrollment and user verification, stages is crucial
that PTPs, random biometric keys and decrypted RDVs used along the stages
must be securely crashed and not retained in memory.

6 Simulation Results

In this section, the performance results of the architecture discussed in the pre-
vious sections are reported. To illustrate the performance of the three security
factors architecture, a Keystroke Dynamics Database was created. This database
contains the timing data of 20 different users. It was collected 20 raw timing data
samples total per user without any discretization process. Then, the database
contains a global total of 400 timing data to be used to compute the FAR and
FRR metrics and the computational cost. The 20 samples collected per user
fulfill the training criterion stated previously. Even when the k-medoids algo-
rithm presents several advantages as resistance to noise and outliers compared
with other clustering algorithm, it also represents a high computational cost,
Cost(k(n−k)2) due to the fact that it may try every point in the dataset before
converging. Table 1 summarizes the maximum, minimum and the mean number
of iterations needed to converge using different types of distances. As can be
seen, a minimum of 2 iterations are need to make converge the 3D pattern for
all distances. However, the Manhattan distance is the most effective distance
because it needs at most 4 iterations to converge compared with the 6 iterations
that the Euclidean and Chebyshev distance may need or with the 5 iterations
that the Minkowski distance evaluated in 3 and 4 may need. Also, the computed
mean using the Manhattan distance is the closest value to the minimum number
of iterations which assures that the frequency of convergence with 2 iterations
is higher compared with the rest of the distances. Then, Manhattan distance is
the best choice for the architecture proposed because it needs less iterations to
converge and its computational cost, with k=8 and n=160, is considerably lower
compared with the rest of the tested distances.
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Table 1. Iteration comparison of the k-medoids algorithm working with different types
of distance

Distance p Maximum Minimum Mean

1 4 2 2.39
2 6 2 2.44
3 5 2 2.41
4 5 2 2.43
∞ 6 2 2.49

Table 2. Performance of FAR and FRR metrics for different time slots

Time slot (ms) FAR (%) FRR (%)
25 2.63 30
50 4.74 15
100 5.26 10
200 10.52 5
300 17.10 5

In training-enrollment stage, it is selected randomly a user then the 20 tim-
ing data samples of that user are used in the training process to extract the
PTP. Once the PTP has been extracted as explained previously, the proposed
architecture generates and stores in the token the information needed in the
user verification stage. The FAR and FRR metrics were obtained testing an ex-
tracted PTP against the 400 timing patterns stored in the Keystroke Dynamics
database. Given that the 20 timing data samples of the user fulfill the training
criterion, it may be expected that only the 20 timing data samples that corre-
sponds to the user who is claiming the identity should be accepted as legitimate.
The rest, 380 timing data samples of other users, should be rejected by the ar-
chitecture proposed. However, the FAR obtained in this work is 5.26% because
20 out of 380 timing data samples that do not belong to the user who claims
the identity before the proposed architecture were accepted as authentic when
they were not. Also, the FRR obtained is 10% because 2 out of 20 timing data
samples that in fact belong to the user who claims the identity were rejected
even when they represented accurately a timing data sample used to generate
the user verification data stored in the token. The FAR is high compared with
the combined system reported in [3,4]. However, the FRR has good performance
if it is compared to [1,2,4] but it is still high compared to [3]. Table 2 shows how
the FAR and FRR metrics are affected by changing the size of the time slot.
As the time slot increases the extraction process is less selective this makes that
PTPs from different users look similar. This fact then affects FAR negatively.
Increasing the size of the time slot affects positively the FRR metric due to the
fact that the architecture is able to identify PTP from the same user when the
PTP do not differ so much each other.

As can be seen, there is a compromise between the FAR and FRR metric. The
size of the time slot must be carefully chosen to save the equilibrium between
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the metrics. The reason of choosing the 100ms time slot size is due to the fact
that the absolute value of the difference of both metric is the minimum among
the rest of the data of Table 2 which assures that the uncertainty level is also
minimized.

7 Conclusions

In this paper, we have proposed an architecture based on the keystroke dynamics
and the k-medoids algorithm. The proposed approach comprises three security
factors, namely, user password, behavioral biometric sample and token. It assures
that if an attacker compromises at most two factors, he is not going to be able
to derive the random cryptographic key. The good performance of the FAR
reported in this paper is directly related to the correct selection of the time slot
however it is still high compared with the one obtained in systems that combine
biometrics and cryptography reported in [3,4]. The FRR has good performance
if it is compared with [1,2,4] but it is still not good compared with [3].

The idea behind the three security factor architecture reported in this paper
is not limited to work with the PTP as it is extracted here. The extraction
technique may be more sophisticated to improve the FAR and FRR and the
rest of the approach remain unchanged. Instead of only considering the key
pressing pattern and key releasing pattern, it could be added other parameters
as the total typing time or the tendency of using certain keys by the user to
make even more personal the biometric data. Also, one of the most notable
advantages of the proposed approach is that it is not necessary to maintain a
centralized database with the biometric information. This fact impacts positively
in the social acceptance of the biometric cryptosystems. The proposed three
security factor approach is a very secure system because the distribution of the
3D random biometric pattern is randomly generated. Also, if an attacker could
compromise the all three factors, the cryptographic key can be easily revoked and
renewed by executing the training-enrollment stage again. In the case of that the
attacker could somehow derived the cryptographic key, he could compromise the
key of that specific user but not the keys of a group or a corporation that could
happen in the case of maintaining a centralized database with the biometric
information of all users.
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Abstract. This paper proposes a parallel hardware architecture for the
scale-space extrema detection part of the SIFT (Scale Invariant Feature
Transform) method. The implementation of this architecture on a FPGA
(Field Programmable Gate Array) and its reliability tests are also pre-
sented. The obtained features are very similar to Lowe’s. The system is
able to detect scale-space extrema on a 320 × 240 image in 3 ms, what
represents a speed up of 250x compared to a software version of the
method.

Keywords: FPGA, SIFT hardware architecture, parallel SIFT.

1 Introduction

In the last few years the use of local features has become very popular due to their
promising performance. They have exhibited considerable results in a variety
of applications such as object recognition, image retrieval, robot localization,
panorama stitching, face recognition, etc.

Almost certainly the most popular and widely used local approach is the SIFT
(Scale Invariant Feature Transform) method [5] proposed by Lowe. The features
extracted by SIFT are reasonably invariant to image scale, rotation, changes in
illumination, image noise, and small changes in viewpoint. This method has been
used effectively in all the above mentioned application fields. Lowe divided his
method in four major computation stages: i) scale-space extrema detection, ii)
keypoint localization, iii) orientation assignment, and iv) keypoint descriptor.

In its first stage, in order to detect scale invariant interest points, Lowe pro-
posed to use scale-space extrema in the Difference-of-Gaussian (DoG) function
convolved with the image, which can be computed from the difference of adja-
cent scale images. To obtain the DoG images several convolutions with Gaussians
are produced. This represents a significative computational cost (about 30% of
the whole algorithm), which makes it an expensive procedure. Some work has
already been done to increase SIFT performance, by using a GPU (Graphic Pro-
cessor Unit) in PCs [8] or by simplifying the algorithm through approximation
[3][4].
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The use of FPGAs (Field Programmable Gate Arrays) is a solution that a
large number of researchers has successfully applied to speed up computing ap-
plications. Deeper in the SIFT algorithm and specifically in the DoG calculation,
it turns out that this task has a great degree of parallelism, making it ideal for
implementation in a FPGA. It is mentioned in [7] a system that implements SIFT
to aid robotic navigation, which takes 60 ms for a 640 × 480 image. Neverthe-
less, architecture details or results discussion are not presented. In [6] the most
expensive parts of the SIFT algorithm are implemented (i.e. Gaussian Pyramid
and Sobel) and some architecture details and algorithm adequacies for hardware
are given. This system can run at 60 fps but the image size is not mentioned,
neither FPGA area allocation. Another system able to detect SIFT keypoints is
presented in [2], which is capable to process 320 × 240 images in 0,8 ms. How-
ever, just a few information about the hardware architecture and none from the
FPGA area usage are given. A complete implementation is demonstrated in [1],
which requires 33 ms per 320 × 240 image.

This paper presents a parallel hardware architecture for one of the most in-
tensive parts of the SIFT algorithm: the scale-space extrema detection. This
architecture is implemented in a FPGA, where only 3 ms for scale-space ex-
trema detection on a 320× 240 sized image are required.

The organization of this paper is as follows: In Section 2 the target algorithm
is explained. In Section 3 some issues of the scale-space extrema detection are
discussed, which are later used by the architecture proposed in Section 4. In Sec-
tion 5, implementation details and reliability tests for our system are presented.
The work is concluded in Section 6.

2 Detection of Scale-Space Extrema in the SIFT Method

For a given image I(x, y), the SIFT detector is constructed from its Gaus-
sian scale-space, L(x, y, σ), that is built from the convolution of I(x, y) with
a variable-scale Gaussian: L(x, y, σ) = G(x, y, σ) ∗ I(x, y), where G(x, y, σ) is a
Gaussian kernel and ∗ is the convolution operator in x and y. The Gaussian
scale space is created by generating a series of smoothed images at discrete val-
ues of σ. Thus the σ domain is quantised in logarithmic steps arranged in O
octaves, where each octave is further subdivided in S sub-levels. The value of
σ at a given octave o and sub-level s is given by: σ(o, s) = σ02o+s/S , o ∈
[0, ..., O − 1], s ∈ [0, ..., S − 1], where σ0 is the base scale level, e.g., σ0 = 1.6.
At each successive octave the data is spatially down-sampled by a factor of
two.

To efficiently detect stable keypoint locations in scale space, Lowe proposed
using scale-space extrema in the DoG scale-space, D(x, y, σ), computed from the
difference of adjacent scales:D(x, y, σ(o, s)) = L(x, y, σ(o, s+1))−L(x, y, σ(o, s)).

In order to detect the local maxima and minima of D(x, y, σ), each pixel in
the DoG images is compared to its eight neighbors at the same image, plus the
nine corresponding neighbors at adjacent scales. If the pixel is larger or smaller
than all these neighbors, it is selected as a candidate keypoint.



A Hardware Architecture for SIFT Candidate Keypoints Detection 97

3 The Proposed Parallel Detection of Scale-Space
Extrema

The main motivation for the use of FPGAs over conventional processors is given
by the need to achieve higher performance, better tradeoff cost-benefits and
scalability of a system. This is possible thanks to the inherent parallelism in these
devices, which by their physical characteristics, is able to keep all operations
activated. Therefore, to achieve such profits and a significant speedup in the
detection of scale-space extrema, is essential to exploit the parallelism of this
algorithm. Nevertheless, there are other factors to consider in a FPGA design
such as area and power requirements. Hence, this algorithm must be rewritten to
take advantage of the parallel structure afforded by implementation in hardware,
taking into account area and power requirements.

3.1 Exploiting Data Parallelism

Convolution is one of the most expensive operations that are used in image
processing applications and particularly in the SIFT method. Then, it is an
important issue to deal with.

If I is a two-dimensional image and g is a convolution mask of odd size k× k,
then the convolution of I and g is defined as:

f(x, y) =
i∑
−i

j∑
−j

I(i, j)g(x− i, y − j),where i, j = k
2
�. (1)

As can be seen in (1), for the calculation of f(x1, y1) only a neighborhood in I
of size k × k with center (x1, y1) is needed. Therefore, in 2D convolution a high
potential for data parallelism is available, specifically of SPMD (Single Process,
Multiple Data) type.

3.2 Exploiting Separability Property of the Gaussian Kernel

With the aim of reducing the number of arithmetic operations, the separability
and the symmetry properties of the Gaussian are considered.

A 2D filter kernel is separable if it can be broken into two 1D signals: a vertical
and a horizontal projection. The Gaussian kernel could be separated as follows:

G(x, y, σ) = h(x, σ) ∗ v(y, σ),

where
h(x, σ) =

1√
2πσ

e−x2/2σ2
, and v(y, σ) =

1√
2πσ

e−y2/2σ2

Thus, the 2D convolution can be performed by first convolving with h(x, σ) in the
horizontal direction, and then convolving with v(y, σ) in the vertical direction. 1D
convolution, to compute a value of the output, requires k MAC operations. How-
ever, as is described in (1), 2D convolution in spatial domain requires k2 MAC
(multiplication and accumulation) operations. Therefore, the computational ad-
vantage of separable convolution versus nonseparable convolution is k2/2k.
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3.3 Octaves Processing Interleaving

As stated in Section 2, at each successive octave, the image size is downsampled
by a factor of two by taking every second pixel in each row and column, i.e.
Io(x, y) = Io−1(2x, 2y). After downsampling by a factor of two, the total number
of pixels is reduced by four. In hardware, to reduce the size of the data, its sample
rate is reduced by the same factor. If at each successive octave the data size is
reduced by four, the sample period τ of an octave o is given by

τ(o) = τ04o, (2)

where τ0 is the first octave sample period. Consequently, after subsampling, there
is a large percentage of idle processing time î in respect of the first octave sample
period, which is defined by î = τ(o)−1

τ(o) .
This idle processing gap makes feasible the processing of the O octaves of a

scale in a single convolution processor. This could be possible by interleaving the
O convolution processes so that for all the octaves at a given time t the number
of processed elements p(o, t) satisfies that

p(o, t) =
⌊
t+ ε(o)
τ(o)

⌋
, (3)

where ε(o) is the delay of octave o in the interleaving line.
Here, for the O octaves interleaving is assumed that the first octave sam-

ple period is equal or greater than two clock cycles, if not, O − 1 octaves are
interleaved and τ0 would be the second octave sample period.

4 The Proposed Hardware Architecture

In the architectures proposed in [6] and [1], it is used one convolution block per
each convolution operation, dividing the processing by octaves and resulting in
O ·S convolution blocks. In this work we present an architecture that only uses S
convolution blocks for the O · S convolution operations, dividing the processing
by scales and providing the same throughput.

A block diagram of the overall architecture is shown in Figure 1 a). This
diagram shows a system of four octaves, five scales and a seven coefficient kernel
(O = 4, S = 5, k = 7); but it could be generalized for any configuration.

The hardware architecture consists, in a major manner, of scale computation
blocks (SCB). One SCB performs the O Gaussian filtering operations of a given
scale as discussed in Section 3.3. Therefore, each SCB has O input and output
ports, one for each octave respectively, where the sample period of each octave
is defined by equation (2).

As can be seen in Figure 1 a), the SCB blocks are interconnected in cascade
in order to have a constant convolution kernel size and to avoid convolutions
with big kernel sizes.

A SCB block, to perform Gaussian filtering, takes advantage of the separabil-
ity property of the Gaussian kernel as described in Section 3.2. As can be seen
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Fig. 1. Proposed pipelined architecture

in Figure 1 b), this block performs Gaussian filtering by convolving an image in
the horizontal direction and then in the vertical one.

The internal arrangement of the horizontal filter in the SCB block is detailed
in Figure 1 c). Each input signal is shifted throughout k registers, where k is the
convolution kernel width. The k values of the O octaves are multiplexed with
the aim of controlling the octaves processing order and accomplishing octaves
processing interleaving. The multiplexers logic for octaves interleaving at a given
time t is determined by the M block which implements function m(t) and fulfills
the condition stated in (3). The interleaving order is defined as follows:

m(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

o0 if t ≡ ε(o0) mod τ(o0)
o1 if t ≡ ε(o1) mod τ(o1)
...

...
oO−1 if t ≡ ε(oO−1) mod τ(oO−1).

The structure of the vertical filter is the same as the horizontal; with the dis-
tinction that each buffer stores the last k lines instead of the last k elements.
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By interleaving octaves processing in a single convolution processor it is possi-
ble to save a lot of silicon area and the consequent power consumption reduction.
Also, to avoid operating with fixed point values, kernel coefficients are multiplied
by an appropriate constant. Later, the filtered result is normalized by dividing
it by this same constant. More desirably, the constant chosen must be a power
of two in order to replace the division operation by a simple shift.

The HSB block in Figure 1 a) performs image downsampling.

5 FPGA Implementation and Experimental Results

5.1 Implementation Characteristics

A system configured with O = 4, S = 6 and k = 7 to process 320 × 240
sized images was implemented on a Xilinx Virtex II Pro FPGA (XC2VP30-
5FF1152). This system was implemented using System Generator + Simulink.
The estimated resources occupied by this implementation and its comparison
with Bonato et al. system [1] are summarized on Table 1. As discussed in pre-
vious sections, the system returns a result every two clock cycles. Under this
implementation, with a 50 MHz clock rate, the time taken to detect scale-space
extrema in a 320 × 240 image is 3 ms, so, it is possible to process 330 frames
per second. This result was compared, in terms of performance, with Vedaldi
software implementation [9] running on a PC (1.8 GHz Core Duo and 1 GB
RAM). Our system proved a significative speed up of 250x.

Table 1. Implementation Characteristics and Comparison with [1]

Resources Our System DoG part of [1]
O = 4, S = 6 and k = 7 O = 3, S = 6 and k = 7

Slices 5068 -
Flip-flops 6028 7256
Look Up Tables 6880 15137
Blocks RAM 120 (2.1 Mb) 0.91Mb

5.2 System Reliability

In order to test our implementation reliability, we checked for matches between
features found by a complete software version and a hybrid implementation
where scale-space extrema were obtained by our system. The SIFT software
implementation used was Lowe’s [5]. The hybrid implementation was created
from Vedaldi’s, where the first SIFT computation stage was executed by our
system. We looked for matches between these two implementations on 26 images.
The main differences between matches are due to the approximations on the DoG
calculation process. However, these approximations did not greatly affected the
final detected features. The mean errors in coordinates, scale and orientation of
the detected features are ∆x = 1.127, ∆y = 1.441 , ∆σ = 0.149 and ∆θ = 0.047
respectively.
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Hybrid implementation with our DoGs Lowe implementation

Fig. 2. Matches between the hybrid implementation (using our system results) and
Lowe implementation for an example image
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Fig. 3. Errors in coordinates, scale and orientation of the detected features for an
example image

Figure 2 shows an example of detected features by the two implementations
and their matches. The errors in coordinates, scale and orientation computation
for this example image, are shown in Figure 3.

6 Conclusions

We have proposed a parallel hardware architecture for one of the most com-
putationally expensive parts of the SIFT algorithm: the scale-space extrema
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detection. For this purpose, we exploited some algorithm particularities such as
its intrinsic data parallelism, the separability property of the Gaussian kernel
and the octaves processing interleaving possibility. The mean errors of the SIFT
features detector and descriptor, based on our system results, are ∆x = 1.127,
∆y = 1.441 , ∆σ = 0.149, ∆θ = 0.047. The results of the comparisons showed
that our system needs less silicon area than Bonato et al. system, even processing
one more octave. This area profit is due more to octaves processing interleaving.
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Álvaro Pardo

Department of Electrical Engineering, Faculty of Engineering and Technologies, Universidad
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Abstract. Image denoising is probably one of the most studied problems in the
image processing community. Recently a new paradigm on non local denoising
was introduced. The Non Local Means method proposed by Buades, Morel and
Coll attracted the attention of other researches who proposed improvements and
modifications to their proposal. In this work we analyze those methods trying
to understand their properties while connecting them to segmentation based on
spectral graph properties. We also propose some improvements to automatically
estimate the parameters used on these methods.

1 Introduction

Image deonising is probably one of the most studied problems in image processing.
The main goal of denoising is to remove undesired components from the image. These
undesired components, usually defined as noise, can be of different nature: random
noise introduced at acquisition time, noise introduced during transmission, noise due
to degradation such in films, etc. In this work we assume that the observed image, x,
is the result of adding a random noise component n to the original noiseless image z.
Therefore, the relationship between those images at pixel i becomes: xi = zi + ni.

The problem of image denoising then is to estimate z while preserving its features
such as edges and texture. There is usually a tradeoff between noise reduction and
feature preservation. Since image features usually involve high frequencies linear low
pass filters usually produce poor results regarding feature preservation. For this reason
several non linear or locally adapted methods have been developed. As examples we
mention median filters, anisotropic diffusion and wavelet thresholding. More recently
non local methods attracted the attention of the image processing community. Starting
from the pioneering work of Efros and Leung [7] several non local methods have been
introduced for image denoising. In [5] Buades, Morel and Coll presented the Non Local
Means (NLM) denoising method. The underlying idea of this method is to estimate, zi,
using a weighted average of all pixels in the image. Given the pixel to be denoised, i,
the weights wij measure the similarity between neighborhoods centered at i and j. The
trick is that corresponding neighborhoods are found all along the image imposing a non
local nature to the method. Similar methods can be found in [1,3,8]. A review of several
denoising strategies and its comparison against non local means can be found in [6]
and [4].

In this work we study the behavior of non local denoising methods. First we show
the connection of non local means to graph clustering algorithms and use it to study the
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denoising performance. Using synthetic images we will show the limitations of standard
non local means and propose an improvement to automatically estimate the parameters
of NLM based on noise variance estimation.

2 Non Local Means Denoising

The NLM algorithm [5] estimates the denoised value at pixel i using a weighted average
of all pixels in the image:

x̂i =
∑

j

w̄ijxj

The weights w̄ij reflect the similarity between pixels i and j based on the distance
between neighborhoods around them (see equations (1) and (2)).

Ideally, due to the non local nature of the algorithm, similar neighbors are found
across the whole image. This has two drawbacks. The first one is the computational
complexity of searching similar neighborhoods across the whole image. The second
one is related with the fact that taking weighted averages for all pixels in the image
does not achieve the best MSE score for this algorithm. This issue was addressed in
[2] and [6] noted the problems with edge pixels. The problem is that in some cases
the weights wij are not able to discriminate between different neighborhoods classes.
This is especially the case along edges since pixels along them have less corresponding
neighborhoods in the image. Other authors that addressed the computational complexity
of NLM encountered this trade off, for instance see [8]. Based on these considerations
we can see that a better solution is obtained via averaging only pixels within the same
class of neighborhoods. Therefore, the denoising performance depends in a good neigh-
borhood classification. In what follows we will review NLM and show its connection
with segmentation based on spectral clustering.

To conclude this discussion we point out that the performance of NLM depends on
the selection of the parameter σ. Although in [6] the authors provide some guidance on
how to select its value, we will show that the selection of σ has a great impact on the
results.

2.1 Graph Formulation of NLM

Let xi be the original noisy image value at pixel i. Its denoised version using NLM can
be obtained as [5]:

x̂i =

∑
j wijxj∑

j wij
(1)

where the weights wij
1 are computed using a gaussian kernel,

wij = exp(−||Ni −Nj||2/σ2) (2)

and Ni, Nj are image patches of size (2K + 1)× (2K + 1) centered at pixels i and j.

1 w̄ij = wij∑
j wij

.
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The equation (1) can be rewritten in matrix notation as follows. Let the matrix W
be the one with entries wij , and D the diagonal matrix with entries dii =

∑
j wij . If

we consider x as the vectorial version of the image, scanned in lexicographic order,
equation (1) can be rewritten as:

x̂ = D−1Wx (3)

The matrix L = D−1W defines an operator which filters the image, x, to obtain a
denoised version x̂. This denoising filter is an image adapted lowpass filter since the
operator depends on the image itself. Therefore, the properties of the matrix L deter-
mine the denoising result. If we are interested in the properties of a denoising algorithm
it is of common use to study the properties of the residual after denoising, r = x − x̂.
If we write the residual using equation (3) we obtain: r = x − x̂ = x − D−1Wx =
(Id −D−1W )x. The matrix H = (Id −D−1W ) is the highpass operator associated
with the lowpass operator defined by matrix L.

If we view pixels xi as nodes of a graph connected with weights wij the matrix H
is the normalized Laplacian of the graph which is used in Normalized Cuts (NC). In
[10] Malik and Shi presented a relaxed version of the normalized cut which solution is
the second eigenvector of H. In this way we show the connection between NLM and
segmentation based on NC.

Matrices L and H share the same eigenvectors; if ϕk is an eigenvector of L with
eigenvalue λk then ϕk is an eigenvector of H with eigenvalue 1 − λk. From these
considerations we conclude that the eigenvectors and eigenvalues of L and H play an
important role in the denoising process.

It can be shown that the multiplicity of the eigenvalue with value one of L corre-
sponds to the number of connected components in the graph [11]. These connected
components correspond in our case to the neighborhood classes. So, since an ideal de-
noising method should average only points in the same classes, the spectrum of the
graph related to L is important to measure the performance of the algorithm. We will
use the multiplicity of the eigenvalue one to judge the performance of our proposal and
compare it with traditional NLM.

3 Experiments with Synthetic Images

To study the denoising performance of NLM we will use a synthetic image with three
regions with values 1, 3 and 1 plus Gaussian noise with variance 0.3 (see Figure 2).
We consider patches of size 3 × 3 which gives us six different noiseless neighborhood
configurations as show in Figure 2.

Following the same idea proposed in [2] we applied NLM together with a restriction
on the number of neighboring patches used for the denoising process. That is, for each
pixel to be denoised we considered only pixels with neighborhood similarity greater
than ε, that is exp(−||Ni −Nj ||2/σ2) ≥ ε, and computed the error for different values
of ε. For this experiment we set σ = 12σn as suggested in [6]. We also computed the
error over each region of the image. That is, based on the local configurations show in
Figure 2, we segmented the image in six regions and computed the denoising error for
each one of them. The results of these simulations are show in Figure 1. As we can see
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Table 1. Minimum errors for regions from image in Figure 2

Region ε Error NLM Type
1 0.60 0.0011 non-boundary
2 0.80 0.0036 boundary
3 0.80 0.0099 boundary
4 0.60 0.0005 non-boundary
5 0.75 0.0187 boundary
6 0.75 0.0069 boundary

Fig. 1. Left: Global error evolution. Right: Region error evolution.

Fig. 2. Left: Noisy image. Right: Neighborhood configurations.

the global error has a U shaped curve. The error decreases as ε increases which means
that the error improves while we restrict the set of neighborhoods used. Also as ε goes
to one the error increases as the number of points used for the estimation decreases. In
the middle we obtain the minimum global error which is quite stable. This means that
considering all neighborhoods for the denoising process is clearly not the best option.
To understand the reasons of this behavior we computed the errors per region shown in
Figure 1. It is clear that boundary regions (neighborhoods with pixels of two regions)
perform differently than non boundary regions (neighborhoods with pixels of the same
region). Non boundary regions have an almost constant error while boundary regions
show a stronger dependence on ε. This explains the obtained global error. In Table 1
we show the minimum errors per regions and the values of ε where these minima are
achieved. In next section we will use these results to design an improved NLM.
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4 Modified NLM

In this section we address the automatic estimation of the parameters σ of NLM and ε
as discussed earlier and present a modified NLM (MNLM).

4.1 Parameter Estimation

Noise variance estimation The estimation of σ will be based on the noise variance.
For Gaussian noise the estimation of its variance can be done applying methods as the
ones proposed in [9].

Estimation of σ. Following [6] we set σ proportional to the noise variance: σ = hσn.
We propose to choose the value of h looking at the expected distances for neighbor-
hoods inside the same class. The expected squared distance for two identical neighbor-
hoods corrupted by Gaussian noise with zero mean and variance σn is:

d̄2 = E{||Ni −Nj ||2} = E

⎧
⎨
⎩

(2K+1)2∑
k=1

(xk
i − xk

j )2

⎫
⎬
⎭ (4)

=
(2K+1)2∑

k=1

E
{
(nk

i − nk
j )2
}

= 2(2K + 1)2σ2
n. (5)

We set the value of h in order to obtain weights greater than γ for similar neighbor-
hoods. In this way the value of h is defined as the one that satisfies the following equa-
tion:

exp

(
−d̄2

h2σ2
n

)
= γ.

If we substitute d̄2 in previous equation we obtain:

h =

√
2(2K + 1)2

log(1/γ)

Finally we have to select the value for ε. As we said before better results are obtained
when only neighborhoods with similarities greater than ε are considered. Therefore,
we let γ = ε. So, instead of parameter σ we have a new parameter ε which controls
the neighborhoods considered in the estimation and the value of σ. Also this parameter
does not depend on the input image but only on the noise level estimation. In order
to consider only neighborhoods of the same class ε must take values close to one. In
following sections we will analyze this proposal at the light of the relationship between
NLM and segmentation and show that taking ε = 0.8 gives excellent results for a set of
real images.
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Table 2. Global MSE scores

NLM Best NLM Modified NLM
MSE 0.2046 0.0012 0.0006

(a) (b)

Fig. 3. (a) Fron left to right: noiseless image, noisy image, result of NLM, result of best NLM
and result of modified NLM. (b) Eigenvalues.

Fig. 4. NLM against MNLM: Errors per region

4.2 Modified NLM and Graph Cuts

In this section we will compare the performance of MNLM against the original NLM
using the results from section 3 and the image showed in Figure 2. The image in Figure
2 was filtered with three algorithms: the original NLM with σ = 12σn, MNLM with
ε = 0.8 and the best NLM in which case we selected the parameter σ = 5σn that
gives the smallest global MSE. The obtained MSE errors are presented in Table 2.
In Figure 3(a) we show the original noiseless image, the noisy image and the images
corresponding to the methods in evaluation. As we can see the original NLM gives the
worst result in terms of MSE and visual quality while the modified NLM obtains the
best overall performance (see MSE scores in Table 2). If we look at MSE per region
we can see in Figure 4 that MNLM performs better than NLM in four out of six of the
regions.
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Finally we present the eigenvalues of the corresponding matrices L for each method.
In Figure 3(b) we show the first ten eigenvalues for each method. It is clear that MNLM
has better performance since it has six eigenvalues of value one corresponding to the
six regions present in the image. We recall that the multiplicity of the eigenvalue one
corresponds to the number of connected components in the graph, i.e. the number of
neighborhood classes which in this case is six.

4.3 Results for Real Images

Here we compare the best performances of NLM and our modified NLM (MNLM).
Each of the images in Table 3 was contaminated with independent and additive Gaus-
sian noise with σn = 10. We used neighborhoods were of 3 × 3 and to reduce the
computational complexity we used a search window of 21 × 21. For the evaluation
of the results we use Mean Square Error (MSE) and the Structural Similarity Index
(SSIM) proposed in [12] which compares the similarity between images using
perceptual factors.

With this results we confirm that NLM attains the best result at h = 3 in all cases.
This contrast with the values of h selected by Buades, Morel and Coll in [5,6] where
they suggest h ∈ [10, 15]. Clearly with their selection for h the results are not the best
possible. We confirm this based on MSE and SSIM. We must stress that in all cases the
optimum is achieved with the same value of h. On the other hand, the results obtained
with our modified NLM method present similar results as the ones given by NLM.
Therefore based only on MSE and SSIM we cannot say which method is better. As for
MNLM the best score values are obtained with ε = 0.8 in all case but one.

Result Analysis. To conclude the evaluation we give an explanation on why the best
results of NLM are similar to the ones of MNLM. In previous experiments the parameter
h which gives the best results for NLM is in all cases 3. The difference between both
methods is the width of the Gaussian kernel. For modified NLM the width is σ2

MNLM =
2(2K+1)2

log(1/γ) and for NLM the width which produces the best results is σ2
NLM = 32σ2

n.
The other difference is that for MNLM we consider only weights above ε = γ and
for NLM we consider all weights. The distances for which MNLM gives weights γ
are d2

γ = 2(2K + 1)2σ2
n. If we substitute this distance in the NLM kernel we get:

exp(−2(2K + 1)2/32) ≈ 0.13. Therefore the corresponding weights for NLM are
small and explain the similarity between results of NLM and MNLM. We confirmed
the same results using neighborhoods of size 5× 5 but due to the lack of space we can
not report them here.

Table 3. Minimum errors for regions from image in Figure 2

NLM MNLM
Image h* MSE* SSIM* ε* MSE* SSIM*

Barbara 3 30.11 0.913 0.75 28.93 0.922
Baboon 3 63.45 0.895 0.80 70.67 0.890
Couple 3 35.13 0.883 0.80 35.97 0.884
Einstein 3 35.03 0.859 0.80 36.01 0.858
Goldhill 3 33.78 0.868 0.80 34.61 0.869
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5 Conclusions

In this work we study the relationship between non local denoising methods and spectral
graph properties. Based on these results we proposed a modification of NLM which
automatically estimates the parameter σ. We justified the proposed algorithm using
the connection between NLM and graph clustering. Based on simulations we showed
that this approach outperforms the NLM with the parameters suggested by Buades and
colleagues in [5]. Furthermore we showed that this parameter setting is the best one for
all images tested when comparing the MSE scores.
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Abstract. Feature extraction from images is a key issue in image clas-
sification, image representation and content based image retrieval. This
paper introduces a new image descriptor, based on the curvelet trans-
form. The proposed descriptor captures edge information from the sta-
tistical pattern of the curvelet coefficients in natural images. The image
is mapped to the curvelet space and each subband is used for establish-
ing the parameters of a statistical model which captures the subband
marginal distributions as well as the dependencies across scales and ori-
entations of the curvelet. Finally, the Kullback−Leibler distance between
the statistical parameters is used to measure the distance between im-
ages. We demonstrate the effectiveness of the proposed descriptor by
classifying a set of texture images, and with a simple nearest neighbour
classifier we obtained an accuracy rate of 87%.

Keywords: texture characterization, curvelet transform, generalized
Gaussian distribution, Kullback−Leibler distance.

1 Introduction

The capacity of a mapping to generate features with discriminant characteristics
in textures is of paramount importance for the problem of classification and/or
retrieval. Typical applications include microscopical or satellite images [1]. For-
mally, the feature extraction process is thought of as a mapping of an image
collection to a characteristic space, which provides a representation where simi-
lar images are close and different images are far; this property is known as the
discriminating space power. Images projected onto this space are characterized
by features which capture some properties of the image, typically some statisti-
cal properties from the data. Likewise, a metric for the space is also needed. In
the particular case of textures, the most popular characteristic spaces are cur-
rently the wavelets, Gabor and DCT transforms [2]. Unfortunately, these spaces
are sub-optimal for this problem because textures are naturally entailed with
geometrical, scale and directional properties which are poorly described with
these transforms [3]. Some of the features already used for this problem capture
information of the energy coefficient distribution and include the total energy,
the mean and the variance [2]. However, these features do not reflect correctly
the statistical properties of natural images [4]. Finally, the usual metrics in-
cludes Euclidian or distances between probability density functions such as the
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Kullback−Leibler [5]. In these terms the problem of texture characterization
consists in constructing a feature with high discriminative power that takes into
account the statistical image contents.

The problem of texture characterization with curvelets was already addressed
by Semler [6], who studied the performance of several characteristics, namely:
the energy, entropy, mean and standard deviation of the curvelet subbands.
Results showed significant improvement when comparing with wavelets, but this
characterization did not take into account the particular statistical patterns of
the curvelet coefficients in texture images [7]. Sumana [8] also proposed the
curvelet subband mean and variance as features while the Euclidian distance
between subbands measured closeness. Results showed again improvement when
comparing with Gabor features. However, texture curvelet subbands are not
described by simple Gaussians so that mean and variance result insufficient to
describe the observed distribution [7].

In this paper we present a new global descriptor, entailed with the previ-
ously described properties. The curvelet space is used to capture information
about edges which is in fact one of the most discriminating features [9]. These
features are the moments of a generalized Gaussian density (GGD) which pro-
vides a good approximation to the marginal curvelet subband distribution [7],
whilst the Kullback−Leibler distance measures differences between curvelet co-
efficient distributions. A main contribution of this paper is to demonstrate that
taking into account an entire statistical characterization of the curvelet coeffi-
cient, results in a highly discriminative, precise and simple descriptor of natural
textures. The rest of this paper is organized as follows: Section materials and
methods introduces the new feature, Section Results demonstrates the effective-
ness of this descriptor in classification tasks. Finally, the last section concludes
with a discussion and future work.

2 Materials and Methods

The inputs are two images which are curvelet-represented. Frequency subbands
are statistically characterized using the moments of a GGD and finally a Kullback-
Leibler divergence computes the distance between the two representations. This
strategy will be further explained hereafter:

2.1 The Curvelet Transform

The curvelet transform is a multiscale decomposition [10], developed to natu-
rally represent objects in two dimensions, improving the wavelet limitations in
2D. Curvelets are redundant bases which optimally represent 2D curves. Be-
sides the usual information about scale and location, already available from
a wavelet, each of these frame elements is able to capture information about
orientation while also fulfills the parabolic anisotropic scaling law width ≈
length2, whereby curves at different scale levels conserve their geometrical rela-
tionships [10]. A curvelet can be thought of as a radial and angular window in the
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Fig. 1. The figure illustrates a curvelet decomposition of a texture: from top to bottom,
increasing levels of detail, from left to right, different orientations

frequency domain, defined in a polar coordinate system. This representation is
constructed as the product of two windows: the angular and the radial dyadic
frequential coronas. The angular window corresponds to a directional analy-
sis, i.e., a Radon transform, and the radial dyadic window is a bandpass filter
whose cut frequencies extract the image information that follows the parabolic
anisotropic scaling law [10]. Curvelet bases were designed to fully cover the fre-
quency domain, in contrast to other directional multiscale representations such a
the Gabor transform [11], with which some information is always lost. Thanks to
the anisotropic scale, curvelets adapt much better to scaled curves than Gabor
transform, improving the representation at different scales and noise robustness
[11]. All these statements have been experimentally demonstrated by comparing
wavelets, curvelets and Gabor in classification and retrieval tasks [8].

The curvelet ϕj,l,k is indexed by scale j, orientation l and position k, and the
curvelet coefficient is simply cj,l,k = 〈f, ϕj,l,k〉, that is to say the projection of the
image f over the curvelet basis ϕj,l,k. Typically, the spatial curvelet coefficients
with the same scale and orientation are grouped per subbands. The figure 1
shows a curvelet multiscale decomposition example.

2.2 Statistical Characterization

Psychophysical research has demonstrated that two homogeneous textures are
not discriminable if their marginal subband distributions are alike [9]. This fact
suggests that these distributions have a highly descriptive capacity, at least for
the texture problem. This discriminative power was also experimentally verified
for Wavelet and Gabor representations [2]. In the curvelet case, each subband
contains information about the degree of occurrence of similar curves within the
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(a) Texture. (b) Curvelet Subband (c) Curvelet histogram.

Fig. 2. Curvelet histogram example (scale 3 and orientation 16)

image, i.e., edge energy levels with similar direction and size. Figure 2 shows a
typical example of the curvelet coefficient histogram of an image subband. The
kurtosis in this case is about 7.4 so that a Gaussian density is not enough as to
match the observed energies. Therefore, the mean and variance calculated from a
Gaussian, used in a previous works [6,8] have a very poor descriptive capacity. In
general, the curvelet coefficient distribution in natural images is characterized by
a sharper peak at zero with smooth tails. This shape is associated to the sparse
property of this transformation, i.e., few coefficients have high probability. This
leptokurtic pattern has been previously observed in curvelets [7,12] as well as
in wavelets [13]. This work proposes a texture characterization via the marginal
distribution of the subband curvelet coefficients, specifically using the parameters
of a generalized Gaussian density. Recent experimentation in natural images [7]
shows that the generalized Gaussian density provides a good adjustment to the
marginal density of the curvelet coefficient within each subband. The GGD reads
as p(x;α, β) = β

2αΓ (1/β)e
−(|x|/α)β

, where Γ (z) =
∫∞
0 e−ttz−1dt, z > 0 is the

Gamma function, α is the variance and β is related to the decreasing rate of the
GGD. The parameters α and β are estimated from the subbband data through
Maximum Likelihood, as is detailed in [13]. The parameters (α,β) may be used
as descriptor of the probability density function of the energy levels inside each
curvelet subband.

2.3 Similarity Measure

The similarity between subband curvelets is measured using the Kullback-Leibler
divergence (KLD) of the corresponding GGDs:

D(p(.;α1, β1)||p(.;α2;β2)) = log
(

β1α2Γ (1/β2)
β2α1Γ (1/β1)

)
+
(
α1

α2

)β2 Γ ((β2 + 1)/β1)
Γ ((1/β1)

− 1
β1

where (α1, β1) and (α2, β2) are the GGD parameters estimated for each subband.
This metric does not require additional normalization and shows good perfor-
mance in other multiscale domains [13]. Finally, under the reasonable assumption
that curvelet coefficients in different subbands are independent, the similarity
between two images I1 and I2 is measured as the sum of the distances between
corresponding subbands D(I1, I2) =

∑
∀s

∑
∀θ D(p(.;αs,θ

1 ;βs,θ
1 )||p(.;αs,θ

2 ;βs,θ
2 )),
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where (αs,θ
1 , βs,θ

1 ) and (αs,θ
2 , βs,θ

2 ), are the GGD parameters estimated for corre-
sponding subbands, i.e., subbands in the same scale s and orientation θ.

3 Experimental Results

The proposed descriptor was evaluated using the KTH-TIPS1 image texture
database. This database provides several variations of scale, pose and illumina-
tion and is mainly focused on classification applications; these changes increase
the intra-class variability and reduce the inter-class separability, which can in-
crease the difficulty of the classification task compared to typical databases [14].
The data consists of ten texture categories: sandpaper (sn), aluminium foil (af ),
styrofoam (sf ), sponge (sp), corduroy (cd), linen (ln), cotton (ct), brown bread
(bb), orange peel (op), cracker (cr). These real world images come from different
natural scenes and have different orientations and scales. For our experiments,
45 images of each category were converted to gray-scale levels (computed from
the luminance component) and cropped to 128 × 128. Figure 3 displays exam-
ples of the original textures. A real digital curvelet transform with 4 scales and
32 orientations was used, resulting in 66 subbands. The coarsest curvelet level
was excluded in order to obtain robustness to changes in illumination. The al-
gorithms are written in Matlab and run on a Intel Xeon X5460 Quad-Core 3.16
GHz with 8 GB in RAM.

The objective of the experimentation was to determine the power of descrip-
tion of our feature. Provided that our main goal was to assess the discriminative
power of the curvelet descriptor, the feature performance in a multiclass problem
was assessed using the most simple classifier, a nearest neighbour, and compared

(a) Sandpaper (b) Aluminium (c) Styrofoam (d) Sponge (e) Corduroy

(f) Linen (g) Cotton (h) Brown
bread

(i) Orange peel (j) Cracker

Fig. 3. Images example of several textures

1 http://www.nada.kth.se/cvap/databases/kth-tips/index.html
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Table 1. Confusion matrix for a feature based on energy and Euclidian metric

Assigned
Total % Agree

sn af sf sp cd ln ct bb op cr

True

sn 21 0 14 7 0 0 0 2 1 0 45 0.47
af 0 42 1 0 0 0 0 1 1 0 45 0.93
sf 5 1 35 3 0 0 0 0 0 1 45 0.78
dp 2 0 1 38 2 0 0 1 1 0 45 0.84
cd 0 0 0 2 31 0 0 6 6 0 45 0.69
ln 0 0 0 0 1 42 0 0 1 1 45 0.93
ct 0 0 0 1 0 0 40 3 1 0 45 0.89
bb 2 0 0 1 1 0 0 36 4 1 45 0.80
op 0 0 1 1 2 0 0 2 27 12 45 0.60
cr 0 0 1 0 0 0 0 1 2 41 45 0.91

Total 30 43 53 53 37 42 40 52 44 56 450 0.78

Table 2. Confusion matrix for a feature based on mean, variance and Euclidian metric

Assigned
Total % Agree

sn af sf sp cd ln ct bb op cr

True

sn 29 0 9 5 0 0 0 2 0 0 45 0.64
af 0 41 1 0 0 0 0 1 0 2 45 0.91
sf 4 0 38 2 0 0 0 0 0 1 45 0.84
sp 3 0 0 39 2 0 0 0 1 0 45 0.87
cd 0 0 0 2 31 0 0 7 5 0 45 0.69
ln 0 0 0 0 1 44 0 0 0 0 45 0.98
ct 1 0 0 0 2 0 41 1 0 0 45 0.91
bb 2 0 0 2 1 0 0 35 5 0 45 0.78
op 0 0 0 1 2 0 0 1 36 5 45 0.80
cr 0 0 0 0 0 0 0 0 1 44 45 0.98

Total 39 41 48 51 39 44 41 47 48 52 450 0.84

Table 3. Confusion matrix for our proposed feature: GGD and KLD metric

Assigned
Total % Agree

sn af sf sp cd ln ct bb op cr

True

sn 31 0 4 5 0 0 0 5 0 0 45 0.69
af 0 45 0 0 0 0 0 0 0 0 45 1.00
sf 3 0 38 1 0 0 0 0 0 3 45 0.84
sp 2 0 0 38 2 0 0 3 0 0 45 0.84
cd 0 0 0 2 32 0 0 6 3 2 45 0.71
ln 0 0 0 0 0 44 0 0 1 0 45 0.98
ct 0 0 0 0 2 0 43 0 0 0 45 0.96
bb 4 0 0 2 0 0 0 39 0 0 45 0.87
op 1 0 1 1 0 0 0 0 42 0 45 0.93
cr 0 1 0 0 1 0 0 1 1 41 45 0.91

Total 41 46 43 49 37 44 43 54 47 46 450 0.87
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with other curvelet representation methods, namely: energy of the curvelet sub-
band plus Euclidian metric [6,8], mean and variance plus Euclidian metric [8] and
the herein described proposal GGD plus KLD metric. Sumana [8] has previously
compared Gabor, wavelets and curvelets, obtaining a better performance for the
latter so that our work is focused on characterizing curvelets. The three classi-
fiers were tested under a Leave-one-out cross-validation, using a single observation
from the original sample as the validation data, and the remaining observations
as the training data. For the three sets of experiments we computed the corre-
sponding confusion matrix. The confusion matrices for these cases are shown in
Tables 1, 2 and 3. The correct classification rates of 78%, 84% and 87% show a
high discriminative capacity provided by the curvelet representation, even though
we used the simpler classifier. The curvelet descriptor shows a better classification
rate in both average and individually for most classes, when compared with mean
and variance. Note that textures linen (ln) and cotton (ct) present a high den-
sity of lines and are correctly classified in a large number of cases. Likewise, the
texture Aluminium (al), which presents gross edges, is correctly classified using
the curvelet descriptor. Finally, the confusion matrices show that most misclas-
sifications occur in similar textures, for example, sandpaper (sn) and styrofoam
(sf), probably because of the similar edge distributions. In any case, the curvelet
descriptor shows less classification errors even in this complicated scenario. These
results show that in textures with higher levels of variability, the proposed method
outperforms the previous approach. Nevertheless an extensive experimentation is
needed to to draw more general conclusions.With respect to the computational
complexity, the curvelet implementation runs in O(n2 log(n)) for n× n cartesian
arrays [10] with a computational time that less than 300 ms for each image, while
the statistical characterization for the curvelet subbands runs in less that 1 second.

4 Conclusions

We have introduced a new texture descriptor for images, based on curvelets and
a statistical model of the curvelet coefficients in natural images. By applying
the curvelet transform and adjusting the levels of energy for each subband to a
generalized Gaussian model, we obtain a robust representation which captures
the edge distribution at different orientation and scales. Experimental results
indicate that the new feature improves classification performance in a multiclass
problem when compared with other features, also based on curvelets. Future
works includes improving the feature with invariance to rotation and scale and
extensive experimentation in large texture databases.
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Abstract. This paper reviews a well-known fingerprint matching algorithm that 
uses an orientation-based minutia descriptor. It introduces a set of improve-
ments to the algorithm that increase the accuracy and speed, using the same fea-
tures. The most significant improvement is in the global minutiae matching 
step, reducing the number of local matching minutiae and using multiple minu-
tiae pairs for fingerprint alignment. We conduct a series of experiments over the 
four databases of FVC2004, showing that the modified algorithm outperforms 
its predecessor and other algorithms proposed in the literature. 

Keywords: biometrics, fingerprint matching, orientation-based minutia  
descriptor. 

1   Introduction 

Fingerprint recognition [1] has become one of the most active research areas nowa-
days. It plays an important role in forensic applications, but its increasing popularity 
is perhaps due to its integration into civilian systems. A key point in most of its appli-
cations is the fingerprint matching algorithm. 

Most of the authors distinguish two types of fingerprint matching algorithms: cor-
relation-based matching and minutiae-based matching. As it is seen in the Fingerprint 
Verification Competitions (FVC) [2], the minutia-based matching is the most popular 
approach. This approach essentially consists on finding the maximum number of 
matching minutiae pairs given two fingerprints represented by their minutiae. 

Minutiae are the points where the ridge continuity breaks and it is typically 
represented as a triplet ሺݔ, ,ݕ  the ridge direction at that point. As pointed out by Feng in [3], this representation ,ߠ represents the point coordinates and ݕ and ݔ ሻ; whereߠ
makes ambiguous the process of minutia pairing. A way to deal with this problem is 
enriching the minutia representation with additional information known as minutia 
descriptors. Minutia descriptors can be mainly classified in: ridge based descriptors 
[4-8], orientation based descriptors [4, 9-11] and local neighboring minutiae based 
descriptors [3, 12-14].  

This paper reviews the algorithm created by Tico and Kuosmanen [11] (TK hereaf-
ter), and proposes improvements in the matching algorithm using the same minutia 
descriptor. The new proposal increases the accuracy in terms of ERR, ZeroFMR, 
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1000FMR and 100FMR. It also reduces the matching time according to the evaluation 
protocols of FVC [2]. 

We have structured the rest of the paper as follows. Section 2 describes TK algo-
rithm. Section 3 describes the new formulation and improvements of TK and provides 
some details on the implementation of the new algorithm. Section 4 details the expe-
rimental results over FVC2004. Finally, the paper provides conclusions about the new 
algorithm that might be the starting point for new researches. 

2   TK Algorithm 

TK compares fingerprints by means of local minutiae structures, also known as minu-
tiae descriptors. Minutiae descriptors provide additional information that enriches the 
minutia; and they are usually invariant to rotation and translation. TK uses a descrip-
tor based on the estimations of the orientation values on sampling points that have 
been arranged in concentric circles around the minutia (see Fig. 1). 

 

Fig. 1. A representation of the minutia descriptor proposed in [11] 

Let ܮ be the amount of circles with ܭ  sampling point each; given a minutia  ൌ ሺݔ, ,ݕ ሻሻ we express its associated descriptor as: ݁ሺߠ ൌ ቀ൫ߜ,൯ୀଵ ቁୀଵ
 . (1) 

Where ߜ, is the angle difference between the minutia direction ߠ ∈ ሾ0,2ߨሾ and the 
fingerprint orientation value ߴ, ∈ ሾ0,  ሾ in the ݇௧ point of the ݈௧ circle (the readerߨ
can refer to [1] for the conceptual difference between direction and orientation). We 
compute the angle difference as:  ߜ, ൌ min൛݀൫ߠ, ,,൯ߴ ݀൫ߠ, ,ߴ  ,ߙ൯ൟ, (2) ݀ሺߨ ሻߚ ൌ minሼ|ߙ െ ,|ߚ ߨ2 െ ߙ| െ ሽ|ߚ . (3) 

Equation (2) computes the minimum angle required to make two lines parallel, if they 
have angles ߠ and ߴ, respectively. 
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TK consist of two major steps: local minutiae matching and global minutiae match-
ing. In the local minutiae matching step, for each query minutia  ∈ ܳ ൌሼଵ, ,ଶ … ,  ሽ and for each template minutia ∈ ܶ ൌ ሼଵ, ,ଶ … ,  ሽ, the algorithm
computes the possibility value as follows: ܲ൫, ൯ ൌ ௦൫ೕ,൯మ∑ ௦ሺ,ሻసభಯೕ ା∑ ௦൫ೕ,൯సభಯ ି௦൫ೕ,൯. (4) 

This expression returns high values when the similarity value ݏ൫,  ൯ is large, and

minutiae  and  have small similarities with respect to the other minutiae from ܳ\൛ൟ and ܶ\ሼሽ respectively. Let ܭ ൌ ∑ ୀଵܭ , given the minutiae  and , TK 

computes their similarity as: ݏ൫, ൯ ൌ 1 ⁄ܭ ∑ ∑ expୀଵୀଵ ቀെ16ሺ2 ⁄ߨ ሻ൫หߜ, െ ,ߜ ห൯ቁ . (5) 

In the global minutiae matching step, TK sort all minutiae pairs in descendent order, 
according to their possibility value. It transforms the query minutiae according to the 
minutiae pair that maximizes the possibility value. Then, it uses a greedy algorithm to 
find the minutiae pairs that satisfy the following constraints: 

─ The Euclidean distance between the two minutiae does not exceed threshold ݐ௦. 
─ The difference between the two minutiae directions does not exceed threshold ݐఏ. 

Finally, TK uses the global matching minutiae, together with those minutiae that fall 
inside the region of interest that is common to both fingerprints, to compute the 
matching score. The minutiae count inside the region of interest common to both 
fingerprints must exceed threshold ݐ. 

The parameters of the algorithm are: distance threshold ݐ௦, angle threshold ݐఏ and 
minutia count threshold ݐ. 

The next section analyzes some of the drawbacks of this algorithm and proposes 
modifications to overcome these limitations. 

3   The Modified TK Algorithm 

TK algorithm only uses the local matching minutiae pair that maximizes the possibili-
ty value to align fingerprints in the global minutiae matching step. The fact that a 
minutiae pair maximizes the possibility value does not guarantee that this is a true 
matching minutiae pair (see Fig. 2). Moreover, if the selected minutiae pair was a true 
matching pair, it is not necessarily the best pair to carry out fingerprint alignment. 

In order to deal with this limitation, the new algorithm first reduces the local 
matching minutiae pairs by selecting, for each query minutia  and template minutia , only the minutiae pair ൫,   ൯ that maximizes the possibility value. Then it
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Fig. 2. The matching minutiae found by TK in fingerprints (a) 11_1 and (b) 11_3 from DB1_A 
in FVC2004. This is an example of a false matching minutiae pair that maximizes the possibili-
ty value in two fingerprints from the same finger. Images (c) and (d) show the good behavior of 
the modified TK algorithm while the original TK fails. 

performs a query minutiae transformation for each minutiae pair in the reduced set. 
Finally, it selects the transformation that maximizes the amount of global matching 
minutiae pairs. This modification, like the global minutiae matching step of TK, has 
quadratic time complexity with respect to fingerprint minutiae count. 

Another weakness of TK algorithm is that it does not take advantage of the small 
image rotation on the fingerprint verification problems. Therefore, we propose a mod-
ification of equation (5), which increases the minutia discrimination for such prob-
lems. We define the new minutia similarity as follows: 

,൫ݏ ൯ ൌ ቐ 0 if ݀൫ߠ, ൯ߠ  గସ1 ⁄ܭ ∑ ∑ expୀଵୀଵ ቀെ16ሺ2 ⁄ߨ ሻ൫หߜ, െ ,ߜ ห൯ቁ otherwise . (6) 

The last modification that we propose is to limit the minimum count of global match-
ing minutiae instead of bounding the minimum minutiae count inside the region of 
interest that is common to both fingerprints. We introduce this modification based on 
the forensic criterion that a true matching fingerprints pair must have at least ݐ true 
matching minutiae pairs [1] (ݐ varies for different countries). 

We name the new formulation of TK as Modified TK algorithm (MTK). A formal 
description of MTK is the following: 

1. Let ܶ ൌ ሼଵ, ,ଶ … , ܳ ሽ and ൌ ሼଵ, ,ଶ … ,  ሽ be the template and query
fingerprint minutiae set respectively. For each query minutia  ∈ ܳ and for 
each template minutia  ∈ ܶ, compute the possibility value using equation 
(4). 

2. Sort in descendent order all pairs ൫,  ൯ according to the possibility value
and store in ܴ ՚ ൛൫,ଵ, ,,ଵ൯ ൫,ଶ, ,,ଶ൯ … , ൫,,  .,൯ൟ

3. Set ܧ ՚ ሼሽ and ܴᇱ ՚ ሼሽ. 
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4. For each ൫,, ,൯ ∈ ܴ, ݄ ൌ 1, … , ݊݉ do: 
a. If , ב ܧ ש , ב then update ܴᇱ ܧ ՚ ܴᇱ  ൛൫,, ܧ ,൯ൟ and ՚ ܧ ,,൛  .,ൟ

5. Set ݏܥ ՚ ሼሽ and ܳݏᇱ ՚ ሼሽ. 
6. For each ൫,, ,൯ ∈ ܴᇱ, ݄ ൌ 1, … , ݊ do: 

a. Set ܧ ՚ ሼሽ, ܥ ՚ ሼሽ and ܳᇱ ՚ ሼሽ. 

b. For each ൫,, ,൯ ∈ ܴᇱ, ݃ ൌ 1, … , ݊; if , ב ܧ ש , ב  :do  ܧ

i. Compute ,ᇱ ൌ ൫ݔ,ᇱ , ,ᇱݕ , ,ᇱߠ ൯ as follows: 

ݔ,ᇱݕ,ᇱߠ,ᇱ  ൌ cos ߠ∆ െ sin ߠ∆ 0sin ߠ∆ cos ߠ∆ 00 0 1൩ ݔ, െ ,ݕ,ݔ െ ,ߠ,ݕ െ ,൩ߠ  ݔ,ݕ,ߠ,൩ where , ൌ
൫ݔ,, ,,ݕ , ,,൯ߠ ൌ ൫ݔ,, ,,ݕ ߠ∆ ,,൯ߠ ൌ ,ߠ െ , ,,ߠ ൌ൫ݔ,, ,,ݕ  .,൯ߠ

ii. Update ܳᇱ ՚ ܳᇱ  ൛,ᇱ ൟ. 

iii. Let , ൌ ൫ݔ,, ,,ݕ ,ᇱݔ,൯; if ට൫ߠ െ ,൯ଶݔ  ൫ݕ,ᇱ െ ,൯ଶమݕ   ௦ݐ

and ݀൫ߠ,ᇱ , ,൯ߠ  ܧ ఏ, then updateݐ ՚ ܧ  ൛,, ܥ ,ൟ and ՚ܥ  ൛൫,,  .,൯ൟ

c. Update ݏܥ ՚ ݏܥ  ሼܥሽ and ܳݏᇱ ՚ ᇱݏܳ  ሼܳᇱ ሽ 
7. Select ܥ ∈ ᇱܳ ,ݏܥ ∈ ܽ ᇱ whereݏܳ ൌ argmaxୀଵ,…,|ܥ|. 
8. If |ܥ| ൏  return 0 else: let ܶொᇲ and ܳᇱݐ ் represent the number of minutiae 

from ܶ and ܳᇱ  respectively placed inside the intersection of the two finger-

print bounding rectangles, return 
ଵ்ೂᇲொᇲ ቀ ,,൫ݏ ,൯∈ೌ,ೕ,,൯൫ ቁଶ

. 

Distance threshold ݐ௦, angle threshold ݐఏ and minutia count threshold ݐ are parame-
ters of the algorithm. The reader can refer to Fig. 2 to see the good behavior of the 
modified TK algorithm in a case where the original TK fails. 

4   Experimental Results 

In order to evaluate the new formulation of TK algorithm we make use of the four 
databases of FVC2004 and the performance evaluation protocols of this competi-
tion [2]. We express in percentage the performance indicators EER, FMR100, 
FMR1000 and ZeroFMR. The indicator Time refers to average matching time in 
milliseconds. 

We use the same features and parameters for both TK and MTK algorithms in all 
databases: distance threshold ݐ௦ ൌ 12, angle threshold ݐఏ ൌ ߨ 6⁄  and minutia count 
threshold ݐ ൌ 6. We compute the features using the parameters that reported the best 
results in [11]. We carry out all the experiments on a laptop with an Intel Core Duo 
processor (1.86 GHz) and 1GB of RAM. 
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Tables 1 to 4 show the experimental results of MTK compared to: the original TK, 
the minutiae matching algorithm proposed by Qi et al. [9] and the results reported by 
Het et al. [6]. The average matching time reported in [6] does not appear in these 
tables because the experiments were performed using a different computer hardware. 
We highlight with bold letter the best result for each performance indicator. 

As we expected the algorithm MTK outperform TK in all the databases for each 
indicator. MTK is faster than TK because the modification that we introduce in equa-
tion (6) allows discarding several false matching minutiae without comparing the 
respective whole descriptors. Another important result is that MTK outperforms the 
rest of the algorithms in most of the databases. 

MTK has some limitations despite the good results achieved in the experiments. 
The main factors that affect the good behavior of this algorithm are high fingerprint 
distortion and small fingerprint area (see Fig. 3).  

Table 1. Experimental results on DB1_A of FVC2004 

Algorithm EER(%) FMR100(%) FMR1000(%) ZeroFMR(%) Time(ms) 
MTK 7.63 15.82 22.07 28.54 7.37 
TK 16.07 28.71 36.96 48.14 16.92 
Qi et al. [9] 27.87 64.54 78.25 94.21 40.59 
He et al. [6] 9.33 18.5 25.03 30.28 - 

Table 2. Experimental results on DB2_A of FVC2004 

Algorithm EER(%) FMR100(%) FMR1000(%) ZeroFMR(%) Time(ms) 
MTK 5.72 7.86 12.50 15.32 6.12 
TK 8.45 13.43 20.25 26.18 13.77 
Qi et al. [9] 28.49 59.32 68.64 90.64 31.53 
He et al. [6] 7.34 13.39 16.6 19.89 - 

Table 3. Experimental results on DB3_A of FVC2004 

Algorithm EER(%) FMR100(%) FMR1000(%) ZeroFMR(%) Time(ms) 
MTK 3.77 7.36 13.64 20.68 10.98 
TK 9.13 20.14 28.75 32.21 24.45 
Qi et al. [9] 20.16 49.29 69.86 89.86 65.92 
He et al. [6] 8.52 13.1 16.53 22.53 - 

Table 4. Experimental results on DB4_A of FVC2004 

Algorithm EER(%) FMR100(%) FMR1000(%) ZeroFMR(%) Time(ms) 
MTK 6.78 7.61 9.43 10.54 6.48 
TK 7.72 11.21 18.07 43.25 14.18 
Qi et al. [9] 26.15 60.29 70.32 82.25 33.09 
He et al. [6] 2.71 4.21 5.57 7.0 - 
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High fingerprint distortion causes minutia descriptors with distorted orientations 
values while small fingerprint area causes minutia descriptors with too many sam-
pling points with no information at all; in both cases, the minutia descriptor matching 
is unreliable. Minutia descriptors based on local neighboring minutiae (see [12-14]) 
tends to be more robust to these problems. Therefore, MTK could be improved by 
two ways: enriching the minutia descriptor with local neighboring minutiae informa-
tion or combining MTK with an algorithm based on local neighboring minutiae  
descriptor. 

 

 
 

 

 

(a) (b) (c) (d) 

Fig. 3. These are two pairs of false not matching fingerprints from DB1_A using MTK. Finger-
prints (a) 17_3 and (b) 17_6 are false not matching due to the high distortion on fingerprint (a). 
Fingerprints (c) 10_2 and (d) 10_4 are false not matching due to the small area of fingerprint 
(c). 

5   Conclusions 

This paper presents improvements to the fingerprint matching algorithm proposed by 
Tico and Kuosmanen in [11]. The new algorithm, named MTK, has three modifica-
tions of the original algorithm. First, we reduce the local matching minutiae pairs and 
use them all to accomplish a better fingerprint alignment. We introduce this modifica-
tion because the minutiae pair that maximizes the possibility value is not necessarily a 
true matching minutiae pair; therefore, relying only on this pair for alignment may 
lead to false negative fingerprints matching. Second, we introduce a modification in 
the minutia similarity function in order to increase the minutiae discrimination with 
the additional advantage of reducing the matching time for fingerprint verification 
problems. Third, we include the forensic criterion that a true matching fingerprints 
pair must have at least certain count of true matching minutiae pairs. The conjunction 
of these modifications in MTK proves to be more accurate and faster than the original 
algorithm. The next step in our research is to investigate how the extensions of these 
modifications to other matching algorithms affect their performance. 
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Abstract. We present a novel shape recognition method based on an al-
gorithm to detect contrasted level lines for extraction, on Shape Context
for encoding and on an a contrario approach for matching. The contri-
butions naturally lead to a semi-local Shape Context. Results show that
this method is able to work in contexts where Shape Context cannot,
such as content-based video retrieval.

1 Introduction

The problem of Shape Matching and Recognition can be described as a three-
stage process [1]: (i) edge detection; (ii) invariant coding and matching of semi-
local shapes; and (iii) grouping of local shape matches.

The first step is most commonly solved by the use of a Canny edge detector
which has at least two drawbacks: (a) several parameters have to be manu-
ally tuned depending on contrast and noise; and (b) edges are represented as a
non-structured set of edge points which needs to be later grouped into curves,
which is a non trivial and error prone task. In this work we substitute the Canny
edge detector by a refinement of the Meaningful Boundaries (MB) algorithm [2].
The representation of edges as well-contrasted pieces of level-lines (inspired from
mathematical morphology) avoids the edgel linking stage, and the use of Gestalt-
inspired [3] a contrario detection theory [2] provides a theoretically sound and
effective means of selecting parameters and the contrast/noise trade-off. In ad-
dition our refinement (see section 3) eliminates the main shortcomming of the
basic MB algorithm, thus avoiding that low-contrast parts of the level-lines keep
well-contrasted parts from being detected. Fig. 1 compares our MB refinement
with the Canny edge detector. Observe that the use of continuous level-lines
extracted from a bilinearly interpolated image provide much more finer-grained
information, solve the edge-linking problem more effectively and does not intro-
duce a significant computational penalty (thanks to the bilinear FLST [1]).

Once shapes have been extracted from the image, a suitable representation
to describe them has to be chosen (step (ii) above). Belongie et al. proposed a
shape descriptor that is called Shape Context (SC) [4]. SC has many advantages
and has been used succesfully in several applications. SC encodes shapes from
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(a) (b) (c) (d)

Fig. 1. (a) original image; (b) an area on its upper left corner; (c) detailed view of
Canny’s filter applied to (a); (d) detailed view of MB applied to (a)

the edge map of an image and it therefore inherits its aforementioned drawbacks.
The novel contribution of this work (see section 3) is to fuse SC and MB in what
we call Morphological Shape Context (MSC). Results presented further show
that this descriptor is able to work in contexts where SC cannot.

The matching step is the least studied of all the processes involved in visual
recognition. Most methods use a nearest neighbor approach to match two sets
of descriptors [5]. In this work we present an a contrario shape context matching
criterion (see [6] and section 4), which gives a clear-cut answer to this issue.

Shape matching as described so far (step (ii)) only allows to match relatively
simple semi-local shapes. More complex shapes will be represented by groups of
shapes that are geometrically arranged in the same manner in both images. Such
groups can be detected as a third clustering step. In this work we do not describe
this stage in detail but use a basic RANSAC [7] implementation in section 5, in
order to experimentally evaluate the results of steps (i) and (ii) in the context
of content-based video retrieval applications.

2 Shape Extraction

This section addresses the problem of extracting the shapes present in an im-
age. We make use of the Fast Level Set Transform (FLST) method where the
level sets are extracted from an image, and we propose an extension of the MB
algorithm [2], that detects contrasted level lines in grey level images. Let C be a
level line of the image u and x0, x1, . . . , xn−1 denote n regularly sampled points
of C, with geodesic distance two pixels, which in the a contrario noise model
are assumed to be independent. In particular the gradients at these points are
independent random variables. For xi ∈ C, let µj (0 ≤ j ≤ n − 1) be the j-th
value of the increasingly sorted vector of the contrast at xi defined by |Du|(xi)
(the image gradient norm |Du| can be computed on a 2× 2 neighborhood).

The curve detection algorithm consists in adequately rejecting the null hy-
pothesis H0: the values of |Du| are i.i.d., extracted from a noise image with the
same gradient histogram as the image u itself.

Following [8], for a given curve, the probability under H0 that at least k
among the n values µj are greater than µ is given by the tail of the binomial law
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B(n, k,Hc(µ)), where Hc(µ) = P (|Du| > µ). The regularized beta function I can
be regarded as an interpolation of the binomial tail to the continuous domain
and can be computed much faster. Thus it is interesting, and more convenient, to
extend this model to the continuous case using the regularized incomplete beta
function I(Hc(µ); l1(k), l2(k)), where l1(k) = l

2
n−k

n and l2(k) = 1 + l
2

k
n . This

represents the probability under H0 that, for a curve of length l, some parts with
total length greater or equal than l1(k) have a contrast greater than µ.

Definition 1. Let C be a finite set of Nll level lines of u. A level line C ∈ C is an
ε-meaningful boundary if NFA(C) ≡ Nll ·K ·min0≤k<K I(Hc(µk); l1(k), l2(k)) <
ε, where K is a parameter of the algorithm. This number is called number of
false alarms (NFA) of C.

As in [1], the expected number of ε-meaningful boundaries in a finite random
set of random curves can be proven to be smaller than ε.

Meaningful boundaries usually appear in parallel and redundant groups, be-
cause of interpolation. The shape extraction algorithm only detects curves with
minimal NFA in such groups [1].

The refinement proposed in Def. 1 is no other than a relaxation of the classic
definition by Desolneux et al. ([2]) which aims at avoiding underdetection by
allowing some parts (up to k < K out of n points) of the curve to be low-
contrasted.

The choice of the value of K cannot be directly made as it is highly dependent
on the length and the constrast of the curve. Thus the value ofK has to be chosen
as a function of the curve length and of the image contrast along the curve.

Following Def. 1, we set the value of K as K̂ϕ ≡ argmaxi<n

(∑ i
j=0 µj∑n−1
j=0 µj

< ϕ

)

where ϕ ∈ [0, 1] is the new parameter of the detection algorithm.
This choice of K is indeed adaptive to the length and contrast of each level

line. It is in fact quite stable for values of ϕ < 0.05. Larger values lead to
an overdetection and, in general, no perceptually significant level lines appear.
Studying how this relates with the laws of visual perception is an interesting
subject for future research. From a computational and pragmatic point of view,
we consider here that this is not a critical parameter that has to be set by the
user because: (i) all experiments were performed with the same value of ϕ = 0.02
obtaining near-optimal performance; and (ii) varying the value of ϕ within the
range (0, 0.05) does not significantly affect the results.

3 Shape Encoding

In this section we overview the SC technique [4], and we present an improved
version that leads to an intrinsic definition of semi-locality in this new descriptor.

The SC considers a sampled version of the image edge map as the shape to
be encoded. The SC of a point in the shape is a coarse histogram of the relative
positions of the remaining points. The histogram bins are taken uniformly in log-
polar space, making the descriptor more sensitive to positions of nearby sample
points than to those farther away.
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(a) (b)

Fig. 2. (a) Shape context of a character ’E’. Left, partition into bins around the point
ti; right, matrix representation of SCti (darker means more weigth). (b) Different
ways to split a shape context. Doted lines separate bins and thick lines separate bin
groupings.

Let T = {t1, . . . , tn} be the set of points sampled from the edge map of an
input image. For each ti ∈ T , 1 ≤ i ≤ n, the distribution of the n− 1 remaining
points in T is modeled relative to ti as a log-polar histogram (Fig. 2a). We
denote by Θ ×∆ a partition of the log-polar space [0, 2π]× (0, L] into A and B
bins respectively, where L = maxtj∈T ||tj − ti||2. The histogram is defined as

SCti(Θk, ∆m) = #{tj ∈ T : j �= i, tj − ti ∈ (Θk, ∆m)}

where 0 < k ≤ A and 0 < m ≤ B. The Shape Context of ti (SCti) is defined as
a normalized version of SCti(Θk, ∆m).

Fig. 2a depicts both spatial and matrix representations of a shape context.
The collection of the SC for every point in the shape is a redundant and

powerful descriptor for that shape but has some drawbacks.
First, the sampling stage is performed by considering that the edge map

corresponds to a Poisson process [4]. This hard-core model produces a non-
deterministic sampling algorithm which means that different runs of the sam-
pling algorithm may give slightly different results. The immediate consequence
is that two descriptors from exactly the same image, obtained at different times,
may not be equal. In short terms, jitter noise is introduced in the descriptor. In
Fig. 3 the effect of the jitter noise is shown, making d(SCti , SCtj ) ≈ 0.11 �= 01.

Second, from our point of view the main drawback of SC is that it inherits the
weaknesses from the edge map. We mentioned previously that extracting curves
from the edge map is a hard problem. This fact has a great impact in shape
encoding: there is no intrinsic distinction between what is global and what is
not. An example is shown in Fig. 3, where d(SCti , SCtk

) ≈ 0.3 which is clearly
above the jitter noise d(SCti , SCtj ). In short terms, a slight modification of the
shape has a great impact on the distance. The question “Where does a shape
begin and where does it end?” becomes absolutely non trivial. The efforts to
overcome this issue lead to heuristic solutions.

As stated above, the topographic map provides a natural solution to these
issues. Meaningful boundaries are much more suitable than the edge map for
shape recognition. Meaningful boundaries are used as the set of shapes to be
encoded and recognized from an image [1]. Maximal Stable Extremal Regions
1 d(·, ·) is the χ2 distance and is used throughout this paper.
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(a) (b) (c) (d) (e)

Fig. 3. (a) image horsehoe1; (b) sampled points from horsehoe1; (c) other sampled
points from horsehoe1, with the same sampling process than those in (b); (d) image
horsehoe2; (e) sampled points from horseshoe2 with the same sampling process than
those in (b) and (c). The points ti, tj ad tk are in the same position of the image.

(MSER), which are very close in spirit to MB, have also been used for shape
encoding, see [9] among others.

The main idea is to exploit the benefits of the image structure representation
defined in the previous section and to fuse it with SC. We call this new descriptor
Morphological Shape Context (MSC).

As in SC, each shape in a given image is composed by a set of points. In MSC,
we consider each curve (i.e. meaningful boundary) as a shape. When dealing
with curves, the sampling stage is done in a very natural way, by arc-length
parameterisation, thus eliminating jitter noise. In the resulting algorithm, shapes
are extracted using the MB algorithm. Let us redefine T = {t1, ..., tn} as the
set of points sampled from a meaningful boundary of an image. The SC is then
computed for each sample point ti, 1 ≤ i ≤ n.

Beside the advantages of the representation we described above, one of its
keys is the natural separation between level lines (they do not intersect). It
allows to go from a global shape encoding to a semi-global one in a natural way,
i.e. without fixing any arbitrary threshold. The most powerful advantage is that
individual objects present in the image can be matched separately, which was
not posible in SC.

In [1] the Level Line Descriptor was designed to detect that two images share
exactly the same shape. The “perceptual invariance” is only introduced in the
matching stage. That is not what we are aiming for. We want to keep the intrinsic
“perceptual invariance” given by the SC and be able to detect that two images
share two similar shapes, independently of the matching algorithm.

4 Shape Matching

As shown in [1], the a contrario framework is specially well suited for shape
matching. Let F = {F k|1 ≤ k ≤M} be a database of M shapes. For each shape
F k ∈ F we have a set T k = {tkj |1 ≤ j ≤ nk} where nk is the number of points
in the shape. Let SCtk

j
be the shape context of tkj , 1 ≤ j ≤ nk, 1 ≤ k ≤M . As

in [6] we assume that each shape context is split in C independent features that
we denote SC(i)

tk
j

with 1 ≤ i ≤ C (see Fig. 2b for an example).
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Let Q be a query shape and q a point of Q. We define dk(i)
j = d(SC(i)

q , SC
(i)
tk
j

).

The matching algorithm consists in adequatley rejecting the null hypothesis
H0: the distances dk(i)

j are realizations of C independent random variables D(i),
1 ≤ i ≤ C.

Definition 2. The pair (q, tkj ) is an ε-meaningful match in the database F if

NFA(q, tkj ) ≡
(

M∑
k′=1

nk′

)
·

C∏
i=1

P (D(i) ≤ d
k(i)
j | H0) < ε.

This number is called number of false alarms (NFA) of the pair (q, tkj ).

This provides a simple rule to decide whether a single pair (q, tkj ) does match or
not. From one side, this is a clear advantage over other matching methods since
we have an individualized assessment for the quality of each possible match.
From the other side, the threshold is taken on the probability instead of directly
on the distances. Setting a threshold directly on the distances dk

j (or dk(i)
j for the

case) is hard, since distances do not have an absolute meaning. If all the shapes
in the database look alike, the threshold should be very restrictive. If they differ
significantly from each other, a relaxed threshold would suffice.

Thresholding on the probability is more robust and stable. More stable, since
the same threshold is suitable for different database configurations. More robust,
since we explicitly control false detections. As proven in [1], the expected number
of ε-meaningful matches in a random set of random matches is smaller than ε.

5 Results and Conclusions

In this section we illustrate the performance of the presented methods with
three different examples. All the experiments in this paper were produced using
ϕ = 0.02 for the computation of MB. In both a contrario algorithms taking
ε = 1 should suffice but we set ε = 10−10 for MB and ε = 10−2 for matching to
show the degree of confidence achievable whithout affecting the results.

In the first example, we tested the approach in a video sequence from South
Park, which is textureless and composed only by contours. In Fig. 4a, meaningful
matches between two consecutive frames are depicted. White dots represent the
centers of the MSC. In Fig. 4b, both frames are overlapped to show moving
shapes. Note that in Fig. 4a there are no matches in these areas.

The second example, displayed in Fig. 5, is closely related to the first one.
Here texture is present and a non-rigid character is moving on the foreground.
The matches between frames 3 and 4 of the sequence are shown. Only shapes not
occluded by the movement are matched. The channel logo is correctly matched
since it is located in the foreground and it does not move.

Finally, in Fig. 6 an application to content-based video retrieval is shown. We
searched for the parental guidance logo in a video sequence with more than 6000
frames. Fig. 6a depicts the number of matches for each frame of the video. The
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(a) (b)

Fig. 4. (a) Matches (white dots) between two frames. There are 1525 matches coherent
with a similarity transformation. (b) Both frames overlapped to show moving shapes.

Fig. 5. A video sequence with a non-rigid character moving on the foreground (top).
The channel logo is in the bottom right. Matching between frames 6 and 7: there are
141 meaningful matches (white dots) coherent with a similarity transformation.

(a) (b) (c)

Fig. 6. (a) Number of matches per frame of a video with the displayed query. (b) Best
(solid line) and worst (dashed line) matches for a target frame. (c) Detail of the logo
area with matched points in black dots.

logo is present in three intervals ([0, 76], [2694, 2772] and [4891, 4969]) which
coincide with the three spikes. These spikes are clearly higher than spurious
matches in the rest of the video. The second and third spike are smaller than
the first one, in those intervals the logo is only at 66% of its original size. This
is achieved without any multiscale processing. In Fig. 6b the best match (the
correct one) has a NFA of 2.45 · 10−9 and the worst one (the wrong one), of
9.99 · 10−3. At ε = 10−4 all matches are correct.
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The same experiment as in Fig. 6b using SC gives 3 matches instead of the 29
obtained using MSC (Fig. 6c). All MSC matches are correct and all SC matches
are wrong: the global SC approach is unable to match semi-local shapes.

The examples show that semi-locality in the MSC is a key feature to match
shapes in contexts where other shapes are present: when very similar images
present little differences (Fig. 4), when different foregrounds occlude the same
background (Fig. 5), when the query is not present or surrounded by a large set
of shapes (Fig. 6). MSC provides a novel approach to deal with such contexts,
proving itself successful where SC is not.
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9. Obdrzálek, S., Matas, J.: Object recognition using local affine frames on distin-
guished regions. In: Rosin, P.L., Marshall, D.A. (eds.) BMVC (2002)



 

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 137–144, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

On the Computation of the Common Labelling of a Set  
of Attributed Graphs 

Albert Solé-Ribalta and Francesc Serratosa 

Department of Computer Science and Mathematics  
Universitat Rovira i Virgili (URV). Avda. Països Catalans, 26. 43007 Tarragona 

albert.sole@urv.cat, francesc.serratosa@urv.cat 

Abstract. In some methodologies, it is needed a consistent common labelling 
between the vertices of a set of graphs, for instance, to compute a representative 
of a set of graphs. This is a NP-problem with an exponential computational cost 
depending on the number of nodes and the number of graphs. The aim of this 
paper is twofold. On one hand, we aim to establish a technical methodology to 
define this problem for the present and further research. On the other hand, we 
present two sub-optimal algorithms to compute the labelling between a set of 
graphs. Results show that our new algorithms are able to find a consistent 
common labelling while reducing, most of the times, the mean distance of the 
AG set. 

Keywords: Multiple graph matching, common graph labelling, inconsistent la-
belling, softassign. 

1   Introduction 

In some patter recognition applications, it is useful to define a representative of a set 
or cluster of elements. Some well-known techniques have been described when the 
elements are characterised by a feature vector. Nevertheless, only few techniques 
have been developed when the elements are represented by Attributed Graphs (AGs). 
When this is the case and when we want to synthesise the representative, examples 
could be found in: [1], [2], [3], [4] and [7], considering all the set at a time, it is 
needed a common labelling between each AG vertex (and arcs) and the vertices (and 
arcs) of the representative. Thus, given a priori this labelling, the new representative 
can be synthesised. Moreover, if we want the new structure to represent the cluster, it 
is desired that this structure is defined such that the sum of distances between the AGs 
and this new prototype is minimum. When this occurs, we say that we have obtained 
an Optimal Common Labelling of a set of AGs (OCL). 

The main impediment on solving the OCL problem is that it is an NP-problem and 
therefore, the computational cost is exponential on the number of nodes and also on 
the number of AGs. For this reason, it is crucial to find algorithms that compute good 
approximations of the OCL in polynomial time. The aim of this paper is to present 
two new sub-optimal algorithms to compute the OCL of a set of AGs.  

Similar works on this issue could be found in [8] where a labeling between two AG 
is induced by all the labelings of the set, however no OCL can be found using this 
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procedure. Some other works, where the aim of the article is finding the OCL, will we 
be introduced later on the document. 

The document is structured as follows. In the next section, we introduce basic con-
cepts and notation related to AG matching. In section 3, we define and explain, in 
detail, the problem we want to solve. In section 4, the new algorithms are briefly 
introduced. Section 5 presents results and evaluation of the algorithms. Finally, sec-
tion 6 summarizes the article with some conclusions and further work.  

2   Definitions 

Definition 1. Attributed Graph: Let ∆v and ∆e denote the domains of possible values 
for attributed vertices and arcs, respectively. An attributed graph AG over (∆v and ∆e) 
is defined by a tuple AG=(Σv, Σe, γv, γe), where Σv= {vk | k = 1,…,R} is the set of verti-
ces (or nodes), Σe= {eij | i,j ∈ {1,…,R}, i ≠ j} is the set of arcs (or edges) and γv:Σv  → 
∆v, γe : Σe  →  ∆e assign attribute values to vertices and arcs respectively. 
 

Definition 2. Isomorphism between AGs: Let Gp = (Σv
p, Σe

p, γv
p, γe

p) and Gq=(Σv
q, 

Σe
q, γv

q, γe
q) be two AGs. Moreover, let Τ  be a set of isomorphisms between two 

vertex sets Σv. The isomorphism f 

pq:Σv
p→Σv

q, Τ∈pqf , assigns each vertex from Gp 

to only one vertex of Gq. There is no need to define the arcs isomorphism since they 
are mapped accordingly to the node isomorphism of their terminal nodes. 
 

Definition 3. Cost and Distance between AGs: Let f 

pq be the isomorphism 
fpq:Σv

p→Σv
q that assigns each vertex from Gp to a vertex of Gq. The cost of this iso-

morphism, C(Gp,Gq, f 

pq) is a function that represents how similar are the AGs and 
how correct is the isomorphism. Usually, C=0 represents that both AGs are identical 
and that the isomorphism captures this similarity. The distance D between two AGs, 
is defined to be the minimum cost of all possible isomorphisms f 

pq. That is, 
( ) ( )pqqp

f

qp fGGCGGD
pq

,,min,
Υ∈

=  [9]. We say that the isomorphism f 

pq is optimal if it is 

the one used to compute the distance. 

3   Common Labelling of a Set of AGs 

The first step of the algorithms presented in the literature [1], [2], [3], [4] is to obtain 
all possible isomorphisms between all AGs of the set. Once these isomorphisms are 
obtained, then the Common Labelling is computed. 
 

Definition 4. Multiple Isomorphism of a set of AGs: Let S be a set of N AGs, 
S={G1, G2, …, GN}. We say that the set F is a Multiple Isomorphism of S if F contains 
one and only one isomorphism between the AGs in S, F = {f 1,2, …, f 2,1, …, fN,N}. 

We assume that the AGs have R nodes. If it is not the case, the AGs would have to 
be extended with null nodes. We say that a multiple isomorphism is consistent if 
concatenating all the isomorphisms, we can define disjoint partitions of vertices. 
Every partition is supposed to contain one and only one vertex per each AG and, in  
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Fig. 1. Consistent multiple isomorphism Fig. 2. Inconsistent multiple isomorphism 
 

 
addition, every vertex must belong to only one partition. Figure 1 shows a Consistent 
Multiple Isomorphism between three AGs, being R=2. We can distinguish two parti-
tions, P1 and P2. Figure 2 shows the same AGs with an Inconsistent Multiple Iso-
morphism, where partitions share two nodes, hence partitions are not disjoint. 

 

Definition 5. Consistent Multiple Isomorphism of a set of AGs (CMI): Let F be a 

Multiple Isomorphism of S. F is a CMI of S if it fulfils that ( )( ) ( )pk
i

pkpq
i

pqqk vfvff = , 

RiNkqp ≤<≤< 0,,,0 . 
Given an isomorphism, we can define its costs (definition 3). Extending this defi-

nition, given a CMI of a set, we define its cost as the addition of the costs of all iso-
morphisms. The Optimal Consistent Multiple Isomorphism (OCMI) is the CMI with 
the minimum cost. Note that, the cost of the OCMI may be obtained by non-optimal 
isomorphisms since it is restricted to be consistent. 
 

Definition 6. Optimal Consistent Multiple Isomorphism of a set of AGs (OCMI): 
Let F be a CMI of S. F is an Optimal Consistent Multiple Isomorphism (OCMI) of S 

if it fulfils that ( )∑
∀Υ∈

=
qp

pq
GG

pqqp

f

fGGCF
,

,,minarg . 

Given a CMI, we can define a Common Labelling (CL) of a set of AGs. Note that all 
the vertices of each partition are labelled to the same node of the virtual structure. For 
this reason, it is needed the MI to be consistent. If not, the CL would not be a function 
since an AG node would have to be labelled to several nodes of the virtual structure. 
 

Definition 7. Common Labelling of a set of AGs (CL): Let F be a CMI of S and let 

Lv be a vertex set, vvL Σ∈ . The Common Labelling H= { h1, h2, … , hn} is defined to 

be a set of bijective mappings from the vertices of AGs to Lv as follows: h1(vi
1)=i and 

hp(vi
p)=hp-1(vj

p-1), 1≤ i,j ≤R, 2≤ p≤N, being f 
p-1,p(vj

p-1)=vi
p. Figure 3 illustrates this 

definition. 
Finally, the Optimal Common Labelling of a set is a CL computed through an 

OCMI. The prototype or representative of the set synthesised using this CL would be 
the best representative, from the statistical point of view, since the sum of the costs of 
each pair of AGs, considering the global consistency requirement, is the lowest 
among all possible CL.  
 

Definition 8. Optimal Common Labelling of a set of AGs (OCL): Let H be a CL of 
S computed by a CMI F. We say that H is an Optimal Common Labelling (OCL) of S 
if F is an OCMI of S.  
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Fig. 3. Illustration of a CL given a CMI 

Consistency Index 
Through definition 5, we can discern whether a MI is consistent or not. Nevertheless, 
we are interested in establishing a consistency measure of a non-consistent MI to 
know the goodness of a concrete labelling given by sub-optimal labeling algorithms.  

The consistency index that we propose shows the correctness of a MI taking values 
in the domain [0,1]. The higher values obtained the better consistency in the MI. Only 
in the case that the MI is consistent, the consistency index equals 1. To obtain a 
smooth index, we base our index on the number of inconsistencies given any triplet of 
AGs from the set. Thus, given the triplet of AGs, G1, G2 and G3 and the MI F = {f1,2, f 
1,3, f2,3}, we say that there is a tripled inconsistency if ( ) ( )( )12,13,213,1

ii vffvf ≠ , Ri ≤≤1  

(extracted from definition 5). The cost of this operation is linear respect the number 
of nodes. Finally, the Consistency Index is obtained as a function depending on the 
number of triplet inconsistencies and the number of possible triplets. 
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4   Computing the OCL 

Figure 4 presents the main methodology used up to now to compute a sub-optimal 
solution for the Common Labelling problem[1][2][3][4]. It is composed by three main 
steps. First, for each pair of AGs, an assignation matrix is computed. To do so, several 
error-tolerant graph matching algorithms have been presented, such as, probabilistic 
relaxation [11], softassign [5] or Expectation-Maximisation [12]. Each cell of the 
assignation matrix Mai stores the probability of node a, from G1, to be assigned to 

node i, from graph G2, that is, the probability of the labelling ( ) 212,1
ai vvf = , ( )21, ai vvp .  
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Fig. 4. Basic scheme to compute a CL based on a set of assignation matrices 

 

Fig. 5. New scheme to compute a CL based on an assignation hypercube. Example using N=3 
graphs. 

The cost to obtain this matrix, using softassign [5], is O((N/2-N)·R4) per iteration of 
the algorithm. 

In the second step, some times called clean-up process, the CMI of the set is ob-
tained. Again, several techniques can be used, but, all of them consider the probabili-
ties of all the individual assignation matrices and the restrictions imposed by the con-
sistency requirements to obtain the final CMI. The cost of this step, again using 
softassign, is O((N/2-N)R). Finally, in the last and simplest step, the CL is defined. 

Figure 5 presents our new methodology. The main difference appears in the first 
and second step. In the first step, the set of assignation matrices is substituted by an 
assignation hypercube to alleviate the problem of taking the individual assignation 
matrices independently. As a consequence, the first step generates always consistent 
isomorphisms. Therefore, the second step does not need to figure out a consistent MI. 
The third step is equivalent to the previous methodologies. The number of dimensions 
of the hypercube is the number of AGs of the set, N. Each cell of the hypercube 

NaaaM ...21
 represents the joint probability of: 
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Step 1 of the new algorithm: computing an assignation hyper-cube 
To compute the assignation hyper-cube, we have developed two algorithms. In the 
first one, called N-dimensional softassign, the joint probability ( )N

aaa N
vvvp ,...,, 21

21
 has to 

be computed all at once since the marginal probabilities are not considered independ-
ent. The algorithm is a generalisation of the softassign algorithm, in which, the  
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double-stochastic [6] matrix is converted to an N-stochastic hyper-cube and all other 
parts of the algorithm are extended accordingly. It has the advantage that the whole 
MI is considered at once in each iteration; and therefore, the information of the partial 
labelings is used globally. The computational cost is O(R2N) at each iteration. 

The second algorithm, called agglomerative softassign, is based on the supposition 
that the joint probability ( )N

aaa N
vvvp ,...,, 21

21
 can be obtained as the product of the mar-

ginal ones since they are independent:  
( )=N

aaa N
vvvp ,...,, 21

21
 ( ) ( ) ( ) ( ) ( )...,...,,...,, 23213121

23213121

N
aaaa

N
aaaaaa NN

vvpvvpvvpvvpvvp ××   

The algorithm is composed by two main steps. In the first one, all the individual as-
signation matrices are computed using any of the algorithms mentioned before. Using 
those individual assignation matrices, in the second step, the cells of the hypercube 
are obtained as the product of the corresponding cells of the assignation matrices. 

∏
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The cost is the sum of computing all individual assignation matrices plus the cost of 
joining all those individual matrices to the hypercube O(((N2/2)-N)·RN). 

In this paper we base our extensions of “Step 1” on the softassign algorithm due to 
the N-dimensional procedure must extend a concrete algorithm to compute the joint 
probability of several graphs. However, both procedures are generic enough to be 
applied to any other algorithms that use a probabilistic approach, e.g. [8] and [11]. 

5   Evaluation 

We have evaluated the model using a dataset created at the University of Bern [10]. 
It is composed of 15 capital letters (classes) of the Roman alphabet i.e. A, E, F, H, 
I, K, L, M, N, T, V, W, X, Y and Z. Each letter is constituted by straight lines 
which represent edges and terminal points which represent nodes. Nodes are de-
fined over a two-dimensional domain that represents the position (x, y) in the plane. 
Edges have a one-dimensional and binary attribute that represents the existence or 
non-existence of a line between two terminal points. Graph-based representations of 
the prototypes are shown in Figure 6. This database contains three sub-databases 
with different distortion level: low, med, high. Each distortion level of each letter is 
composed by 150 examples. Figure 7 shows 3 examples of letter X with low distor-
tion and 3 examples of letter H with high distortion. In this evaluation just high 
distortion has been used. 

To evaluate the new methodologies proposed we have performed two experiments. 
The aim of the first experiment is to evaluate the consistency of the MI obtained in  
 

  

Fig. 6. Graph-based representations of the 
original prototypes 

Fig. 7. X and H examples with with low 
and high distortion level respectively 
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Fig. 8. Label consistency of labelings found 
using classical softassign 

Fig. 9. Quality of the MI using the two 
algorithms presented and the softassign 

step 1 of the basic scheme1 (Figure 4). The second experiment is addressed to evalu-
ate the goodness of CMI generated by the two schemes (Figure 4 and Figure 5)2. 

To perform the experiment we compute the CMI of a set S composed by three 
elements. We took 30 AGs of each database class. Using each set, we evaluated all 
possible labelings resulting 30*29 labelings. With all those labelings, we chose all 
possible triplets without repeating twice the same graph3, generating ≈ 4000 triplets. 
We evaluated the labeling consistency for each triplet. The overall results for all test 
elements are shown in Figure 8. It can be observed that approximately 70% of the 
triplets don’t produce labeling errors (the labeling consistency is aprox. 1). The other 
30% of the triplets have different levels of consistency. 

In the second experiment we compare the mean edit distance [9] of all test ele-
ments for each class. We took as a test set the inconsistent triplets found in experi-
ment one. Due to temporal requirement of the N-dimensional softassign algorithm, we 
choose, randomly, a sub-set of 50 elements for each class. 

Figure 9 shows the results for the second experiment. We observe that the mean of 
edit distances is approximately the same for the three methodologies. Therefore, we 
can conclude that it is possible to eliminate the inconsistencies obtained with the basic 
scheme without reducing the quality of the MI.  

To summarize, it is worth to say that the expected results should reflect that when 
the basic scheme finds inconsistencies in the labelings, the proposed algorithms re-
duce to none those inconsistencies at the cost of augmenting the mean distance of the 
set S. However, we can amazingly see that in most of those cases where the basic 
scheme finds inconsistencies, the new scheme obtains better MI than the basic scheme 
while reducing to none the inconsistencies of the MI. 

                                                           
1 Using the softassign algorithm. 
2 Using the softassign algorithm on the first scheme and the two presented methods in the sec-

ond scheme. 
3 That is, only result where )()()(|),,( zyzxyxzyx ≠∧≠∧≠ are produced. 
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6   Conclusions and Further Work 

In this paper, we have presented two new approaches to compute a common labelling 
between a set of AGs. The main idea of these algorithms is to tackle the problem from 
the joint-probability point of view. The joint probability represents the probability of 
all the labelings between all the AGs taken at once. Up to now, the probabilities of 
each labelling had been considered as independent items and only at the end of the 
process, when the consistency had to be fulfilled, there where taken all together. Re-
sults show that it is possible to remove inconsistencies in marginal labeling function 
without incrementing the mean distance of the AG set. 
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Abstract. Robust rotation invariance has been a matter of great inter-
est in many applications which use low-level features such as textures. In
this paper, we propose a method to analyze and capture visual patterns
from textures regardless their orientation. In order to achieve rotation in-
variance, visual texture patterns are locally described as one-dimensional
patterns by appropriately steering the Cartesian Hermite coefficients. Ex-
periments with two datasets from the Brodatz album were performed to
evaluate orientation invariance. High average precision and recall rates
were achieved by the proposed method.

Keywords: Texture analysis, steered Hermite transform, image retrieval.

1 Introduction

There is no precise definition of texture, but there are intuitive and interesting
properties of texture which are generally assumed by researchers. Texture can be
described on a spatial neighborhood, whose size and meaning depend upon the
texture type and the scale or resolution at which the texture is perceived. We
can also relate texture to a set of repetitive patterns, sometimes named texture
primitives, taking place into the neighborhood. Texture gray level values can
also form a distribution and characterize the texture. The fact that perception
of texture has so many dimensions is an important reason why there is no single
technique to represent a variety of textures.

Despite the lack of a precise definition, it is often desired that robust texture
analysis achieve one of the most important requirements: to be rotation invariant.
Early methods realizing the importance of rotation invariance used polarograms
[1] and model based methods proposed a circular symmetric autoregressive model
[2] and Gaussian Markov random field models (GMRF)[3].

Recent methods based on Wavelet transforms achieve rotation invariance by
performing preprocessing stages over the texture image such as polar transfor-
mations [4] or a Radon transform [5]. However, one disadvantage of this strategy
is the large number of free parameters and consequently a deeper analysis must
be done in order to find optimal parameters for each dataset. On the other hand,
some methods achieve rotation invariance by performing post-processing stages
such as circular shifts over the feature map according to a dominant orienta-
tion [6,7] and addition of the different directional coefficients at each scale of
analysis [8].

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 145–152, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In this work we propose a robust method to extract rotation-invariant fea-
tures from texture images using the steered Hermite transform. The Hermite
transform is known to be in agreement with some processes found in early vision
systems. Moreover, the steered Hermite transform proposed in [9] and studied
in [10] and [11] provides an efficient way to find meaningful patterns at many
orientations and then compress them into a few coefficients. Methods using the
Discrete Wavelet Transform (DWT) need extra processing stages before or after
the feature extraction process in order to achieve rotation invariance, whereas
methods based on Gabor wavelets need filters to be tuned at fixed orientations.
The property of coefficient steering, based on the directionality of maximum en-
ergy, provides a non-fixed orientation filter design which has the advantage of
approximately finding the same features regardless the orientation of the input
image.

Section 2 summarizes the Hermite transform theory for two-dimensional
signals. In Sect. 3 the steered Hermite transform is presented. The proposed
methodology is presented in Sect. 4. Experimental results are reported in Sect.
5 and finally, conclusions and future directions are given in Sect. 6.

2 Hermite Transform

For the one dimensional case, a polynomial transform Ln(x) is a local decom-
position technique in which an input signal L(x) is localized through a window
V (x) and then expanded into orthogonal polynomials Gn(x) at every window
position [9]:

Ln(x0) =
∫

x

L(x)Gn(x0 − x)V 2
n (x0 − x)dx . (1)

The Hermite transform arises when Gn are the Hermite polynomials Hn(x),
given by Rodrigues’ formula:

Hn(x) = (−1)nex2 dne−x2

dxn
, n = 0, 1, 2, . . . . (2)

and the orthogonal window corresponds to a Gaussian window:

V (x) =
1√√
πσ
· e−x2/2σ2

. (3)

Following (1), the expansion coefficients Ln(x) can be derived by convolution of
the signal L(x) with the Hermite analysis functions dn(x), which are given in
terms of the window and Hermite polynomials as:

dn(x) =
(−1)n

√
2nn!

· 1
σ
√
π
Hn

(x
σ

)
e−x2/σ2

. (4)

The Hermite analysis functions can be easily generalized to two dimensions be-
cause of the property of being both spatially separable and rotationally symmet-
ric. We then can write the two dimensional analysis functions as:

dn−m,m(x, y) = dn−m(x)dm(y) . (5)
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where n−m and m denote the analysis order in x and y direction respectively. As
a result, we can expand a given input image L(x, y) into the basis dn−m,m(x, y)
as:

Ln−m,m(x0, y0) =
∫

x

∫

y

L(x, y)dn−m,m(x0 − x, y0 − y)dxdy . (6)

for n = 0, 1, . . . ,∞ and m = 0, . . . , n.

3 Steered Hermite Transform

A steerable filter is described as a class of filters in which a filter of arbitrary
orientation is synthesized as a linear combination of a set of basis filters [12].
Since all Hermite filters are polynomials times a radially symmetric window
function, rotated versions of a filter of order n can be constructed by taking
linear combinations of the original filters of order n. In this way, a more general
expression of the original Ln−m,m Cartesian Hermite coefficients can be written
in terms of the orientation selectivity θ [11]:

Lθ
n−m,m(x0, y0, θ) =

n∑
k=0

Ln−k,k(x0, y0)αn−k,k(θ) . (7)

which has been named the steered Hermite transform in [10]. The termsαn−m,m(θ)
are the Cartesian angular functions of order nwhich give such orientation selectiv-
ity are defined as:

αn−m,m(θ) =
√
Cm

n cosn−m(θ) sinm(θ) . (8)

Considering the ideally rotation of an input image within a circularly symmetric
window and assuming that no artifacts are introduced due to interpolation and
discretization, we then can assume that there is no lost of information during the
rotation process. If this is the case, energy is preserved for each rotated image.
Thus, we can write the local energy in terms of the steered Hermite coefficients
as:

EN =
N∑

n=0

n∑
m=0

[Ln−m,m]2 =
N∑

n=0

n∑
m=0

[Lθ
n−m,m]2 . (9)

for all N ≥ 0. In natural images, many of the image details that are of prime
importance, such as edges and lines, can be locally described as one-dimensional
patterns, that is, patterns that vary only in one direction (and are constant along
the orthogonal direction). One may distinguish 1D local energy terms and 2D
local energy terms. Thus, we can split local energy of (9) up to order N as:

EN = [L0,0]2 + E1D
N + E2D

N . (10)

where L0,0 represents the DC Hermite coefficient and

E1D
N =

N∑
n=1

[Lθ
n,0]

2 . (11)
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E2D
N =

N∑
n=1

n∑
m=1

[Lθ
n−m,m]2 . (12)

One of the objectives when steering coefficients is to maximize detection of pat-
terns along a given local direction θ. In this way, [10], [11] and [13] propose
strategies in which θ is selected such that E1D

N is maximized. As a consequence,
compaction of energy (i.e Hermite coefficients) can be efficiently achieved.

4 Proposed Methodology

Figure 1 summarizes the proposed methodology to extract rotation-invariant
texture patterns based on the stereed Cartesian Hermite coefficients. Note that
this is a general scheme, no classification methods neither distance metrics are
involved, leaving this interesting areas open to future investigations. Moreover
different texture features are suitable to be extracted from the steered Hermite
coefficients.

Fig. 1. Texture feature extraction methodology using steered Hermite transform

In this work we used the mean and standard deviation features which seem
to better represent on a global sense the behavior of texture patterns distribu-
tions for a given frequency (order n) and scale of analysis. The feature vector is
formed by concatenating mean and standard deviation for each steered Hermite
coefficient 1 ≤ n ≤ N at every scale of analysis s, where 0 ≤ s ≤ S − 1 and S
represents the number of scales:

f = [µ(0)
1 , σ

(0)
1 , . . . , µ

(0)
N , σ

(0)
N , . . . , µ

(1)
1 , σ

(1)
1 , . . . , µ

(S−1)
N , σ

(S−1)
N ] . (13)

5 Experimental Results

The purpose of the following experiments was to evaluate the ability to ex-
tract rotation-invariant visual patterns from texture images with the proposed
methodology. Two experiments proposed in early works were reproduced. Al-
though experiments can hold for a particular application such as image retrieval
or indexing, our principal contribution is a method to analyze and capture visual
patterns regardless their orientation.

Evaluation of texture analysis methods is frequently presented as the behavior
of the average of both precision and recall as functions of a requested (query)
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number of images. Let ng be the number of “ground truth” texture images for
the class c and let nk be the correct number of retrieved “ground truth” texture
images when k queries are performed. Then, precision is defined as:

Pc =
nk

k
. (14)

and recall as:
Rc =

nk

ng
. (15)

Note that perfect scores precision and recall are obtained when the number
of delivered “ground truth” texture images equals the number of queries. By
computing the average of both precision and recall for each class and for different
k queries it is possible to evaluate the robustness of the rotation-invariant texture
analysis method.

The Brodatz texture image dataset [14] was used in both experiments. A
Hermite decomposition was performed up to N = 8 with four scales of analysis.
Thus, a feature vector of 64 elements was formed by concatenating mean and
standard deviation for each steered Hermite coefficient.

The similarity measure was obtained by computing the distance between the
feature vectors using the Canberra distance metric:

d =
z∑

i=1

|f i − gi|
|f i|+ |gi|

. (16)

Experiment I. For this experiment, following the configuration of dataset 4
presented in [4], an image dataset of 25 texture classes from the Brodatz album
was prepared. First, each 512×512 texture image was rotated with 36 equally
spaced angles, ranging from 0 to 35π/36 radians with incremental step size of
π/36. We do not rotate beyond the upper limit 35π/36 radians because it would
have redundant rotated texture images. Each rotated texture image is then par-
titioned from the center of the image to reach 128×128 pixels. As a result 36
rotated texture images comprise the “ground truth” images for each texture
class and a dataset of 25×36 texture images was formed with rotation of a single
area.

Figure 2 shows graphs of the precision and recall average rates. We noted
how well the steered Hermite transform performed for the majority of 36 “ground
truth” texture images, that is, 99.88% retrieval performance when P (%) = R(%)
(i.e. for k = 36 first retrieved texture images). Comparing our results with the
presented in [4], for dataset with rotation only from a single area, we obtained
similar results (P=100%) even for all the first k = 32 retrieved texture images.

Experiment II. For this experiment dataset of experiment I was extended to
108 Brodatz texture images. First, each 512×512 texture image was rotated with
16 equally spaced angles, ranging from 0 to 15π/16 radians with incremental step
size of π/16 as proposed in [8]. Each rotated texture image is then partitioned
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Fig. 2. Average retrieval performance. Note that approximately a perfect average com-
promise between precision and recall (99.88%) was obtained when retrieving the first
36 “ground truth” texture images.
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Fig. 3. Average retrieval performance of experiment II. Note that approximately a
perfect average compromise between precision and recall (97.92%) was obtained when
retrieving the first 16 “ground truth” texture images.

from the center of the image to reach 128×128 pixels. As a result 16 rotated
texture images comprise the “ground truth” images for each texture class and a
dataset of 108×16 texture images was formed with rotation of a single area.

Figure 3 shows graphs of the precision and recall average rates. The steered
Hermite transform-based features got performance retrieval of 97.93% when
P (%) = R(%) (i.e. for k = 16 first retrieved texture images). In [8] and [6]
experiments were performed with similar texture images datasets. Han and Ma
[8] propose a Gabor-based rotation-invariant method and compare it with pre-
vious Gabor-based methods. In [6] a rotation-invariant method using wavelet-
based hidden Markov trees was proposed and reported an average retrieval rate
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of 91.25%. Comparing results, it seems that the proposed methodology outper-
formed average retrieval rates of the methods above mentioned. We noticed in
our experiment that for all the first k = 3 retrieved texture images the average
precision rate was P=100%.

6 Conclusions

In this work, a rotation-invariant texture analysis methodology was proposed.
Texture analysis was performed taking into consideration visual information
from the texture images. First, the analysis functions of the Hermite trans-
form performed filtering and extracted visual details which were then locally
described as one-dimensional patterns by appropriately steering the Cartesian
Hermite coefficients. Mean and standard deviation were computed from each
steered Hermite coefficient and concatenated to form a vector of 64 features.

Results showed that important visual patterns are well extracted after the
steering of Cartesian Hermite coefficients regardless their orientation. Moreover,
we observed an important comprise between average precision and recall rates
with the present method outperforming results previously reported with other
methods.

Although evaluation of the proposed method was conducted for texture image
retrieval, our principal contribution is a method to analyze and capture visual
patterns regardless their orientation. Therefore, many applications that use tex-
ture features can be implemented following the proposed scheme. Future works
will include classification and segmentation evaluations.
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Abstract. Synthetic Aperture Radar (SAR) images are dificult to seg-
ment due to their characteristic noise, called speckle, which is multiplica-
tive, non-gaussian and has a low signal to noise ratio. In this work we use
the GH distribution to model the SAR data from the different regions
of the image. We estimate their statistical parameters and use them in
a segmentation algorithm based on multiregion competition. We then
apply this algorithm to segment simulated as well as real SAR images
and evaluate the accuracy of the segmentation results obtained.

Keywords: SAR images, GHdistribution, multiregion competition, level
set, segmentation.

1 Introduction

Several types of imaging devices employ coherent illumination as, for instance,
Synthetic Aperture Radar (SAR), sonar, laser and ultrasound-B. The images
generated by these devices are affected by a noise called speckle, a kind of
degradation that does not obey the classical hypotheses of being Gaussian and
additive. Speckle noise reduces the ability to extract information from the data,
so specialized techniques are required to deal with such imagery. Identifying
boundaries that separate different areas is one of the most important image un-
derstanding goals. High level image processing relies on precise and accurate
boundaries, among other features. Finding boundaries between regions of dif-
ferent roughness is a hard task when data are contaminated by speckle noise.
Speckled data can be statistically modeled using the family of G distributions [1],
since these probability laws are able to describe the observed data better than
other laws, specially in the case of rough and extremely rough areas. As a case of
interest, in SAR images such situations are common when scanning urban spots
or forests on undulated relief, and for them the more classical Γ and K distri-
butions do no exhibit good performance [1,2]. Under the G model, regions with
different degrees of roughness can be characterized by the statistical parameters.
Therefore, this information can be used to find boundaries between regions with
different textures. The propose of this work is to use region competition methods
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under GH . We replace the hypothesis of Gaussian noise in the region competition
functional [3] with the hypothesis of GH distributed noise. The minimization of
the resulting functional is performed via the level set formalism [4]. This work is
structured as follows, in section 2 we describe the GH distribution, in section 3
we describe the segmentation process based on region competition and level set
minimization, in section 4 we present the results on simulated and real images
and our conclusions.

2 Image Model and the GH Distribution

Monopolarized SAR images can be modeled as the product of two independent
random variables: one corresponding to the backscatter X , which is a physical
quantity that depends on the geometry and the electromagnetic characteristics
of the sensed surface, and the other one corresponding to the speckle noise Y ,
the typical noise of coherent illumination devices. In this manner

Z = X · Y (1)

models the return Z in each pixel under the multiplicative model. For monopo-
larized data, the speckle noise Y is modeled as a Γ (n, n) distributed random
variable, where n is the number of looks, so its density is given by

fY (y) =
nn

2nΓ (n)
yn−1 exp

(
−1

2
ny

)
, y > 0. (2)

Also for this type of data, the backscatter X is considered to obey a Generalized
Inverse Gaussian law, denoted as N−1(α, λ, γ) [5]. This distribution has been
proposed as a general model for backscattering, its density function being

fX(x) =
(λ/γ)α/2

2Kα

(√
λγ
)xα−1 exp

(
−1

2

(
λx+

γ

x

))
, x > 0. (3)

The values of the statistical parameters γ, λ and α are constrained to be: γ > 0
and λ ≥ 0 when α < 0, γ > 0 and λ > 0 when α = 0, and γ ≥ 0 and λ > 0 when
α > 0. The function Kα is the modified Bessel function of the third kind.

The backscatter X can exhibit different degrees of roughness and therefore,
considering this characteristic, it could follow different models.

For smooth areas, such as pastures and many types of crops, a constant C dis-
tribution is an adequate model for X . For homogeneous and also for moderately
heterogeneous areas, the Γ distribution is a good model, and the corresponding
distribution for the SAR data Z is the K distribution .

In order to model a wide range of targets, ranging from rough to extremely
rough targets, the reciprocal of Gamma Γ−1 [1] and the Inverse Gaussian IG(γ, λ)
distributions can be used. This in turn results in the G0 [6,7,8,2,9], and the GH

distributions for the returnZ, respectively.These distributions have the additional
advantage of their mathematical tractability, when compared to the K
distribution.
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In this paper, we propose the use of the Inverse of Gamma distribution to
model the backscatter X . This statistical law is the result of making α = −1/2
in the Generalized Inverse Gaussian distribution N−1(α, λ, γ) so it becomes the
IG(γ, λ) distribution.

The density function of this distribution is given by (Eq. 4).

fX(x) =
√

γ

2πx3 exp

⎛
⎜⎝−

(√
λx−√γ

)2

2x

⎞
⎟⎠ , x > 0, (4)

with λ, γ > 0. The parameters γ and λ can be used to define a new pair of
parameters ω and η, given by ω =

√
γλ, η =

√
γ/λ so formula (4) can be

rewritten as

fX(x) =
√

ωη

2πx3 exp

(
−1

2
ω

(x− η)2

xη

)
, x > 0. (5)

So X ∼ IG (ω, η), and it is possible to see that the corresponding moments are

E [Xr] =

√
2ω
π

exp (ω)ηrKr− 1
2

(ω) . (6)

where Kr− 1
2

(ω) is the modified Bessel function of the third kind. Given that
the order of this function is r − 1

2 with r an integer number, there is a closed
formula that allows it to be easily evaluated.

The corresponding density function for the return Z, is given by

fGH (z) = nn

Γ (n)

√
2ωη
π exp(ω)

(
ω

η(ωη+2nz)

)n/2+1/4

. zn−1Kn+1/2

(√
ω
η (ωη + 2nz)

)
,

(7)

with ω, η, z > 0 and n ≥ 1, respectively.
The moments of the GH distribution are

EGH (Zr) =
( η
n

)r

exp (ω)

√
2ω
π
Kr−1/2(ω)

Γ (n+ r)
Γ (n)

, (8)

and are used to estimate the statistical parameters.

3 Image Segmentation

Let I : Ω → � be an image defined over Ω ⊆ �2. The goal of the segmentation
process is to find a family of regions R = {Ri}i=1...N such that:

– Each region is a subset of the image domain Ri ⊆ Ω.
– The regions are pairwise disjoint Ri ∩Rj = φ ∀i �= j.
– Cover the image domain ∪N

i=1Ri ⊆ Ω.
– The points in each region share some image characteristics.
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In [3] Zhu and Yuille proposed that the intensity values of the points inside
each region are consistent with having been generated by one of a family of pre-
specified probability distributions P (I(x) : αi), where αi are the parameters
of the distribution for the region Ri. In [3] the image segmentation problem is
posed as the minimization of the energy functional:

EZY (R1, ...,RN ,α1, ...,αN ) =
N∑

i=1

(
−
∫

Ri

logP (I(x) : αi)dx +
µ

2

∮

∂Ri

ds

)

(9)
being ∂Ri the boundary of the region Ri. The regions that minimizes the func-
tional are the desired family of regions R. The first term, is the sum of the cost
for coding the intensity of every x pixel inside the Ri according to it’s distribu-
tion. The second term, is a regularization term and penalizes large boundaries.
The parameter µ > 0 is a weighting constant controlling the regularization. In
this work we assume that I(x) ∼ GH , therefore P (I(x) : αi) is given by Eq. (7)
and αi = (ωi, ηi).

3.1 Level Sets Based Minimization

Although the suggested functional in Eq. (9) describes the problem quite accu-
rately, their minimization is very difficult. Level sets based methods are a way
to solve this problem. The methods has a lot of attractive properties. First,
level sets can describe topological changes in the segmentation. Second, it is not
necessary to discretisize the contours of the objects.

Level sets [4] based methods to minimize functionals like Eq. (9) has been
addressed by multiple works [10,11,12,13]. Most of them uses more than one level
set function to represent the regions. The main difficulty is that the evolution of
level set functions need to be coupled in order respect the restrictions of disjoint
regions. In the two-region case this constraint is implicitly satisfied.

In [10] Chan and Vese extended the work in [14] to deal multiple regions using
only logN level set functions. When the number of regions is a power of 2, this
model implicitly respect the restriction that the regions are disjoint. However
when the number of level set functions is not a power of two this model shows
some problems. The first problem is that region boundaries are weighted twice.
The second problem is that the model introduces empty regions.

A different approach is proposed in [13] where N − 1 level set functions
{Φi}i=1...N−1 are used to representN regions. In the work they define the regions
RΦi = {x ∈ Ω|Φ(x) > 0} and the desired segmentation is given by the family
R =

{
RΦ1 , R

c
Φ1
∩RΦ2 , R

c
Φ1
∩Rc

Φ2
∩RΦ3 , ..., R

c
Φ1
∩ ... ∩Rc

ΦN−1

}
which satisfies

the partition constraint by definition. The proposed coupled motion equations
are:

∂Φj

∂t
(x, t) = ||∇Φj(x, t)||

(
P (I(x) : αj)− ψj(x) + µdiv

(
∇Φj(x, t)
||∇Φj(x, t)||

))
(10)

with 1 ≤ j ≤ N − 1, and where ψj(x) is given by:
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ψj(x) = P (I(x) : αj+1)χRΦj+1
(x)

+ P (I(x) : αj+2)χRc
Φj+1

∩RΦj+2
(x)

. . .

+ P (I(x) : αN−1)χRc
Φj+1

∩...∩Rc
ΦN−2

∩RΦN−1
(x)

+ P (I(x) : αN )χRΦc
j+1

∩...∩Rc
ΦN−2

∩RΦc
N−1

(x)

The last approach described is simple and easy to implement. It has been suc-
cessfully used in SAR segmentation images in the work [15]. Thereof this is the
approach we have adopted in our work.

4 Results and Conclusions of Image Segmentation Using
GH Models

The proposed algorithm has been tested on a range of simulated and real images.
The results for two simulated images are shown in Fig. 1 (a) through (d) and
Fig. 1 (e) through (h), showing from left to right, the initial contours, their evo-
lution and final results. These images were generated using the GH distribution.
The parameters used to generate each of the regions and their corresponding
estimates from the segmented images are shown in Table 1. The percentage of
pixels correctly classified in the first image is 97.05% and in the second image
is 96.89%. The obtained results for the segmentation of simulated images are
similar in performance to those obtained by [15].

Table 1. Values for the parameters used to generate the simulated data in Fig. 1(a)
and Fig. 1(e) and their corresponding estimates, calculated from the segmented regions
depicted in Fig. 1(c) and Fig. 1(g)

Figure 1(a) Figure 1(e)
Region color η ω η-estimate ω-estimate η ω η-estimate ω-estimate
background 2.75 57.60 2.47 55.8 13.4 7.4 13.62 7.37
dark gray 3.1 10.5 2.88 10.57 1.95 67.60 1.33 56.97
light gray 1.08 2.25 1.13 2.20 8.1 15.50 7.71 15.14
white 10.0 5.0 7.07 4.90 1.43 3.16 1.51 3.15

Table 2. Estimated GH parameters for the segmented regions shown in Fig. 2(c) and
Fig. 2(g)

Figure 2(a) Figure 2(e)
Region color η ω η ω

background 2.60 3.38 1.06 2.09
dark gray 12.93 2.95 3.21 17.46
light gray 66.85 3.08 46.54 0.62
white —- —- 9.14 2.35
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Results for two simulated images. (From left to right) Column 1: initial curves,
Column 2: position of curves at iteration 11, Column 3: final position of curves, Column
4: segmentation result. The segmented regions and their corresponding contours are
shown with the same gray level.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Results for two real images: (From left to right), Column 1: initial curves,
Column 2: position of curves at iteration 11, Column 3: final position of curves, Column
4: segmentation result. The segmented regions and their corresponding contours are
shown with the same gray level.

Results for two real images with different number of regions are shown in
Fig. 2 (a) through (d) and Fig. 2 (e) through (h), here again showing, from
left to right, the initial contours, their evolution and final results. These real
images were extracted from an E-SAR image acquired over the DLR location
at Oberpfaffenhofen, Germany. The estimated parameters are shown in Table 2.
The number of regions used in the segmentation of each of the images were
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estimated by visual inspection. The results obtained on these images show good
segmentation performance for the proposed method. As an example of this, we
can exhibit the dark gray region in the segmentation result of the Fig. 2(e)
which has a small estimated value for the statistical parameter ω, meaning that
there should be buildings in that region. This can be confirmed from a visual
inspection of maps of this area.

The presented results support the idea that characterization of regions in SAR
images through the use of statistical parameters of the GH distribution is very
useful and it can be incorporated succesfully in a level set based segmentation
scheme.

References

1. Frery, A.C., Müller, H.-J., Yanasse, C.C.F., Sant’Anna, S.J.S.: A model for ex-
tremely heterogeneous clutter. IEEE Transactions on Geoscience and Remote Sens-
ing 35(3), 648–659 (1997)

2. Mejail, M.E., Frery, A.C., Jacobo-Berlles, J., Bustos, O.H.: Approximation of dis-
tributions for SAR images: proposal, evaluation and practical consequences. Latin
American Applied Research 31, 83–92 (2001)

3. Zhu, S.C., Yuille, A.: Region competition: Unifying snakes, region growing, and
bayes/mdl for multiband image segmentation. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 18, 884–900 (1996)

4. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces
in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials
Science. Cambridge University Press, Cambridge (2007)

5. Frery, A.C., Correia, A., Renno, C.D., Freitas, C.D.C., Jacobo-Berlles, J., Vascon-
cellos, K.L.P., Mejail, M., Sant’Anna, S.J.S.: Models for synthetic aperture radar
image analysis. Resenhas (IME-USP) 4, 45–77 (1999)

6. Jacobo-Berlles, J., Mejail, M., Frery, A.C.: The ga0 distribution as the true model
for sar images. In: SIBGRAPI 1999: Proceedings of the XII Brazilian Symposium
on Computer Graphics and Image Processing, Washington, DC, USA, pp. 327–336.
IEEE Computer Society, Los Alamitos (1999)

7. Mejail, M., Frery, A.C., Jacobo-Berlles, J., Kornblit, F.: Approximation of the
ka distribution by the ga. In: Second Latinoamerican Seminar on Radar Remote
Sensing: Image Processing Techniques, pp. 29–35 (1999)

8. Mejail, M.E., Jacobo-Berlles, J., Frery, A.C., Bustos, O.H.: Classification of sar
images using a general and tractable multiplicative model. International Journal
of Remote Sensing 24(18), 3565–3582 (2003)

9. Quartulli, M., Datcu, M.: Stochastic geometrical modelling for built-up area un-
derstanding from a single SAR intensity image with meter resolution. IEEE Trans-
actions on Geoscience and Remote Sensing 42(9), 1996–2003 (2004)

10. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation
using the mumford and shah model. International Journal of Computer Vision 50,
271–293 (2002)

11. Chung, G., Vese, L.: Energy minimization based segmentation and denoising using
a multilayer level set approach. Energy Minimization Methods in Computer Vision
and Pattern Recognition, 439–455 (2005)



160 M.E. Buemi et al.

12. Brox, T., Weickert, J.: Level set segmentation with multiple regions level set seg-
mentation with multiple regions. IEEE Transactions on Image Processing 15(10),
3213–3218 (2006)

13. Mansouri, A.R., Mitiche, A., Vazquez, C.: Multiregion competition: A level set
extension of region competition to multiple region image partitioning. Computer
Vision and Image Understanding 101(3), 137–150 (2006)

14. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on
Image Processing 10(2), 266–277 (2001)

15. Ayed, I.B., Mitiche, A., Belhadj, Z.: Multiregion level-set partitioning of synthetic
aperture radar images. IEEE Transactions on Pattern Analysis and Machine In-
telligence 27(5), 793–800 (2005)



 

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 161–168, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

A New Segmentation Approach for Old Fractured Pieces 

Jesus Llanes1, Antonio Adan1, and Santiago Salamanca2 

1 Escuela Superior de Informática. Universidad de Castilla-La Mancha, 
13071 Ciudad Real, Spain 

{Jesus.Llanes,Antonio.Adan}@uclm.es 
2 Escuela de Ingenierías Industriales. Universidad de Extremadura,  

06006 Badajoz, Spain 
ssalaman@unex.es 

Abstract. In this paper we propose a method for characterizing the surface of 
fractured pieces which come from old and complete original objects. Natural 
fractured pieces are difficult to segment due to the fact that the faces and edges 
are not well defined. For this reason, standard local feature based approaches 
are clearly inefficient to make an efficient segmentation. Our segmentation pro-
cedure is based on the Cone Curvature (CC) concept applied over the original 
dense models which provide standard scanner modeling tools. This CC based-
method allows us to explore the surface from multiple neighborhood levels and 
to find a compact segmentation solution which characterizes different parts of 
the piece. A wide experimentation has been carried out on a set of old fractured 
pieces belonging to the remains of roman sculptures. 

Keywords: 3D segmentation, 3D shape analysis, 3D data processing. 

1   Introduction 

The automatic reconstruction of fragmented objects through the matching of its frag-
ments is a very common problem in archaeology, paleontology and art restoration. 
This is a challenging problem which has not been completely solved yet. It is possible 
to manually reconstruct; however, it may be a very tedious and difficult task for hu-
mans. For this reason, it is crucial to find methods that allow executing these tasks by 
help of a computer. The computer should select correct combinations of fragments on 
its own and yield coherent reconstructions. 

Medium and high level 3D data processing (segmentation, labeling, recognition 
and understanding) over old fractured pieces is a very difficult field that remains cur-
rently under research. This is due to the fact that the original geometry has changed 
over ages without following a specific manipulation pattern turning into non-usual 
geometry. Therefore, most of conventional techniques applied on standard models are 
inefficient in this environment. Figure 1 shows a set of old pieces which we are cur-
rently working with. 

The segmentation of the fragments into different faces and boundaries is one of the 
key steps when a reconstruction is carried out. In this area, many authors have pro-
posed segmentation algorithms which work with usual objects ([1], [2], [3]). Most 
techniques are based on edge detection, region growing and probabilistic methods.  
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Fig. 1. Tridimensional models corresponding to a set of old fragments belonging to the Roman 
Art Museum of Merida (Spain) 

Edge detection techniques are those which allow detecting the edges of an object to 
segment it in faces. Several representative works follow. 

Liu [4] proposed a method for 3D surface segmentation algorithm based on the 
classical Robert’s operator into 3D space, which works by computing the sum of the 
squares of the differences between diagonally adjacent pixels. Zucker and Hummel 
[5], developed an algorithm to perform an optimal three dimensional edge detection 
based on a Sobel operator which extract the edges using the magnitude of the image 
gradient at each node of the object. 

On the other hand Huang et al [6] perform the segmentation of the object into faces 
using a multi – scale edge extraction. The algorithm that implements the multi – scale 
edge extraction is based on the curvature of the surface, measured by the integral 
invariants [7]. Bellon and Silva [8] perform an object segmentation method based on 
the edge extraction. The algorithm detects de edge points by the comparison between 
the normal angles of the surface points of the object. Gotardo et al. [9] proposes a 
segmentation method which classifies the surfaces points as flat or curved. To make 
this the algorithm calculates the angular change in the normal direction in moving 
from a point to nearby points.  

Region growing techniques are based on extracting a region of an object using 
some predefined criteria. From this seed point, the algorithm grows finding connect-
ing areas that fit to the predefined criteria. 

In Papaioannou et al [10], [11], [12], segmentation is performed by a region grow-
ing method based on the average normal of the polygons that form the mesh. The 
procedure begins with an arbitrary polygon. The adjacent polygons are classified as 
related to the same face if their average normal do not deviate more than a predefined 
threshold. 

Generally, the method used to segment archaeological objects is based on edges 
detection. However, it is very difficult to detect the edges due to the fact that some of 
the fragments have very smooth borders because of erosion. In Figure 2a) some frag-
ments belonging to a set of archaeological finds are shown. The smooth segments of 
the borders are marked. When an edge detection algorithm is applied to an object that 
has smooth borders, it is not impossible to detect them correctly. We applied an algo-
rithm to detect the edges based on the simple curvature values of the mesh nodes. The 
edge nodes detected by this algorithm are shown in Figure 2 c). It could be noted that 
the algorithm did not detect any point in the segment of the border that is especially 
smooth. If we try to define a region delimited by the extracted edges, the system fails  
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d) 

Fig. 2. a) View of the whole object. b) Partial view of the edge segment especially smooth. c) 
Edge nodes detected by a conventional algorithm. d) Incorrect segmented faces due to the 
inappropriate detection of the edges. 

and usually we could note that the region continues growing, exceeding their real 
contours. In Figure 2 d) we show segmented faces that are clearly incorrect due to an 
inappropriate detection of the edges. 

The results obtained in the experiments with archaeological objects demonstrate 
that it is very difficult to implement an effective segmentation algorithm based on 
edge detection techniques over conventional criteria (i.e. Gaussian curvature). For this 
reason, it is necessary to use a more robust method. 

2   Segmentation Algorithm 

In this section we present a segmentation algorithm which combines edge detection 
based on CC, edge cycling paths obtaining and region growing. Since Cone Curvature 
is the geometrical feature we have used, a brief introduction about it follows. 

2.1   Cone Curvature Feature 

Cone curvature is a geometrical feature originally defined and applied on spherical 
meshes [13] and lately used for clustering purposes in triangular meshes [14].  

Let MT  be a triangular mesh fitted to an object and let N be a vertex of MT. Note that 
MT has been previously regularized and resampled to a fixed number of nodes h. We 
organize the rest of the nodes of the mesh in concentric groups spatially disposed around 
N. Since this organization resembles the shape of a wave it is called Modeling Wave 
(MW). Consequently, each of the disjointed subsets is known as Wave Front (WF) and 
the initial node N is called Focus. Let us call all the possible MWs that can be generated 
over T Modeling Wave Set (MWS). Figure 3 a) illustrates the mesh model of an object 
and several wave fronts plotted for two different focuses.  

Cone Curvature is defined taking into account MWS structure. We define Cone 

Curvature jα of N∈ MT, the angle of the cone with vertex N whose surface inscribes 
the jth Wave Front of the Modeling Wave associated to N.  
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a)                                                                     b) 

Fig. 3. a) Wave fronts in two different focuses printed over the mesh model and representation 
of j-th cone curvature in a point of the object. b) Illustration of several CC orders. 

The range of CC values is [-π/2, π/2], being the sign assigned taking into account 
the relative location C j with respect to MT, C j being the barycentre of the jth WF. 
Figure 2 right illustrates this definition. 

Note that a set of values {α1, α2, α3, …αq} gives an extended curvature information 
around N until the qth WF, where the word ‘curvature’ has a non-local meaning. So 
for each node N a set of q values could be used for exploring its surroundings. From 
now on we will call them Cone Curvature Levels. Thus, as the ring increases a new 
CC level is defined. Thus the Cone Curvatures offer wider information about the 
surroundings of a point and are a very flexible descriptor because it is possible to 
select one or more CC levels according to the specifications of the shape to be ana-
lyzed. Figure 3 b) illustrates the CC values for a set of orders following a color scale 
over geometrical models belonging to non-fractured objects.  

        
a)                                                          b) 

Fig. 4. a) Objects represented with the cone curvature values of its nodes in a colored scale. b) 
Edge-nodes detected for low (level 4) and high (level 15) CC levels. 
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In Figure 4 a) we also show a graphical representation of the 5th Cone Curvature 
calculated on a set of fractured pieces. Note that the regions in red are those which 
have highest cone curvature values and the regions colored in green are those which 
have the smaller values. Figure 4 b) presents edge-nodes for several CC values. 

2.2   Segmentation Using CC 

In fractured objects the segmentation of the original triangular model (MT) taking into 
account only one specific CC level might not be achieved. Thus, to define the set of 
edges in the mesh and to find cycling-edges paths we need to test several CC levels as 
well as to turn the triangular mesh representation (used in conventional CAD tools 
and 3D scanner software) into a semi-regular mesh with controlled topology.  

Note that if we take a low CC level, we will have discontinuous sets of edge-nodes 
whereas if we take high CC levels, we might obtain crowded edges. Firstly, in frac-
tured pieces like the ones presented in Figure 1, there exist edges or part of edges 
which are sharp whereas others are smooth, probably due to erosion effects that the 
pieces suffer over time. Theoretically the sharp edges can be detected for low CC 
levels and the smooth ones for medium or, maybe, high CC levels. In practice it 
doesn’t happen in all the cases. Secondly, in both cases using a triangular-patch mesh 
without a regular topology it is really hard, if not impossible, to find edge-paths in 
such a geometrical structure. Therefore, in both cases, the extraction of edges, the 
connection between edges and the search for cycling edge-paths will be inefficient. 

In order to control the topological problem, a new model ME fitted to the object is 
used. The model ME has regular 3-connectivity with invariable number of nodes. This 
canonical model comes from the implosion of a tessellated and semi-regular sphere 
over the object. Figure 5 a) illustrates the transformation MT to ME. This model corre-
sponds to the initial Modeling Wave (MW) topology built on spherical representation 
models [11]. In the aforementioned topology a node is 3-connected with its neighbors 
but also is connected, in recursive manner, with the neighbors of the neighbors.  

Assuming that the spherical model of the object has been generated, the segmenta-
tion algorithm is composed of the following stages. 

 

1.- Calculate the cone curvature values on MT for a minimum initial level. This 
value is imposed trough a lineal function taking into account the density of the 
mesh MT. 
2.- Define the set of edge-node candidates G on MT by imposing a CC threshold µ. 
This threshold is calculated through the histogram of CC at the specified level. 
3.- Map G into model ME. 
4.- Filter outlier edge-nodes. For instance outlier edge-nodes are nodes which have 
less than two edge-node neighbors. 
5.- Find minimum closed-paths in G trough the controlled topology of ME. The al-
gorithm is based on a graph-theory recursive search. Generate cycling edge-paths 
6.- If there exist open paths in G then take the next CC level an go to step 2  
7.- Remap the edges into MT. 
8.- Take an initial random seed and apply a region growing algorithm on MT. 
9.- Save the segment and update the search regions. 
10.- Go to 8 until there are no seeds. 
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Note that, when we have obtained a correct detection of the edges and the cycling 
boundaries of the regions (step 8), we can employ a region growing algorithm to de-
fine the faces of the object. It is well known that region growing is one of the simplest 
region-based segmentation methods. The region growing method begins taking a 
random seed on MT. We check the adjacent nodes and add them to the region if they 
are not marked as edge-node. Thus the region grows until all nodes of its boundary 
have some edge-node neighbor. Figure 5b) illustrates results in several steps of the 
segmentation algorithm. 

 
a)                                                                   b) 

Fig. 5. a) Model transformation. Generating model ME by implosion of a spherical tessellated 
mesh into MT. b1) The set of edge-node candidates on MT. b2) Edge-node candidates mapped 
onto model ME. b3) Result after filtering outlier edge-nodes, b4) Generating cycling paths in 
ME and remapping into MT. 

3   Experiments and Future Work 

The fragments we are currently segmenting and labeling belong to old sculptures. Our 
lab, in collaboration with the National Museum of Roman Art of Mérida (Spain) re-
search department, is currently working on a project concerning the digitalization and 
reconstruction of such sculptural groups dating to the first century B.C. One of the 
purposes of this project is to solve integration problems of the synthesized models of 
original pieces in a hypothetical virtual model of the whole sculptural group. In prac-
tice, a few real pieces are available. Then, a possible solution is based on, having a 
priori knowledge of the original sculpture, developing new surface correspondence 
techniques - which include heuristics and the aid of expert systems - which help to 
place each part in its original position. In this general proposal, segmentation and 
labelling of the faces of a fractured piece is a crucial task in making the registering 
algorithm efficient enough. 

Figure 6 a) shows the work developed so far on a sculptural group where only 30 
pieces have been recovered. It can be seen the integration of different fractured pieces 
in the virtual model. Three of them are big pieces that can be easily recognized as 
body parts. The rest of the pieces are smaller fragments and their identity and position 
in the original group is currently unknown. Some of these pieces and the results after  
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                                                                 a) 

b) 

Fig. 6. a) Coupling of several fragments into a virtual model. b)Set of segments belonging to a 
original sculpture and segmentation results. 

segmentation can be seen in Figure 6 b). Beard in mind that the segmented areas do 
not follows a rigid and usual pattern like in non-manipulated object cases. Here the 
face contours have irregular shapes. We are currently working on improving the seg-
mentation and labeling of more complex pieces and cases. This is a very difficult 
problem which needs to be well defined and solved. Therefore, we aspire to solve the 
problems that we encountered on some of the previous related works. The presented 
solution should of course be improved and generalized for a wider variety of objects 
in the archaeological area. 

Future works are addressed to develop efficient intelligent algorithms to help ar-
chaeologist to reconstruct incomplete 3D puzzles. In this sense, we aim to extend and 
improve the current semi-automatic solutions and provide an expert system based on 
fuzzy logic which is able to propose a limited number of solutions which can be evalu-
ated by historians and archaeologist.  

4   Conclusions 

Standard local feature based approaches are clearly inefficient to make an efficient 
segmentation in old fractured pieces. This paper presents a new solution in this field 
by using edge detection algorithms based on the cone–curvature concept. CC allows 
us to explore the surface from multiple neighborhood levels and to find a compact 
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segmentation solution which characterizes different parts of the piece. A wide ex-
perimentation has been carried out on several old pieces belonging to Spanish Mu-
seum of Roman Art yielding promising results. 
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Abstract. Membrane Computing is a biologically inspired computa-
tional model. Its devices are called P systems and they perform com-
putations by applying a finite set of rules in a synchronous, maximally
parallel way. In this paper, we open a new research line: P systems are
used in Computational Topology within the context of the Digital Image.
We choose for this a variant of P systems, called tissue-like P systems, to
obtain in a general maximally parallel manner the segmentation of 2D
and 3D images in a constant number of steps. Finally, we use a software
called Tissue Simulator to check these systems with some examples.

1 Introduction

Natural Computing studies new computational paradigms inspired from Nature.
It abstracts the way in which Nature “computes”, conceiving new computing
models. There are several fields in Natural Computing that are now well es-
tablished as are Genetic Algorithms ([8]), Neural Networks ([10]), DNA-based
molecular computing ([1]).

Membrane Computing is a theoretical model of computation inspired by the
structure and functioning of cells as living organisms able to process and gener-
ate information. The computational devices in Membrane Computing are called
P systems [15]. Roughly speaking, a P system consists of a membrane structure,
in the compartments of which one places multisets of objects which evolve ac-
cording to given rules. In the most extended model, the rules are applied in a
synchronous non-deterministic maximally parallel manner, but some other se-
mantics are being explored.

According to their architecture, these models can be split into two sets: cell-
like P systems and tissue-like P systems [19]. In the first systems, membranes are
hierarchically arranged in a tree-like structure. The inspiration for such archi-
tecture is the set of vesicles inside the cell. All of them perform their biological
processes in parallel and life is the consequence of the harmonious conjunction
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of such processes. This paper is devoted to the second approach: tissue-like P
systems.

Segmentation in computer vision (see [9]), refers to the process of partitioning
a digital image into multiple segments (sets of pixels). The goal of segmentation
is to simplify and/or change the representation of an image into something that
is more meaningful and easier to analyze.Image segmentation is typically used
to locate objects and boundaries (lines, curves, etc.) in images. More precisely,
image segmentation is the process of assigning a label to every pixel in an image
such that pixels with the same label share certain visual characteristics.

There exists different techniques to segment an image. Few techniques are
Clustering methods [7], Histogram-based methods [12], Watershed transforma-
tion methods [23], Graph partitioning methods [22].

Some of the practical applications of image segmentation are like Medical
Imaging [7], Study of Anatomical Structure, Locate objects in Satellite Images
(roads, forests, etc.) [11], Face Recognition [21].

J. Chao and J. Nakayama connected in [4] Natural Computing and Algebraic
Topology using Neural Networks (extended Kohonen mapping). We use for the
first time, the power and efficiency of a variant of P systems called tissue-like P
systems(see [5]) to segment the image in 2D.

The paper is structured as follows: in the next section we present the definition
of basic tissue like P systems with input and show an example to understand
how these systems work. In section 3, we design a family of systems for edge-
based segmentation in 2D image. After, we check our model using a software
called tissue simulator with two images very easy. At the end of this section, we
introduce a family of tissue-like P systems to obtain an edge-based segmentation
of 3D images. Finally, some conclusions and future work are given in the last
section.

2 Description of a Model of Membranes

Membrane computing models was first presented by Mart́ın–Vide et al. in [13]
and it has two biological inspirations (see [14]): intercellular communication and
cooperation between neurons, but in this paper we work with a variant presented
in [19] with cell division and the system which is presented by Dı́az-Pernil pre-
sented in [6] a formalization of Tissue-like P systems (without cellular division).
The common mathematical model of these two mechanisms is a network of pro-
cessors dealing with symbols and communicating these symbols along channels
specified in advance.

The main features of this model, from the computational point of view, are
that cells have not polarizations (the contrary holds in the cell-like model of P
systems, see [16]) and the membrane structure is a general graph.

Formally, a tissue-like P system with input of degree q ≥ 1 is a tuple

Π = (Γ,Σ, E , w1, . . . , wq,R, iΠ , oΠ),

where
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1. Γ is a finite alphabet, whose symbols will be called objects, Σ(⊂ Γ ) is the
input alphabet, E ⊆ Γ (the objects in the environment),

2. w1, . . . , wq are strings over Γ representing the multisets of objects associated
with the cells at the initial configuration,

3. R is a finite set of communication rules of the following form: (i, u/v, j), for
i, j ∈ {0, 1, 2, . . . , q}, i �= j, u, v ∈ Γ ∗,

4. iΠ , oΠ ∈ {0, 1, 2, . . . , q}.

A tissue-like P system of degree q ≥ 1 can be seen as a set of q cells (each one
consisting of an elementary membrane) labelled by 1, 2, . . . , q. We will use 0 to
refer to the label of the environment, iΠ denotes the input region and oΠ denotes
the output region (which can be the region inside a cell or the environment).

The strings w1, . . . , wq describe the multisets of objects placed in the q cells
of the system. We interpret that E ⊆ Γ is the set of objects placed in the
environment, each one of them available in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells labelled by i
and j such that u is contained in cell i and v is contained in cell j. The application
of this rule means that the objects of the multisets represented by u and v are
interchanged between the two cells. Note that if either i = 0 or j = 0 then the
objects are interchanged between a cell and the environment.

Rules are used as usual in the framework of membrane computing, that is,
in a maximally parallel way (a universal clock is considered). In one step, each
object in a membrane can only be used for one rule (non-deterministically chosen
when there are several possibilities), but any object which can participate in a
rule of any form must do it, i.e, in each step we apply a maximal set of rules.

Now, to understand how we can obtained a computation of one of these P
systems we present an example of them:

Consider us the tissue-like P system Π ′ = (Γ,Σ, E , w1, w2,R, iΠ , oΠ) where

1. Γ = a, b, c, d, e, Σ = ∅, E = a, b, e,
2. w1 = a3 e, w2 = b2 c d,
3. R = {(1, a/b, 2), (2, c/b2, 0), (2, d/e2, 0), (1, e/λ, 0)},
4. iΠ = 1 and oΠ = 0.

We can observe the initial configuration of this system in the figure 1 (a). We
have four rules to apply, and after applying the rules the next configuration is

Fig. 1. (a) Initial Configuration of system Π ′ (b) Following Configuration of Π ′
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shown in (b), the system apply one time each one of them. If reader looks at
the elements in the environment one can observe the number of the copies of
the elements a, b, e always are one, because they are the objects that appear in
the environment initially (we have an arbitrary large amount of copies of them),
but d has two copies because it is not an initial element of the environment.
Usually, the elements of the environment are not described in the system to
better understanding of the configurations of this.

3 Segmenting Digital Images in Constant Time

In this section, we segment images based on edge-based segmentation. Edge-
based segmentation finds boundaries of regions which are sufficiently different
from each other. We define two family of tissue-like P systems for edge-based
segmentation, one of them to segment 2D images and after, we adapt these
systems to segment 3D images.

3.1 A Family of Tissue-Like P Systems for a 2D Segmentation

We can divide the image in multiple pixels forming a network of points of N2.
Let C ⊆ N be the set of all colors in the given 2D image and they are in a
certain order. Moreover, we will suppose each pixel is associated with a color of
the image. Then we can codify the pixel (i,j) with associated color a ∈ C by the
object aij .

The following question is the adjacency problem. We have decided to use in
this paper the 4-adjacency [2,3].

In this point, we want to find the border cells of the different color regions
present in the image. Then, for each image with n×m pixels (n,m ∈ N) we will
construct a tissue-like P system whose input is given by the objects aij codifying
a pixel, with a ∈ C. The output of the system is given by the objects that appear
in the output cell when it stops.

So, we can define a family of tissue-like P systems to do the edge-based seg-
mentation to 2D images. For each n,m ∈ N we consider the tissue-like P system
Π = (Γ,Σ, E , w1, w2,R, iΠ , oΠ), defined as follows:

(a) Γ = Σ ∪ {āij : 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {Aij : 1 ≤ i ≤ n, 1 ≤ j ≤ m, A ∈
C}, Σ = {aij : a ∈ C, 1 ≤ i ≤ n, 1 ≤ j ≤ m}, E = Γ −Σ,

(b) w1 = w2 = ∅,
(c) R is the following set of communication rules:

1. (1, aijbkl/āijAijbkl, 0), for a, b ∈ C, a < b, 1 ≤ i, k ≤ n, 1 ≤ j, l ≤ m
and (i, j), (k, l) adjacents.
These rules are used when image has two adjacent pixels with different
associated colors(border pixels), and the pixel with less associated color
is marked and system brings from the environment an object represent-
ing this marked pixel(edge pixel).
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2. (1, āijaij+1āi+1j+1bi+1j / āij āij+1Aij+1āi+1j+1bi+1j , 0) for a, b ∈ C, a <
b, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m− 1.
(1, āijai−1j āi−1j+1bij+1 / āij āi−1jAi−1j āi−1j+1bij+1, 0) for a, b ∈ C, a <
b, 2 ≤ i ≤ n, 1 ≤ j ≤ m− 1.
(1, āijaij+1āi−1j+1bi−1j / āij āij+1Aij+1āi−1j+1bi−1j , 0) for a, b ∈ C, a <
b, 2 ≤ i ≤ n, 1 ≤ j ≤ m− 1.
(1, āijai+1j āi+1j+1bij+1 / āij āi+1jAi+1j āi+1j+1bij+1, 0) for a, b ∈ C, a <
b, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m− 1.
The rules mark with a bar the pixels which are adjacent to two same
color pixels and which were marked before, but with the condition that
the marked objects are adjacent to an other pixel with a different color.
Moreover, an edge object representing the last marked pixel is brought
from the environment.

3. (1, Aij/λ, 2), for 1 ≤ i ≤ n, 1 ≤ j ≤ m.
This rule is used to send the edge pixels to the output cell.

d) iΠ = 1, oΠ = 2.

An overview of the Computation: Input objects aij codifying the colored
pixels from an 2D image appear in the input cell and with them the system
begins to work. Rules of type 1, in a parallel manner, identify the border pixels
and bring the edge pixels from the environment. These rules need 4 steps to
mark all the border pixels. From the second step, the rules of type 2 can be used
with the first rules at the same time. So, in other 4 steps we can bring from
the environment the edge pixels adjacent to two border pixels as we explain
above. System can apply the first two types of rules simultaneously in some
configurations, but it always applies the same number of these two types of rules
because this number is given by edge pixels(we consider 4-adjacency). Finally,
the third type of rules are applied in the following step on edge pixels appear in
the cell. So, with one step more we will have all the edge pixels in the output
cells. Thus, we need only 9 steps to obtain an edge-based segmentation for an
n ×m image. Then, we can conclude the problem of edge-segmentation in 2D
images is resolved in this paper in a constant time respect to the number of steps
of any computation.

3.2 Checking This Family of Systems with Tissue Simulator

We have used a software called tissue-simulator (See section 2) introduced by
Borrego-Ropero et al. in [20]. We have simulated our family of systems to segment
2D images with this software. Finally, we have introduced as instances of our
system the examples that appear in 3 (a) and, in a constant number of steps we
have obtained a codifying of the edge-segmentation (that appear in 3 (b)) of the
examples introduced before.

We consider, in a first case an 8×8 image, and the order of the colors used in
this image is the following: green, blue and red. In a second case we work with
an image of size 12 × 14. In this example, we take the colors in the following
order: Red, green, brown, orange, black, blue and light blue.
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Fig. 2. Two images about Tissue Simulator

Fig. 3. (a) Input images (b) Edge-segmentation of images

(a) (b)

r-red; b-blue; B-dark blue; g-green; y-yellow; n-brown; k-black; blank-white.

3.3 Segmenting 3D Images

The following step to consists to extend our models to work with 3D images.
Now, the input dates are voxels ((i, j, k) ∈ N3) that the are codifying by the
elements aijk, with a ∈ C.We use here 26-adjacency relationship between voxels.
Then, we can define a family of tissue-like P systems. For each n,m ∈ N we
consider the Π = (Γ,Σ, E , w1, w2,R, iΠ , oΠ) to do an edge-based segmentation
to a 3D image as follows

(a) Γ = Σ ∪{Aijk : 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ l, a ∈ C}, Σ = {aijk : a ∈
C, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ l}, E = Γ −Σ,

(b) w1 = w2 = ∅,
(c) R is the following set of rules:

1. (1, ai1j1k1bi2j2k2/Ai1j1k1bi2j2k2 , 0), for 1 ≤ i1, i2 ≤ n, 1 ≤ j1, j2 ≤ m,
1 ≤ k1, k2 ≤ l, (i1, j1, k1) and (i2, j2, k2) adjacents voxels and finally,
a, b ∈ C with a < b.
These rules are used when image has two adjacent border voxels. Then,
system brings from the environment an object representing the voxel
with less associated color (edge voxel).

2. (1, Aijk/λ, 2), for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ l.
These rules are used to send the edge voxels to the output cell.

d) iΠ = 1, oΠ = 2.

An overview of the Computation: This computation would be very similar
if we consider an 26-adjacency in 3D. Rules of type 1 identify the border pixels
and bring the edge pixels from the environment. These rules need as much 26
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steps for this. Finally, the second type of rules are applied in the following step
and send the edge pixels to the output cell. So, we need again a constant amount
of steps to resolve the edge-segmentation problem in 3D.

4 Conclusions and Future Work

It is shown in this paper, if we consider a 4-adjacency, a segmentation of a 2D
image can be given in a constant number of steps using tissue-like P systems.

With this paper new research lines have been opened. We can work in some
of them directly, define new systems to obtain other homological informations
(spanning trees, homology gradient vector field, representative cocycles of coho-
mology generators, etc) for 2D or 3D images. But, other lines need more time
and deep research work, as are: to develop an efficient sequential software using
these techniques, to develop an efficient software working with a cluster. More-
over, both of them could be applied in different areas as are: medical imaging,
locate objects in satellite in satellite images, etc.
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Abstract. In this paper we explore the use of the cluster analysis in
segmentation problems, that is, identifying image points with an indica-
tion of the region or class they belong to. The proposed algorithm uses
the well known agglomerative hierarchical cluster analysis algorithm in
order to form clusters of pixels, but modified so as to cope with the high
dimensionality of the problem. The results of different stages of the algo-
rithm are saved, thus retaining a collection of segmented images ordered
by degree of segmentation. This allows the user to view the whole collec-
tion and choose the one that suits him best for his particular application.

Keywords: Segmentation analysis, growing region, clustering methods.

1 Introduction

Image segmentation is one of the primary steps in image analysis for object
identification. The main aim is to recognize homogeneous regions within an
image as distinct objects. It consists of partitioning an image in regions that are
supposed to represent different objects within it. Some segmentation methods
are automatic, or non-supervised, they do not need human interaction; others
are semiautomatic or supervised.

One of the simplest technique used for segmentation is thresholding, in which
pixels whose intensity exceeds a threshold value defined by the analyst are said
to belong to one region, while those that do not, belong to the other.

A semiautomatic segmentation methods is region growing, that starts off with
a group of pixels defined by the analyst as seeds, then other neighborhood pixels
are added if they have similar characteristics, according to some criterion. This
algorithm is improved with the introduction of a bayesian approach, Pan and
Lu [8], by means of a homogeneity criteria of neighbouring pixels.

While image segmentation consists of partitioning an image in homogeneous
regions, edge detection is the identification of the lines that define the borders
� This work was supported by Fondecyt 107220 research grant.
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between regions determined by a segmentation process. Image segmentation and
edge detection are both dual problems, in the sense that solving one provides
the solution to the other. Some segmentation methods are based on edge de-
tection. That is the case of morphological watershed methods. They consist on
calculating the gradients of an image, and make them to resemble mountains,
while simulating a water flood, the water level raising progressively. As the water
level increases, it determines thinner zones on the top of the mountains, which
are defined as edges, and the zones contained within these edges are segments.
Frucci et al. [4] developed a segmentation method based on watersheds using
resolution pyramids, formed by a set of images of decreasing resolution, under
the premise that the most relevant aspects of an image are perceived even at
low resolution.

The use of wavelets has spread as a segmentation method. Wavelets can model
the behavior pattern of the pixels in the image. The difference with the Fourier
transformation is that these are not periodic. Perhaps the most widely used
wavelet transformation in images is the Gabor wavelet, the product of a sinusoid
and a gaussean. Wang et al. [10] introduced a texture segmentation method on
the basis of Gabor wavelets. It is used for the extraction of texture characteristics.

Image segmentation by hierarchic clusters uses the classic hierarchic cluster
analysis methods that groups the nearest clusters at each stage. Martinez-Uso
et al. [7] segment an image by means of a hierarchic process that maximizes
a measurement that represents a perceptual decision. It can be also used for
multispectral images. Another clustering method is k-means, that iteratively
moves elements to the cluster whose centroid is the closest, the process ends when
no elements change places. Fukui et al. [5] apply hierarchic clustering for the
detection of objects, in particular, face detection. They use k- means clustering
with color space features. Allende and Galbiati [2] developed a method for edge
detection in contaminated images, based on agglomerative hierarchical clusters,
by performing a cluster analysis on a 3× 3 pixel moving window; more than one
cluster denotes the presence of an edge. A segmentation method based on cluster
analysis is shown in Allende et al. [3]. It runs a 3 × 3 neighbourhood window
along the image, performing a cluster analysis each time and deciding whether
the central pixel belongs to one of the clusters as the surrounding pixels. If it
does, it assigns it to the corresponding cluster. If not, it creates a new cluster.
At the end, each cluster is considered a segment.

Image segmentation is usually combined with other image processing meth-
ods, like image image enhancement and restoration, which are usually performed
before segmenting; and like feature extraction, object recognition and classifica-
tion, and texture analysis, for which segmentation is a previous step.

2 Method

The agglomerative clustering algorithm starts defining each element as one clus-
ter, so at the starting point we have as many clusters as the number of elements.
Then the distances between elements are computed, forming a symmetric N×N
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distance matrix, where N is the number of elements. Distances like a Minkowski
type distance are frequently used,

d(x, y) =
( p∑

i=1

|xi − yi|k
)1/k

where x and y are p-dimensional vector elements, and k is any positive real
number. k = 1 gives the ”city block” distance, k = 2 corresponds to the euclidean
distance.

Then we need to define a distance measure between clusters, as a function
of the distance between elements. A convenient distance measure is the average
of all the distances between pairs of elements, one from each cluster. Other
distances are, the smallest distance between pairs of elements, or the largest
distance, or the distance between the averages of the elements of both clusters.

The second step consists of finding the smallest distance, and joining the cor-
responding two clusters to form a new cluster with two elements. The distances
from this new cluster to the remaining clusters are then computed, and the dis-
tances from the original two clusters that merged are eliminated from the set of
distances, so we have a new (N−1)×(N−1) distance matrix. The previous pro-
cedure is repeated until we have one single cluster containing all the elements.
At each stage, the distance at which two clusters are merged increases, thus
building clusters in increasing degree of heterogeneity. A record is kept of all the
stages, the way they join to form larger clusters and their merging distances,
which form an increasing sequence, and can be represented by a graph called
dendogram, which illustrates the way the hierarchical procedure developed.

As can be noticed, the complexity of the problem grows fast as the number of
elements to be clustered increases. In fact, in the case of N elements, the number
of distances, and consequently the number of steps, is 1

2N · (N − 1) .
This procedure can be applied to images, to develop a segmentation method,

where each pixel is a vector element. In the case of color RGB images, the vectors
are three dimensional, the coordinates representing the Red, Green and Blue
intensities. In monochrome images, the elements are scalars, and the Minkowski
distance turns up to be equal to the absolute value difference.

The algorithm becomes particularly complex in the case of images. An image
consisting of n columns and m rows has npix = n ·m pixels, so the number of
distances is 1

2n ·m · (n ·m− 1) = 1
2n

2 ·m2−n ·m. Suppose a 1000× 1000 image,
which is not too large, the number of distances is approximately 5 · 1011, which
would make the task of forming clusters almost impossible. But, unlike general
situations where cluster analysis is applied, in images the pixels to be clustered
are elements which have an order. And the cluster forming procedure should
consider this fact, so as to merge only adjacent clusters. As a consequence, at
the initial step the distances to be considered are the distances between each
pixel and two of its neighbors, the one at its left and the one beneath. That
makes the number of initial distances to be scanned at the first step equal to
ndist = 2m ·m − n −m. In the example where n = m = 1000, this number is
approximately equal to 2× 106, considerably smaller that in the general case.
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Fig. 1. Segmentation process

Figure 1 illustrates how the algorithm works for an image with three clusters.
The pixels that are to be compared are the following: First row, 1-2, 1-5, 2-3, 2-6,
3-4, 3-7, and 4-8; second row, 5-6, 5-9, 6-7, 6-10, 7-8, 7-11, and 8-12; third row,
9-10, 10-11, and 11-12. There are two light gray clusters, but although they are
the same colour, their pixels are never going to be compared, as both clusters are
not adjacent. Thus, although the same, the algorithm considers them as different
clusters.

The algorithm uses three arrays of size npix : Frec(s), Avg(s) and Pos(p).
Frec(s) keeps the frequency, or number of pixels, of the cluster or segment s;
Avg(s) has the average value of the intensity of each color of all pixels within
segment s; Pos(p) contains a label assigned to pixel p, indicating the segment
to which it belongs and a label giving it a number within the segment. The
algorithm also uses three arrays of size ndist : dist(d), e(d) and f(d), where
dist(d) keeps the dth distance value between segments e(d) and f(d).

At each step, after the smallest distance is obtained, say dist(d0), the two
segments e(d0) and f(d0) are merged into one, which retains the label e(d0).
The frequency of the new segment e(d0) is the sum of the two frequencies, while
the frequency of the f(d0) is set to zero. The average value of this new segment is
obtained as a weighted average of the averages of the two concurrent segments,
and the average of f(d0) is now zero. The labels in Pos(p) are updated for each
pixel p that belonged to segment f(d0).

Finally, the distances from the new segment to all its adjacent segments
are updated. The adjacent segments are easily identified, considering all pairs
(e(d), f(d)), where one of the two numbers is the label of any one of the two
segments that merged; the other corresponds to an adjacent segment. To start,
every pixel is defined as a segment, numbered from 1 to npix .

The iterations are carried on until the merging distance reaches a threshold
value thrs given initially as an input, an integer in the interval (0,255). With this
threshold value the degree of the segmentation can be controlled. Small values
will give finer segmentations, while higher values will give coarser segmentation,
with a small number of large segments.

The sequence of segment union distances follows the same pattern, indepen-
dent of the threshold value. The difference is that if we choose two segmentations
with different threshold values, say T 1 and T 2, with T 1 < T 2, then the sequence
of steps followed to reach T 1 is the same as the initial part of the sequence of
steps followed to reach T 2 .

We can take advantage of this fact in order to obtain a series of segmentations,
with different degrees of detail, instead of just one. In this way, after the image
is processed, we can sequentially visualize all the segmented images, each with a
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different level of segmentation, from the finest, equivalent to the original image,
to the coarsest level, which corresponds to a one color rectangle, the average
color. To do this, the dimensionality of the arrays has to be increased, but it
is not necessary to save each entire image for every segmentation level, we only
have to save the changes made from one step to another, and this reduces the
amount of memory required.

The method presented here differs from seeded region growing because here,
the algorithm starts merging pixels which are closest together, according to the
distance being used, while in the other method the merging starts with pixels
which are adjacent to seed pixels that were previously determined by the user.

3 Results

In the experimental results presented in this paper, the distance used was the city
block distance. The distance between clusters is the sum of the absolute differences
between the average of each colour, in both clusters. In each case we saved 24 seg-
mented images, with threshold values for the maximum merging distance ranging
from the minimum to the maximum observed distances in each case, at intervals
of one 23rd of the range between them. In Figures 2 to 6 we show a few of the
results, indicating the threshold value in each case. Some of the images were taken
from the Berkeley Data Set for Segmentation and Benchmark [6].

Fig. 2. City air photograph. (a) Original image. Segmentation threshold values: (b)
40, (c) 80, (d) 96.

4 Discussion

The method involves a large amount of computing, that makes it relatively slow,
compared to some other methods. Figure 5 is a 131 × 135 image, with a total of
17685 pixels, that makes 35104 initial distances. It took 6 minutes and 28 seconds
to process with a Visual Basic program, running on an Intel Duo Core processor
at 3.0 GHz, with 3.25 GB Ram. The output was a series of 15 segmented images,
four of which are shown here. An optimized computer program would contribute
to make it work faster. It is also memory consuming, but a careful management of
the stored information can help to reduce the memory consumption.
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Fig. 3. Woman´s face 1. (a) Original image. Segmentation threshold values: (b) 21, (c)
28, (d) 50.

Fig. 4. Air photograph of coast. (a) Original image. Segmentation threshold values:
(b) 27, (c) 37, (d) 59.

Fig. 5. Female lion. (a) Original image. Segmentation threshold values: (b) 19, (c) 32,
(d) 52, (e) 58.

Fig. 6. Vertebrae X-ray. (a) Original image. Segmentation threshold values: (b) 9, (c)
12, (d) 15.

The particular way that the segments are merged together, that is, only
considering adjacent segments, results in the fact that sometimes two disjoint
segments look very similar in color, but remain as separate segments, while oth-
ers, that are not as similar, are merged earlier. This is correct, because if two
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segments remain like that, it is because they are not adjacent. In the image,
that means that they are separate, and even if they look as if they are similar
in color, they do represent different objects. That can be clearly appreciated in
the lion´s leg and body, in Figure 5.

If the image is too noisy, the method does not give a good result. But applying
a previous smoothing, like, for example, a median smoothing, or the method
shown in [1] the quality of the result is significantly increased.

5 Conclusions and Future Studies

In case we want one particular segmentation we have to set a threshold value at
the start of the segmentation algorithm. If we want the algorithm to give us a
set of segmented images with different degrees of segmentation, from which to
choose the one we want for our specific application, then we do not have to set a
threshold value, but we do need to choose the segmentation we want. So in both
cases there is a human intervention, at the start or at the end. That means that
this is not a fully automatic segmentation method.

The fact that the user has the possibility of looking at various segmentation
levels as a result of processing the image only once, makes the method versatile
and gives it a dynamic characteristic, giving him the possibility of choosing the
segmentation level that suits his particular needs. An important characteristic of
this method is that it can work fairly well with images that show little contrast.
This can be seen in Figure 6.

As future studies, the authors intend to investigate the efficiency of this
method, in terms of computational resources.

Another aspect to study is obtaining optimal values for the optimal threshold
parameter.

Also the authors are going to perform comparisons of the results of this
method with other comparable methods.
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Abstract. Two challenges of face recognition at a distance are the un-
controlled illumination and the low resolution of the images. One ap-
proach to tackle the first limitation is to use longwave infrared face im-
ages since they are invariant to illumination changes. In this paper we
study classification performances on 3 different representations: pixel-
based, histogram, and dissimilarity representation based on histogram
distances for face recognition from low resolution longwave infrared im-
ages. The experiments show that the optimal representation depends on
the resolution of images and histogram bins. It was also observed that
low resolution thermal images joined to a proper representation are suf-
ficient to discriminate between subjects and we suggest that they can be
promising for applications such as face tracking.

Keywords: face recognition, dissimilarity representations, thermal in-
frared.

1 Introduction

The use of longwave infrared (LWIR) imagery (8 − 12µm) for developing face
recognition systems has started to receive attention in the last years because of
its robustness to illumination changes [1]. LWIR (also called thermal infrared)
sensors collect the heat energy emitted by a body instead of the reflected light,
this allows them to operate even in complete darkness. The use of the face ther-
mal patterns has been validated as a biometric signature on short time scale.
We are interested in the study of such imagery modality for face recognition at
a distance, what implies to handle low resolution images.

The opaqueness to glass is one of the limitations of thermal infrared face
recognition. Studies in the literature show that there is a preference for fusing
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thermal and visible imagery to tackle this problem [2,3,4]. Another disadvantage
of LWIR face representation is that it is sensitive to body temperature changes.
Such changes can be provoked by external temperature like cold or warm air, by
body exercising, or simply by consuming alcoholic beverages. However, for an
application such as short term face tracking, the use of this imagery modality
can be beneficial because temperature changes are negligible.

A number of algorithms has been proposed for the classification of faces from
LWIR images, but in the representation level, only feature representations have
been studied. Three major groups of methods can be distinguished for repre-
sentation in the pattern recognition literature. The first group treats objects as
vectors in Euclidean vector spaces. The second represents the object structure
by graphs, grammars, etc. The third and newest group represents the objects
by their nearness relation with respect to other objects. The vector space rep-
resentation is the most developed one due to the existence of several statisti-
cal techniques that have shown a good performance on the different pattern
recognition problems. Pekalska et al. [5] proposed the dissimilarity representa-
tion. It arises from the idea that the classes are constituted by similar objects,
so (dis)similarities are more important than features for the class constitution.
This dissimilarity approach has the potential of unifying the statistical and the
structural approaches [6] because for example, statistical techniques can be used
on a dissimilarity representation derived from graphs.

In this paper we will study classification performances on a dissimilarity space
based on histogram distances, on the feature space of the histograms, and on the
pixel space for face recognition from low resolution longwave infrared images. We
will study in which conditions one representation is better than the other. Section
2 presents related work in face recognition using dissimilarity representations.
Section 3 introduces the dissimilarity space representation. Histograms and the
Chi Square distance are briefly described in Section 3. Section 4 presents the
experimental results, including data, experimental setup, and discussion. The
conclusions are drawn in Section 5.

2 Related Work

There are some studies in the literature where dissimilarity representations are
introduced for face recognition, but none of them make use of thermal infrared
imagery. In [7] after reducing dimensionality by Principal Component Analysis
(PCA), the authors used the Euclidean distances to conform the dissimilarity
matrix that characterizes the face data. They built a dissimilarity space from
the Euclidean distances derived from a feature space. Then they compared linear
and quadratic classifiers in that space with the nearest neighbor (1-NN) classifier
applied directly to the dissimilarity matrix, as a function of the amount of proto-
types selected per class. In their experiments they showed that the dissimilarity
space classifiers outperformed the 1-NN rule.

In [8], the author proposed the use of dissimilarity representations to solve
the Small Sample Size problem that affects the direct application of the Linear
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Discriminant Analysis (LDA) method for face recognition. This is an alternative
to the conventional use of methods like PCA as a previous step before the appli-
cation of LDA. The method joined to a classifier fusion strategy was proved in
face recognition and the results were comparable to the state of the art results.

3 Dissimilarity Space

The dissimilarity space was proposed by Pekalska et al. [5]. It was postulated
as a Euclidean vector space. For its construction a representation set R =
{r1, r2, ..., rn} is needed, where the objects belonging to this set (also called
prototypes) are chosen adequately based on some criterion that can be depen-
dent of the problem at hand. Let X be the training set, R and X can have the
following relationships: R∩X = ∅ , or R ⊆ X . Once we have R, the dissimilar-
ities of the objects in X to the objects in R are computed. When a new object
r comes, it is also represented by a vector of dissimilarities dr to the objects in
R (1).

dr = [d(r, r1)d(r, r2)...d(r, rn)] . (1)

The dissimilarity space is defined by the set R so each coordinate of a point in
that space corresponds to a dissimilarity to some prototype and the dimension
of this space is determined by the amount of prototypes selected. This allows
us to control the computational cost and to guarantee the trade off between
classification accuracy and computational efficiency.

3.1 Histograms

Before computing the dissimilarity values for the creation of the dissimilarity
space, pixel intensity histograms of the whole image were used as an intermediate
representation. In our approach, the use of histograms has the advantage of
allowing horizontal shifts and rotations of the face in the image. As it is shown
in Fig. 1, in the face images selected for our experiments the background is almost
constant with some exceptions like the nonuniformity noise. Also the majority
of the background pixel intensities are different from the face pixel intensities,
implying that the background information is not supposed to interfere with the
face information.

3.2 Chi Square Distance

For the comparison of the LWIR histograms, the Chi Square distance measure [9]
was used. This distance has been proving to be effective for histogram compari-
son. Let S and M be two histograms and n the number of bins in the histogram.
The Chi square distance is defined as follows:

χ2(S,M) =
n∑

i=1

(Si −Mi)
2

(Si +Mi)
. (2)
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Fig. 1. Examples of LWIR images from the Equinox database

4 Experiments

Our goal is to compare a pixel-based, a histogram representation and a dissim-
ilarity representation based on the histograms by means of classification accu-
racies of 1-NN and LDA classifiers for thermal infrared face recognition in the
presence of low resolution images.

4.1 Data and Experimental Setup

For the experiments the Equinox face database was used, which is a benchmark
database for thermal infrared face recognition. It was collected by Equinox Cor-
poration under DARPAs HumanID program [10]. In total the database contains
grayscale images of 89 subjects with 12 bits per pixel and 320x240 pixels of size.

The methodology described in [11] was followed for the experiments, but the
subsets containing the pictures of the subjects wearing glasses were discarded.
Different subsets were considered using (F)rontal and (L)ateral illuminations.
VF and VL are (V)owel subsets including images of the subjects moving the
mouth to pronounce the vowels. EF and EL are (E)xpression subsets includ-
ing images of the subjects with different expressions. VA is composed of images
taken from VF and VL. EA is composed of images taken from EF and EL. The
experimental setup is shown in Table 1. Each subset used for training and test
contains 267 images (3 images per 89 subjects).

In LWIR face images there is a lack of accurate techniques for detecting face
landmark points. These points are needed for the geometric normalization of the
face. We try to overcome this limitation using an histogram based representation
that is robust to head rotations and horizontal shifts of the face in the scene.
For the experiments 5 different image sizes were considered: 320x240, 80x60,
32x24, 16x12, and 6x8 pixels. An example of images with the 320x240 and 16x12
resolution and their related histograms is shown in Fig. 2 and Fig. 3.

As a reference we tested the pixel-based representation without a geometric
normalization of the face. For the histogram representation the number of bins
is 256. Histograms were normalized with respect to the number of pixels of the
image. The dissimilarity representation was conformed using the Chi Square dis-
tance between the histograms. As representation set for projecting the patterns
in the dissimilarity space we used the entire training set.
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Table 1. Experimental setup

Setup Training set Test sets Result
VL/VF VL VF1, VF2, VF3 a1 = Average(VL/VF1,VL/VF2,VL/VF2)
VF/VA VF VA1, VA2, VA3 a2 = Average(VF/VA1,VF/VA2,VF/VA2)
VL/VA VL VA1, VA2, VA3 a3 = Average(VL/VA1,VL/VA2,VL/VA2)
VF/VL VF VL1, VL2, VL3 a4 = Average(VF/VL1,VF/VL2,VF/VL2)
VF/EF VF EF1, EF2 a5 = Average(VF/EF1,VF/EF2)
VA/EF VA EF1, EF2 a6 = Average(VA/EF1,VA/EF2)
VL/EF VL EF1, EF2 a7 = Average(VL/EF1,VL/EF2)
VF/EA VF EA1, EA2 a8 = Average(VF/EA1,VF/EA2)
VA/EA VA EA1, EA2 a9 = Average(VA/EA1,VA/EA2)
VL/EA VL EA1, EA2 a10 = Average(VL/EA1,VL/EA2)
VF/EL VF EL1, EL2 a11 = Average(VF/EL1,VF/EL2)
VA/EL VA EL1, EL2 a12 = Average(VA/EL1,VA/EL2)
VL/EL VL EL1, EL2 a13 = Average(VL/EL1,VL/EL2)

Fig. 2. Examples of images with resolution of 320x240 and their related histograms.
Each row contains images of one subject.

Fig. 3. Examples of images with resolution of 16x12 and their related histograms. Each
row contains images of one subject.

Table 2 shows the results in terms of means and standard deviations of classifi-
cation accuracies of 1-NN and LDA classifiers for the 3 different representations
and the 5 different image resolutions. This classifiers are very different since
LDA is linear and global and 1-NN is highly nonlinear and a local classifier.
Each mean is calculated over the 13 results (a1, a2, ..., a13) in Table 1. In all the
experiments the data was reduced to 48 dimensions with PCA in order to avoid
regularization parameters for LDA and make the approaches comparable. The
1-NN classifier uses the Euclidean distance for all representations. The results
where the accuracy is statistically significantly higher for each classifier and res-
olution for the different representations are in bold. This is evaluated using the
formula γ = |µ1−µ2| − (σ1+σ2)√

N
, where µ1 and µ2 are the two means of classifier
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Table 2. Average classification accuracies and (standard deviations) for 1-NN and
LDA classifiers on a dissimilarity, a histogram, and a pixel-based representation for
different image resolutions

Resolution Classifier Dissimilarity Rep Histogram Rep Pixel-based Rep
320x240 LDA 91.88 (10.78) 86.01 (15.91) 78.20 (21.62)

1-NN 99.34 (0.85) 99.73 (0.25) 95.17 (2.31)
80x60 LDA 95.24 (6.66) 91.52 (10.98) 62.61 (26.14)

1-NN 99.64 (0.41) 99.67 (0.34) 95.24 (2.30)
32x24 LDA 99.53 (0.78) 97.14 (3.41) 66.81 (25.72)

1-NN 99.57 (0.28) 99.27 (0.48) 95.40 (2.29)
16x12 LDA 98.07 (1.22) 98.38 (1.47) 68.95 (27.04)

1-NN 97.34 (1.09) 94.26 (2.47) 95.83 (2.12)
8x6 LDA 75.53 (7.82) 76.21 (7.82) 71.79 (25.67)

1-NN 66.73 (7.65) 53.64 (8.53) 96.32 (2.02)

accuracies, and σ1 and σ2 are the standard deviations and N is the number of ex-
periments. Taking a threshold α = 0.5 the difference on the means is statistically
significant if γ > α.

4.2 Results and Discussion

Our classification results using the 1-NN on the 320x240 images, using both
the histogram and the dissimilarity representations, are comparable to or better
than previous results reported in the literature. For example in [1] the authors
tested the LDA method on the geometrically normalized 324x240 images and
the average classification accuracy was 96.78. In our case, despite the fact that
no geometric normalization was made, with the 1-NN on the dissimilarity space
and the 1-NN on the histograms we achieved 99.34 and 99.73 of accuracy on the
same data.

For the 320x240 resolution we can see that the two classifiers on the pixel-
based representation suffer from the fact that the faces are not aligned, so clas-
sification results are the lowest. By using histograms, we achieve invariance to
horizontal shifts and rotations of the face inside the image, leading to better
classification results than with the pixel-based representation.

For 80x60, 32x24, and 16x12 resolutions, classification results on dissimilarity
and histogram representations continue to be better than classification results
on the pixel-based representations. Also for this low resolutions, classification
accuracies are statistically significantly higher when using dissimilarity repre-
sentations and in 2 of 3 cases the highest accuracies correspond to the 1-NN
on the dissimilarity representation. By decreasing the resolution, histograms are
more sparse so bins become less reliable features. Dissimilarities can handle this
a little bit better. Also, the LDA classifier performs better because is a more
global classifier and suffer less from this noise.

For the 32x24 resolution we can observe that classification results on both
the histogram and the dissimilarity representations are similar to or better than
classification results on the high resolution images. This may suggest that for
recognizing faces from LWIR images we do not need a high resolution for the
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Table 3. Average classification accuracies (and standard deviations) when decreasing
the resolution of histograms to 50, 20, 10, and 5 bins for the 8x6 image resolution

Classifier Dissimilarity Rep Histogram Rep
LDA hist 50 bins 93.13 (3.29) 91.18 (4.40)
1-NN hist 50 bins 86.94 (4.36) 86.28 (4.39)
LDA hist 20 bins 87.50 (4.38) 92.97 (2.76)
1-NN hist 20 bins 86.01 (4.28) 84.23 (4.68)
LDA hist 10 bins 79.68 (5.13) 86.17 (3.92)
1-NN hist 10 bins 77.71 (6.16) 77.11 (6.12)
LDA hist 5 bins 30.73 (27.65) 64.56 (4.46)
1-NN hist 5 bins 55.22 (5.82) 58.30 (6.20)

images. This conclusion can only be applicable to databases with a controlled
size like in our setups.

In the case of 8x6 images, classifiers on histogram and dissimilarity representa-
tions perform very poor compared to the 1-NN on the pixel-based representation.
The pixel-based representation is performing better because by decreasing the
resolution, the faces become aligned. On the other hand, the poor performance
of histograms and dissimilarities can be attributed to the fixed number of his-
togram bins that leads to very sparse histograms when the resolution is as low as
8x6. To prove this, we conducted some experiments diminishing the number of
bins of the histograms. The new bin values are the summations over neighboring
bins of the larger histograms. The resolution of the histograms was decreased to
50, 20, 10, and 5. The results are shown in Table 3. We can observe that classifi-
cation results can be improved if the histogram resolution is decreased while the
image resolution is decreased (e.g. 50, 20, and 10 bins), but we need to take care
of the selected histogram size because classification accuracy starts to decrease
for very small sizes. When using histograms of 5 bins classification results are no
longer better than those using 256 bins. The best result is obtained with LDA
on the dissimilarity representation using histograms of 50 bins.

5 Conclusions

It is very common to find studies on complicated representations for face recogni-
tion from visual imagery. This is needed in order to achieve invariance to factors
that affect visual images and degrade the recognition performance such as am-
bient illumination changes. By using the thermal imagery modality, invariance
to illumination changes is achieved. Therefore, very simple representations can
be suitable for this type of images.

In this paper we compared some representations such as a pixel-based, a
histogram representation and a dissimilarity representation based on the his-
tograms for face recognition from low resolution LWIR images. We find out
that histograms characterize the subjects sufficiently, and dissimilarities on the
histograms may improve this. For low resolutions images, histograms become
sparse and results deteriorate. The pixel-based representation can now perform
very well because the faces become more aligned. A good tradeoff between image
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resolution and histogram resolution may be needed. It was also observed that
low resolution thermal images joined to a proper representation are sufficient to
discriminate between subjects and we suggest that they can be used in practical
applications such as face tracking.
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Abstract. We present a new unsupervised segmentation based active contours 
model and texture descriptor. The proposed texture descriptor intrinsically de-
scribes the geometry of textural regions using the shape operator defined in 
Beltrami framework. We use Bhattacharyya distance to discriminate textures by 
maximizing distance between the probability density functions which leads to 
distinguish textural objects of interest and background. We propose a fast 
Bregman split implementation of our segmentation algorithm based on the dual 
formulation of the Total Variation norm. Finally, we show results on some chal-
lenging images to illustrate segmentations that are possible. 

Keywords: Active contours, texture descriptor, bhattacharyya distance, total 
variation, Bregman split algorithm. 

1   Introduction 

Active contour models such as Geometric/Geodesic Active Contour (GAC) [1], Ac-
tive Contours Without Edge (ACWE) [7] model have been widely used as image 
segmentation methods and more recently for texture segmentation [4]. Later, exten-
sion and generalization [8],[13],[16],[18]-[22], respectively, for vector-valued images 
has been done by replacing the scalar gray-level intensities with vectors of color 
channel intensities to guide contour evolution. However, the information derived from 
intensity integral operations deceived the textural image segmentation process as 
regions of different textures may have equal average intensities. Therefore the appli-
cation ACWE model based on image intensities either in its original or in its general-
ized form can be considered unsuitable for texture segmentation. However, its region-
based formulation could be exploited for capturing textural information derived from 
features not necessarily exhibiting high gradients at object boundaries.  
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In this paper, we proposed fast unsupervised segmentation algorithm to textural 
segmentation model based on Bhattacharyya distance.  

The rest of paper is organized as follows. Firstly, we introduce the texture region 
and shape descriptor. Then, we define the active contour model based on the Bhat-
tacharyya distance. We prove the existence of a minimizer. We then present the fast 
algorithm to determine evolving contour curve. Finally, we show some promising 
experimental results. 

2   Texture Descriptor 

In Beltrami framework [2], a smoothed version of an original gray level image 
2:I +→\ \ can be viewed as a surface ∑with local coordinates ( ),x y embedded in 

3\  by smooth mapping X . Let ( ) ( ), , ,x y X x y G Iσ→ = ∗ , Gσ is Gaussian filter 

with 2σ variance, the first fundamental form is define by: 

( )
2

, 2

ˆ ˆ ˆ1
, ,

ˆ ˆ ˆ1

x x y

x y y

I I IX X
g x y

I I I
µ ν µ ν

⎛ ⎞+⎛ ⎞∂ ∂ ⎜ ⎟= =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ +⎝ ⎠ ⎝ ⎠
 (1)

where , ,x yµ ν = in the ( ),x y -basis and ˆ
xI  and ˆ

yI  in (1) are the image derivatives 

convolved with a relatively large Gaussian filter, such  ˆ
x xI G Iσ= ∗ and ˆ

y yI G Iσ= ∗ .  

The inverse determinant (det) of metric tensor ,gµ ν is defined as: 

( ) ( )( ) 2
,

1 1

det , 1
g I

g x y G Iµ ν σ

= =
+ ∇ ∗

 (2)

Instead of this edge descriptor [3], we propose to define a region descriptor for tex-
tural image.  For this, we design an intrinsic descriptor based on the use of shape 
operator to describe the geometry of textures [8]. The shape operator S measures the 
shape of the manifold in a given region by estimating how the normal NΣ to the sur-

face Σ  changes from point to point. For a tangent vector pv  to Σ at p , the shape op-

erator that satisfying [8]: 

pvS D NΣ= −  (3)

where
pvD NΣ is the derivative of the surface normal in the direction pv .  

The second fundamental form ,bµ ν , used to measure oriented distance on mani-

folds, and its components indicate the direction of change of the manifold as: 
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( )
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where ( )
2 2

1 ˆ ˆ, ,1
ˆ ˆ1

x y

x y

N I I
I I

Σ = − −
+ +

 is normal to surface manifold. 

The shape operator S calculates the bending of a smoothed surface in different di-
rections [8]. The principles curvatures of the manifold are the roots of the following 
equation: 

( ) ( )2 , , 0
b

k b x y g x y k
g

µν
µν− + =  (5)

where ( ) ( )1, ,g x y g x yµν
µν

−= , ( )( ),det ,vb b x yµ= and ( )( ),det ,g g x yµ ν= . 

The first principal curvature maxκ corresponds to the maximal change of the normal to 

the surface and minκ corresponds to the minimum change: 
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Since max minκ κ⊥ , we propose to define the texture descriptor as: 

max

min

atanT

κκ
κ

⎛ ⎞
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⎝ ⎠
 (8)

Where :Tκ +Ω →  is used to segment regions with different texture patterns, Ω cor-
responds to the image domain. 
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3   Bhattacharyya Flow 

The Bhattacharyya distance between two probability density functions is defined 
as ( )logBatE Bat= − , where Bat is the Bhattacharyya coefficient given by [16,17]: 

( ) ( ) ( ), , ,in out in T out T T

R

Bat p p p p dκ κ κ
+

= Ω Ω∫  (9)

The pdfs inp and outp associated with an observation Tκ for a fixed region Ω are de-
fined by the Parzen kernel: 
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∫
 (10)

In order to produce two regions, the object Ω and the background 0 \Ω Ω , with two 

pdfs as disjoint as possible, the energy the functional BatE is maximized, w.r.t the 

evolving domain ( )tΩ , is done with the shape derivative tool[4,10]. Thus, the Eule-

rian derivative of BatE  in the direction ξ is as follows:  
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where the Bhattacharyya velocity is expressed as: 
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(12)

Where N
G

is an exterior unit normal vector to the boundary C = ∂Ω of the region Ω , 

, Nε
G

is the Euclidean scalar product and s is the arc length parametrization. If we 

consider the energy functional expressed as: 

( ) ( ) ( )g BatE L EλΩ = Ω + Ω  (13)

where ( )gL Ω  is the length of the boundary of Ω and acts like a regularization process 

in the curve evolution, λ positive constant which controls the trade-off between the 
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regularization process and the fidelity of the solution. In Total variation norm the 
energy of active contours can be expressed as:  

[ ]
( )( ) ( )

0 0

0,1
min Batu

E u V u g I uλ
∈

Ω Ω

= + ∇∫ ∫
 

(14)

In the next section we introduced a fast algorithm for solving segmentation problem. 

4   Fast Algorithm Based on Split Bregman 

A fast and accurate minimization algorithm for (16) is introduced in [5]. We substi-
tuteφ by u to formulate the variational problem:  

[ ]
( )( ) ( )

0 0

0,1
min Batu

E u V u g I uλ
∈

Ω Ω

= + ∇∫ ∫  (15)

A new vectorial function d is introduced as follows: 
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( )

0 0

0,1 ,
min Bat

u d
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Ω Ω
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⎝ ⎠
∫ ∫  (16)

The constraintis d u= ∇ enforced using the efficient Bregman iteration approach [10, 
13, 3] defined as: 
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The minimizing solution 1ku +  is characterized by the optimality condition: 

( ) [ ], 0,1k k
batu V div b d uµ λ µ∆ = + − ∈  (18)

A fast approximated solution is provided by a Gauss-Seidel iterative scheme: 
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Finally, the minimizing solution 1kd +  is given by soft-thresholding: 
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Then, the final active contour is given by the boundary of the set 
1

2
finalu

⎧ ⎫∈ Ω >⎨ ⎬
⎩ ⎭

x . The two iteration schemes are straightforward to implement. 

Finally, we update at each iteration inp , outp using the Parzen kernel given in  

equation (10). 

5   Experiments Results  

We applied the proposed segmentation algorithm to a set of challenging real-world 
textural images (image a),b),c))). The natural textural images were taken in the Berke-
ley segmentation data set 14. Fig. 1 presents the results obtained with the proposed 
method. We notice that our segmentation model needs four parameters, σ  explained 
in section 2. θ , λ  explained in Section 4. The Parzen parameter in Section 3. The 
mean computing time for the segmentation is around a minute. The segmentation 
results are compared to manual segmentation [14], and we evaluation the quality of 
segmentation in term of F-measure detailed in [14]. For a good choice of the segmen-
tation parameters, the results are compared to manual segmentation and the F-
measure drawn (Table 1)an improvement of segmentation quality compared to results 
drawn by the model proposed in [3].  

Table 1. Quatitative evaluation of the segmentation 

Image P R F 
Image a 0.61 0.59 0.60 

Image b 0.63 0.60 0.61 

Image c 0.65 0.62 0.63 

 

Integrating the texture region descriptor guide the active contour to localize effi-
ciently the geometry of textured region. Solving the segmentation problem in dual TV 
allows the active contour to reach the minimum global and ensure the active contour 
to segment the one textural region in image.  We have compared the segmentation 
results of image a), b), c) to the manual segmentation. The quality of segmentation 
expressed in F-measure term shows that the proposed method segments successfully 
the textured regions. An adequate choice of parameters model leads to a good seg-
mentation of textural image. 
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a) 

 
 

 
b) 

 
 

c) 
 

 
Shape descriptor Segmentation results 

Fig. 1. Segmentation of textural images based on bhattacharyya distance 

6   Conclusion  

We have introduced an active contour model based Bhattacharyya gradient flow for 
unsupervised segmentation of textural images. We have proposed a new intrinsic 
textural feature descriptor based on the shape operator of the texture manifold and fast 
algorithm is developed based on a dual TV approach. The proposed model is designed 
to work with textures and needs at least one textural region. 
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Abstract. In this paper, we use multi-agent paradigm in order to pro-
pose a new method of image segmentation. The images considered in
this work are the range images which can contain at once polyhedral
and curved objects. The proposed method uses a multi-agent approach
where agents align the region borders to the surrounding surfaces which
make emerging a collective segmentation of the image. The agents move
on the image and when they arrive on the pixels of a region border
they align these pixels to their respective surfaces. The resulting com-
petitive alignment allows at once the emergence of the image edges and
the disappearance of the noise regions. The test results obtained with
real images show a good potential of the new method for accurate image
segmentation.

Keywords: Image segmentation, Multi-agent systems, Curved Object,
Range image.

1 Introduction

A range image represents the visible surface of a three-dimensional scene, where
at each pixel of the image is stored the depth of the corresponding point of the
scene. Range images are mainly used in recognition of 3D objects in robotic
vision, because the 3D information, which is required for object recognition is
immediately available. However, these images are recognized as being highly
noised images [3] and are consequently hard to segment and to interpret. Several
authors proposed methods of segmentation for this class of images [4,8]. However,
most of these authors limited themselves to the images based on polyhedral
objects. For these last ones, the detection of the regions of interest is widely
easier compared with images containing curved objects [4].

Aiming at segmenting range images with both polyhedral and curved objects,
we have appealed to multi-agent paradigm and more particularly to the reactive
agents [2]. We have used simple agents with weak granularity and having simple
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behavior which based on the mechanism of stimulus-reaction. The agents move
on the image and act on the met pixels. An agent aligns the first not homogeneous
pixel to the surface on which it moves. So, pixels belonging to the noise regions
or situated on the circumferences of surfaces are systematically aligned to the
surfaces which surround them. We show that the alternative alignment of pixels
on the borders of regions allows preserving edges. On the other hand, because
there is no pixel alignment within the noise regions, theses regions progressively
disappear. This collective action of the agents allows the emergence of edges and
the disappearance of the noise regions.

Most of the methods having used the agent paradigm [1,7,9,10,6] are super-
vised and consequently they can be applied only to the images for which they
were conceived. The method proposed in this paper is unsupervised. It makes
no assumption on the number and the shape of the surfaces which compose
objects in the image. This allows the adaptation of the method to any type
of images by defining the criteria of homogeneity of the regions composing the
treated images. The distribution of treatments and decision which characterize
our approach, as well as the weak coupling of the reactive agents, offers a parallel
method well suitable for real-time image interpretation. The experimentation of
the method by using real images allowed to validate the new approach and to
show its potential for an accurate and effective segmentation of range images.

The reminder of the paper is organized as follows: in Section 2 we present
the main approaches having used multi-agent systems for image segmentation.
Section 3 is devoted to the proposed approach. We present at first the criterion
of homogeneity curved surfaces adopted in our case. Then, we introduce the
principle of the multi-agent system and we show how a collective segmentation
emerges form the simple and reactive behaviors of the agents. Our test results
are introduced in the section 5, in which we show the the parameter selection
and we comment on the obtained results. Finally, a conclusion summarizes our
work and underlines its potential extensions.

2 Multi-agent Approches for Image Segmentation

Since the publication of the first works proposing multi-agent approaches for im-
age processing, the cooperation and the interaction between agents represented
the new contributions to deal with the problem of ambiguity which characterizes
image visual data [1,7].

In the category of edge based segmentation methods using a reactive approach,
Ballet et al. [1] have defined a multi-agent system for edge detection and following
in 2D images. In this system an agent is situated on an extremum of the luminance
gradient, then follows the crest of the edge and records its path in a sharedmemory.
The previously recorded edge segments are used by other agents to initialize new
edge segments or finish others. The method proposed by the authors is based on an
original approach of parallel and distributed edge detection. However, the authors
have not considered any mechanism of cooperation or coordination to strengthen
the detection and improve the segmentation results.
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The same authors [10] have resumed later the same approach and have ex-
tended it by using the multi-agent language oRis. By considering the a priori
knowledge on the topology of regions in certain types of images, the agents follow
the lines of gradient extremum. By considering two types of image regions, two
categories of agents named respectively darkening agents and lightning agents
are defined. According to their category, the agents follow respectively the dark
regions or the light regions. By remaining on crest lines, the agents strengthen
the difference of contrast between the pairs of neighboring regions. The proposed
system is well dedicated to images containing roof edges (detected by the dis-
continuity of the first derivative of the image). Indeed, theses edges characterize
the considered images by the authors.

The previous multi-agent approaches like most of edge based approches, have
proceeded to detection without any region representation. This does not facilitate
the region based segmentation of the treated images.

In the category of region based methods, Liu et al. [7] have used a reactive
agent based system for the segmentation of Magnetic Resonance Images (MRI)
of the brain. The authors used four types of agents, which correspond to the
four tissues in the pathological cerebral matter. A first generation of agents is
initialized inside the various tissues. Then, when every agent recognizes its re-
gion, it creates offspring agents and places them so that they are lucky to find
more other homogeneous pixels. For the same type of images, Richard and his
co-authors [9] proposed a multi-agent system were agents are organized hierar-
chically as follows: 1) One global control agent which partition the image volume
in partial volumes; 2) Local control agents, allocated each one to a partial vol-
ume; 3) tissue dedicated agents, which work under the control of a local control
agent, to segment the tissue inside a partial volume. So, the detection is per-
formed at the lowest level by the tissue dedicated agents, then synthetized by
the local control agents and the global control agent.

Like most of the region based approaches of image segmentation, the pre-
vious two works follow supervised approaches, where it is necessary to know
the number of regions and their shapes. We introduce into this paper a new ap-
proach which is general and unsupervised for range image segmentation. We show
that the competitive alignment of edges performed by reactive agents allows the
emergence of a collective segmentation of an image. The proposed approach is
unsupervised. It makes no preliminary assumption on the number or the nature
of the regions which form the images to be segmented.

3 Image Segmentation by Edge Emergence

In order to do not make any assumption on the shape of regions, we have used
the directional curvatures of surface, as the homogeneity criterion. Let a pixel
(x, y), the two directional curvatures, respectively horizonal Ch and vertical Cv,
are defined as follows:

Ch(x, Y ) = − I ′′(x, .)
1 + I ′2(x, .)

(1)
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Cv(X, y) = − I ′′(., y)
1 + I ′2(., y)

(2)

where I ′(x, .) and I ′′(x, .) are the first and the second derivative of the image
following the x axis, by fixing the value of y to Y . The same, I ′(., y) and I ′′(., y)
are the first and the second derivative of the image following the y axis, by
fixing the value of x to X . Ch expresses the curvature projection of the surface
of the plane y = Y , while Cv expresses the curvature projection of the surface
on the plane x = X . A contiguous set R of pixels {(xk, yk), k ∈ R} is considered
homogenous, and represents an image region, if all of its pixels have, according
to a given threshold Trc, the same directional curvatures:

∀k, l ∈ R; |Ch(xk, yk)− Ch(xl, yl)| < Trc ∧ |Cv(xk, yk)− Cv(xl, yl)| < Trc

Trc is a curvature comparison threshold where the value is automatically set at
the stage of parameter learning (see Section 4). So, the pixels on interest, which
are situated at the borders of the true regions or are in the noise regions, are
detected when one of the two curvature Ch ou Cv changes.

3.1 System Dynamic

A high number of reactive agents (N=3500 see Section 4) are initialized at
random positions in the image. After, agents start to move within the image fol-
lowing random directions. An agent searchs for an homogenous region around its
current position (xc, yc), by checking the last L visited pixels. The path length
in pixels L (set at Section 4) allows the agent to be sure that it is within a ho-
mogenous region. If these last L pixels have all the same directional curvatures,
the agent considers that it is within a homogenous region (CurrentRegion). It
acquires then the ability to alter the image (AlterationAbility ← TRUE). This
ability allows the agent to modify the depths of the encountered pixels. In its
future moves, it smoothes the encountered pixels if these latter belong to the
surface on which it currently moves. When the agent arrives on the first non
homogenous pixel, it aligns this pixel to the current surface. The agent loses its
alteration ability and restarts to search for a new homogenous region. The next
algorithm introduces the method ”step()” executed by an agent at every step
on its path.

Initialisation :
AlterationAbility ← False
(xc, yc) ← (random(widthImg − 1), random(heightImg − 1))
l ← 0 // Set the path length

3.2 Noise Region Erasing and Edge Emergence

A noise region in a range image is either a homogenous region with weak size,
or a non homogenous region formed by noise pixels having random or aberrant
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Algorithm 1. Method step()
(xc, yc) ← moveOnNeighbourP ixel()
if NOT AlterationAblilty then

if NeighbourhoodHomogeous(xc, yc) then
l ← l + 1
if l ≥ L then

AlterationAbility ← TRUE
CurrentRegion ← region(xc, yc)

end if
end if

else
if Belong(xc, yc, CurrentRegion) then

SmoothP ixel(xc, yc)
else

alignP ixel(xc, yc, CurrentRegion)
AlterationAbility ← FALSE
l ← 0

end if
end if

depths. In the case of a weak size, when it is crossed by an agent, this latter
can not cover L homogenous contiguous pixels. When the region is formed only
by noise pixels, an agent when crossing it does not find at least L homogenous
pixels to be able to initialize a homogenous region whichever the diameter of the
region. These regions are progressively erased by aligning their border pixels to
the surrounding true regions. Indeed, when an agent comes on a pixel on the
border of a noise region, it aligns this pixel and goes in this region. Since it could
not cross L contiguous homogenous pixels, it remains incapable to alter pixels
within the noise region. When it leaves this region, it does not align the first
encountred pixel in the homogenous surrounding region. So, the border of the
noise regions is then continually aligned from outside to the surrounding true
regions. The noise regions will disappear after several times agents cross theses
regions. Note that one noise region is surrounded by agents of a same group.
Agents of this group are those moving on the true region which surrounds the
noise region.

On the other hand, a segment of a thick edge, situated between two homoge-
nous regions, is surrounded by two groups of agents. Agents of each group are
situated entirely within only one region. Agents which cross the segment align
the pixels of the segment border to the region from where they come. The edge
segment between the two homogenous regions is thus continually thinned by the
two groups of agents (Fig. 1a and 1c).

When the edge becomes thin (one pixel wide), the agents of the two groups will
become in competition to align the pixels of the thinned edge. Indeed, the pixels
aligned by the agents of a giver group, let A in Fig 1b are immediately realigned
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(a) (b) (c) (d)

Fig. 1. Edge thinning (image abw.test.6). (a),(c) Edge pixels at t=800 ; (b),(d) Edge
pixels at t= 8000.

to the second region (B) by the agents of the second group. So, the pixels of the
edge are continually switched between the two regions. Consequently, whichever
the number of alignments of these pixels, they remain emergent in the image
(Fig. 1d). Note that this result is not coded in any agent, but it emerges from
the collective action of all the agents in the image.

At the end of the process, noise regions are erased, and edges are thinned.
So, a simple region growing controlled by the detected edges allows to produce
a region based segmentation of the image.

4 Experimentation

We have used the framework proposed by Hoover et al. [3] to evaluate our
approach, with range images from the set K2T containing both curved and
polyhedral objects. All the images have a size of 640 × 480 pixels. A set of
10 range images was used to select the values of the used parameters: the
number of agents N=3500; the path length L=7; and the curvature thresh-
old Trc. The selected value correspond to the best segmentation, expressed as
the number of the regions correctly detected, according to a ground truth (GT)
segmentation [3].

In order to show how the noise regions are progressively erased and how edges
are thinned, we show aligned pixels at regular intervals of time t. Figure 2a shows
a sample of a range image. Figures 2b, 2c, 2d, 2e and 2f show the aligned pixels
respectively at t=500,3500,7500,10500 and 13500. As the time progresses edges
are detected and thinned, and noise regions are erased.

Fig. 3 shows the average number of instances of correct detection correspond-
ing respectively to our method (DCIS for Distributed and Collective Image Seg-
mentation) and the method of EG (Edge based Segmentation), where authors
have proposed a segmentation method for curved objects [4,5]. Theses results
are obtained with the set K2T of images containing curved objets, and are com-
puted according to a compare tool tolerance T , which is used to express the
comparison tolerance. We can observe that our method records scores better
than those of EG for T in {50%, 60%, 70% and 80%}. The two methods record
equivalent scores for T in {90%,95%}.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Segmentation Progression. (a) Rendered Range Image; (b) at t=500, (c) at
t=3500 ; (d) at t=7500 ; (e) at t=10500 ; (f) at t=13500.

Fig. 3. Average number of correct detections in the set K2T for the two methods EG
and DCIS according to T ; 50% ≤ T < 100%

5 Conclusion

We have proposed in this paper a new approach for edge detection and noise
erasing in range images. This has allowed the segmentation of an image in its sev-
eral homogenous regions. Combining the surface curvature and the competitive
alignment of pixels has allowed to produce an accurate segmentation of images
containing curved objects. These latter are recognized as difficult to segment in
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the case of range images. According to our approach, the detection of an edge
segment results from the alternative alignment of its pixels. This alignment is
performed by agents coming from the two regions. On the other hand, noise re-
gions are progressively erased by the continuous alignment of the pixels of their
borders to the homogenous surrounding regions. We think that the proposed
approach could be applied to other types of images. For this, it’s necessary to
define a homogeneity criterion of regions in treated images.
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Abstract. This work investigates the problem of texture recognition under vary-
ing lighting and viewing conditions. One of the most successful approaches for
handling this problem is to focus on textons, describing local properties of tex-
tures. Leung and Malik [1] introduced the framework of this approach which was
followed by other researchers who tried to address its limitations such as high
dimensionality of textons and feature histograms as well as poor classification of
a single image under known conditions.

In this paper, we overcome the above-mentioned drawbacks by use of recently
introduced supervised nonlinear dimensionality reduction methods. These meth-
ods provide us with an embedding which describes data instances from the same
classes more closely to each other while separating data from different classes as
much as possible. Here, we take advantage of the superiority of modified meth-
ods such as “Colored Maximum Variance Unfolding” as one of the most efficient
heuristics for supervised dimensionality reduction.

The CUReT (Columbia-Utrecht Reflectance and Texture) database is used
for evaluation of the proposed method. Experimental results indicate that the
algorithm we have put forward intelligibly outperforms the existing methods.
In addition, we show that intrinsic dimensionality of data is much less than the
number of measurements available for each item. In this manner, we can practi-
cally analyze high dimensional data and get the benefits of data visualization.

Keywords: Texture Recognition, Texton, Dimensionality Reduction.

1 Introduction

Texture is a fundamental characteristic of natural materials and has the capacity to pro-
vide important information about scene interpretation. Consequently, texture analysis
plays an important role both in computer vision and in pattern recognition. Over the past
decades, a significant body of literature has been devoted to texture recognition based
on mainly over-simplified datasets. Recently, more and more attention has been paid
to the problem of analyzing textures achieved in different illumination and viewing di-
rections. As Figure 1 shows, recognizing textures with such variations generally causes
much trouble. Leung and Malik [1] were amongst the first to comprehensively study
such variations. They proposed 3-D textons which are cluster centers of a number of
predefined filter responses (textons) over a stack of images with different viewpoint and
lighting conditions. The basic idea here is to build a universal vocabulary from these

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 209–216, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



210 E. Barshan, M. Behravan, and Z. Azimifar

Fig. 1. Changing viewpoint and illumination can have a dramatic impact on the appearance of a
texture image. Each row shows texture images of the same class under different viewpoint and
lighting conditions.

textons describing generic local features of texture surfaces. Given a training texture
class, the histogram of its 3-D textons forms the model corresponding to that texture.
In the training stage, the authors acquired a model for each material using stacked im-
ages of different albeit a priori known conditions. This model, however, requires the
test images to be in the same order as in the training. Leung and Malik also developed
an algorithm for classifying a single image under known conditions. Yet, this method
does not classify a single image as efficient as the case for the multiple images. Later,
Varma and Zisserman [2] presented an algorithm based on Leung and Malik’s frame-
work, without requiring any a prior knowledge of the imaging conditions. In Varma
and Zisserman’s method, textons are obtained from multiple unregistered images of a
particular texture class using K-means clustering. A representing model for each class
is brought out using the texture library which is, actually, a collection of textons from
different texture classes.

For the purpose of achieving a faithful representation of various textures, a finite set
of textons (i.e., texton library) closely representing all possible local structures, ought
to be obtained. Hence, the cardinality of our texton library must be considerably large.
Nevertheless, this may, by itself, cause high-dimensional models. To address this issue,
Cula and Dana [3] employed the method of Principal Component Analysis (PCA) and
compressed the feature histogram space into a low-dimensional one. Applying PCA as a
method for unsupervised linear dimensionality reduction causes a number of limitations
to be discussed later on.

In this paper, we focus on the problem of high dimensionality of texture models
and, furthermore, introduce an efficient algorithm for classifying a single texture image
under unknown imaging conditions. Here, our attempt is to shed light on a new approach
to overcome this difficulty. In this viewpoint of ours, a richer space is sought after that
can reflect modes of variability which are of particular interest. As a result, we propose
to project data onto an ideal space peculiar to our problem. Not only is the new space
thus gained supposed to be of low dimension, but also it has to provide us with a better
representation of data, i.e. to be more discriminative for the classification algorithm.
In other words, we aim at transforming the ill-posedness of texture classification into
a better-posed problem. To find this transformation, we take the benefits of recently
introduced supervised nonlinear dimensionality reduction methods.

The rest of this paper is organized as follows: Section 2 provides an overview on
texton-based texture representation. Next, we briefly describe one of the most efficient
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heuristics for reducing the dimensionality of nonlinear data. In section 3, we introduce
our new method which represents a model of enough capability for classifying a sin-
gle image under unknown imaging conditions. Experimental results of the proposed
algorithm are presented in section 4 followed by “Conclusion” in section 5.

2 Background Review

2.1 Texton-Based Texture Representation

A texture image is constructed based on certain structures, such as spot-like features of
various sizes, edges with different orientations and scales, bar-like characteristics and
so on. It was reported that local structure of a texture can be closely represented by its
responses to an appropriate filter bank [4,5,6].

Different filter banks focus on different constructive structures. Accordingly, Leung
and Malik [1] introduced an appropriate LM filter bank which was later employed by
a number of other researchers. The LM set is a multi-scale, multi-resolution filter bank
that has a combination of edge, bar and spot filters. It consists of the first and the second
derivatives of Gaussian (at six orientations and three scales), eight Laplacian of Gaus-
sian (LOG) filters and four Gaussian filters, a total of 48 filters. In this study we used
this filter bank.

One of the fundamental properties of textures is pattern repetition, which means that
filter responses to only a small portion of texture image are sufficient to describe its
structure. This small set of prototype response vectors of one image was called 2-D
textons by Leung and Malik. They also proposed 3-D textons definition; this definition
is based on the idea that the vectors obtained from concatenating filter responses of
different images of the same class will encode the appearance of dominant features
in all of the images. They used 3-D textons to represent a framework for recognizing
textures under different imaging conditions. Since the inspiration of our work comes
from the Leung and Malik’s algorithm [1], let us briefly review this method.

The Leung and Malik’s algorithm uses 3-D textons from all the texture classes to
compute a universal vocabulary. To construct such a desirable vocabulary, the K-means
clustering algorithm is applied to the data from each class individually. The class centers
are, then, merged together to produce a dictionary. This dictionary should be pruned in
order to produce a more efficient, faithful and least redundant second version. After
constructing the vocabulary, different images from each class are passed through the
filter bank and stored in a large vector, which is then assigned to the nearest texton
labels from the said dictionary. The histogram of texton frequencies is computed in such
a manner as to obtain one model per class. Textons and texture models are learnt from
training images. Once this is done, classification of a test image is done by computing
a model from images with different imaging conditions, as in the training stage. The
algorithm selects the class for which chi-square distance between the sample histogram
and the model histogram could be minimized. Readers interested in other aspects of the
original algorithm are referred to Leung and Malik’s original paper [1]. Despite the fact
that Leung and Malik’s algorithm has numerous advantages, it has its own limitations
discussed by several authors from different aspects. These disadvantages were to be
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addressed by the very authors. In section 3, we discuss shortcomings of this algorithm
and introduce a new approach based on dimensionality reduction methods.

2.2 Dimensionality Reduction

The problem of dimensionality reduction and manifold learning has recently attracted
much attention on the part of many researchers. Manifold learning is a method to re-
trieve low dimensional global coordinates that faithfully represent the embedded mani-
fold in the high dimensional observation space.

Most dimensionality reduction methods are unsupervised. That is to say, they do
not respect the label or the real-valued target covariate. Therefore, it is not possible to
guide the algorithm towards those modes of variability that are of particular interest.
For example, where possible, by using labels of a subset of the data according to the
kind of variability that one is interested in, the algorithm can be guided to reflect this
kind of variability.

Amongst the proposed supervised nonlinear dimensionality reduction methods,
“Colored Maximum Variance Unfolding” (CMVU) [7] is of much interest and capabil-
ity.This method is built upon “Maximum Variance Unfolding” (MVU) method [8]. By
integrating two sources of information, data and side information, CMVU is able to find
an embedding which: 1) preserves the local distances between neighboring observa-
tions, and 2) maximally aligns with the second source of information (side information).
Theoretically speaking, CMVU constructs a kernel matrix K for the dimension-reduced
data X which has the capacity to keep the local distance structure of the original data
Z unchanged, so that X maximally depends on the side information Y as described by
its kernel matrix L. This method is formulated by the following optimization problem:

Maximize tr HKHL subject to:
1.K � 0
2.Kii +Kjj − 2Kij = dij for all (i, j) with ηij = 1

where K,L ∈ Rm∗m are the kernel matrices for the data and the labels, respectively,
Hij = δij−m−1 centers the data and the labels in the feature space, and binary param-
eter ηij denotes whether inputs zi and zj are k-nearest neighbors or not. The objective
function is an empirical estimate of “Hilbert-Schmidt Independence Criterion” (HSIC)
that measures the dependency between data and side information [9]. This optimization
problem is an instance of semi-definite programming (SDP). From the solution of SDP
in the kernel matrix K , output points Xi could be derived using singular value decom-
position. Figure 2 illustrates embedding of 2007 USPS digits produced by CMVU and
PCA, respectively.

3 Methodology

In this section, we discuss different texton-based texture representation methods. Then,
we present our new method to address all accompanying drawbacks, and will show its
superiority compared to other methods each focusing on a specific limitation.

As stated in the previous section, issues associated with the use of 3D textons to
classify 3D texture images are:
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Fig. 2. Embedding of 2007 USPS digits produced by CMVU and PCA, respectively [7]

– increased dimensionality of feature space to be clustered in the later stages,
– increased time complexity of the iterative procedure to classify a single image

which causes the convergence problem,
– necessity of a set of ordered texture images captured under known imaging condi-

tions, and
– introduction of only one comprehensive model per class whereas it is unlikely that

a single model can fully account for the various appearance of real-world surfaces.

By use of 2-D textons, none of the above problems would appear. 2-D textons are cluster
centers of filter responses over a single image (and not over a stack of images) captured
at different conditions. The problem here is how we should represent different instances
from the same class as being inter-related while preserving the between-class distances.
One solution is to select the models which best represent their texture classes. Cula and
Dana [3] proposed a model selection algorithm in a low dimensional space. They fit-
ted a manifold to low dimensional representation of models specifically generated for
each class and removed the models which least affected the manifold shape. Their algo-
rithm, notwithstanding, introduces some drawbacks. For projecting models into a low
dimensional space, they utilized PCA which is an unsupervised linear dimensionality
reduction method. The PCA works well if the most important modes of data variability
are linear. But in this study, the variability of models cannot be expressed linearly and
this causes poor performance of PCA. The second problem stems from the fact that two
different distance measures are used in constructing the manifold path in the training
stage and selecting the closest model in the classification stage. In other words, when
constructing the manifold path, at each step the closest point in terms of imaging angles
is chosen, while in classification phase, the closest surface class is selected in terms of
distance between models feature vectors. Another significant issue is that this algorithm
ignores inter-class variation between textures since the models for a texture are selected
without considering the other texture classes.

Having discussed the above issue, we propose to analyze this problem from another
viewpoint: reducing the dimensionality of model histograms to their intrinsic dimen-
sionality. By mapping the models to a very low dimensional space, the complexity of
the classification decreases and model selection can take the benefits of data visualiza-
tion. It is important to note that the basic modes of variability of our data are nonlinear.
Therefore, the dimensionality reduction method should be capable of unfolding the
manifold on which the nonlinear dataset is lying. On the other hand, we are searching
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for a space in which models from the same classes stay more closely while models from
different classes remain as much discriminated as possible.

Here we take the advantages of CMVU, which is one of the most efficient heuristics
for supervised dimensionality reduction, as discussed in § 2. This method generates
brilliant results for training data, e.g., it is empirically observed that the most significant
modes of the variability of a dataset with dimensionality of 1200 can be presented in a
space of as low as five dimensions. It confirms our reasoning of selecting the CMVU to
visualize the train data. This method, however, faces some complications in projecting
the test data. Desired embedding for training data could be computed with respect to
its labels. Because of the fact that at the testing time the second source of information
(the labels) is not available, this method does not provide us with an embedding of
testing data to the space in which the training data is embedded. Herein, we choose to
project the testing data based on the fundamental idea of “Locally Linear Embedding”
(LLE) [10]. The projection procedure for testing data S is as follows:

Alg. 1. The projection procedure for testing data
Input: training data matrix in the original space, Z, projected training data matrix, X, testing data
matrix in the original space, S, and the number of testing data, m
Onput: Projected testing data matrix, P
1: for all i ∈ {1. . .m}
2: N = {zj ∈ Z|ηij = 1}
3: W = argminW E(W ) = |si − ΣjwijNj |
4: pi = ΣjWijxj

5:end for

The projection of testing data using this LLE-like method causes some negligible
differences under the circumstances of the presence of labels being computed using
CMVU.

4 Experimental Results

We perform all experiments on the CUReT dataset [11]. This dataset provides a starting
point in empirical studies of texture surfaces under different viewing and illumination
directions. This database contains 61 different textures, each observed with over 200
combinations of viewpoint and illumination conditions.

In order to construct our texton library, 40 unregistered images with different imaging
conditions from 20 texture classes are employed. We use the same texture set as the
one examined by Cula and Dana [3]. We extract 2-D textons from each image, and
apply K-means algorithm to the texture classes individually in order to obtain 60 centers
from each different materials. These 1200 centers are used as initial points for the final
clustering step, which produce an efficient and least redundant dictionary from 1200
textons.

To justify the effectiveness of our approach, we have performed three sets of exper-
iments. 10 arbitrary texture images from each texture class are selected in all three of
experiments. Thence, the total number of test images is 200. In the first experiment,
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Fig. 3. Classification rate on CURet dataset for different projection dimensions. Three sets of
experiments have been performed. In experiment (1) exactly the same images involved in con-
structing the vocabulary have been used. Experiment (2) is a bit more complex, in the sense that
testing image conditions differ from those used in constructing the vocabulary. In Experiment (3)
two disjoint sets of texture classes are used in library construction and the texture recognition,
separately.

(a) Original Space (b)CMVU Space

Fig. 4. The first two dimensions of CUReT dataset in the original space and the space produced
by CMVU, respectively. Dot shapes are used to denote textures from different classes.

exactly the same images involved in constructing the vocabulary have been used. The
second experiment is a bit more complex, in the sense that testing image conditions
differ from those used in constructing the vocabulary. In the last experiment, the most
complex one, two disjoint sets of texture classes are used in library construction and tex-
ture recognition, separately. Figure 3 shows the percentage of correctly classified test
images as a function of dimensions used to represent projected models by CMVU. This
figure clearly shows that up to a certain level the accuracy increases with dimension-
ality and converges to a fixed point with very low variability. Additionally, this Figure
shows better results for experiment 3, which is the consequence of selecting more dis-
criminative classes than the other sets chosen for constructing the library. In Figure 4
the first two dimensions of data in the original space is shown as well as its projection
in/on to the new space using CMVU. Obviously enough, CMVU introduces a clear data
separation with an excellent visualization.

5 Conclusions

This paper introduces the idea of supervised nonlinear dimensionality reduction to alle-
viate the difficulties associated with texture recognition. Although we were not the first
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to address the high dimensionality of texture models, the contribution of this work is
its efficient mapping of data nonlinearity, i.e., we have shown how to represent the data
intrinsic information while magnifying the descriptive properties of the original feature
space. Besides, we proposed a LLE-like approach to cope with shortcoming of CMVU
in projecting the test data when carrying no side information. This paper presents a new
framework to efficiently visualize a hugely dimensioned data in a very low dimension
yet rich space.

This study can be extended in different directions: 1) orientation and scale invariant
features may be extracted using techniques such as gradient histograms, 2) advanced
classifiers and clustering algorithm can be investigated, and 3) the data visualization
techniques may also be employed in selecting the most discriminative texture models.
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Abstract. In this paper a problem of soft image segmentation is considered. An 
approach for segmenting images of heat-emitting specimens is introduced. Pro-
posed algorithm is an extension of fuzzy C-means (FCM) clustering method. 
Results of applying the algorithm to exemplary images of heat-emitting speci-
mens are presented and discussed. Moreover the comparison with results of 
standard fuzzy C-means clustering is provided. 

Keywords: image segmentation, fuzzy sets, clustering methods, FCM, high-
temperature measurement, surface property of metal. 

1   Introduction 

Image segmentation is an essential task in machine vision applications. It addresses 
the problem of partitioning the image into disjoint regions according to the specific 
features (gray levels, texture etc.) [1]. Different approaches to image segmentation 
have been proposed in the literature. The most popular are histogram-based methods 
[1][2], region growing approaches [1][3], edge-based methods [1][4], clustering tech-
niques [5] and watershed segmentation [1][6]. However most of these methods are 
hard techniques which provide crisp segmentation of images by qualifying each pixel 
to the unique region. 

Hard segmentation techniques are often insufficient for practical applications of vi-
sion systems. Crisp partitioning of the image is often inaccurate and erroneous. There-
fore the growth of interest in soft segmentation techniques can be observed recently. 
They are based on fuzzy set theory [7][8] end extract fuzzy regions (subsets of pixels) 
from the fuzzy image. In soft segmentation approaches each pixel can be qualified 
into multiple regions with different degree of membership [7][9][10].   

2   The Experimental Set Up 

Images considered in this paper were obtained from computerized system for high-
temperature measurements of surface properties of metals and alloys. The system 
“Thermo-Wet” determines wetting angles and surface tension of liquid materials up to 
18000C. The description of “Thermo-Wet” architecture can be found in [11][12]. 
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The considered system applies sessile drop method [13] to calculate surface pa-
rameters. Surface tension and contact angles are calculated from images presenting 
melted specimens of investigated materials. Exemplary images obtained during the 
measurement process are presented in Figure 1. They are 8-bit monochromatic images 
of the resolution 320×240 pixels. 

   Gold, 10240C Glass, 9640C Silver, 11980C  

Fig. 1. Exemplary images obtained from “Thermo-Wet” vision system 

After the image is acquired it is subjected to image segmentation which determines 
specimen shape and location of upper edge of the base-plate. Next, specimen shape 
analysis is carried out in order to determine characteristic geometric parameters of 
specimen (see Fig. 2). They are related to surface tension and contact angles through 
appropriate formulas arising from the sessile drop method [13]. Especially Porter’s 
formula is applied in this stage. More detailed information about the measurement 
process is given in [11][12]. 

 

45o
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Y 

12

A1 A2  

Fig. 2. The exemplary specimen  with important geometric parameters marked 

Image segmentation is crucial task for measurements of surface parameters. It de-
termines specimen shape and location of upper edge of the base plate. However the 
segmentation of images of heat-emitting specimens is very challenging. Problems 
with segmentation are caused by “aura” i.e. glow that forms itself around the speci-
men. Aura significantly hinders accurate location of specimen edges. It blurs the bor-
der between the background and the specimen. Hard segmentation techniques join 
aura with the object which affect with specimen dimensions increase. 
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In this paper fuzzy approach to segmentation of images presenting heat-emitting 
specimens is introduced. The algorithm which uses an extension of fuzzy C-means 
(FCM) clustering method is proposed. It iteratively segments aura. In consequence 
aura is effectively excluded and specimen shape is preserved after segmentation. 

A brief overview of FCM and detailed description of the proposed approach are 
given in the following sections.  

3   Background 

Fuzzy C-means (FCM) algorithm clusters pixels into a specified number of regions 
(clusters). It is based on minimization of the objective function Jm given by equation 
(1) [13][14]. 
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where: 
m - a real number greater than 1; 
C - number of clusters; 
xi - vector of pixel properties at location  i; 
uij - the degree of membership of xi in the j-th cluster; 
cj - centroid of the j-th cluster; 

||•|| - norm expressing the distance in P-dimensional feature space; 
Ω - set of pixels in the image domain. 

Fuzzy clustering is carried out through an iterative minimization of the objective 
function Jm with the update of the degree of membership uij and the cluster centers cj 

by equations (2) and (3) respectively. 
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The minimization is stopped when equation (4) gets fulfilled.  

{ } ε<−+ )()1(max s
ij

s
ijij uu . (4)

Where ε is a termination criterion and s is the iteration step. 
After minimization of the objective function is finished maximum-membership 

segmentation is usually applied. During this process pixels are classified into the 
cluster with the highest degree of membership. 
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4   Proposed Approach 

4.1   Pixel Description  

In case of analyzed images a pixel at location i is described by a vector of features  
xi = [xi1, xi2, xi3, xi4, xi5, xi6, xi7] in 7-dimensional (P=7) feature space where: 

xi1 - intensity of i-th pixel; 
xi2 - an average intensity of n×n neighborhood of i-th pixel; 
xi3 - standard deviation of intensity in n×n neighborhood of i-th pixel; 
xi4 - gradient magnitude in i-th pixel; 
xi5 - gradient direction in i-th pixel; 
xi6 - an average gradient magnitude in n×n neighborhood of i-th pixel; 
xi7 - an average gradient direction in n×n neighborhood of i-th pixel. 

Neighborhood of size 3×3 pixels is considered (n=3). Sobel operator [1] is applied to 
determine magnitude and direction of gradient. The distance between pixels is com-
puted using Euclidean metric (5).  

∑
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−=−
P

k
jkikji xx

1

2)(xx . (5)

Extending number of features describing a pixel to proposed number of elements 
increases quality of image segmentation. Tests proved that using standard features i.e. 
pixel intensity and standard deviation is insufficient to obtain high-quality results.  

4.2   Algorithm Description 

Proposed approach clusters pixels into two (C=2) regions: the background (k=1) and 
the object (k=2). Clusterization is performed iteratively. In the consecutive iterations 
both regions compete for pixels with similar membership to both clusters. 

The main steps of the algorithm are as follows: 
 

1. Centers ck
(s) k={1, 2} of the clusters are determined among unclassified pixels Ω̂ .   

2. Objective function Jm
(s) given by Equation (1) is minimized in accordance with 

Equations (2)-(4) for parameter m=3 (i.e. for each pixel xi membership  
measures uik

(s)(xi) in k clusters are computed using fuzzy C-means clustering 
algorithm). 

3. Pixels are temporarily assigned to clusters with maximum membership measure in 
accordance with equation: 
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where: )(
~

ix∂ is temporal affiliation of the pixel xi. 

4. Among pixels temporarily assigned to k-th cluster threshold Tuk
(s) for membership 

in the cluster is computed. For threshold determination the ISODATA (Iterative 
Self-Organizing Data Analysis Technique) algorithm [14][16] is applied. 
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5. Pixels xi are permanently classified into clusters in accordance with the equation: 

kTu i
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 where: ∂(xi) is a final affiliation of the pixel xi.  
 In this step only pixels having the membership higher than the selected thresh-
olds are qualified into to the regions (the object and the background). The remain-
ing pixels are left unclassified. They are considered in the next iteration. 

6. Steps 1-5 are repeated (for s=s+1) until all pixels are classified i.e. Ω̂ =Ø. 
 

Crucial problem for the algorithm is selection of cluster centers. In the proposed ap-
proach for the first iteration the cluster centers are set manually using the knowledge 
about characteristic features of analyzed images. The initial cluster centers represent 
ideal pixel belonging to the background c1

(1)=[0,0,0,0,0,0,0] and ideal pixel belonging 
to the object c2

(1)=[255,255,0,0,0,0,0].  In the following iterations one of the cluster 
centers is left unchanged and the second one is selected randomly from unclassified 
pixels. 

For cluster centers selection bump-hunting algorithm [17] can be also used with the 
success. However its application increases time complexity of the proposed segmenta-
tion method. 

5   Results 

The method was extensively tested on images over a wide range of temperatures and 
strength of an “aura”. Results of applying the proposed image segmentation algorithm 
to the exemplary images of heat-emitting specimens are presented in Figure 3. More-
over the figure shows a comparison with results obtained by maximum membership 
fuzzy C-means segmentation and the ground truths. First column presents original 
images. The material of the specimen and its temperature is indicated on the each 
image. Images with different strength of an “aura” are considered. In the second col-
umn results of image segmentation obtained using the proposed method are shown. 
The third column presents results of an ordinary (i.e. maximum membership) fuzzy 
C-means clustering. In case of both considered segmentation methods pixels were 
described by vectors of features as described in Section 4.1. In the last column the 
ground truths are presented. They were obtained by manual segmentation performed 
by the skilled operator of the “Thermo-Wet” system. 

Quantitative assessment of segmentation quality is presented in Table 1. Images 
presented in Figure 3 are considered.  

Results obtained by the proposed method and maximum membership fuzzy C-
means clustering (MM FCM) are compared with the ground truths by means of: 
− good matches i.e. pixels properly qualified into both the object and the back-

ground; 
− false positives i.e. background pixels qualified into the object; 
− false negatives i.e. object pixels qualified into the background. 

The material of the specimen and temperature describing the considered image are 
indicated in the column caption.  
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ORIGINA L IMA GE P R O P O S E D  A P P R O A C H MAX MEMBERSHIP FCM THE GROUND TRUTH 

steel 
13110C 

  

 

gold 

7610C 

  

 

copper 
11980C 

  

 

glass              
670 0C 

  

Fig. 3. Results of the proposed image segmentation algorithm compared with results obtained 
using an oridinary (i.e. maximum-membership) fuzzy C-means clustering and the ground 
truths. The type of the image is indicated over each column. 

Table 1. Quantitative assessment of image segmentation quality 

 Steel, 13110C Gold, 7610C Copper, 1980C Glass, 6700C 

 
New 

method 
MM 
FCM 

New 
method

MM 
FCM 

New 
method 

MM 
FCM 

New 
method 

MM 
FCM 

Good matches 96.38% 92.86% 98.41% 97.10% 99.52% 96.81% 99.36% 98.97% 
False positives 2.92% 7.10% 1.58% 0.00% 0.03% 3.19% 0.63% 0.47 % 
False negatives 0.70 % 0.04 % 0.01 % 2.90% 0.45 % 0.00 % 0.01 % 0.56 % 

6   Discussion 

Results presented in Figure 3 and Table 1 show clearly that the proposed extension of 
a fuzzy C-means segmentation algorithm efficiently segments images of heat-emitting 
specimens. High quality results are obtained for images of different intensity and 
strength of an “aura”.  Shape of objects after segmentation is well defined. Obtained 
contours are smooth, regular and free from defects. Moreover, important details of 
specimen shape are properly extracted. 

Both the visual and the quantitative comparison with results obtained by maxi-
mum-membership fuzzy C-means segmentation prove that the proposed approach is 
much more accurate in segmenting an “aura”. While traditional FCM joins aura with 
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the object and significantly increases its dimensions, the new algorithm preserves 
specimen dimensions by qualifying an “aura” to the background. The difference be-
tween results obtained by both considered methods can especially be observed in case 
of images with significant aura.  

Tests proved that in case of analyzed class of images the proposed segmentation 
algorithm finishes in less than ten iterations. 

7   Conclusions 

In this paper problem of fuzzy image segmentation was considered.  Especially an 
extension of fuzzy C-means segmentation algorithm was introduced. The algorithm 
does not perform crisp classification of pixels into clusters with maximum member-
ship measure but makes background and object compete for pixels in consecutive 
iterations. 

Presented results prove that the proposed algorithm performs accurate segmenta-
tion of images of heat-emitting specimens. Specimen shape after segmentation is well 
defined - much better than in case of an ordinary FCM clusterization. Segmented 
objects are characterized by smooth and regular borders. Moreover an “aura” (i.e. 
glow that forms itself around the specimen) is effectively removed by the new ap-
proach. Traditional FCM approach joins aura with the object what increases object 
dimensions.  Quality of obtained results is sufficient for further quantitative analysis 
of specimen shape. 

Although the algorithm has been developed for a certain class of images, it can be 
successfully applied in a wide spectrum of applications as it does not take the advan-
tage of knowledge about image properties. 
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Abstract. Complications attributed to cardiovascular diseases (CDV)
are the leading cause of death worldwide. In the United States, sud-
den heart attack remains the number one cause of death and accounts
for the majority of the $280 billion burden of cardiovascular diseases.
In spite of the advancements in cardiovascular imaging techniques, the
rate of deaths due to unpredicted heart attack remains high. Thus, novel
computational tools are of critical need, in order to mine quantitative
parameters from the imaging data for early detection of persons with a
high likelihood of developing a heart attack in the near future (vulnerable
patients). In this paper, we present our progress in the research of com-
putational methods for the extraction of cardiovascular risk biomarkers
from cardiovascular imaging data. In particular, we focus on the methods
developed for the analysis of intravascular ultrasound (IVUS) data.

Keywords: vulnerable patients, intravascular ultrasound, vasa vasorum.

1 Introduction

The complications attributed to cardiovascular diseases (CDV) are the leading
cause of death worldwide. For a significant percentage of patients, the first symp-
tom of CVD is sudden death without previous warnings. In the United States,
sudden heart attack remains the number one cause of death and accounts for
the majority of the $280 billion burden of cardiovascular diseases. Cardiovas-
cular specialists indicate that heart attacks are caused by inflammation of the
coronary arteries and thrombotic complications of vulnerable plaques. The con-
cept of vulnerable plaque has recently evolved into the definition of “vulnerable
patient”. A vulnerable patient is defined as a person with more than a 10% like-
lihood of having a heart attack in the next 12 months. Over 45 world leaders in
cardiology have collectively introduced the field of vulnerable patient detection
as defining the new era in preventive cardiology [1].
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Detection of vulnerable patients is one of the most active areas of research
in both the cardiology and biomedical imaging communities. While there exist
many invasive and non-invasive medical imaging modalities for the study and
diagnosis of CVD, until now none of them can completely identify a vulnerable
plaque and accurately predict its further development. Therefore, the necessity
of novel methods for extracting cardiovascular risk biomarkers from these image
modalities is evident.

Cardiovascular risk biomarkers. The presence of calcified coronary plaque
has a significant predictive value for coronary artery disease and is associated
with with cardiovascular risk [2,3,4,5]. Furthermore, vasa vasorum (VV) neo-
vascularization on the plaque has been identified as a common feature of in-
flammation [6] and has been defined as a plaque vulnerability index. Other car-
diovascular risk biomarkers include calcification in the aorta and thoracic fat
burden.

Our group is pioneering work in the development of computational methods
for mining of information from different modalities of invasive and non-invasive
cardiovascular imaging data. For the non-invasive image data analysis, using car-
diac CT data, we have presented methods for the automatic detection of coronary
artery regions [7,8], automatic detection of coronary calcium using a hierarchi-
cal supervised learning framework [9,10,11], automatic delineation of the inner
thoracic region [12], and segmentation of thoracic aorta [13]. Additionally, the
thoracic fat is detected using a relaxed version of multi-class, multi-feature fuzzy
connectedness method [14].

Furthermore, our group has developed several computational methods for the
analysis of intravascular ultrasound (IVUS) contrast imaging for the detection
of VV in-vivo [15,16]. These methods include techniques for IVUS image stabi-
lization and differential imaging techniques for the detection of those changes
which occur in IVUS imagery due to the perfusion of an intravascularly-injected
contrast agent into the plaque and vessel wall. However, one of the limitations
of these methods is related to the use of the Cartesian B-mode representation
of the IVUS signal. This is a disadvantage because the transformation of the
ultrasound radio frequency (RF) signal data into this representation results in
loss of potentially valuable information.

In this paper, we present ongoing work by our group in order to overcome
these limitations and take full advantage of the information contained in the
“raw” RF signal.

2 Methods

IVUS is currently the gold-standard technique for assessing the morphology of
blood vessels and atherosclerotic plaques in vivo. The IVUS catheter consists
of either a solid-state or a mechanically-rotated transducer which transmits a
pulse and receives an acoustic signal at a discrete set of angles over each radial
scan. Commonly, 240 to 360 such signals are obtained per (digital or mechanical)
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rotation. The envelopes of these signals are computed, log-compressed, and then
geometrically transformed to obtain the familiar disc-shaped IVUS image.

IVUS has been combined with contrast-enhancing agents as blood tracers
for the detection of blood perfusion due to VV [17,18,19,20]. The protocol for
blood perfusion detection consists of injecting high-echogenic microbubbles of
size similar to red blood cells into the blood flow while monitoring with IVUS.
If these microbubbles are found beyond the lumen border, this could be an
indication of microcirculation due to VV.

2.1 Contrast Agent Detection

Based on this protocol, we have investigated the feasibility of detecting mi-
crobubbles in IVUS data by acoustic characterization of the raw RF IVUS data
using two approaches based on one-class cost-sensitive learning [21]. In the first
approach, we built a model for the microbubbles from samples of microbubbles
present in the lumen during the contrast agent injection. In the second approach,
we detected the microbubbles as a change from baseline IVUS data consisting
of samples of different tissues of the vessel extracted from frames before the
injection.

For our models, we used those features based on frequency-domain spectral
characterization that represent measures of high-frequency signal proposed by
O’Malley et al. [16]. Specifically, these features are defined for a 3-D signal win-
dow of dimensions r0 × θ0 × t0 as follows:

Fζ =
r0/2�∑

i=1

θ0/2�∑
j=1

t0/2�∑
k=1

ijkŴ (i, j, k) (1)

Fη = Fζ

�r0/2�∑
i=1

�θ0/2�∑
j=1

�t0/2�∑
k=1

Ŵ (i,j,k)
, (2)

where Ŵ indicates the magnitude of the Fourier spectrum of the windowed
signal W . Each feature is computed on Ie and Il in addition to I. Hence, each
feature is a vector of three values. The samples are extracted by placing a 3-D
fixed size window (r0, θ0, t0) around each sample in the volume. These features
are computed for this window and associated with the class contained by it.
To improve the scaling of the feature space, each feature of the samples used
for training is normalized to zero mean and unit variance. The normalization
values are retained for use in testing and deployment. The parameters of the
one-class SVM γ and ν are selected in such a way that good performance on
the recognition of the class of importance and on the rejection of the negative
class is obtained. However, since it is possible to have higher accuracy on the
classification of negative samples than in the class of interest, we constrain the
selection of parameters to provide an accuracy on the class of interest as close to
100% as possible. Therefore, the criteria for the selection of the best parameters
is given by a weighted linear combination of the accuracy on the classification of
both classes, A = w1AP +w2AN , where A stands for total accuracy, AP and AN
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are the accuracies of detecting the class of interest and rejecting the negative
class, respectively, and w1 and w2 ∈ [0, 1] are the weights associated with the
class of interest and negative class accuracy, respectively. This can be considered
cost-sensitive learning for one-class classifiers.

2.2 Scattering Model-Based Analysis of IVUS

Currently, we are investigating the feasibility of using a physics-based scattering
model of the IVUS RF signal for the analysis of the IVUS data. This model
assumes that the IVUS signal can be obtained from a physical model based
on the transmission and reflection of ultrasound waves that radially penetrate
the arterial structure. Since the wavelength produced by IVUS transducers is
very large in comparison to the dimension of the structures of the vessel, this
model assumes that structures can be modeled as a finite set of point scatterers
with an associated differential backscattering cross-section coefficient (DBC). In
this model, the ultrasound beam interacts with scatterers along its radial direc-
tion along an angular window given by ∆Θ = sin−1(1.22 λ

D ) (Fig. 1(a)), where
λ = c

f is the wavelength, f is the transducer frequency and D is the transducer
diameter. Assuming Born approximation scattering, we use the principle of su-
perposition to represent the total scattered wave as a sum of reflections from
individual point scatterers [22]. Then, using this model, the ultrasound reflected
signal for each transducer’s angular position Θk at time t for a finite set of N
scatterers with coordinates (ri, θi) where θi ∈ {Θk − ∆Θ

2 , Θk + ∆Θ
2 } and DBC

κ(ri, θi) is given by:

Ŝ(t, Θk) =
1
N

N∑
i=1

κ(ri, θi) exp (−µri)
ri

exp

(
−(t− 2ri

c )2

2σ2

)
sin

(
ωt− 2ri

c

)
, (3)

where µ is the attenuation coefficient, C defines the transducer constant pa-
rameters, and ω = 2πf is the angular velocity of the impulse function with
width σ.

In order to be able to use this model, first it is necessary to recover its param-
eters. We accomplish this by solving an inverse problem on which we tune the
parameters by the minimization of the difference between a ground truth signal
and our modeled signal.

A significant difficulty is that the modeled signal depends on the position of
the scatterers. We cannot treat the distribution of scatterers in a determinis-
tic fashion: the scatterers’ positions are the result of a spatial stochastic point
process. Therefore, the minimization of the differences of the signals should be
approached in a stochastic sense. We consider the optimal parameter values as
functions of the scatterer locations. Then, for each angle k we generate ξ sam-
plings of scatterer positions and minimize the sum of the errors between the
real IVUS signal and each of the ξ modeled signals. Specifically, we solve the
problem:
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(a) (b) (c)

Fig. 1. (a) Scatterers interacting with the ultrasound beam on IVUS. (b) Raw real
and modeled IVUS signals for a single angle. (c) Positive envelope of real and modeled
IVUS signals for a single angle.

min
σk,κl

k,κw
k

1
2

∑
t

ξ∑
i=1

(E(t, Θk)− Êi(t, Θk, σ, κ
l, κw))2 , (4)

where E(t, Θk) and Êi(t, Θk, σ, κ
l, κw) are the positive envelopes for the real and

the modeled signals, respectively (Figs. 1(b) and 1(c)).
We have applied this model to the segmentation of the luminal border using

the IVUS RF data [23]. For this, we consider that the radial position ρk of
the lumen border for each angle Θk can be recovered by solving an inverse
problem as well. We use the parameters computed on the calibration and we
find ρk by the minimization of the sum of differences between the real IVUS
signal S(t, Θk) and the signals computed with our model Ŝi(t, Θk, ρk) for each
sampling ξ. Specifically, we solve:

min
ρk

1
2

∑
t

ξ∑
i=1

(E(t, Θk)− Êi(t, Θk, ρk))2 . (5)

3 Results

Regarding the detection of contrast agent, for the first approach, we obtained
an average accuracy of 99.17% on the detection of microbubbles on lumen and
91.67% on the classification of pre-injection frames as having no microbubbles,
with an average percentage of support vectors less than 1% of the total training
samples. For the second approach, we obtained an average accuracy of 89.65%
on the detection of baseline IVUS data and 96.78% on the classification of mi-
crobubbles as change, with an average percentage of support vectors less than
10% of the total number of samples used for training. Figure 2 depicts exam-
ples of the classification results on frames before injection and during injection
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(a) (b)

(c) (d)

Fig. 2. Classification results in (a,d) a frame with microbubbles in the lumen and
(b,c) an IVUS frame before injection. For the first approach (a) and (b), the red color
indicates the pixels classified as microbubbles and the green color those classified as
non-microbubbles. For the second approach (c) and (d), the red color indicates the
pixels classified as baseline IVUS and the green color those classified as an anomaly.

(a) (b) (c)

Fig. 3. Linear regression plot for (a) O1 vs O2, (b) A vs. O1 and (c) A vs. O2. Each
point corresponds to one of the 90 segmented frames.
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Fig. 4. Examples of segmentation results

for both approaches. One of the advantages of this methodology is that by us-
ing one-class learning, we did not need to provide “background” samples for
building the models. In our case this was important because, although sam-
ples for microbubbles in lumen can be easily acquired by manual annotations
from an expert, the background can consist of a wide variety of other imaged
tissues. Thus, obtaining samples for the other tissues may be difficult and labor-
intensive.

We test our RF-based segmentation method on 90 frames from 40MHz se-
quences and the results were evaluated by comparing the agreement between
areas corresponding to lumen on each frame by our method (A) with manual
segmentations from two expert observers (O1 and O2). The resulting mean Dice
similarity coefficient was s = 90.27. In addition, we performed linear regression.
The coefficient of determination (R2, where R is the linear correlation) for area
differences between O1 and O2 (O1,O2) was R2=0.98, andR2=0.93 and R2=0.93
for (A,O1) and (A,O2), respectively. Figure 3 depicts the results of this analysis
and Fig. 4 depicts examples of the segmentation results.

4 Conclusions

We have presented methods for the analysis of IVUS data based on the RF
signal. Future developments in VV detection methods will consist of using the
scattering model to extract novel features to be used in combination with ma-
chine learning techniques for the detection of contrast agent within the plaque.
The techniques presented in this paper may contribute significantly in the detec-
tion of neovascularization within atherosclerotic plaques. However, since VV is
not the only cardiovascular risk biomarker, the combination of data from IVUS
and other imaging modalities is necessary in order to provide an effective way to
detect vulnerable patients. The expected impact of our work stems from the fact
that sudden heart attack remains the number one cause of death in the US, and
unpredicted heart attacks account for the majority of the $280 billion burden of
cardiovascular diseases.
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Abstract. Associative memories (AMs) have been extensively used dur-
ing the last 40 years for pattern classification and pattern restoration. A
new type of AMs have been developed recently, the so-called Geometric
Associative Memories (GAMs), these make use of Conformal Geometric
Algebra (CGA) operators and operations for their working. GAM’s, at
the beginning, were developed for supervised classification, getting good
results. In this work an algorithm for unsupervised learning with GAMs
will be introduced. This new idea is a variation of the k-means algorithm
that takes into account the patterns of the a specific cluster and the
patterns of another clusters to generate a separation surface. Numerical
examples are presented to show the functioning of the new algorithm.

1 Introduction

Associative Memories (AMs) have been extensively used for many years in pat-
tern recognition problems. An AM can be seen as an input-output system, see
(1). When an input pattern x is presented to an AM, it must to respond with
the corresponding output pattern y.

x → M → y . (1)

The associative memories models developed until now can be categorized in
three groups, those based on traditional vector algebra operations, those based
on mathematical morphology operations, and those based on Geometric Algebra
paradigm. The third group make use of Geometric Algebra [1] for their operations
an operators, the so-called Geometric Associative Memories [2] (GAMs) are an
example of memories that falls into this group.

The goal of GAMs is the classification of a pattern as belonging to a specific
class if and only if the pattern is inside of the support region (hyper-sphere) of
that class. Originally, GAMs were developed to function in a supervised form. In
� This work has been supported by the National Polytechnic Institute of Mexico (SIP-

IPN), under grants 20090620 and 20091421, by the Mexican Science and Technology
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this work, a new unsupervised learning algorithm for GAMs will be developed,
it will be based on the well-known k-means [11] algorithm idea, but it will be
use operators and operations of CGA for the building of the respective cluster.

2 Basics on Geometric Algebra

Geometric Algebras (GA’s) also known as Clifford Algebras were introduced by
William K. Clifford in 1878. He joined the works of Grassmann with the quater-
nion of Hamilton into a new mathematical model [1]. GA is a free coordinate
geometric schema [5]. In GA, the geometric objects and the operators over these
objects are treated in a single algebra [3]. A special characteristic of GA is its
geometric intuition. Another important feature is that, the expressions in GA
usually have low symbolic complexity [7].

The Conformal Geometric Algebra (CGA) is a coordinate-free theory. In
CGA, spheres and circles are both algebraic objects with a geometric mean-
ing. In CGA, points, spheres, and planes are easily represented as multivectors.
A multivector is the outer product of various vectors. CGA provides a great va-
riety of basic geometric entities to compute with [7]. In CGA the inner product
is used for the computation of angles and distances.

For notations purposes, Euclidean vectors will be noted by lowercase italic
letters (p,q,s), with exception of the letters:i,j,k,l,m,n; these will be used to
refer to indexes. The corresponding conformal points will be noted by uppercase
italic letters (C,P,S ). A Euclidean matrix will be noted by a bold capital letter
(M,H). To denote that an element belongs to an object (vector), a sub-script
will be used. To refer that an object belongs to a set of objects of the same type,
a superscript will be used. For example, let S be a sphere, then Sk is the k -th
component of it, and Sk is the k -th sphere of a set of spheres. To denote scalars
Greek letters will be used (γ, ε, δ).

Let p ∈ IRn be an Euclidean point, it can be transformed to a CGA represen-
tation as:

P = p +
1
2
(p)2e∞ + e0 , (2)

where e0 is the Euclidean origin and e∞ is the point at infinity such that e20 =
e2∞ = 0 and e0 · e∞ = −1. Let P and Q two conformal points, the distance
between them is found by means of the inner product [6] as follows:

P ·Q = p · q− 1
2
(p)2 − 1

2
(q)2 = −1

2
(p− q)2 ⇐⇒ (p− q)2 = −2(P ·Q) . (3)

In the same way, a sphere takes the following representation [8]:

S = C− 1
2
(γ)2e∞ = c +

1
2
(
(c)2 − (γ)2

)
e∞ + e0 , (4)

where C is the center point of the sphere in conformal notation as defined in
(2), γ is the radius of the sphere and c is the Euclidean point of C.
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A distance measure between one conformal point P and a sphere S can be
defined with the help of the inner product [10], as follows:

P · S = p · s− 1
2
(
(s)2 − 1

2
(γ)2

)
− 1

2
(p)2 =

1
2
(
(γ)2 − (s− p)2

)
, (5)

or in simplified form:
2(P · S) = (γ)2 − (s− p)2 . (6)

Based on (6):

1. If (P · S > 0) then P is inside of S.
2. If (P · S < 0) then P is outside of S.
3. If (P · S = 0) then P is on S.

Therefore, in pattern classification if a CGA spherical neighborhood is used as
support region, with the help of the inner product it is possible to know when a
pattern is inside or outside of the region. In the same way, the distance between
two points is easily computed with their inner product.

3 Geometric Associative Memories for Clustering

GAMs were developed, in principle, as a supervised classification model [2].
The training phase of that model is done by finding an optimal sphere with
quadratic programming. In the classification phase an inner product between the
unclassified pattern and the GAM must be applied. Then a minimum function
is used to obtain an index class. GAMs can perfectly operate when the classes
are spherically separable [2].

A GAM is precisely a matrix whose components are spheres, it can be seen
in (7), where m is the total number of classes. It uses spherical neighborhoods
as decision regions.

M =

⎡
⎢⎢⎢⎣

S1

S2

...
Sm

⎤
⎥⎥⎥⎦ . (7)

Often, a clear distinction is made between learning problems than are supervised
(classification) o unsupervised (clustering), the first one involving only labeled
data while the latter involving only unlabeled data [4]. However, clustering is a
more difficult and challenging problem than classification [9]. The goal of data
clustering is to find the natural grouping in a set of patterns, points, or objects
without any knowledge of class label. In other words, it consists in to develop
an automatic algorithm that will discover the natural grouping in the unlabeled
data.

The K-means [11] is one of the simplest unsupervised learning algorithms that
solve the clustering problem. The main idea is to define k random centroids, one
for each cluster. Then, to take each point of the data set and associate it to
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the nearest centroid using a distance measure. The new centroids must be re-
calculated as the centers of the clusters found. Then, with the new centers, the
second step must be done, a loop has been generated. The loop is repeated until
no more changes of centers are done.

The proposed algorithm is based on the previous ideas, but the Conformal
Geometric Algebra paradigm will be used. Different to the k-means algorithm the
clusters in this method will be found by separating the points of the associated
centroid of the others points (the main advantage is that the new centroids are
found automatically) solving an optimization problem, it is described in [2].

Given two sets of points
{
pi
}l

i=1 and
{
pj
}m

j=l+1, the idea is to find an optimal
sphere S with the least square error, such that {pi} are inside of S and {pj} are
outside of it. In other words, to solve:

min
S

=
m∑

i=1

(Pi · S) , (8)

subject to (9) for points inside of the sphere and (10) for points outside of it.

Pi · S ≥ 0, i = 1, . . . , l . (9)

Pj · S < 0, j = l + 1, . . . , l . (10)

That method takes into account the points inside and the points outside of the
classification sphere for a better performance. Spheres function like attractors
for the inside points and like contractors for the outside points, this gives a opti-
mal separation surface. Another improvement is the computing of the distances
among the centroids and the sets of points. This procedure is done with a GAM.
The GAM is composed with the corresponding centroids. At the first iteration
the centroids are randomly generated, at the following iterations the centroids
are computing automatically when the corresponding convex hulls are built.

3.1 New Clustering Algorithm

Given a set of points
{
pi
}m

i=1 in Rn, and let k the number of clusters:

1. Change pi to its conformal representation P i, by using expr. (2), for i =
1, . . . ,m.

2. Set k random centroids, Cj where j = 1, . . . , k.
3. Set M = [C1, . . . , Ck]′

4. Generate k clusters by associating every P i with the nearest centroids. It
can be done with argmin(M · P i) for i = 1, . . . ,m.

5. Find k spherical surfaces Sj for each cluster by using eq. (8).
6. New values of k centroids are the centers of each sphere.
7. Repeat step 3 until the values of Cj do not change.
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As can be observed, in this algorithm the cluster computing is done by a single
inner product and a minimum function, unlike the traditional k-means algorithm
where a nearest neighbor algorithm to find the nearest centroid is used. Regard-
ing computational complexity of both algorithms, it is known that the k-means
algorithm can be solved in time Θ

(
mnk+1 logm

)
[12], where m is the number

of points to be clustered, n is the dimension of that points, and k is the number
of clusters.

In the case of the proposal, most of the time is spent on generating clus-
ter associations among points and clusters (step 4). One such operation costs
Θ(k). The new clusters generation costs Θ(kmn), so its overall complexity is
Θ(k2mn). For a fixed number of iterations I, the overall complexity is there-
fore Θ(Ik2mn2). Thus, our proposal has a linear complexity into the Conformal
Geometric Algebra framework.

Another improvement of our algorithm is that at the end, in some situations,
some points can be outside of all the spheres which can be both and advantage
or disadvantage, depending on the characteristics of the problem.

Sometimes, that points can be noise. And they can be omitted without lossing
essential information about the nature of the problem. But, they can be essential
for most clustering problems.

4 A Representative Example

Due space limitations, one numerical example will be shown. Let the set of points
in R2 shown in Figure 1 to be clustered. In this image, as it can be observed,
four cumulus of points are visible at first appearance.

When the algorithm of the section 3.1 is applied, the graphs of the Figures
2, 3, and 4 are obtained. The solution in each case, as in most clustering prob-
lems, depends, mainly, of the first random centroids. Best solution is shown in
Figure 4.

Fig. 1. Set of points in R
2 to be clustered
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Fig. 2. Different solutions that solve the clustering problem of Fig. 1

Fig. 3. Another solutions that solve the clustering problem of Fig. 1

Fig. 4. Better solution that solves the clustering problem of Fig. 1
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In most of the graphs presented, some black points appeared, these points are
outside of all the spheres, furthermore these pointds do not belong to a specific
class. This is due the type of separation surface that is being used. A better
approximation can be obtained with the use of other irregular shapes unlike
the spheres or squares. But, depending on the type of problem this could be an
advantage

5 Conclusions and Ongoing Work

An Associative Memory (AM) is an input-output device used in pattern recogni-
tion and pattern classification. Many AM models make use of traditional algebra
or mathematical morphology for their working. Essentially, AMs were developed
in a principle for supervised classification or pattern recognition. Recently a new
kind of AM was developed, the so-called Geometric Associative Memory (GAM)
are based on Conformal Geometric Algebra (CGA) paradigm for their operations
and operators.

GAMs have been developed for supervised pattern classification getting good
results. In this work a new algorithm for GAMs was introduced, this new algo-
rithm can solve the clustering problem, it is based on the well-known k-means
algorithm, but it works into the CGA framework.

New clusters are generated using an inner product between the GAM itself
and one unclassified point, unlike the traditional k-means algorithm where all
the distances among the current centroids and each point must be applied. It
reduces the complexity of the algorithm.

Unlike traditional k-means algorithm. In the proposed algorithm some initial
points can not be considered as belonging to a specific class. In some type of
problems this can be an advantage because these points could be spurious points
or noise. One numerical example was presented to test the algorithm. Most of
the cases, best solution depends, mainly, of the first random centroids.

Nowadays, we are also interested to test our method in more realistic sit-
uations and in comparison (in computing time and performance) between the
proposed model and other clustering models. We are working too in GAMs that
work with separation surfaces other than spheres; like ellipses, squares or another
irregular shape.
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Abstract. In this paper a new approach to CT based investigation of pulmonary 
airways is introduced. Especially a new - fully automated algorithm for airway 
tree segmentation is proposed. The algorithm is based on 3D seeded region 
growing. However in opposite to traditional approaches region growing is ap-
plied twice: firstly – for detecting main bronchi, secondly – for localizing low 
order parts of the airway tree. The growth of distal parts of the airway tree is 
driven by a map constructed on the basis of morphological gradient. 

Keywords: CT, airway tree, image segmentation, 3D region growing. 

1   Introduction 

CT chest scans are commonly used for investigation of pulmonary disorders, espe-
cially chronic obstructive pulmonary disease (COPD) which is a common name for 
pathological changes characterized by airflow limitation due to different combinations 
of airway disease and emphysema [1][2]. The thickness of an airway wall and diame-
ter of an airway lumen can provide important information about many pulmonary 
diseases therefore identification of airways in CT scans is an important step for many 
clinical applications and for physiological studies [2]. 

Traditionally, analysis of chest CT scans was preformed by radiologists who rec-
ognized areas of abnormal airway properties in consecutive slices of the examined 
scan. However, analyzing about 400 slices covering chest area is too cumbersome for 
everyday clinical use. Moreover analysis performed manually resulted in subjective 
and qualitative estimation of airway abnormalities without accurate quantification of 
pathological changes. 

The main goal of recent clinical applications is to provide a useful tool for charac-
terizing airway data. The major challenge of such applications is airway tree segmen-
tation from CT scans.  It is very difficult due to inhomogenity of a bronchial lumen, 
adjacency of the blood vessels, and changes of grey levels along airway walls. 

In this paper problem of airway tree reconstruction from volumetric CT data is 
considered. Especially, segmentation using modified, 3D region growing method is 
regarded. In the proposed approach the growth of an airway tree is guided and con-
strained by morphological gradient. 



248 A. Fabijańska et al. 

 

2   Airway Tree 

An airway tree is a part of respiratory tract that conducts air into the lungs. It starts 
with trachea which splits into two main bronchi: the left and the right one. The main 
bronchi subdivide into two segmental bronchi. These in turn split into twigs called 
bronchioles. Divisions of the airways into the smaller ones define orders of bronchi. 

An illustrative image of the airway tree is presented in Figure 1. Consecutive  
numbers denote trachea (1), left (2a) and right main bronchus (2b), bronchi (3) and 
bronchioles (4). All branches of the airway tree are composed from airway lumen 
surrounded by high-density vascular airway wall. An airway lumen is filled with air. 

 

Fig. 1. 3D view of an airway tree; 1 – trachea; 2a – right main bronchus; 2b – left main bron-
chus; 3 – bronchi; 4 – bronchioles 

3   Related Works 

Different approaches to airway tree segmentation have been reported in the literature 
so far. However, in general they can be qualified as 3D approaches or 3D/2D (hybrid) 
approaches. 

Three-dimensional approaches to airway tree segmentation act on a 3D volumetric 
image build up from series of planar CT images combined into a stack. Mostly, they 
involve seeded 3D region-growing supported by 3D propagation procedures such as 
combination of axial and radial propagation potentials [4] or non linear filters scan-
ning for short airway sections [5] and connecting branch segments sharing common 
walls [6]. Up to 5 orders of bronchi could be detected using this method. 

Hybrid techniques for airway tree reconstruction combine planar analysis with 3D 
segmentation. Usually, conventional 3D region-growing is firstly used to identify 
large airways. Secondly 2D analysis of consecutive CT slices is performed. It aims to 
define potential localization of candidate airways in planar images. Algorithms of 
candidate airways detection involve various techniques. The most important ones are: 

• Rule-based techniques which utilize anatomical knowledge about airways and 
blood vessels. Candidate airways are recognized on individual slices based on 
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a priori information about airways and vessels [7][8]. These techniques often suf-
fer from large numbers of falsely detected airways. 

• Gray-level morphological techniques which use grayscale morphological recon-
struction to identify local extremes in the image. Candidate for airways and vessels 
on consecutive CT slices are considered as valleys and peaks in the grayscale pro-
file of the current slice [9][10].   

• Wave front propagation techniques which start from already detected airways 
and propagate waves in 2D plane to detect walls of the bronchi [11][12]. 

• Template matching techniques that search consecutive slices for oval dark rings 
surrounding brighter areas (airways) [12] or dark solid oval areas (adjacent blood 
vessels). Templates may be predefined a priori [13] or set adaptively [12].  

Few 2D approaches to airway tree investigation were also reported. In these methods 
only planar analysis of consecutive CT slices is carried out [2]. However, 2D ap-
proaches are in minority because of their poor efficiency and low accuracy. 

Having in mind classification presented above introduced method can be consid-
ered as a tree dimensional one. It extracts up to 8-9 generations of bronchi while 
avoiding leakages and falsely detected branches. 

4   Input Data 

3D volumetric CT chest scans of several patients were examined. They were obtained 
from GE LightSpeed VCT Scanner. The average number of transverse slices per each 
examination was 450 with the slice thickness equal to 0.625 mm. The slices were 
provided with 16-bit resolution and stored as signed 16-bit monochromatic images of 
the resolution 512x512 pixels. Individual slices were stacked into a 3D space repre-
senting volumetric data set.  Exemplary CT slice with anatomical areas marked is 
presented in Figure 2. 

 

Fig. 2. Exemplary CT slice at the carina level with important anatomical areas marked 

In analyzed images gray levels measured in Hunfield units (HU) ranged from -
1024 to around 700. Grey levels which represent airway lumen and lung tissues filled 
with air were over -1024 HU but less than -850 HU. Airway walls, blood vessels and 
other high-density vascular tissues were areas of the intensities within the range -
300:50 HU. Intensities over 300 HU matched hard tissues (bones). 
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5   Airway Tree Segmentation 

5.1   3D Seeded Region Growing – The Main Idea 

3D seeded region growing is a simple and convenient algorithm for image segmenta-
tion. In case of CT chest scans, the method starts from the seed point in the centre of 
trachea and builds a set of voxels by iteratively joining new similar pixels. In this way 
the whole airway tree should be segmented. This idea is presented on Figure 3a. 
However, as it was mentioned many times in the trade literature 3D region growing is 
not sufficient for segmentation of complete airway tree from CT scans due to its 
proneness to leakages. 

       

Seed point 

Direction of 
region growing  

a) b) 

 

Fig. 3. Airway tree segmentation using seeded 3D region growing algorithm; a) the main idea; 
b) algorithm leaking into the lung parenchyma 

On CT slices airway lumen is separated from surrounding lung parenchyma by a 
wall composed from high-density vascular tissue. Due to the difference in tissue den-
sities, an airway wall appears significantly brighter than the airway lumen and lung 
tissues. However airway lumen and lung parenchyma are both filled with air therefore 
on CT scan they appear as areas of very similar grey levels. In consequence only one 
pixel of airway wall discontinuousness causes the 3D region growing algorithm to 
leak into the lung area (see Fig. 3b). In practice broken airway walls appear frequently 
in case of lower order bronchi. It is caused by imperfections of imaging devices which 
results in loss of spatial resolution and increasing noxious influence of the noise con-
tent. Therefore it is almost impossible to segment whole airway tree with simple re-
gion growing and avoid the leakage. 

5.2   Proposed Idea 

The proposed airway tree segmentation algorithm, as most approaches to the consid-
ered problem, is based on seeded 3D region growing. However, during airway lumen 
segmentation region growing is applied twice. Moreover, leak prevention mechanism 
is applied in order to avoid the algorithm to consider voxels that are part of the lung 
parenchyma. Successive steps of the algorithm are as follows:  
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1. Image preprocessing. 
2. Detection of main bronchi up to 5-6th divisions of airway tree using 3D seeded 

region growing. 
3. Construction of a map defining possible locations of distal airways. 
4. Detection of lower order bronchi using 3D region growing starting from previously 

detected airway tree and guided by the map of possible airway locations. 

Step 1: Image Preprocessing 
Before the main processing is applied, input CT data is smoothed in order to close 
broken airway walls and avoid leakages into the lungs. For data smoothing 3D me-
dian filter is applied. Traditional cubic (3×3×3) mask is used in this stage. 

It should be underlined, that smoothing helps to avoid leakages but also compro-
mises details by removing important airway data – especially airways of dimensions 
comparable with the kernel of the smoothing filter are cleared out.   

Step 2: First Pass of 3D Region Growing 
3D seeded region growing is applied for the first time on median-smoothed CT data. 
The seed is automatically defined on the first slice of the data set as a voxel located in 
the centre of oval area of the trachea. Applied in this stage 3D region growing algo-
rithm classifies the current voxel as voxel belonging to airway lumen if both of the 
following constrains are true: 
• intensity of the current voxel differs from the average intensity of voxels classified 

to airway lumen not more than T%; 
• intensities of  all 6 closest (connected) neighbours of the current voxel differ from 

the average intensity of voxels classified to airway lumen not more than T%. 
Value of T is determined automatically on the first run. It equals to the lowest value 
for which region growing starts up. Then T is decreased by half after trachea is seg-
mented in order to avoid leakages into the lungs. At this stage of airway tree segmen-
tation up to 5-6th orders of bronchi can be detected. 

Results of the first pass of region growing applied to two exemplary CT data sets 
are presented in Figure 4.   

   

Fig. 4. Results of the first pass of region growing applied to two exemplary CT data sets 
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Step 3: Construction of a map defining possible airway locations 
In the following step of the airway tree segmentation 3D morphological gradient is 
calculated based on non-smoothed CT data. This transformation (which is 
a difference between results of 3D greyscale dilatation and 3D greyscale erosion) 
highlights sharp grey levels transitions connected also (but not only) with airway 
walls. Areas of the highest gradient which are connected with airway tree built in the 
previous step of the algorithm define possible locations of the distal bronchi.  

In order to define map of the possible candidate airways, gradient image is firstly 
thresholded and then eroded with small structural element. Airways are supposed to 
be located in those binary areas which are connected with airway tree built in the 
previous step. For segmentation (which defines the areas of the highest gradient) the 
authors applied thresholding with local iterative threshold selection [14].  

It should be underlined that morphological gradient after thresholding is to define 
possible location of the distal bronchi. Therefore in order to avoid loss of important 
bronchi information the transformation should be performed on non-smoothed image.   

Step 4: Second Pass of 3D Region Growing 
The last step of the airway tree segmentation is a second application of the 3D region 
growing algorithm. This time however it is performed on the original (non-smoothed) 
CT data. The algorithm starts from previously segmented airway tree and is guided by 
the map constructed on the basis of morphological gradient. Successive voxels are 
joined to airway tree if both of the following constrains are fulfilled: 
• current voxel is situated in the area defined by the map constructed on the basis of 

morphological gradient; 
• intensity of the current voxel differs from the average intensity of voxels classified 

to airway lumen not more than 2T%. 
Value of T is remembered from the second step of the algorithm and changes during 
algorithm performance in the way as during the first pass of region growing. 

6   Results and Discussion 

Results of complete airway tree segmentation procedure applied to previously used 
CT data sets are presented in Figure 5. Airways detected during the second applica-
tion of region growing are marked in red color. The green color represents fragments 
of bronchial tree extracted using the first region growing step.  

The assessment of the proposed algorithm was made by comparison of obtained 
airway trees with the corresponding templates.  The templates were obtained by 
skilled radiologist who marked and filled airway lumen areas manually in successive 
slices of analyzed CT scans. Figure 6 presents the comparison between exemplary 
airway trees from Figure 5, which are representative of all tested data sets and the 
corresponding templates. Missing airways are marked in red color. Green color corre-
sponds to the tree obtained using proposed algorithm.  

One can see from Figure 6 that the proposed algorithm of airway tree segmentation 
enables to extract up to 8-9 generations of bronchi. Falsely detected airways character-
istic for knowledge-based methods [7][8] do not appear at all. Moreover guided and 
constrained growth of an airway tree excludes possibility of leakages into the lungs. 
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Fig. 5. Results of complete airway tree segmentation. Airways detected during second applica-
tion of region growing are marked with red color. 

 

            

Fig. 6. Comparison of airway trees from Figure 5 with the corresponding templates. Missing 
airways are marked with red color. 

The comparison between obtained airway trees and corresponding templates re-
veals that not more than one division of the bronchial tree was missed by the proposed 
algorithm. This means that information about 10 bronchi generations was present in 
considered CT data. This result is consistent with analysis presented in [9]. Having 
this in mind, the results presented in this paper can be considered interesting and ac-
curate enough for further quantitative analysis of airway pathologies. 

7   Conclusions 

In this paper the problem of airway tree segmentation from CT chest scans was inves-
tigated. Especially fully automated algorithm for airway tree segmentation was intro-
duced. The algorithm is based on a 3D approach which extracts airway trees from 
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volumetric CT chest scans using region growing method guided and constrained by a 
morphological gradient. Such method allows to prevent leakages into the lungs and 
avoid falsely detected branches. Consequently, the proposed algorithm detects up to 9 
generations of bronchi.  

Nowadays, advanced CT scanners are able to resolve up to 10 orders of bronchial 
tree divisions in chest scans. Having this in mind the results obtained using the intro-
duced algorithm can be considered interesting and accurate enough for further quanti-
tative analysis of airway properties and its pathological changes. 
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Abstract. Hole segmentation (or hole filling) and hole closing in 3D vol-
umetric objects, visualised in tomographic images, has many potential
applications in material science and medicine. On the other hand there is
no algorithm for hole segmentation in 3D volumetric objects as from the
topological point of view a hole is not a 3D set. Therefore in the paper
the authors present a new, geometrical approach to hole closing and hole
filling in volumetric objects. Moreover an original and efficient, flexible
algorithm of hole filling for volumetric objects is presented. The algo-
rithm has been extensively tested on various types of 3D images. Some
results of the algorithm application in material science for crack propa-
gation analysis are also presented. The paper also includes discussion of
the obtained results and the algorithm properties.

1 Introduction

From the topological point of view the presence of a hole in an object is detected
whenever there is a closed path which cannot be transformed into a single point
by a sequence of elementary local deformations inside the object [7]. For example,
a sphere has no hole, a solid torus has one hole and a hollow torus has two
holes. Unfortunately, from a topological point of view a hole is not a subset
of 3D space so it can not be segmented or filled. On the other hand, there
is strong practical need to treat holes as 3D subsets. In material science hole
segmentation can contribute to the quantification of damage phenomena that
can help to understand and further optimise the resistance of the material to
damage [2,6]. Other possible medical applications may consist in filling small
noisy holes in 3D tomographs of human organs. Such a hole filling is especially
desired in analysis of 3D computer tomography images of bronchial tubes where
noisy holes in a bronchial tree significantly complicate automatic quantitative
analysis [8]. Therefore, taking into account the topological point of view we
propose a geometrical approach, which considers the notion of the thickness of
an object and interpolates the thickness in the corresponding hole filling volume.
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2 Basic Notions

In this section, we recall some basic topological notions for binary images. A
more extensive review is provided in [7,3].

We denote by Z the set of integers, N+ set of positive integers. Let E = Z3.
Informally, a simple point p of a discrete object X ⊂ E is a point which is
“inessential” to the topology of X . In other words, we can remove the point p
from X without “changing the topology of X”.

Skipping some technical details, let A(x,X) be the set of points of X \ {x}
lying in a neighborhood of x, and let Ab(x,X) be the set of points of the comple-
mentary of X (background) lying in a neighborhood of x. Then, T (x,X) (resp.
Tb(x,X)) is the number of connected components of A(x,X) (resp. Ab(x,X)).
A point x ∈ X is simple for X if and only if T (x,X) = Tb(x,X) = 1. Also, if a
point x ∈ X is such that Tb(x,X) = 1, then removing x from X does not create
a new hole.

Let X be any finite subset of E. The subset Y of E is a homotopic thinning
of X if Y = X or if Y may be obtained from X by iterative deletion of simple
points. We say that Y is an ultimate homotopic skeleton of X if Y is a homotopic
thinning of X and if there is no simple point for Y .

Let x ∈ E, r ∈ N+, we denote by Br(x) the ball of (squared) radius r centred
on x, defined by Br(x) = {y ∈ E, d2(x, y) < r}, where d2(x, y) is a squared
Euclidean distance for any x, y ∈ E.

A ball Br(x) ⊆ X ⊆ E is maximal for X if it is not strictly included in any
other ball included in X .

The medial axis of X , denoted by MA(X), is the set of the centres of all the
maximal balls for X .

The thickness of an object X in point x belonging to MA(X) or to a skeleton
of X is defined as a radius of the maximal ball centred in x.

3 Hole Notion from Geometrical Point of View

In our approach we consider holes from a geometrical point of view but we base
our consideration on the topological definition of a hole presented in Sect. 1.

Intuitively, if we fill a hole in an object, the filling volume may be treated as
a representation of the hole. In other words, the thickness (see Sect. 2) of the
hole filling volume at its skeletal voxels should be equal to the thickness of the
object at the skeletal voxels which are near the hole. Moreover, the shape of the
boundary surface of a filling volume should fit the shape of the corresponding
object’s hole in the same way as two pieces of a puzzle match each other. The
example of a hole filling volume for a frame is presented in Fig. 1. Unfortunately,
it is very difficult to precisely define, in mathematical manner a hole filling
volume. Taking into account the above comments, we are only able to propose
two conditions which should be fulfilled by any segmented hole filling volume:

1. A hole filling volume should close a corresponding hole.
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(a) (b) (c) (d)

Fig. 1. An example of hole filling volume and hole closing patch for a frame: (a) iso-
surface of a frame; (b) frame with the hole closed; (c) frame with the hole filled. Hole
filling volume is indicated with dark grey colour; (d) isosurface of the frame hole filling
volume.

2. The thickness of a hole filling volume at its skeletal voxels should be equal
to the thickness of the object on its medial axis (or skeletal) voxels which
are close the hole.

4 Modified Hole Closing Algorithm

One of the main steps of hole filling algorithm (HFA) consists in application of
a modified version of the hole closing algorithm (HCA) proposed by Aktouf et
al. [1]. The original version of the algorithm is linear in time and space complexity
and takes as an input volumetric objects and closes all holes in these objects with
one voxel thick patches. The pseudocode of the algorithm can be presented as
follows:

HCA ( Input X , Output Y )
Generate a full cuboid Y which contains X
Repeat until no point to delete:

Select a point p of Y \X which is at the greatest distance from X and
such that Tb(p, Y ) = 1
Y := Y \ p

Result: Y

An example of the algorithm result when applied to a 3D frame (Fig. 1(a))is
presented in Fig. 1(b). It is worth mentioning the difference between hole filling
and hole closing. The hole closing volume represented in dark grey colour in
Fig. 1(b) is one voxel thick, independently on the thickness of the corresponding
input object while the hole filling volume (see Fig. 1(c)) exactly matches the
thickness of the corresponding object. More formal and extensive description of
the algorithm can be found in [1].

The most important drawback of HCA, from the hole filling point of view,
is that the shape of a hole closing patch may be significantly influenced by
irrelevant branches which are close to the hole. Such a situation is presented in
Fig. 2. In our approach HCA takes as an input a skeleton of a 3D object. The
skeleton is one voxel thick so the object presented in Fig. 2(a) is a good example
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Example result of each step of HCA+: (a) an isosurface of an input object;
(b) the result of HCA. Notice that, the hole closing patch (dark grey colour) goes up
to the branch situated over the hole; (c) the result of geodesic dilation of the patch
over the input object. The intersection of dilated patch and input object, called hole
contour (white colour); (d) visualisation of the hole contour, where one can see all its
details (e) the result of ultimate homotopic skeletonisation algorithm applied to the
hole contour. Note that, the branch has been deleted and topology of the hole contour
has been preserved; (f) result of HCA, applied to the hole contour superimposed to the
input object. Note that, the hole closing patch (dark grey colour) is not influenced by
the branch.

.

of an input object for HCA. There is one big hole in the middle of the object and
a thin branch above. Figure 2(b) presents the result of HCA. The hole closing
patch, which is represented with dark grey colour, goes up to the branch, so it
does not correspond to the "geometry of the hole", which leads to wrong hole
filling. In this case we expect that the hole closing patch is flat as the object
around the hole is flat. To overcome this problem we propose a 4-step method
based on the HCA. The first step of the method consists in application of HCA.
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As a result we obtain an object with the hole closed but the hole closing path
is influenced by the branch. In the second step, the method realises only one
iteration of geodesic dilation of the hole closing patch over the input object. An
example showing the result of the dilation is presented in Fig. 2(c) where the
intersection of a dilated hole closing patch and the input object is represented
with white, shaded colour. In the following the intersection will be shortly called
hole contour (see Fig. 2(d)). The third step consists in application of the ultimate
homotopic skeleton algorithm [4] (UHSA) on the hole contour (see Fig. 2(e)).
The last, fourth step consists in application of the HCA on the hole contour.
As the hole contour does not contain any branch, the hole closing patch is not
influenced by any branch and matches the geometry of the corresponding hole
(see Fig. 2(f)).

This method, denoted by HCA+, can be computed in quasi-linear time as
UHSA has quasi-linear time complexity and all other steps have linear time
complexity [1,4].

5 Hole Filling Algorithm

In this section we propose the original hole filling algorithm (HFA), which con-
sists of 4th main stages and can be presented in the following general pseudocode:

HFA ( Input X , θ, Output Z)
01. S ← FES(X , θ)
02. P ← HCA+(S)
03. P ’ ← MeanFilter(S, P )
04. B ← DilationByBalls(P ’)
05. Z ← B −X

The first step of HFA consists in application of FES procedure which generates
the filtered Euclidean skeleton of an input object X ⊂ E originally proposed by
Couprie, Coeurjolly and Zrour [5]. This state-of-the-art algorithm for skeleton
generation is based on well defined mathematical notions and allows to gradu-
ally prune a generated skeleton which makes the HFA resistant to small noisy
branches and deformations of an input object. The second step: HCA+ proce-
dure has been described in details in Sect. 4. Meanfilter is a simple procedure
which realises propagation of an object thickness represented by values of its
filtered skeletal voxels, into hole closing patches. The algorithm, in each iter-
ation, calculates a new value for each voxel, from a hole closing patch, as an
average value of voxels from its neighbourhood which belong either to the hole
closing patch or to the filtered skeleton. The algorithm stops when no significant
changes occur during an iteration.

The last procedure: DilationByBalls for each voxel x of its input image
generates a ball, centred in x, of radius equal to the value of voxel x.

Finally we obtain the hole filling algorithm which has the following
properties:
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(a) (b)

Fig. 3. Visualisation of a chain, whose links have different thicknesses. Hole filling
volume is represented with dark grey colour: (a) an input object; (b) result of HFA
applied to the chain.

– it is based on well defined mathematical notions and exact algorithms like:
medial axis, bisector function, exact Euclidean distance, Euclidean skeleton,

– it generates volumes which fulfil both conditions 1 and 2 (see Sect. 3). The
first one is guaranteed by FES and HCA+ and the second is guaranteed
thanks to MeanFilter and DilationByBalls,

– it is easy to use: only needs one parameter to be tuned (bisector threshold).
Moreover it is easy to set the parameter as it belongs to the range [0,π]
and size of a hole closing patch changes monotonically with the bisector
threshold. If the parameter is too small, then a skeleton of an input object
is not enough pruned, hence noisy voxels from the surface of the object that
could form cusp-like shapes may have influence on the hole filling volume
which in that case is too thin. On the other hand, if the parameter is too
large then an input object skeleton is over-pruned and the corresponding
hole failing volume is too big and partly spread over the input object. Few
tries are usually needed to set the proper bisector threshold for each input
object.

– it is efficient: since most of its steps are optimal in time and space complexity.

Examples of the results of HCA are presented in Figs. 3, 4. In both examples, all
holes are closed and the thickness of the corresponding hole filling volumes match
the thickness of these objects, what is especially easy to observe in Fig. 3. So the
two conditions about hole filling volume (see Sect. 3) are fulfilled. Figure 4(d)
presents an example cross-section of the filled crack from Fig 4(c). It can be
observed that the thickness of hole, its filling volume, corresponds to thickness
of the crack. Moreover cross-section of hole closing is presented with light grey
colour in the figure. The cross-section is one voxel thick and it is "centered" in the
crack. For a material science point of view, the hole closing has a microstructural
meaning since it represents so-called bridge ligaments, i.e. small area of special
grain boundaries which present high resistance to cracking. This phenomenon
is usually met in sensitised stainless steel that can undergo intergranular stress
corrosion cracking when subjected to special corrosive media [2]. In that case, if
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(a) (b)

(c) (d)

Fig. 4. A rendering of a crack path inside a material (material is represented by
the background): (a) crack. Note that, there is a big hole inside the crack to be filled;
(b) the crack with holes closed. Hole closing volume, one voxel thick, is represented with
dark grey colour; (c) the crack with holes filled. Hole filling volume, which thickness
corresponds to thickness of the crack, is represented with dark grey colour; (d) zoomed
view of an oblique slice of the filled crack. Crack is represented with white colour, cross-
section of hole filling volume is represented with dark grey colour and cross-section of
hole closing volume is visualised with light grey colour.

a crack meets a bridge its branches go around the bridge and then merges. Hole
filling has also a microstructural meaning since it is directly correlated to the
local thickness of the crack portion that surrounds bridges. Work is currently in
progress to correlate both morphological parameters of bridges, obtained after
labelling of closed holes with local crack opening, retrieved from hole filling
algorithm.

6 Conclusions

In the paper the authors have presented a flexible and efficient algorithm of
hole filling for volumetric images. The algorithm has been tested on artificially
constructed images and on images of a crack inside a material, for which it is an
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intended application. The visual analysis of results confirmed that the thickness
of generated hole filling volumes correspond to the thickness of an input objects.
According to our knowledge it is the first algorithm of hole filling for volumetric
images.
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Abstract. The usage of Conformal Geometric Algebra leads to algo-
rithms that can be formulated in a very clear and easy to grasp way.
But it can also increase the performance of an implementation because
of its capabilities to be computed in parallel. In this paper we show how
a grasping algorithm for a robotic arm is accelerated using a Conformal
Geometric Algebra formulation. The optimized C code is produced by
the CGA framework Gaalop automatically. We compare this implemen-
tation with a CUDA implementation and an implementation that uses
standard vector algebra.
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1 Introduction

While points and vectors are normally used as basic geometric entities, in the
5D conformal geometric algebra we have a wider variety of basic objects. For
example, spheres and circles are simply represented by algebraic objects. To
represent a circle you only have to intersect two spheres, which can be done with
a basic algebraic operation. Alternatively you can simply combine three points
to obtain the circle through these three points. Similarly, transformations like
rotations and translations can be expressed in an easy way. For more details
please refer for instance to the book [4] as well as to the tutorials [7] and [5].

In a nutshell, geometric algebra offers a lot of expressive power to describe
algorithms geometrically intuitive and compact. However, runtime performance
of these algorithms was often a problem. In this paper, we investigate a geo-
metric algebra algorithm of the grasping process of a robot [6] from the runtime
performance point-of-view.

At first we present an alternative solution of the grasping algorithm using
conventional mathematics and use its implementation as a reference for two
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optimization approaches. These approaches are based on Gaalop [8], a tool for the
automatic optimization of geometric algebra algorithms. We use the optimized
C code of Gaalop in order to compare it with our reference implementation. In
the next step we implement this C code also on the new parallel CUDA platform
[12] and compare the runtime performance with the other two implementations.

2 The Grasping Algorithm with Conventional
Mathematics

In this chapter we give a description of the algorithm described below using
standard vector algebra and matrix calculations. To keep this version comparable
to the one using geometric algebra the same amount of work and time has been
spend for both. We assume that all necessary data has been extracted from the
stereo images as explained in Section 4.1.

The circle zb is the circumscribed circle of the triangle ∆b which is formed by
the three base points. To compute its center two perpendicular bisectors have to
be constructed. The intersection of them is the center point pb of zb. First the
middle points m12 = 1

2 (xb1 + xb2) and m13 = 1
2 (xb1 + xb3) of two sides of ∆b are

computed.
Next the direction vectors d12 = (xb2 − xb1) × nb and d13 = (xb3 − xb1) × nb

are needed to construct the perpendicular bisectors. For this the normal vector
nb = (xb2 − xb1)× (xb3 − xb1) of the plane defined by the base points has to be
constructed.

Now the perpendicular bisectors pb12 and pb13 and their intersection pb can
be computed:

pb = m12 + λ12S · d12 = m13 + λ13S · d13 (1)

Now we have everything we need to describe a circle in conventional mathematics
except of the radius which is unnecessary for us in this case. To get an impression
of one of the benefits of geometric algebra please compare all this steps to the
first line of the listing in Figure 3 where a complete circle is constructed from
three points using only one formula.

The circle zb has to be translated in the direction of the normal vector nb

of the plane πb in which zb lies in. The distance zb has to be translated is half
the distance d = nb

|nb| (xa − pb) between the point xa and the plane πb. So the
translation vector is Tb = 1

2d ·
nb

|nb| . The normal vector of the plane in which zt

lies in equals the one of zb, so nt = nb.
To be able to compute the necessary rotation the normal vector of the plane

in which the gripper lies in has to be constructed. The robot is able to extract
the center ph of the gripper circle and two additional points g1 and g2 on it from
the stereo pictures. With that the normal vector nh = (g1 − ph) × (g2 − ph) of
the gripper plane can be computed.

Because the needed rotation axes is perpendicular to the plane that is spanned
by nh and nt its normal vector nth = nh × nt has to be computed. With the
vector nth the rotation axes lR = lR = ph + λ · nth can be described.
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The translation vector lT = pt − ph is just the difference of the two circle
centers.

The angle between the two planes in which the circles lie in is equal to the
angle between their normal vectors, so φ = acos

(
nh·nt

|nh||nt|

)
.

To perform the final rotation the following steps are necessary: compute the
normalized rotation vector n = nth

|nth| , translate the rotation axes into the origin
using RTorig, compute the rotation using R and finally translate the axes back
with RTback.

RTorig =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0

−ph1 −ph2 −ph3 1

⎤
⎥⎥⎦RTback =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
ph1 ph2 ph3 1

⎤
⎥⎥⎦ (2)

c = cos(φ), s = sin(φ), m = 1− cos(φ) (3)

R =

⎡
⎢⎢⎣

n2
1m+ c n1n2m+ n3s n1n3m− n2s 0

n1n2m− n3s n2
2m + c n2n3m+ n1s 0

n1n3m + n2s n2n3m− n1s n2
3m + c 0

0 0 0 1

⎤
⎥⎥⎦ (4)

Finally the transformation can be computed by translating and rotating the
points g1 and g2 from which the new position of the gripper circle can be derived.

3 Gaalop

The main goal of Gaalop is the combination of the elegance of algorithms using
geometric algebra with the generation of efficient implementations.

Gaalop uses the symbolic computation functionality of Maple (together with
a library for geometric algebras [1]) in order to optimize the geometric algebra al-
gorithm developed visually with CLUCalc [13]. Gaalop computes the coefficients
of the desired variable symbolically, returning an efficient implementation.

3.1 The Main Data Structure of Gaalop

The main data structure of Gaalop is an array of all the basic algebraic entities.
They are called blades and are the basic computational elements and the basic
geometric entities of geometric algebras. The 5D conformal geometric algebra con-
sists of blades with grades 0, 1, 2, 3, 4 and 5, whereby a scalar is a 0-blade (blade
of grade 0). The element of grade five is called the pseudoscalar. A linear combina-
tion of blades is called a k-vector. So a bivector is a linear combination of blades
with grade 2. Other k-vectors are vectors (grade 1), trivectors (grade 3) and quad-
vectors (grade 4). Furthermore, a linear combination of blades of different grades
is called a multivector. Multivectors are the general elements of a geometric al-
gebra. Table 1 lists all the 32 blades of conformal geometric algebra with all the
indices as used by Gaalop. The indices indicate 1: scalar, 2 . . . 6: vector, 7 . . . 16:
bivector, 17 . . . 26: trivector, 27 . . . 31: quadvector, 32: pseudoscalar.
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Table 1. The 32 blades of the 5D conformal geometric algebra with the corresponding
indices used by Gaalop

index blade grade

1 1 0
2 e1 1
3 e2 1
4 e3 1
5 e∞ 1
6 e0 1
7 e1 ∧ e2 2
8 e1 ∧ e3 2
9 e1 ∧ e∞ 2
10 e1 ∧ e0 2
11 e2 ∧ e3 2
12 e2 ∧ e∞ 2
13 e2 ∧ e0 2
14 e3 ∧ e∞ 2
15 e3 ∧ e0 2
16 e∞ ∧ e0 2

index blade grade

17 e1 ∧ e2 ∧ e3 3
18 e1 ∧ e2 ∧ e∞ 3
19 e1 ∧ e2 ∧ e0 3
20 e1 ∧ e3 ∧ e∞ 3
21 e1 ∧ e3 ∧ e0 3
22 e1 ∧ e∞ ∧ e0 3
23 e2 ∧ e3 ∧ e∞ 3
24 e2 ∧ e3 ∧ e0 3
25 e2 ∧ e∞ ∧ e0 3
26 e3 ∧ e∞ ∧ e0 3
27 e1 ∧ e2 ∧ e3 ∧ e∞ 4
28 e1 ∧ e2 ∧ e3 ∧ e0 4
29 e1 ∧ e2 ∧ e∞ ∧ e0 4
30 e1 ∧ e3 ∧ e∞ ∧ e0 4
31 e2 ∧ e3 ∧ e∞ ∧ e0 4
32 e1 ∧ e2 ∧ e3 ∧ e∞ ∧ e0 5

A point P = x1e1 + x2e2 + x3e3 + 1
2x

2e∞ + e0 for instance can be written in
terms of a multivector as the following linear combination of blades

P = x1 ∗ blade[2] + x2 ∗ blade[3] + x3 ∗ blade[4] +
1
2
x2 ∗ blade[5] + blade[6] (5)

For more details please refer for instance to the book [4] as well as to the tuto-
rials [7] and [5].

3.2 Use of Gaalop

For our application Gaalop is used in the following way: At first our algorithm
is described using CLUCalc. One big advantage of CLUCalc is that the algo-
rithm can be developed in an interactive and visual way. Another advantage is
that the algorithm can be already verified and tested within CLUCalc. Gaalop
uses this CLUCalc code in the next step in order to compute optimized mul-
tivectors using its symbolic optimization functionality. Leading question marks
in the CLUCalc code indicate the variables that are to be optimized. Gaalop
automatically generates C code for the computation of all the coefficients of the
resulting multivectors. This C-Code is used as a basis for our CPU as well as
our CUDA implementation.
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4 The Algorithm in Geometric Algebra and Its
Optimization

The algorithm used here is based on the robotics algorithm described in the
paper [6]. It is used by the robot ”‘Geometer”’ and can be downloaded as a
CLUScript from [9].

4.1 Interface and Input Data

The algorithm needs four points that identify the object to be grasped. The
robot acquires these points by taking a calibrated stereo pair of images of the
object and extracting four non-coplanar points from these images.

After the points are gathered the orientation of the object has to be deter-
mined. For this the distance from one point to the plane spanned by the other
three points is calculated. The point with the greatest distance da is called apex
point xa while the others are called base points xb1 , xb2 , xb3 .

We assume that all the steps described above are already performed. So the
starting point for our algorithm is the situation shown in Figure 1. The aim of
the algorithm is now to compute the necessary translation and rotation for the
gripper of the robot arm so that it moves to the middle of the base points and the
apex point. This is done by first computing the grasping circle zt as a translation
of the base circle zb. Then the necessary translator and rotor are computed to
move the gripper circle zh. The position of the gripper is also extracted from the
stereo pictures by tracking its center and two screws on its rim.

Fig. 1. The four points
identifying the object to
be grasped

Fig. 2. Comparison of performance: The Gaalop code is
up to fourteen times faster than the conventional math.
The CUDA implementation gives a further performance
improvement.
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4.2 Short Description in Geometric Algebra

In this section we give a short description of the grasping algorithm using geo-
metric algebra. The code of the listing in Figure 3 can be directly pasted into
a CLUScript to visualize the results. The same code is used with Gaalop to
produce the optimized C code. In our case we noticed that the BasePlane is
needed as an intermediate expression to avoid the construction of extreme large
expressions causing long computation times or sometimes even abnormal pro-
gram termination. For the same reason the products T*R and ~R*~T in the last
line also were generated as intermediate results. Also Gaalop can only optimize
the arguments of function calls like abs or acos.

zb_d = xb1 ^ xb2 ^ xb3;

?zb = *zb_d;

?BasePlane = *(zb_d ^ einf);

NVector = (BasePlane * einf).e0;

NLength = abs(NVector);

NVector = NVector/NLength;

Plane = BasePlane/NLength;

d_a=(xa.Plane)*NVector;

?T = 1 + 0.25 * d_a * einf;

?z_t = T * zb * ~T;

S_h = VecN3(g1,g2,g3)

- 0.5*(g4*g4)*einf;

Pi_h = -e2;

?z_h = S_h ^ Pi_h;

s_h = -0.5*S_h*einf*S_h;

S_t = *z_t / ((*z_t) ^ einf);

s_t = -0.5*S_t*einf*S_t;

?l_T = s_h ^ s_t ^ einf;

?d = abs(l_T);

?l_T = l_T / d;

l_h = z_h ^ einf;

l_t = z_t ^ einf;

?Pi_th = l_t ^ (l_h*(einf^e0));

l_r_direct = s_h ^ (*Pi_th) ^ einf;

?l_r = *l_r_direct / abs(l_r_direct);

?phi = acos((l_t.l_h)

/ (abs(l_t)*abs(l_h)));

?R = cos(0.5*phi) - l_r*sin(0.5*phi);

?T = 1 + 0.5*d*l_T*einf;

?z_h_new = T*R*z_h*~R*~T;

Fig. 3. This is a CLUScript implementing the complete grasping algorithm. Only con-
crete values for the points of the object and the position of the gripper are missing.

First the base circle zb = xb1 ∧ xb2 ∧ xb3 (the blue one depicted in Figure 1)
has to be compute and translated in the direction and magnitude of da

2 with the
translator Tb = 1 + 1

4dae∞. This gives the target circle zt = TbzbT̃b.
Now the necessary translation and rotation can be computed. To get the

translator T the translation axes l∗T = ph ∧ pt ∧ e∞ is needed. It is defined by
the center points pt = zte∞zt and ph = zhe∞zh of the two circles zt and zh.
Also the distance between pt and ph has to be computed. It is given by d = |l∗T |.
Finally the translation is T = 1 + 1

2∆d lT e∞.
To compute the rotor R the axes of the circles zt and zh have to be used.

They are l∗t = zt ∧ e∞ and l∗h = zh ∧ e∞ and are needed to calculate the plane
π∗

th = l∗t∧(l∗he0∧e∞). This plane is used to get the rotation axes l∗r = ph∧πth∧e∞.
The angle between the two circles can be computed with the help of the inner
product of their axes which gives cos(φ) = l∗t ·l

∗
h

|l∗t ||l∗h|
. Finally the rotor is R =

e−
1
2 ∆ φ lr = cos(1

2∆φ) − lrsin(1
2∆φ).
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4.3 C Code Generated by Gaalop

Because the C code Gaalop generates is quite large only a small portion of it will
be given here. The following listing shows an excerpt of the C code for the first
question mark from the listing above. For brevity zb[8] to zb[16] have been
omitted.

float zb[32] = {0.0};

zb[7]=-xb3[4]*xb1[5]*xb2[6]+xb3[4]*xb1[6]*xb2[5]+xb2[4]*xb1[5]*xb3[6]

-xb2[4]*xb1[6]*xb3[5]+xb1[4]*xb2[6]*xb3[5]-xb1[4]*xb2[5]*xb3[6];

...

5 The CUDA Implementation

General Purpose Graphics Processing Unit (GPGPU) are gaining much attention
as cheap high performance computing platforms. They developed from special-
ized hardware, where general problems could only be computed by mapping the
problem to the graphics domain, to versatile many-core processors. These offer,
depending on the manufacturer, different programming models and interfaces.
As our hardware is a NVIDIA based GTX 280 board, we use CUDA [12]. Other
possibilities would be vendor independent RapidMind [11] or Brook++ [2], or
the new OpenCL standard from the Khronos Group [10].

The GTX 280 consists of 30 multiprocessors, with each containing 8 parallel
floating point data paths operating in a SIMD-like manner, i.e. they basically
execute the same operation with different data. Are more threads scheduled the
hardware automatically uses this to hide memory latencies.

As the computation for the grasping algorithm contains no control flow and
access of the input pure sequential, further architectural particularities (i.e. mem-
ory organisation, control flow in parallel task) can be ignored. For a more detailed
information about the architecture see the documentation [12].

The implementation of the grasping algorithm uses the same code for the
computation as for the CPU, so the algorithm itself is not parallelized. The
hundreds of parallel data paths are utilized by computing in each thread a single
data set independent from all other threads.

In the following benchmarking, the host system was the benchmarked CPU
system, and the measured times include the time to transfer the input onto the
onboard memory and the time to transfer the result back to the host system.

6 Performance Measurements

Table 2 shows that the Gaalop code without any further manual improvements
is up to fourteen times faster than the code of the conventional math algorithm
although it seems to be sensitive to the quality of the input data. The rea-
son for that is subject to further studies. Two third of the time needed by the
implementation using conventional math is used for the calculation of the rota-
tion matrices. All matrix calculations are done using the library newmat[3]. The
CUDA implementation is more than three times faster than the Gaalop code.
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Table 2. Time needed to compute a single intermediate point using a total of 1000
data sets with 240 intermediate points and the according speedup factor

Implementation Time [µs] Speedup

conventional math CPU 3.50 1
CGA CPU 0.25 14

CGA CUDA 0.08 44

In Figure 2 the time needed to compute one single intermediate step is plotted
against the used number of data sets and the number of computed intermediate
steps. It shows that the time needed to calculate one intermediate result is
independent of the total number of intermediate steps and the number of used
data sets for all implementations.

The performance measurements were conducted on a Pentium Core2Duo
clocked at 3.06 GHz by taking the time to calculate a certain number of inter-
mediate steps with a various number of random data sets. One data set consists
of 3D-Cartesian coordinates for seven points. The algorithm can calculate an
arbitrary number of intermediate results to represent the motion of the gripper.

7 Conclusion

In this paper, we compared three implementations of an algorithm for the grasp-
ing process of a robot from the performance point of view. The basic algorithm
was developed using conventional vector mathematics. Then the geometrically
very intuitive mathematical language of geometric algebra was used to develop
a second version. This version was the basis for the parallelized CUDA imple-
mentation. It turned out that the geometric algebra algorithm when optimized
with the Gaalop tool can be up to fourteen times faster than the conventional
solution based on vector algebra. Another improvement can be achieved when
implementing this optimized code on the parallel CUDA platform.
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Abstract. We introduce here a new F2 homology computation algo-
rithm based on a generalization of the spanning tree technique on a finite
3-dimensional cell complex K embedded in R

3. We demonstrate that the
complexity of this algorithm is linear in the number of cells. In fact, this
process computes an algebraic map φ over K, called homology gradient
vector field (HGVF), from which it is possible to infer in a straightfor-
ward manner homological information like Euler characteristic, relative
homology groups, representative cycles for homology generators, topo-
logical skeletons, Reeb graphs, cohomology algebra, higher (co)homology
operations, etc. This process can be generalized to others coefficients, in-
cluding the integers, and to higher dimension.

Keywords: Cell complex, chain homotopy, digital volume, homology,
gradient vector field, tree, spanning tree.

1 Introduction

Homology (providing a segmentation of an object in terms of its n-dimensional
holes) is one of the pillar of Topological Pattern Recognition. To compute ho-
mology for a nD digital object (with n ≥ 3) is cubic in time with regards to
the number n of cells [9,2,8]. Classical homology algorithms reduce the problem
to Smith diagonalization, where the best available algorithms have supercubi-
cal complexity [12]. An alternative to these solutions are the reduction methods.
They iteratively reduce the input data by a smaller one with the same homology,
and compute the homolgy when no more reductions are possible [8,10].

To have at hand an algorithm computing homology in O(n) is one of the main
challenge in this area and has been recently conjectured in [8].
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Fig. 1. (a) A cell complex K,(b) the first level of the forest determined by 0-cells
and 1-cells, where φ(〈3〉) = 〈1, 3〉, φ(〈4〉) = 〈1, 4〉 and φ(〈2〉) = 〈1, 2〉, (c) the second
level of the forest determined by 1-cells and 2-cells, where φ(〈3, 4〉) = 〈1, 3, 4〉 and
φ(〈2, 4〉) = 〈1, 2, 4〉, (d) H0(K) = 〈1〉

A finite cell complex K is a graded set formed of cells, with an operator ∂ de-
scribing the boundary of each cell in terms of linear combination of its faces. The
finite linear combination (with coefficients in F2 = {0, 1}) of cells form a graded
vector space called chain complex associated to three dimensional cell complex
K embedded in R3 and denoted by C∗(K; F2). In [6] the solution to the homol-
ogy computation problem (calculating n-dimensional holes) of K is described in
the following terms: to find a concrete linear map φ : C∗(K; F2) → C∗+1(K; F2),
increasing the dimension by one and satisfying that φφ = 0 (nilpotency condi-
tion), φ∂φ = φ (chain contraction condition) and ∂φ∂ = ∂ (cycle condition).
In [5], a map φ of this kind is called homology gradient vector field (HGVF).
This datum φ is, in fact, a chain homotopy operator on K (a purely homolog-
ical algebra notion) and it is immediate to establish a strong algebraic link be-
tween the cell complex associate to K and its homology groups (H0(K), H1(K),
H2(K)).

In [7] the homological deformation process φ is codified to a minimal homo-
logical expression in terms of mixed trees. Different strategies for building these
trees give rise to useful results in segmentation, analysis, topological skeleton,
multiresolution analysis, etc. But the complexity of this solution for the homol-
ogy computation problem is still cubic.

In this paper, we follow a different approach which allows to reduce the com-
plexity of the problem. In the incidence graph of the cell complex K (in which
the cells are represented by points and the (non-oriented) edges are determined
by the relation “to be in the boundary of”), we perform a sort of spanning tree
technique. This process gives as output a three-level forest (the first level deter-
mined by 0 and 1-cells, the second one by 1 and 2 cells, the third one by 2 and
3-cells).

A theoretical result will guarantee that considering some conditions during
the generation of this forest, it can be seen as a HGVF. In this way the process
for getting the homology generators of K starting from φ is O(n) in time, where
n is the number of cells of K.

In Section 2, we will show that a spanning forest for a 1-dimensional finite
cell complex K gives raise to an HGVF φ : C∗(K) → C∗−1(K). In Section 3 this
result is extended to 3-dimensional finite cell complexes.
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2 Spanning Trees as a Homology Gradient Vector Fields

Before presenting this new approach, some notions about algebraic topology
must be introduced. A q–chain a of a three-dimensional cell complex K is a
formal sum of cells of K(q) (q = 0, 1, 2, 3). Let us consider the ground ring
as the finite field F2 = {0, 1}. The q–chains form a group with respect to the
component–wise addition; this group is the qth chain complex of K, denoted
by Cq(K). There is a chain group for every integer q ≥ 0, but for a complex
in R3, only the ones for 0 ≤ q ≤ 3 may be non–trivial. The boundary map
∂q : Cq(K) → Cq−1(K) applied to a q–cell σ gives us the collection of all its
(q − 1)–faces which is a (q − 1)–chain. We say that σ′ ∈ ∂q(σ) if σ′ is a face of
the q-cell σ. By linearity, the boundary operator ∂q can be extended to q–chains,
and satisfies ∂q−1∂q = 0. From now on, a cell complex will be denoted by (K, ∂).
A chain a ∈ Cq(K) is called a q–cycle if ∂q(a) = 0. If a = ∂q+1(a′) for some
a′ ∈ Cq+1(K) then a is called a q–boundary. Define the qth homology group to
be the quotient group of q–cycles and q–boundaries, denoted by Hq(K). For
example in Figure 1, ∂(〈2, 3, 4〉) = 〈2, 3〉+ 〈2, 4〉+ 〈3, 4〉, and the tree edges are
faces of the 2-cell 〈2, 3, 4〉. The 1-chain 〈2, 3〉+ 〈2, 4〉+ 〈3, 4〉 is a 1–cycle and a
1–boundary.

Let (K, ∂) be a finite cell complex. A linear map of chains φ : C∗(K) →
C∗+1(K) is a combinatorial gradient vector field (or, shortly, combinatorial GVF)
on K if the following conditions hold: (1) For any cell a ∈ Kq, φ(a) is a q+1-cell
b; (2) φ2 = 0. Removing the first condition, φ will be called an algebraic gradient
vector field. An algebraic GVF satisfying the conditions φ∂φ = φ and ∂φd = ∂
will be called a homology GVF [6]. If φ is a combinatorial GVF which is only
non-null for a unique cell a ∈ Kq and satisfying the extra-condition φ∂φ = φ,
then it is called a (combinatorial) integral operator [3]. An algebraic GVF φ is
called strongly nilpotent if it satisfies the following property: Given any u ∈ K(q),
if φ(u) =

∑r
i=1 vi then φ(vi) = 0 for all i = 1, . . . , r. We say that a linear map

f :C∗(K) → C∗(K) is strongly null over an algebraic gradient vector field φ if
given any u ∈ K(q), if φ(u) =

∑r
i=1 vi then f(vi) = 0 for all i = 1, . . . , r.

Let (K, ∂) be a finite one dimensional cell complex (undirected graph) having
only one connected component. The boundary operator ∂ : C1(K) → C0(K)
for a 1-cell e is given by ∂(e) = v2 + v1 (in F2 = {0, 1}), where v1, v2 are the
endpoints of e. The boundary operator ∂(w) for a 0-cell w is zero. Let T = (V,E)
a spanning tree (a tree composed of all the vertices) for K. Let us fix a root v ∈ V
for T and let us define the linear map φ : C∗(K) → C∗+1(K) by

φ(w) = {the unique path from w to v through the tree T}, ∀w ∈ V and
zero for every 1-cell of K.

In this definition, we understand by path a sum of edges in T connecting w
with the root v. Then, the composition φφ is obviously zero and the conditions
φ∂φ = φ and ∂φ∂ = ∂, where ∂ is the boundary operator for K, are also satisfied
for every cell of K. In consequence:

Proposition 1. The map φ described above determine a HGVF for the 1-
dimensional cell complex K.
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Fig. 2. (a) A graph K,(b) a spanning tree T , (c) description of φ, (d) description of π

Let π : C∗(K) → C∗(K) be a linear map defined by π = idC(K) − ∂φ − φ∂. For
each 0-cell w of K, π(w) = v. For each 1-cell e of K, π(e) = 0 if e belongs to T ,
and π(e) = { a representative cycle of a homology generator for K} if e does not
belong to T . Let us consider now the incidence graph IG(K) forK, that is, a graph
with one vertex per point (red vertices forming the set Vr), one vertex per edge of
K (blue vertices forming the set Vb) and an edge for every incidence between a
point of V and a line belonging to E (see Figure 2). In other words, IG(K) is the
Hasse diagram [1] of the set of cells partially ordered by the relation of “to be a face
of”.The map π can be described as a function π : Vr

⋃
Vb → Ker∂, which provides

representative cycles of the different homology generators of K (evaluating π for
those blue vertices not in T ).

3 Homology Computation in Linear Time

Throughout this section, the extension of the previous spanning tree technique
to higher dimensions is presented. A linear time algorithm for homology compu-
tation with coefficients in F2 is given.

Let (K, ∂) be a finite three-dimensional cell complex. Without loss of gen-
erality, suppose that K has only one connected component. Let consider the
incidence graph IG(K) = (V,E) for K, defined by the graph with one vertex
per cell, and one edge for each incidence between an i-cell and an i+1-cell. The
set of vertices and edges for IG(V ) can be decomposed in the following way:

V =
3⋃

i=0

{i-cells for K}

E =
3⋃

i=1

{unordered pairs {σ′, σ}, where σ′ ∈ ∂iσ}

Let T 0 = (V 0, E0) a tree spanning the vertices V0 = K0 in IG(K). In T 0,
V 0 = V 0

0 ∪ V 0
1 (that we called, respectively, red and blue vertices of T 0), with

V 0
0 = V0, V 0

1 ⊂ K1. Let us fix a red vertex (v0 ∈ K0 ) as the root of the tree
T 0. Starting from the root v0, let us obtain the maximum number of pairwise
distints arcs whose tail is a red vertex and its head is a blue vertex. For doing
this, we simply generate those arcs in T 0 from the edges composing the branches,
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Fig. 3. (a)A 3-dimensional cell complex (b) T0 tree

with tail being a red vertex and pointing them towards the root. Let us define
φ0(w) for a vertex w in K0 by the sum of all the edges forming the unique path
joining w with the root v0 (φ0(v0) will be 0). It is straightforward to verify that
φ0∂1φ0 = φ0 and ∂1φ0∂1 = ∂1. An example of the calculation of T 0 over a real
3D-image is shown in Figure 3.

Now, we calculate a forest F1 = (V 1, E1) in IG(K) spanning the vertices
V 1

0 = K1 \ V 0
1 . In this graph, V 1 = V 1

0 ∪ V 1
1 (red and blue vertices of F1), with

V 1
1 ⊂ K2 and it is constructed with the conditions: (a) given e ∈ V 1

0 , all the
2-cell c, vertices of IG(K) having as part of its boundary to e must be in V 1

1 as
well the edge connecting c to e; (b) that if a 2-cell c is in V 1

1 , then all the edges
in IG(K) \ E0 specifying those edges in K that are in the boundary of c, must
be in F1 (see Figure 4).

Let us fix a red vertex vj
1 ∈ V 1

0 (j = 1, . . . , k) as a root for each of the
trees T 1

1 , . . . , T
1
m composing the forest F1. We only handle one of these tree T 1

1
and we do analogously for the others trees of F1. We first determine the red
vertices in T 1

1 (1-cells in K) with degree greater or equal than three (they are
called bifurcation red vertices). Among the 2-cells in V 1

0 having as a part of the
boundary the red bifurcation vertex e, there will be a blue vertex c1(e) which
is the parent of e and at least two more blue vertices c2(e), . . . , cr(e) which are
the children of e in T 1

1 . If v is a vertex of T 1
1 , let us denote by T 1

1 (v) the subtree
of T 1

1 generated by the descendants of v and their relationships in T 1
1 (including

v as the root of T 1
1 (v)). There is a semi-direct path from the red vertex w to

the red vertex w′ in T 1
1 if there is a sequence w = w1, z1, . . . , zt, w

′ = wt+1 in
which wi are red vertices of T 1

1 , zi are blue vertices of T 1
1 , (wi, zi) are arcs and

{zi, wi+1} are edges of T 1
1 , for all i = 1, . . . , t.

We now generate the maximum number of arcs (from the edges composing
the branches) whose tail is a red vertex and pointing them away from the root.
From this set, we eliminate those arcs (that is, we eliminate the arrow in the
corresponding edge) that are associated to n− 1 sons of a red bifurcation vertex
of degree n. Let us define the map φ1 : C1(K) → C2(K). If w ∈ V 0

1 , then
φ1(w) = 0. If w ∈ V 1

0 , then φ(w) is the sum of 2-cells (blue vertices in T 1
1 )

forming the different semi-directed pathes existing from w in T 1
1 (w).
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Fig. 4. (a) Spanning trees over the incidence graph of a 3-dimensional cell complex

This linear map verifies that φ1φ0 = 0, φ1∂2φ1 = φ2 and ∂2φ1∂2 = ∂2. The
set of vertices V 1

1 = {e ∈ K2 / e ∈ φ1(v), for some v ∈ V 1
0 }.

We now calculate a forest F2 = (V 2, E2) in IG(K) spanning the vertices
V 2

0 = K1 \ V 1
1 . In this graph, V 2 = V 2

0 ∪ V 2
1 (red and blue vertices of F2), with

V 1
2 ⊂ K3 and it is constructed with the conditions: (a) given e ∈ V 2

0 , all the
3-cell c, vertices of IG(K), that have as part of its boundary to e must be in
V 1

2 as well the edge connecting c to e; (b) that if a 3-cell c is in V 2
1 , then all the

edges in IG(K) \E1 specifying those 2-cells in K that are in the boundary of c,
must be in F2 (see Figure 4). Using this forest, we define in an analogous way
to F1

1 , the map φ2 : C2(K) → C3(K). The set of vertices V 2
1 will agree with

the set {e ∈ K3 / e ∈ φ2(v), for some v ∈ V 2
0 } ⊂ K3. Finally, φ2 applied over an

element of K3 \ V 2
1 is zero.

The final map φ : C∗(K) → C∗+1(K) satisfies the nilpotency, chain contrac-
tion and cycle conditions. The map idC(K) + ∂φ + φ∂ applied to every leave of
the corresponding tree provides us the different representative cycles for all the
homology generators of K.

This process of F2-homology computation over a 3-dimensional cell complex,
can be seen as the simple construction of three spanning trees but taking into
account some special conditions. Considering a classical spanning tree technique
as for example Depth-first search [13], which time complexity is O(V +E) (V is
the number of vertices of the graph and E the number of edges), the linearity
of our method can be directly deduced.

4 Conclusions and Future Work

Many issues in computer imagery are related to the computation of homological
information, like classification ([4] [11]), shape and pattern recognition ([10] [14]),
etc. Image data require a huge amount of computational resources, and to find
efficient algorithms which analyze image data is an active field of research. When
dealing with 3–dimensional images, a fast computation is crucial, and it is even
more with higher dimensionsal data.

A linear in time algorithm for computing homological information over a 3–
dimensional cell complex is presented here. This method is based in spanning
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tree strategies. The main advantage of this result is its low computational time
cost, in comparison with the complexity of the existing cubic in time methods.

There exist several spanning tree strategies. Some of them run in logarithmic
time by using parallelization. Due to this fact, as future work, we plan to apply
this parallelized methods to the construction of the homological forest in order
to increase efficiency.

Another future aims is to deal with integer homology, instead of restricting
the coefficients to F2, and to apply this method to different structures.
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Abstract. Given an 80-adjacency doxel-based digital four-dimensional
hypervolume V , we construct here an associated oriented 4–dimensional
polytopal cell complex K(V ), having the same integer homological in-
formation (that related to n-dimensional holes that object has) than V .
This is the first step toward the construction of an algebraic-topological
representation (AT-model) for V , which suitably codifies it mainly in
terms of its homological information. This AT-model is especially suit-
able for global and local topological analysis of digital 4D images.

Keywords: 4–polytope, algebraic topological model, cartesian product,
cell complex, integral operator, orientation.

1 Introduction

Homology (informing about 0, 1, 2 and 3–dimensional holes: connected compo-
nents, “holes” or tunnels and cavities) of the 3D objects is an algebraic tool
which allows to describe them in global structural terms [9]. This and others
related topological invariants are suitable tools for some applications in which
pattern recognition tasks based on topology are used. Roughly speaking, integer
homology information for a subdivided 3D object (consisting in a collection of
contractile “bricks” of different dimensionality which are glued in a “coherent”
way) is described in this paper in terms of explicitly determining a boundary
operator and a homology operator for any finite linear combination (with inte-
ger coefficients) of bricks such that, in particular, the boundary of the boundary
(resp. the homology of the homology) is zero.

In [7], a method for computing homology aspects (with coefficients in the fi-
nite field Z/2Z = {0, 1}) of a three dimensional digital binary-valued volume V
considered over a body-centered-cubic grid is described. The representation used
� This work has been partially supported by “Computational Topology and Applied

Mathematics” PAICYT research project FQM-296, “Andalusian research project”
PO6-TIC-02268, Spanish MEC project MTM2006-03722.
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there for a digital image is an algebraic-topological model (AT-model) consisting
in two parts: (a) (geometric modeling level) A cell complex K(V ) topologi-
cally equivalent to the original volume is constructed. A three dimensional cell
complex consists of vertices (0–cells), edges (1–cells), faces (2–cells) and poly-
hedra (3–cells). In particular, each edge connects two vertices, each face is en-
closed by a loop of edges, and each 3–cell is enclosed by an envelope of faces; (b)
(homology analysis level) Homology information about K(V ) is codified in
homological algebra terms [5,6]. This method has recently evolving to a technique
which for generating a Z/2Z-coefficient AT-model for a 26–adjacency voxel-based
digital binary volume V uses a polyhedral cell complex at geometric modeling
level [11,12,17,19] and a chain homotopy map (described by a vector fields or
by a discrete differential form) at homology analysis level [20,24]. Formally, an
AT-model ((K(V ), ∂), φ) for the volume V can be geometrically specified by
a cell (polyhedral) complex K(V ) and algebraically specified by a boundary
∂ : C(K(V ))∗ → C(K(V ))∗−1 and a homology φ : C(K(V ))∗ → C(K(V ))∗+1
operator, where C(K(V )) is the chain complex canonically associated to the
polyhedral cell complex K(V ) (i.e., all the finite linear combinations of the ele-
ments of K(V ) are the elements of C(K(V ))). These maps satisfy the following
relations: (a) ∂∂ = 0 = φφ; (b) φ∂φ = φ; (c) ∂φ∂ = ∂. K(V ) is homologically
equivalent (in fact, homeomorphically equivalent) to the voxel-based binary vol-
ume due to the fact that the process of construction of K(V ) is done in a local
way by continuously deforming the geometric object formed by any configura-
tion of “black” voxels (represented by unit cubes) in a 2 × 2 × 2 neighborhood
to the corresponding (polyhedral) convex hull of the barycenters of these voxels.
In fact, the different cells of K(V ) are convex hulls of the configurations of m
points placed in a 2 × 2 × 2 elementary cube, with m ≤ 8. The correspond-
ing boundary and homology operators for each cell can be computed and saved
in a look-up table for speeding up Z/2Z-homology runtime computation. This
method is suitable for advanced topological analysis (computation of homology
generators, Reeb graphs, cohomology rings . . . ).

Homology with integer coefficients condenses the information provided by
homology groups with coefficients in another commutative ring or field (like,
the field of real numbers, the field of rational numbers, finite fields . . .). In [23],
working with integer coefficients, a polyhedral 3D AT-model (K(V ), ∂), φ) for a
26–adjacency voxel-based binary digital volume is constructed.

Fig. 1. Polyhedral cell complex K(V ) associated to a digital volume V
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Fig. 2. Cell complex K(V ) associated to a 2D digital object and a visual description
of a homology operator

In this paper, we work with a 4–dimensional ambiance (see [16]). More con-
cretely, we work with a doxel-based digital binary 4D volume and using integer
coefficients we determine a correct (“well oriented”) global boundary operator
∂K(V ) of the cell complex K(V ) as an alternating sum of the exterior faces
of it. To do so, we construct K(V ) piece by piece specifying its correspond-
ing local boundary operators knowing that they will be coherently glue one to
each other to determine ∂K(V ). A boundary isosurface extraction algorithm can
be derived from this framework. Different homology computation techniques
[2,3,6,7,15,22] can be applied to K(V ). Starting from K(V ) and using vector
fields [20] or spanning-like trees [24,21], an algorithm (based on configuration
look-up table) for constructing a global homology operator and, hence, a 4D
AT-model of V appears as a feasible task and will be our objective in a near
future.

2 4–Polytopal Continuous Analogous

We focus our interest in determining a orientation-correct 4–polytopal cell com-
plex K(V ) topologically equivalent to V . The process to construct it is:

1. We divide the 4D–volume into overlapped (its intersection is a “3–cube”
of eight mutually 80–adjacents doxels) unit hypercubes formed by sixteen
mutually 80–adjacents doxels (see Figure 3). The different maximal cells of
K(V ) will be suitable deformations of these unit hypercubes.

Fig. 3. Overlapped 2 × 2 × 2 × 2 hypercubes

2. We use cartesian product (CP) techniques to simplicially subdivide each unit
4D–cube as it is indicated in the Algorithm 1.
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Algorithm 1. Obtaining a simplicialization using the CP
Let L1, L2, L3, L4 be 1-simplices and we consider the CP L1 ×L2 ×L3 ×L4. We can interpret
the 0,1,2,3,4-simplices non-degenerate of the following way:

if a is a non-degenerate 0-simplex then
a is vertex of the CP

else if a is a non-degenerate 1-simplex then
a is an edge of the CP and it are obtained as follows:

(a) The first element of the first 1-simplex (a11), the first element of the second
1-simplex (a12), the first element of the third 1-simplex (a13) and the first
element of the fourth 1-simplex (a14) form in order the coordinates of the vertex
(a11, a12, a13, a14) of the segment.

(b) The second element of the first 1-simplex (a21), the second element of the
second 1-simplex (a22), the second element of the third 1-simplex (a23) and
the second element of the fourth 1-simplex (a24) form in order the coordinates
of the vertex (a21, a22, a23, a24) of the segment.

else if a is a non-degenerate 2-simplex then
a is a triangle whose vertices are (a11, a12, a13, a14), (a21, a22, a23, a24), (a31, a32, a33, a34)

else if a is a non-degenerate 3-simplex then
a is a tetrahedron and the coordinates of its vertices are obtained as above

else if a is a non-degenerate 4-simplex then
a is a hypertetrahedron and the coordinates of its vertices are obtained as above

end if

3. (cell deformation stage) With each unit hypercube Q4, we associate the
corresponding 4–polytopal cell c and its border. The idea is to deform Q4
using integral operators (elementary chain homotopy operators increasing
the dimension by 1, which are non null only acting on one element [5]) to get
the convex hull of this configuration. Now, we give an orientation to each cell
c which preserves the global coherence on the cell complex (see Algorithm 2).

Algorithm 2. Obtaining the convex hull using integral operators
if a is a white vertex then

φ(a,b)(a) = b where b is an edge with a as one of its vertices
else if a is an edge with a white vertex then

φ(a,b)(a) = b where b is an triangle with a as one of its vertices
else if a is a triangle with a white vertex then

φ(a,b)(a) = b where b is an tetrahedron with a as one of its vertices
else if a is a tetrahedron with a white vertex then

φ(a,b)(a) = b where b is an hypertetrahedron with a as one of its vertices
end if

Remark 1. Let us note that a vertex is called black if it belongs to the initial
object, otherwise the vertex is white.

To finish this section, we are going to highlight “good” properties of our four-
dimensional model: (a) It can capture the homology at the same time that we
construct it; (b) It allows us to render the boundary surface of the 4–polytopal
continuous analogous K(V ); (c) It can be generalized to nD.
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3 Local Convex Hulls for the 4–Polytopal Cell Complex

In this section we show a simplicial decomposition of the elementary hypercube
Q4. This decomposition will help us in determining the correct boundary op-
erator for the deformed cells coming from the different configurations of black
vertices in the standard unit 4D–cube.

To represent a set of vertices of Q4, we use two different visualizations:

1. (by 3D slices) We consider the 4D object divided into 3D slices, such an
object may be thought of as a “time series of 3D objects” (see Figure 4).

Fig. 4. Visualizing a 4D object in 3D slices

2. (by Schlegel diagram) It consists on a projection of a polytope, from a
n–dimensional space into (n−1)–dimensional space, through a point beyond
one of its facets. It is also called tesseract (see Figure 5).

Fig. 5. Visualizing a 4D object using the Schlegel diagram

Using the first visualization (for example in the Y-Representation), in order
to obtain a Q4 simplicialization (see Figure 4), we must compute the barycenter
of each one of the eight 3–cubes which form the boundary of the unit 4–cube and
so we will get two new cubes (see Figure 6) which we must simplicialize using
Algorithm 1; so we will have the Y-Representation of a Q4 simplicialization.

Fig. 6. Obtaining a simplicialization of Q4 by 3D slices
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Fig. 7. X,Y,Z,T-Representation of a Q4 simplicialization

The same way, we can obtain X,Z,T-Representation of a Q4 simplicialization.
In order to visualize the simplicialization of the interior of Q4 we use the

tesseract visualization (see Figure 5).
First of all, we need to know pentatopes (hypertetrahedra) in which Q4 is

decomposed. To do this, we use the degeneracy operators of the CP. In this way,
we obtain the 24 pentatopes of the hypercube Q4.

Now, we have to order the vertices of the pentatopes in such a way that each
one has inverse orientation to its neighbors. The 4–cube Q4 is then defined as
a cell complex, since the orientation of its pentatopes allows us to determine a
correct boundary operator.

Fig. 8. HT3 (in red) with its neighbors

Finally, we show here an example for getting the final boundary operator for
a 4–polytopal cell, applying integral operators to the unit 4–cube Q4.

We suppose that we have a unit 4–cube configuration of 15 vertices, without
loss of generality, we can suppose that the vertex (1, 0, 0, 1) is removed. Indeed,
it is equivalent to say that we have a unit 4–cube configuration where 15 of them
are black and one of them is white.

Using the Algorithm 2 we must define the following integral operators for
obtaining the convex hull of the configuration (affected simplices in Figure 9):
φ((1,0,0,1),<(1,0,0,1),(1,0,1,1)>)
φ((1,0,0,1),<(1,0,0,1),(1,1,0,1)>)
φ((1,0,0,1),<(1,0,0,1),(0,0,0,1)>)
φ(<(1,0,0,1),(0,0,0,0)>,<(1,0,0,1),(0,0,0,0),(1,0,1,1)>)
φ(<(1,0,0,1),(1,1,1,1)>,<(1,0,0,1),(1,1,1,1),(0,0,0,0)>)
φ(<(1,0,0,1),(0,0,0,0),(1,0,1,1)>,<(1,0,0,1),(0,0,0,0),(1,0,1,1),(1,0,0,0)>)
φ(<(1,0,0,1),(0,0,0,0),(1,1,1,1)>,<(1,0,0,1),(0,0,0,0),(1,1,1,1),(1,0,1,1)>)
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Fig. 9. Integral operators acting on Q4: In blue the vertex affected, in green the edges
affected, in red the triangles affected and in purple the tetrahedron affected

φ(<(1,0,0,1),(0,0,0,1),(1,1,1,1)>,<(1,0,0,1),(0,0,0,1),(1,1,1,1),(1,1,0,1)>)
φ(<(1,0,0,1),(0,0,0,0),(1,1,0,1)>,<(1,0,0,1),(0,0,0,0),(1,1,0,1),(1,1,1,1)>)
φ(<(1,0,0,1),(0,0,0,0),(1,1,1,1),(1,1,0,0)>,<(1,0,0,1),(0,0,0,0),(1,1,1,1),(1,1,0,0),(0,0,1,0)>)

4 Conclusions and Applications

This paper is a step toward the extension to 4D and integer coefficients of
the 3D AT-model proposed in [19,20]. Given a binary doxel-based 4D digital
object V with 80–adjacency relation between doxels, it is possible to construct a
homologically equivalent oriented hyperpolyhedral complex K(V ) in linear time.
Starting from this result, it is possible to design an algorithm for computing
homology information of the object. In this algorithm, a look-up table with all
the possible configurations of black doxels in the unit 4–cube Q4 (that is, all
possible polytopal unit cells) saves their boundary operator, simplicialization
and homology operator. In a near future, we will intend to develop a technique
for homology computation of 4D digital objects based on this schema.
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Abstract. The Circular Hough Transform (CHT) is probably the most
widely used technique for detecting circular shapes within an image.
This paper presents a novel variation of CHT which we call the Circular
Degree Hough Transform (CDHT). The CDHT showed better perfor-
mance than CHT for a number of experiments (eye localization, crater
detection, etc.) included in this document. The improvement is mainly
achieved by considering the orientation of the edges detected.

Keywords: Hough Transform, Circle Detection.

1 Introduction

One of the main problems in the image processing area refers to the detection of
common shapes such as lines and circles. For this purpose, a number of techniques
have been developed raging from very general ones to heuristical ad hoc algorithms
[1]. Among the former, we can find the Hough Transform [2] which can detect an-
alytically defined shapes. A decade after the appearance of the Hough Transform
(HT), Duda and Hart [3] developed what nowadays is called the Generalized HT
(GHT) which can be used to detect arbitray shapes not necessarily having a sim-
ple analytical form. From the GHT, a number of variations have been developed,
specially for the case of circle detection [4], [5], [6], [7], [8] which is the case we are
interested in this paper. Besides these variations, Thresholding, Sliding Window,
etc. have been used for proper detection. These variations are necessary since only
in scarce occasions the circular shape we want to detect in an image truly corre-
sponds to a circle, and even if the image contains a circle it might not be com-
plete. On the other hand, the number of applications that could benefit from the
adequate detection of circular shapes count in great numbers. Some examples are
crater detection[9], eye localization[10], RoboCup [11], just to name a few.

The current paper shows a novel method, which uses the information related
to the edges of an image. In fact, this proposal uses the degree or orientation of
the edges detected. However, instead of “tracing a line” into the accumulator in
the direction related to the edges [7]1, we use these as a parameter to maximize
the elements of the accumulator for which the likelihood between the ideal degree
and the edges degree is attained.
1 Which often causes problems, even for small degree errors.
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The paper is organized as follows. Section 2 describes the proposed algorithm
in detail. Section 3 presents some experimental results. In Section 4 the conclu-
sions are included.

2 The Circular Degree Hough Transform

Before we detail how is it that the Circular Degree Hough Transform (CDHT)
works, we will briefly summarize how is that the CHT does. Basically, the CHT
algorithm obtains the edges of an image. From them, it calculates the accumu-
lator, which is a matrix equivalent to the result of the correlation between these
edges and a mask containing a circle. Thus, the accumulator holds evidence of
the center coordinates where a circle of a given radius r could be.

Canny is commonly the selected technique to detect the edges of an image,
because it is relatively immune to noise as it includes a Gaussian filter. Moreover,
Canny gives a single response for a single edge. This is important when trying
to locate a circular shape since this reduces spurious responses that could affect
what is stored in the accumulator. Now, let edges be a vector whose elements
are the coordinates of the edges detected. Then, the corresponding pseudocode
for CHT follows:

CHT (edges, r, ang_dif)
1. initialize (acum)
2. for i ← 1 to length [edges]
3. (x, y) ← edges [i]
4. α ← 0
5. repeat
6. α ← α + ang_dif
7. a ← discretized (x - r cos (α ))
8. b ← discretized (y - r sin (α ))
9. if (range (a, b))
10. acum [a, b] ++
11. until α > 2 π
12. return acum

where range(a,b) determines if a,b are proper values to index the acum vari-
able. Notice that the maximums of the accumulator are the best candidates to
be the center of a circular shape. The process is depicted in Fig. 1.

A variation of this process compares the elements of acum against a threshold,
θ to determine if a circle is really included in the image 2. Yet another variation,
increases the values of acum not only for (a,b), but for a neighborhood of this
coordinate. This variation is called Sliding Window and is commonly used when
the circle in the image has suffer a transformation into a slightly eccentric ellipse.

A problem with these approaches is that they are highly sensitive to noise,
since many spurious edges could be detected. Moreover, in some cases[9], the
2 The circles detected will be those elements for which acum > θ. For some cases,

before the comparison, it is convenient to normalize acum to the range [0, 1].
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Fig. 1. (From left to right) 1) A point in an image 2) is used to determine if a circle of
a given radius r contains it. This is stored in the accumulator (black points). 3) When
the edges are calculated, the same process is done for every point on the image, 4)
and the values of the accumulator (that hold the number of ‘intersections’) are used to
determine the center of a circle with radius r within the image.

image itself contains features that are not noise, but will impact the edge de-
tection process. In fact, if there are numerous edges not necessarily related to
a circular shape, then the CHT could return a number of false detections. To
avoid this, the image could be preprocessed by using some kind of filtering, but
this is hardly useful if the edges are not noise related.

Pending on the application, a number of solutions could be helpful. For ex-
ample, in iris detection, before the accumulator is increased, it could be checked
that the edge separates a dark object of “adequate” dimensions surrounded by
a bright object. Another modification could also consider the magnitude of the
edges detected. The problem with these approaches is that they will be more
noise resilient for some kinds of noise (even if no previous filtering is considered),
but the numerous edges problem remains.

To solve this, it is possible to take into account the geometrical restrictions
of the circular shapes. A simple manner to include this is to consider the angle
of the edges. In fact, this was already explored [6], [7]. In these papers, the
edge direction is used to “trace a line” along the direction of the edge detected,
altering in this way the accumulator. In other words, these variations calculate
the edges, obtain the directions associated to them, and increase the elements of
the accumulator along the direction detected. The center of the circular shapes
appearing on the image corresponds to those elements where the lines intersect
(this process is depicted in Fig. 2). By doing this, if the image contains numerous
edges, we still are able to correctly determine if a circular shape is included.
However, the main problem with this approach is that an image is discrete; thus,
the edge directions will include an error. Moreover, the circular shapes appearing
on the image rarely correspond to a circle. This is particularly troublesome when
trying to detect circular shapes with a “big” radius.

Our proposal still uses the edge directions. However, the difference is that it
uses them to calculate an error, ε, between the ideal edge direction α and the
real edge direction α̂ as follows:

ε (α, α̂) =
{

(|α− α̂|) /π if |α− α̂| ≤ π
(2π − |α− α̂|) /π otherwise . (1)
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Fig. 2. (From left to right) 1) A circle. 2) The edges detected. 3) Degree of those edges
(lighter elements are close to 0◦ while darker ones are closer to 360◦). 4) By increasing
the accumulator along the edge direction, the center of the circle is detected.

From this equation, the CHT is modified into the function CDHT (edges, angles,
r, ang dif), and by adding between steps 4 and 5 the instruction:

4’. α̂ ← angles [i]

where angles [i] holds the angle of edges [i]. Also, we substituted instruc-
tion in step 10 with:

10. acum [a, b] ← acum [a, b] + 1 - ε (α, α̂ )

Different methods can be applied to obtain from an image its edges and their
angles. For this proposal, the generalization of Sobel [12] was used. To define it,
let p, q ∈ Zn+1, with:

pi = cn,i−1, (2)

qi =

⎧
⎨
⎩
cn,i − cn,i−1 if i < n/2
−cn,i + cn,i−1 if i > n/2
0 otherwise

, (3)

where cn,k := k!/ (n! (n− k)!). From these two vectors, we obtain the template
T = pqt. T is used to calculate the magnitude of the edges of a grayscale image
I in the x and y direction, denoted by Mx,My respectively, as:

Mx = I ∗ T,My = I ∗ T t, (4)

with ∗ denoting the 2D correlation. From Mx and My, the magnitude M is
calculated as:

M =
√
M2

x +M2
y , (5)

while the direction of every pair
(
(Mx)i,j , (My)i,j

)
refers to the angle of this

vector. From the magnitude, we define a edge as those pixels for which the
magnitude is greater or equal to a threshold.

3 Experimental Results

To test the system, CDHT was implemented in MATLAB R©. The implemen-
tation was used over three problems: 1) autocalibration, 2) detection in the
presence of noise, and 3) detection of circular shapes with large unknown radii.
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For the experiments, b denotes the edges coordinates of the input grayscale
image, θ its associated directions, and the angle difference was set to one. From
each image used for these experiments, the center coordinates x̃ of those circular
shapes appearing on it, as well as its radius r̃, were experimentally determined.
The coordinates of the circles detected by using CDHT , x∗, were compared by
using the Euclidean norm over the difference ∆x := x̃−x∗, whilst for the radius,
r∗, the absolute value of ∆r := r̃ − r∗ was calculated.

3.1 Autocalibration

The autocalibration test consisted in presenting the system an image that con-
tains a circular shape whose diameter is unknown. In this test, the system applies
the CDHT for a number of radii and selects the one for which the accumulator
holds the greatest value; i.e.:

r∗ = argmax {max {CDHT (b, θ, r, 1)} : r ∈ {rmin, . . . , rmax}} . (6)

In this particular case, rmin = 25, rmax = 35. On the other hand, x∗ refers to the
coordinates that hold the maximum value of CDHT (b, θ, r∗, 1) (the same was
done for CHT ).

The test was done over a set of sixty images of 320 by 240 from an eye
captured in two different sessions with a web cam. The person was allowed to
look into different directions. Because of this, the set was divided in two subsets.
One containing 30 images for which the iris was about the middle of the eye3.
The second subset contained the rest of the images4. For this subset, the radii
difference was not calculated. The results are summarized in the next table.

Table 1. Results for the autocalibration test obtained through CHT and CDHT

looking towards looking away
mean

(‖∆x‖2

)
mean (|∆r|) mean

(‖∆x‖2

)
CDHT 0.8041 1.2667 1.6701
CHT 0.8834 1.0333 1.6121

Figure 3 shows some of the results attained during this test for CDHT.

3.2 Detection in the Presence of Noise

This test used the centered iris images subset. It is assumed that the radius r∗

is already known. However, different kinds of noise (Gaussian, Salt n’ Pepper
and Poisson) were added to the images before determining the edges and their

3 In these images the circular shape was closer to a circle
4 These images contained circular shapes better described by an ellipse with greater

eccentricities of those in the first set. This also explains the magnitued of the ∆r
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Fig. 3. Examples of the results obtained from the autocalibration test

magnitudes. Once this was done, the coordinates of CDHT (b, θ, r∗, 1) that hold
its maximum value, x∗, are compared with the ideal, x̃. If the euclidean norm
of the difference ∆x is less than or equal to

√
4, then the detection is qualified

as valid, and not valid otherwise. For the process a Median Filter over a 5 × 5
window was used. The results of CDHT and CHT are included in Table 2.

Table 2. Results for the circular shape detection in the presence of different kinds of
noise

Gauss, Gauss, Salt n’ Pepper Poisson
µ = 0, σ = 0.05 µ = 0, σ = 0.1 density = 0.1

CDHT 83.33% 53.33% 100% 100%
CHT 100% 76.67% 100% 96.67%

3.3 Detection of Circular Shapes with Large Unknown Radii

One of the major problems of the CHT is the detection of circular shapes for a
large radius. This problem follows from two major reasons: for large radii, the
probability that the circular shape is perfect reduces considerably; the second
reason, is that the probability to account a edge not related to a circular shape
increases as a function of the radius. Consequently, the variations of the CHT
that use the threshold and the direction of the edges for the detection seem
like a natural alternative. However, since the edge direction variations ”trace a
line” in the direction of the edge detected, the accumulator rarely holds sufficient
evidence of the circular shape for large radii. Clearly, this proposal is not affected
by this matter, as it will increase the accumulator in a way proportional to how
close the edge direction is to that expected.

To show this, a set of thirty satellite images of 256 by 256 from Mars containing
craters of different sizes along with a number of other geographical features
were used. For the test, no a priori information about the radii is assumed
other than the range r = {15, 16, . . . , 70}. The results of CHT (b, θ, r, 1) and
CDHT (b, θ, r, 1) are compared to a threshold th ∈ [0, 360]. If the accumulator
is greater or equal to th, then it is assumed that there is a circular shape for
that particular location. Two selected elements were considered equivalent if
the absolute difference between their center coordinates and their radius was
for every element less than or equal to one. From this relation, the transitive
closure was obtained, and the elements were clustered using this equivalence
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relationship. This test produces two types of error: a False Rejection (FR) and
a False Acceptance (FA)5. The selected values were compared with those of the
ideals and were qualified as valid if the euclidean norm of the difference ∆x is
less than or equal to

√
4 and the absolute difference of ∆r is less than or equal to

3. The selected values not fulfilling these requirements were qualified as a FR or
a FA. For the detection, the edges deletion of selected circular shapes was done
as proposed in [13].

Table 3. Results of the Large Unknown Radii Test. The cells contain the Valid Rate,
FA Rate, FR Rate. If either, the FA or FR Rate are greater than 0.5, or the Valid Rate
is less than 0.5 then the data is omitted.

th 360 × 0.2 360 × 0.25 360 × 0.3
CDHT (92.56%, 32, 27%, 11.37%) (85.83%, 18.93%, 17.46%) (74.91%, 31.56%, 28.65%)
CHT − (81.25%, 43.48%, 27.43%) (71.88%, 22.58%, 31.85%)

Some results are included in Figure 4.

Fig. 4. Examples of the results obtained from the large unknown radii test. From left
to right, original image, results obtained with the best threshold for CDHT and CHT.
For the second and third image black and white circles represent FA and valid results
respectively.

4 Conclusions

During this paper, we presented the CDHT. This variation of CHT calculates the
data of the circular shapes appearing within an image with the same increasing
the algorithm complexity, which is Θ (m), with m = |edges|.

For the Autocalibration Test, the results using both techniques were equiva-
lent. This was to be expected, since only one circular shape in contained within
every image, and it is clearly contrasted from the rest of the image.

For the Detection in the Presence of Noise Test, we also expected to obtain
similar results for both techniques. However, CHT proved to be better for the
Gaussian noise. The median filter was used since it is known that it preserves the
edges of the filtered image. However, the square template altered the direction
of the edges related to the iris. Thus, the recognition was not as good as desired.
5 FA: if an existing crater is not detected. FR: If a not existing crater is detected.
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The best performance of CDHT was obtained in the Large Unknown Radii
Test. This is important, since this is the hardest test or the three proposed in
this paper. Even more, this is probably the most likely scenario for practical
applications. In this case, CDHT obtained the best ratios VR:FR and FR:FA.
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Abstract. A feature extraction method for isolate speech recognition is pro-
posed, which is based on a time frequency analysis using a critical band concept 
similar to that performed in the inner ear model; which emulates the inner ear 
behavior by performing signal decomposition, similar to carried out by the basi-
lar membrane.  Evaluation results show that the proposed method performs bet-
ter than other previously proposed feature extraction methods when it is used to 
characterize normal as well as esophageal speech signal. 

Keywords: Feature extraction, inner ear model; isolate speech recognition, 
time-frequency analysis. 

1   Introduction 

The performance of any speech recognition algorithm strongly depends on the accu-
racy of the feature extraction method, because of that several methods have been 
proposed in the literature to estimate a set of parameters that allows a robust charac-
terization of the speech signal.  A widely used feature extraction method consists on 
applying the Fast Fourier Transform (FFT) to the speech segment under analysis.  
This representation in the frequency domain is obtained by using the well-known 
MEL scale, where the frequencies smaller than 1kHz are analyzed using a linear 
scale, while the frequencies larger than 1kHz are analyzed using a logarithmic scale, 
with the purpose of creating an analogy with the internal cochlea of the ear that works 
as a frequencies splitter [1]-[4]. 

Linear Predictive Coding (LPC) is other widely used feature extraction method 
whose purpose is to find set of parameters that allows an accurate representation of 
the speech signal as the output of an all pole digital filter, which models the vocal 
track, whose excitation is an impulse sequence with a period equal to the pitch period 
of speech signal under analysis, when the speech segment is a voiced one, or a white 
noise when the speech segment is an unvoiced one [1], [3].  Here, to estimate the 
features vector, firstly the speech signal is divided in segments of 20 to 25 ms, with 
50% of overlap.  Finally, the linear predictive coefficients of each segment are  
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estimated such that the mean square value of prediction error becomes a minimum.  
Because five formants or resonant frequencies are enough to characterize the vocal 
track, a predictive filter of order 10 is enough [1], [4].  Depending on the application, 
it may be useful to take the LPC average of the N segments contained in the word 
under analysis, such that this coefficients average may be used as the behavior model 
of a given word.  Thus the averaged m-th LPC becomes 

                                            pma
N

a
N

i
mim ≤≤= ∑

=
1,

1ˆ

1
,                                               (1) 

where N is the total number of segments contained in the word.   
The cepstral coefficients estimation is other widely used feature extraction method 

in speech recognition problems.  These coefficients form a very good features vector 
for the development of speech recognition algorithms [1, 2, 4], sometimes better than 
the LPC ones.  The cepstral coefficients can be estimated from the LPC coefficients 
applying the following expression [1] 
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where Cn is the n-th LPC-Cepstral coefficients, ai is the i-th LPC coefficients and n is 
the Cepstral index. Usually the number of cepstral coefficients is equal to the number 
of LPC ones to avoid noise [1].  For isolated word recognition, it is possible to take 
also the average of cepstral coefficients contained in the word to generate an averaged 
feature vector (CLPC) to be used during the training or during the recognition task.  
Most widely used feature extraction methods, such as those describe above, are based 
on modeling the vocal tract.  However if the speech signals are processed taking in 
account the form in which they are perceived by the human ear, similar or even better 
results may be obtained.  Thus in [5] the use of time-frequency analysis and auditory 
modeling is proposed, in reference [6] an automatic speech recognition scheme using 
perceptual features is proposed.  Thus to use an ear model-based feature extraction 
method may be an attractive alternative because, this approach allows characterizing 
the speech signal in the form that it is perceived [7]. 
 This paper proposes a feature extraction method for speech recognition, based on 
an inner ear model that takes in account the fundamentals concepts of critical bands.  
Evaluation results using normal and esophageal speech show that the proposed ap-
proach provides better results than other previously feature extraction methods. 

2   Feature Extraction Based on Inner Ear Model 

In the inner ear, the basilar membrane carries out a time-frequency decomposition of 
the audible signal through a multi-resolution analysis similar to that performed by a 
wavelet transform [6].  Thus to develop a feature extraction method that emulates the 
basilar membrane operation, it must be able to carry out a similar decomposition, as 
proposed in the inner ear model developed by Zhang et. al. [8].  In this model the 



 Isolate Speech Recognition Based on Time-Frequency Analysis Methods 299 

 

dynamics of basilar membrane, which has a characteristic frequency equal to fc, can 
be modeled by a gamma distribution multiplied by a pure tone of frequency fc, that is 
using the so-called gamma-tone filter.  Here the shape of the gamma distribution is 
related to the filter order, while the scale is related to the inverse of the frequency of 
occurrence of events under analysis, when they have a Poisson distribution.  Thus the 
gamma-tone filter representing the impulse response of the basilar membrane is given 
by [8] 

                       ( )
( )

( ) 0    /2cos
 ! 1

1 1 >
−

=
−

− ttett

t

θπ
θα

ψ θα
α

α
θ                          (3) 

where α and θ  are the shape and scale parameters, respectively.  Equation (3) defines 
a family of gamma-tone filters characterized by θ and α, thus it is necessary to look 
for the more suitable filter bank to emulate the basilar membrane behavior.   To this 
end, we can normalize the characteristic frequency by setting θ=1 and α=3, which 
according to the basilar membrane model given by Zhang et al [8], provides a fairly 
good approximation to the inner ear dynamics.  Thus from (3) we get 

( ) ( ) 0    2cos
2

1 2 >= − ttett t πψ                            (4) 

This function presents the expected attributes of a mother wavelet because it satisfies 
the admissibility condition given by [9], [10] 
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That means that the norm of ψ(t) in L2(R) space exists and then the functions given by 
(4) constitutes an unconditional basis for L2(R). This fact can be proven by using the 
fact that [11] 
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The previous statement can verified substituting the Fourier transform of (4), Ψ(ω), 
into (6), where  
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Thus we can generate the expansion coefficients of an audio signal f(t) by using the 
scalar product between f(t) and the function ψ(t) with translation τ and scaling factor s 
as follows [11] 
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A sampled version of (8) must be specified because we require recognizing discrete 
time speech signals.  To this end, a sampling of the scale parameter, s, involving the 
psychoacoustical phenomenon known as critical bandwidths will be used [10].   
 The critical bands theory models the basilar membrane operation as a filter bank 
in which the bandwidth of each filter increases as its central frequency increases [8, 
9].  This statement allows defining the Bark frequency scale; a logarithmic scale in 
which the frequency resolution of any section of the basilar membrane is exactly 
equal one Bark, regardless of its characteristic frequency.  Because the Bark scale is 
characterized by a biological parameter, there is not an exact expression for it, given 
as a result several different proposals available in the literature.  Among them, the 
statistical fitting provided by Schroeder et al [10], appears to be a suitable choice.  
Thus using the approach provided by [8], the relation between the linear frequency, f, 
given in Hz and the Bark frequency, Z, is given by [10] 
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Next by using the expression given by (9), the central frequency in Hz corresponding 
to each band in the Bark frequency scale becomes [10] 
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Next, using the central frequencies given by (10) the jth scale factor is given by 
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The inclusion of bark frequency in the estimation of scaling factor, as well as the 
relation between (4) and the dynamics of basilar membrane, allows frequency decom-
position similar to that carried out in the human hearing.  The scaling factor give by 
(11) satisfies the Littlewood-Paley theorem since   
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Fig. 1. 10th Gammatone function derived from the inner ear model 

 

Fig. 2.  Frequency response of filter bank derived from an inner ear model 

 
Then there is not information loss during the discretization process. Finally the num-
ber of subbands is related with the sampling frequency as follows 
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Thus for a sampling frequency equal to 8KHz the number of subbands becomes 17.  
Finally, the translation axis is naturally sampled because the input data is a discrete 
time signal, and then the expansion coefficients can be estimated as follows [9] 
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where T denotes the sampling period.  Here the expansion coefficients Cf,ψ obtained 
for each subband are used to carry out the recognition task.  Figures 1 shows ψ10(n), 
and Fig. 2 shows the filter bank power spectral density, respectively. 

3   Evaluation Results 

The performance of proposed feature extraction method was evaluated in isolate word 
recognition tasks, with normal as well as esophageal speech signals.  Here the feature 
vector consists of the following parameters: the m-th frame energy given by [12] 
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where (N=1/γ), the energy contained in each one of the 17 wavelet decomposition 
levels, 
 

                                  
17,...,2,1),()1()( 2

,,, =+−= knynyny mkmkmk γ ,                   (17) 

 
the difference between the energy of the previous and actual frames,  
 

                                                 )1()()(0 −−= NxNxmv mm ,                                    (18) 

 
together with the difference between the energy contained in each one of the 17 wave-
let decomposition levels of current and previous frames,  
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where m is the number frame. Then the feature vector derived using the proposed 
approach becomes 
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Here the last eighteen members of the feature vector include the spectral dynamics of 
speech signal concatenating the variation from the past feature vector to the current 
one.   

To evaluate the actual performance of proposed approach it was compared with the 
performance provided by others conventional methods like Mel Frequency Cepstral 
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Coefficients (MFCC), Linear Prediction Coefficients (LPC), Dubechies wavelet func-
tion [9] and Haar transform [9] when they are required to perform isolate work recog-
nition tasks, using a data base developed with the assistance of Institute of Human 
Communication of The National Rehabilitation Institute of Mexico:  The data base 
was developed using a 1.7GHz DELL Inspiron 8200 Pentium 4-M , with a Sony F-
V220 Dynamic Microphone and an audio board Crystal WDM Audio from Cirrus 
Logic Inc.  The data base consists of 100 words of 20 normal speakers and 20  
esophageal speakers. Evaluation results provided in Table 1 shows that proposed 
approach provides better recognition performance than other widely used feature 
extraction methods.  In all cases the feature vectors were estimated in similar form, 
with 100 words of 20 different speakers, and used as input of a recursive neural net-
work [11].  Here half words were used for training and half for testing.  Finally table 2 
shows the performance of proposed approach when is used with two different pattern 
classification methods, the neural network and hidden Markov Model. 

Table 1. Comparison between several features extraction methods using normal and esoph-
ageal speeker voice 

 Proposed Daub 4 Haar LPC MFCC 
Normal 

Speaker 
97% 83% 70% 94% 95% 

Esophageal 
Speaker 

93% 77% 52% 89% 90% 

Table 2. Recognition performance of proposed feature extraction method when is used with 
two different identification algorithms 

Classifier Normal speech Esophageal speech 
Recurrent 

Neural Network 
95% 93% 

Hidden 
Markov Models 

92% 92% 

 
Evaluation results show that proposed algorithm performs better than other previ-

ously proposed feature extraction methods, when it is used to recognize isolated nor-
mal speech, as well as isolated esophageal speech signals.   

4   Conclusions 

A new feature extraction based on an inner ear model was proposed, and applied to 
feature extraction in isolate word recognition for normal and esophageal speech.  The 
evaluation results performed using real speech data show that the proposed approach, 
based on modeling the basilar membrane, accurately extracts perceptually meaningful 
data required in isolate word recognition; providing better results than others feature 
extraction methods.  The use of artificial neural network as a classifier produced  
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success rate higher than 97% in the recognition of Spanish word pronounced by nor-
mal speakers and 93% when the words are pronounced by esophageal speaker.  An 
important consequence from the use of multi-resolution analysis techniques is that 
high frequency information is captured during the feature extraction stage. 
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Abstract. Feature extraction/selection is an important stage in every
speaker recognition system. Dimension reduction plays a mayor roll due
to not only the curse of dimensionality or computation time, but also
because of the discriminative relevancy of each feature. The use of auto-
matic methods able to reduce the dimension of the feature space without
losing performance is one important problem nowadays. In this sense, a
method based on mutual information is studied in order to keep as much
discriminative information as possible and the less amount of redundant
information. The system performance as a function of the number of re-
tained features is studied.

Keywords: mutual information, feature selection, speaker verification.

1 Introduction

The task of feature extraction/selection is a crucial step in an automatic speaker
recognition system. The performance of the later components –speaker modeling
and pattern matching– is strongly determined by the quality of the features
extracted in this first stage [1,2]. Most of the efforts today are doveted to the
classification stage, and little to find optimal representations of the speakers.

Methods like Principal Component Analysis (PCA), Discrete Cosine Trans-
form (DCT) and Linear Discriminant Analysis (LDA) have been employed ex-
tensively in the literature for reducing the dimension of the feature space. These
methods rely on maximazing the data distribution variance –globally or per
class– or minimizing the reconstruction error by selecting only a subset of the
original feature set. However, this does not mean necessarily high speaker dis-
crimination or low redundancy in the feature set. Others like the knock-out
method [3,4] proposes to evaluate all the subsets of n− 1 coefficients in order to
keep the best subset in each iteration. One problem here is that the selection of
the best subset strongly depends on the classification method employed.

Various combinations of LFCC-based features, the energy, and their deltas
and delta-deltas were tested in [5] to obtain the best configuration. In this work,

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 305–312, 2009.
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we study the use of an information theory based method [6] in order to select au-
tomatically the best subset of acoustic coefficients. This method was applied in
[7] for selecting the best Wavelet Packet Tree (WPT) in a speaker identification
system. The main principle of the selection algorithm is to maximize the dis-
criminative information while minimizing the redundancy between the selected
features.

A study of the system performance as a function of the dimension of the
feature space is presented. A state-of-art speaker verification system [8] is used
in order to evaluate the usefulness of the method.

The remainder is organized as follows: Section 2 shows the basis of the pro-
posed information theory oriented method; Section 3 shows the details of the
implemented algorithm; database description, experimental work and results are
summarized in Section 4; last section is devoted to conclusions and future works.

2 Feature Selection Based on Mutual Information

Reducing the dimensionality of feature vectors is usually an essential step in
pattern recognition tasks. By removing most irrelevant and redundant features,
feature selection helps to improve the performance of learning models by: alle-
viating the effect of the curse of dimensionality, enhancing generalization capa-
bility, speeding up learning process and improving model interpretability.

Methods based on Information Theory can act as a general criterion, since
they consider high order statistics, and can be used as a base for nonlinear
transformations [9]. With these methods, low information redundancy is achieved
and the discriminative information is intended to be kept while reducing the
dimensionality.

In probability theory and information theory, the mutual information of two
random variables is a quantity that measures their mutual dependence [10].

Let S and X ∈ RN be the variables for the speaker class and the speech
feature vector respectively. The mutual information between S and X is given
by:

I(S,X) = H(S) +H(X)−H(S,X) = H(S) −H(S|X), (1)

where H(·) is the entropy function, which is a measure of the uncertainty of the
variable. For a discrete-valued random variable X, it is defined as:

H(X) = −
∑
m

p(X = xm) log2 p(X = xm), (2)

where p(X = xm) is the probability that X takes the value xm.
From (1), mutual information measures the uncertainty reduction of S know-

ing the feature values. Those features with low speaker information have low
values of mutual information with the speaker class. Following this criterion,
the best K coefficients from the original set X = {X1, . . . , XN} are those
X ′ = {Xi1 , . . . , XiK} ⊂ X which maximise the mutual information with the
speaker class:

X ′ = argmax
{Xj1 ,...,XjK

}
I(S, {Xj1 , . . . , XjK}). (3)
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If the features were statistically independent, the search in (3) would be reduced
to find those features iteratively. If we know the first k − 1 features, the k-th is
obtained using this recursive equation:

Xik
= argmax

Xj �∈{Xi1 ,...,Xik−1}
I(Xj ,S), k = 1, . . . ,K. (4)

In the case of statistically dependent feature –very frequent in real life problems–
the latter is not true. Here, the problem of finding out the best subset (see Eq.
(3)) becomes a search for all the

(
N
K

)
combinations.

In order to select the best coefficients, the sub-optimal method [6,11] was
applied. If we have the first k − 1 coefficients Xk−1 = {Xi1 , . . . , Xik−1}, the
k-th is selected according to:

Xik
= argmax

Xj �∈Xk−1

[
I(Xj ,S)− 1

k − 1

k−1∑
s=1

I(Xj , Xis)

]
. (5)

The idea is to look for the coefficients with high mutual information with the
speaker class and low average mutual information with the features previously
selected. Last term in (5) can be thought of as a way to reduce the redundant
information. Here, mutual information between two variables is the only estima-
tion needed, which avoids the problem of estimating the probability densities of
high dimension vectors. We used histogram method to calculate the probability
densities.

3 The Algorithm

Based on the stated above, we developed the following algorithm to withdraw
the worst features in an original 60-feature LFCC configuration.

Algorithm 1. Proposed method
k = N ;
SearchList = {1, . . . , N};
while k > K do

foreach n ∈ SearchList do
C = SearchList \ {n};
F (n) = I(Xn,S) − 1

k−1

∑
m∈C I(Xn, Xm);

end
n∗ = argminm(F (m));
SearchList = SearchList \ {n∗};
k = k + 1;

end

At every stage, the coefficient to be eliminated is selected according to (5).
This cycle is repeated until the desired number of K features is reached.
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4 Experiments and Results

4.1 Database

All the experiments presented in section 4 are performed based upon the NIST
2005 database, 1conv-4w 1conv-4w, restricted to male speakers only. This con-
dition consists of 274 speakers. Train and test utterances contain 2.5 minutes of
speech on average (extracted from telephone conversations). The whole speaker
detection experiment consists in 13624 tests, including 1231 target tests and
12393 impostors trials. From 1 to 170 tests are computed by speaker, with an
average of 51 tests.

4.2 Front End Processing

All the experiments were realized under the LIA SpkDet system [12] developed at
the LIA lab. This system consists in a cepstral GMM-UBM system and has been
built from the ALIZE platform [8]. Depending on the starting set of coefficients,
two cases –described below– were analyzed. The feature extraction is done using
SPRO [13]. Energy-based frame removal –modelled by a 3 component GMM–
is applied as well as mean and variance normalization. The UBM and target
models contain 512 Gaussian components. LLR scores are computed using the
top ten components. For the UBM, a set of 2453 male speakers from the NIST
2004 database was used.

The performance is evaluated through classical DET performance curve [14],
Equal Error Rate (EER) and Detection Cost Function (DCF).

4.3 Experiments

Two experiments were done in order to select the best coefficients. In the first
one a 60-feature set was taken as starting set, and in the second one, a 50-feature
subset was considered.

Experiment 1: The starting set considered in this experiment consists in a
60-feature set composed of 19 LFCC, the energy and their corresponding first
and second derivative.

Experiment 2: In this case the selection started from a 50-feature subset –
derived from the previously described set– composed of the first 19 LFCC, their
first derivative, the first 11 of the second derivative and the delta energy. This
configuration is the result of large empirical experience based on human expert
knowledge [5] and will be taken as the baseline in this work.

The results of the EER and DCF for each experiment are shown in Figures 1
and 2.

In order to analyze the eliminated features at each stage, the rank order for
each coefficient for both starting sets is shown in figure 3. For better under-
standing they were divided in three classes: static, delta (D), and delta-delta
(DD).
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Fig. 1. EER as a function of the feature space dimension
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Fig. 2. DCF as a function of the feature space dimension

A general observed behavior is that even when all the features were used in
the selection (Experiment 1), almost all the delta-delta features were the first
eliminated. This is in accordance with the experience accumulated that state that
these features have a weak contribution to the speaker verification task, since
they do not carry a significant amount of new information. Meanwhile, by and
large the static parameters show the highest relevance for both experiments.
Static coefficient ‘zero’ was the least ranked among the statics coefficients as
expected, although it was the best ranked among the delta-deltas.
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Fig. 3. Feature rank order for both experiments

One significant difference is the first place of the energy when all the features
are considered, which was not used in the 50-feature starting set. However, when
the selection starts from this configuration (Experiment 2), the system achieved
the best results. This may be determined by all the a priori information that it
includes, which is based in strong experimental basis and human expert knowl-
edge. However, for both starting sets, the feature selection method was able to
detect better configurations with a lower dimension.

The DET curves for some interesting configurations are shown in figure 4.
Three configurations derived from the Experiment 2 are shown: the first one
is the configuration with the smallest dimensionality that achieves at least the
same performance as the baseline (K=34), the second one achieved the best
performance among all the analyzed combinations (K=42), and the the third
one is the baseline (K=50). The result for the full 60-feature set (K=60) is also
presented.
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Fig. 4. DET curves for the configurations K=50 (baseline), K=34 and K=42, corre-
sponding to the 50-feature set as a starting set for the selection

For almost all the operation points the configuration corresponding to K=42
outperforms the baseline (slightly, though). More significant is the configuration
corresponding to K=34, which leads to the same EER as the baseline with a
reduced number of features.

5 Conclusions

The problem of selecting the best LFCC subspace for speaker verification is
discused in this work. A mutual information criterion has been studied to select
the best LFCC features. The proposed feature selection method showed good
capabilities for reducing the feature space dimension without losing performance.
The experiment starting with a priori information finds better configurations.
Better models must be studied in order to look for the optimal configuration with
no a priori information. Other ways to find the most informative time-spectral
regions will be analysed in the future.
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Abstract. The effect of additive noise in a speaker recognition system
is known to be a crucial problem in real life applications. In a speaker
recognition system, if the test utterance is corrupted by any type of noise,
the performance of the system notoriously degrades. The use of a fea-
ture vector selection to determine which speech frames are less affected
by noise is the purpose in this work. The selection is implemented using
the euclidean distance between the Mel features vectors. Results reflect
better performance of robust speaker recognition based on selected fea-
ture vector, as opposed to unselected ones, in front of additive noise.

Keywords: speaker verification, cepstral features, selected feature vec-
tor, channel mismatch.

1 Introduction

Speech signal varies due to differences introduced by microphone, telephone,
gender, age, and other factors, but a key problem is the presence of noise in
the signal, which can provoke an awful performance in the speech processing
algorithms working under extreme noisy conditions. Wireless communications,
digital hearing aids or robust speech recognition, are examples of such systems
which frequently require a noise reduction technique.

Recently, much research has been conducted in order to reduce the effect
of handset/channel mismatch in speech and speaker recognition. Linear and
nonlinear compensation techniques have been proposed, in the (a) feature, (b)
model and (c) match-score domains [1]:

(a) Feature compensation methods [2]: filtering techniques such as cepstral mean
subtraction or RASTA, discriminative feature design, and other feature trans-
formation methods such as affine transformation, magnitude normalization,
feature warping and short time Gaussianization.

(b) Model compensation methods [3]: speaker-independent variance transforma-
tion, speaker models transformation from multi-channel training data, and
model adaptation methods.

(c) Score compensation methods [4]: aims to remove handset-dependent biases
from the likelihood ratio scores as, H-norm, Z-norm, and T-norm.

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 313–320, 2009.
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Other methods to reduce specifically the impact of noise have been proposed [1]:

– filtering techniques,
– noise compensation,
– use of microphone arrays and,
– missing-feature approaches.

The features most commonly used are: static and dynamic Mel Frequency Cep-
stral Coefficients (MFCC), energy, zero crossing rate and pitch frequency. The
classification methods commonly used are: Frame and utterance energy thresh-
old, noise level tracking or model based. This paper investigates a feature vector
selection method over MFCC in speaker recognition, using speech samples dis-
torted by noise. This features vectors are selected by mean of clustering of the
MFCC using as criterion of Euclidean distance. To evaluate the selection method
the Gaussian Mixture Model (GMM) [5] is used as baseline.

The rest of the paper is organized as follows. Section 2 explains the sensitivity
of the Gaussian components. Section 3 describes the feature vector selection
algorithm. Section 4 shows the results of the experiments. Finally section 5
presents the conclusions and future work.

1.1 Sensitivity of the Gaussian Components

The GMM models the feature vectors of a speech signal, performing a weighted
sum of M (number of mixtures of Gaussian probability density functions).

p(x̂/λ) =
M∑
i=1

pibi(x̂), (1)

We take as input data the MFCC.

MFCCMatrix→ X =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x̂1 x̂2 . . . x̂T

↓ ↓ ↓
c1,1 c1,2 . . . c1,T

c2,1 . . . . . . . . .
. . . . . . . . . . . .
cD,1 . . . . . . cD,T

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2)

where x̂t is a feature vector that represents one observation over the signal, t is
the index of the speech frame and D is the amount of coefficients. The matrix
X is a sequence of random variables indexed by a discrete variable, time (t =
1, · · · , T ). Each of the random variables of the process has its own probability
distribution function and we assume that they are independent. This is called
MFCC matrix and is extracted from a speech expression, which characterizes
the speaker.

where: bi(x̂t) → with i = 1, · · · ,M are the Gaussian density components.
Each component is a Gaussian function of the form:
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Fig. 1. First three MFCC

bi(x̂) =
1

(2Π)
D
2 |Σ

1
2
i |
exp{−1

2
(x̂− µ̂i)́Σ−1

i (x̂− µ̂i)} (3)

where: µ → mean matrix, Σ → covariance matrix.
and: pi → weights of the mixtures i = 1, 2, · · · ,M and satisfies that

∑M
i=1 = 1.

If we represent the first three MFCC (c1, c2, c3) to view their behavior, we
would observe a very dense cloud of points toward the center and with some
scattered at the edges, the same behavior will follow any group of coefficients
that are chosen, for example:

If we generalize the representation of Fig. 1 to D MFCC, we could assume
that the D representation would have a very dense cloud of points toward its
D − dimensional center.

What would happen if we classify a two dimensional data (c1, c2) or three
dimensional data (c1, c2, c3) using 16 Gaussian mixtures?

For the graphical representation of 16 GMM of three MFCC we can conclude:
From this intuitive idea that the individual components of a multi-modal

density (GMM) is capable of modeling the underlying acoustic classes in the
speech for each speaker, and that speaker’s acoustic space can be approximated
by a set of acoustic classes (mixtures), we can observe that acoustic classes
are more overlapping in the region where the features are more compact. This
overlapping reduces the discriminative power of these acoustic classes.
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Fig. 2. Classification using 16 Gaussian mixtures of two and three dimensional data
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Fig. 3. Representation of the MFCCs distorted by additive white noise: Clean signal,
25db S/N, 15db S/N and 5db S/N

Gaussian components that define the cluster in the dense center of the fea-
tures are much more overlapped between them, that the Gaussian components
that define the features in the border. This makes the probability of Gaussian
components given by the features in the dense center more prone to perturba-
tions by the displacements of the features, in presence of noise, as is observed in
Fig. 3.

The Fig. 3 shows what happens with the two dimensional coefficients when
it is distorted by additive white noise, where it can be clearly seen how the
points at the center of the cloud are affected on a larger scale. The intuitive idea
that the individual components with less overlapping are capable of modeling
the acoustic classes with more robustness in front of the displacements of the
features in a noisy speaker verification process motivated us to find an algorithm
of feature vector selection capable of only choosing those feature vectors that do
not belong to the dense center.

2 Feature Selection Algorithms

From the above we developed an algorithm to select the feature vectors that are
outside the dense center to use only these features in the verification process.

We use as input features the MFCC matrix XD,T , assuming it describes the
speech, then we take each as a point of acoustic space as shown in Fig. 1.

The algorithm can be summarized in four steps:

1. Construct a neighborhood graph - Compute its k neighbours more distant
on the acoustic space based on Euclidean distances d(i, j) between pairs of
points i, j.
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2. Assign weights Wi,j to the edges of the graph, in our case, in the i− th row,
will have the value 1 those points that belong to the neighboring of the point
i, and will have the value 0 those points that are outside these neighboring.

3. Building an array L with length equal to amount of points (T ) and in each
index is stored the sum of the connections for this node, yj =

∑
i Wi,j .

4. Select from the MFCC matrix only the features vectors that correspond to
the indices of the previous array (L) which are different from zero. XD,V =
XD,T , where V << T .

The Fig. 4A shows the 3000 features vectors of the MFCC matrix. The clusters
were defined with 16 neighbors. The Fig. 4B shows selected 826 << 3000 features
vectors, all located at the edges, the features vectors located at the dense center
were eliminated.

3 Experiments and Results

Ahumada [6] is a speech database of 103 Spanish male speakers, designed and
acquired under controlled conditions for speaker characterization and identifi-
cation. Each speaker in the database expresses six types of utterances in seven
microphone sessions and three telephone sessions, with a time interval between
them.

The experiment consisted in the evaluation of the performance of feature
vector selection in speaker recognition, in front of noisy environment and channel
mismatch using spontaneous phrases of 100 speakers in two telephones sessions
of Ahumada. The white noise, hf-channel noise and pink noise obtained from
Noisex database are artificially added to the samples at SNR ranking from 25
dB, 15 dB and 5 dB.

In order to evaluate the effectiveness of the proposed feature vector selection
in speaker recognition, two recognition experiments were implemented for each
type of noise and each SNR ranking using 12-dimensional MFCC + delta features
vector with Cepstral Mean and Variance normalization applied.

1. Baseline experiment: train with 1 min of spontaneous sentences and test
with the 1 min segments, with the SNR ranking applied.

2. Feature vector Selection experiment: the same baseline experiment but in
the test phase feature vectors were selected using the proposed method.
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Fig. 5. Speaker recognition DET plots. Black: Baseline. Gray: Feature vector Selection.
Clean Signal, 25 dB, 15 dB and 5 dB in the same order that increase the ERR. A)
white noise, B) hf-channel noise and C) pink noise.

The performance of both experiments was evaluated using a 16 mixtures GMM
classifier [5]. The results of the two experiments are reflected in detection error
tradeoff (DET) plot [7], in Fig. 5:

The EER result of the experiments is shown in Table 1.
In the case of white noise (Fig. 5-A), for the first and second DET plot the

result are alike, but in the third and fourth DET plot with 15 dB and 5 dB
of S/N respectively is appreciable a better behavior using the feature vector
selection. In the case of hf-channel noise (Fig. 5-B) the curves are similar in the
two experiments for all levels of noise. In the case of pink noise (Fig. 5-C) the
results are analogous to white noise, though in the second DET plot we start to
view an improvement in the result using the feature vector selection, is valid to
note that the white and pink noises are relatives.
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Table 1. EER of the experiments

White Noise
Signal clean 25 dB SNR 15 dB SNR 5 dB SNR

Baseline 6 15 23 38
Feature Selection 8 15 19 32

Hf-channel Noise
Baseline 6 13 18 34

Feature Selection 8 10 16 34
Pink Noise

Baseline 6 15 19 33
Feature Selection 8 13 17 30
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Fig. 6. Number of feature vectors for each speaker and their reduction after making
the selection

It empirically shows that the features selected outside dense center are more
noise robust for speaker recognition than all features vectors of the MFCC ma-
trix, furthermore this selection allows a smaller amount of feature vectors for
recognition. The Fig. 6 shows the difference in the amount of features.

Approximately, 1000 features vectors are eliminated by the selection in each
speaker, which represents 20 seconds of each signal; this selection reduces the
time calculation of the verification algorithms.

4 Conclusions and Future Work

The experiments results reflect a superior performance of selected MFCC respect
to use all the MFCC in speaker recognition using speech samples from telephone
sessions of Ahumada Spanish database.

– Results show that speaker recognition in noiseless conditions has the same
behavior using either all MFCC or selected MFCC, but with increased noise
selected feature show more robustness.

– Tests under noisy conditions (experiments A and C, 15 dB and 25 dB) reflect
a better behavior of the selected feature respect to use all MFCC in front of
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worst mismatch conditions, (channel and session variability) whereas in the
experiment B have a similar behavior.

– In all experiments using the selected feature vectors the computation time
of verification algorithms is reduced because of the elimination of 20 secs.
from the complete signal.

– Experiments (Table 1) show an EER reduction due to utilization of selected
feature vectors instead all MFCC. This reduction is 6 percent in high noisy
conditions.

Future work will be in the direction of evaluate the influence of selected feature
vectors in other noisy environments.
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Abstract. Nowadays, concatenative method is used in most modern TTS sys-
tems to produce artificial speech. The most important challenge in this method 
is choosing appropriate unit for creating database. This unit must warranty 
smoothness and high quality speech, and also, creating database for it must  
reasonable and inexpensive. For example, syllable, phoneme, allophone, and, 
diphone are appropriate units for all-purpose systems. In this paper, we imple-
mented three synthesis systems for Kurdish language based on syllable, allo-
phone, and diphone and compare their quality using subjective testing. 

Keywords: Speech Synthesis; Concatenative Method; Kurdish TTS System; 
Allophone; Syllable, and Diphone. 

1   Introduction 

High quality speech synthesis from the electronic form of text has been a focus of 
research activities during the last two decades, and it has led to an increasing horizon 
of applications. To mention a few, commercial telephone response systems, natural 
language computer interface, reading machines for blinds and other aids for the 
handicapped, language learning systems, multimedia applications, talking books and 
toys are among the many examples [1]. 

Most of the existing commercial speech synthesis systems can be classified as  
either formant synthesizers [2,3] or concatenation synthesizers [4,5]. Formant synthe-
sizers, which are usually controlled by rules, have the advantage of having small foot-
prints at the expense of the quality and naturalness of the synthesized speech [6]. On 
the other hand, concatenative speech synthesis, using large speech databases, has 
become popular due to its ability to produce high quality natural speech output [7]. 
The large footprints of these systems do not present a practical problem for applica-
tions where the synthesis engine runs on a server with enough computational power 
and sufficient storage [7]. 

Concatenative speech synthesis systems have grown in popularity in recent years. 
As memory costs have dropped, it has become possible to increase the size of the 
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acoustic inventory that can be used in such a system. The first successful concatena-
tive systems were diphone based [8], with only one diphone unit representing each 
combination of consecutive phones. An important issue for these systems was how to 
select, offline, the single best unit of each diphone for inclusion in the acoustic inven-
tory [9,10]. More recently there has been interest in automation of the process of 
creating databases and in allowing multiple instances of particular phones or groups 
of phones in the database, with the selection decided at run time. A new, but related 
problem has emerged: that of dynamically choosing the most adequate unit for any 
particular synthesized utterance [11]. 

The development and application of text to speech synthesis technology for various 
languages are growing rapidly [12,13]. Designing a synthesizer for a language is 
largely dependent on the structure of that language. In addition, there can be varia-
tions (dialects) particular to geographic regions. Designing a synthesizer requires 
significant investigation into the language structure or linguistics of a given region.  

In most languages, widespread researches are done on Text-to-Speech systems and 
also, in some of these languages commercial versions of system are offered. CHATR 
[14, 15] and AT&T NEXT GEN [16] are two examples offered in English language. 
Also, in other languages such as French [17,18], Arabic [1,4,7,19,20], Norwegian 
[21], Korean [22], Greek [23], Persian [24-27], etc, much effort has been done in this 
field. 

The area of Kurdish Text-to-Speech (TTS) is still in its infancy, and compared to 
other languages, there has been little research carried on in this. To the best of our 
knowledge, nobody has performed any serious academic research on various branches 
of Kurdish language processing yet (recognition, synthesis, etc.) [28, 29]. 

Kurdish is one of the Iranian languages, which are a sub category of the Indian-
European family [30]. Kurdish has 24 consonants, 4 semi vowels and 6 vowels. Also 
 entered Kurdish from Arabic. Also, this language has two scripts: the /غ/ and ,/ع/ ,/ح/
first one is a modified Arabic alphabet and the second one is a modified Latin alpha-
bet [31]. For example “trifa” which means “moon light” in Kurdish, is written as 

/فهتري/  in the Arabic script and as “tirîfe” in the Latin. Whereas both scripts are in use, 
both of them suffer some problems (e.g., in Arabic script the phoneme /i/ is not writ-
ten; also both /w/ and /u/ are written with the same Arabic written sign  and ,[32,33]  /و/
Latin script does not have the Arabic phoneme /ئ/ , and it does not have any standard 
written sign for foreign phonemes [31]).  

In concatenative systems, one of the most important challenges is to select an 
appropriate unit for concatenation. Each unit has its own advantages and disadvan-
tages, and appropriate for a specific system. In this paper we develop three various 
concatenative TTS systems for Kurdish language based on Syllable, Allophone, and 
Diphones, and compare these systems in intelligibility, naturalness, and overall 
quality. 

The rest of the paper is organized as follows: Section 2 introduces the allophone 
based TTS system. Section 3 and 4 presents syllable and diphone based systems re-
spectively, and finally, comparison between these systems and quality test results are 
presented in Section 5. 
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2   Allophone Based TTS System 

In this part, a Text-To-Speech system for Kurdish language, which is constructed 
based on concatenation method of speech synthesis and use allophones (several pro-
nunciation of a phoneme [33]) as basic unit will be introduced[28,29]. According to 
the input text, proper allophones from database have been chosen and concatenated to 
obtain the primary output.  

Differences between allophones in Kurdish language are normally very clear; 
therefore, we preferred to explicitly use allophone units for the concatenative method. 
Some of allophones obey obvious rules; for example if a word end with a voiced 
phoneme, the phoneme would lose the voicing feature and is called devoiced [34]. 
However, in most cases there is not a clear and constant rule for all of them. As a 
result, for extracting allophones we used a neural network. Because their learning 
power, neural networks can learn from a database and can recognize allophones prop-
erly [35]. 

Fig. 1 shows the architecture of the proposed system. It is composed of three major 
components: a pre-processing module, a neural network module and an allophone-to-
sound module. After converting the input raw text to the standard text, a sliding  
window of width of four is used as the network input. The network detects second 
phoneme’s allophone, and the allophone waveform is concatenated to the preceding 
waveform. 

 

 
Fig. 1. Architecture of the proposed Kurdish TTS system 

The pre-processing module includes a text normalizer and a standard converter. 
The text normalizer is an application that converts the input text (in Arabic or Latin 
script) to our standard script; in this conversion we encountered some problems 
[30,32,34,36].  

Finally, in standard script, 41 standard symbols were spotted. Notice that this is 
more than the number of Kurdish phonemes, because we also include three standard 
symbols for space, comma and dot. Table 1 shows all the standard letters that are used 
by the proposed system. Table 2 shows the same sentence in various scripts. Also, the 
standard converter performs standard text normalization tasks such as converting 
digits into their word equivalents, spelling out some known abbreviations, etc.  
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In the next stage, allophones are extracted from the standard text. This task is done 
using a neural network. Kurdish phonemes have about approximately 200 allophones, 
but some of them are very similar, and non-expert people cannot detect the differ-
ences [34]. As a result, it is not necessary for our TTS system to include all of them 
(for simplicity, only 66 important and clear instances have been included; see Table 
3). Also the allophones are not divided equally between all phonemes (e.g., /p/ is 
presented by five allophones but /r/ has only one allophone [34]). However, the neural 
network implementation is very flexible as it is very simple to change the number of 
allophones or phonemes. 

Major Kurdish allophones (more than 80%) are dependent only on the following 
phonemes. Others (about 20%) are dependent on one preceding and two succeeding 
phonemes [34]. Hence, we employed four sets of neurons in the input layer, each 
having 41 neurons for detection of the 41 mentioned standard symbols. A sliding 
window of width four provides input phonemes for the network input layer. Each set 
of input layer is responsible for one of the phonemes in the window. The aim is to 
recognize the relevant allophone to the second phoneme of the window. The output 
layer has 66 neurons (corresponding to the 66 Kurdish allophones used here) for the 
recognition of the corresponding allophones and the middle layer is responsible for 
detecting language rules and it has 60 neurons (These values are obtained empiri-
cally); (See Fig. 2). The neural network accuracy rate is equal to 98%. In Table 4, 
neural network output and desired output are compared. 

 

 

Fig. 2. The neural network structure 

 
After allophone recognition, corresponding waveform of allophones should be 

concatenated. For each allophone we selected a suitable word and recorded it in a 
noiseless environment. Separation of allophones in waveforms was done manually by 
using of Wavesurfer software. The results of this system and comparison between it 
and other systems are presented in Section 5. 
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3   Syllable Based TTS System 

Syllable is another unit which is used for developing a text-to-speech system. Various 
languages have different patterns for syllable. In most of these languages, there are 
many patterns for syllable and therefore, the number of syllables is large; so usually 
syllable is not used in all-purpose TTS systems. For example, there are more than 
15000 syllables in English [6]. Creating a database for this number of units is a very 
difficult and time-consuming task.  

In some languages, the number of syllable patterns is limited, so the number of syl-
lables is small, and creating a database for them is reasonable; therefore this unit can 
be used in all purpose TTS systems. For example, Indian language has CV, CCV, VC, 
and CVC syllable patterns, and the total number of syllables in this language is 
10000. In [37], some syllable-like units are used; the number of this unit is 1242. 

Syllable is used in some Persian TTS systems, too [26]. This language has only 
CV, CVC, and CVCC patterns for its syllables and so, its syllable number is limited 
to 4000 [26].   

Kurdish has three main groups of syllables that are Asayi, Lekdraw, and Natewaw 
[36]. Asayi is most the important group and it includes most of the Kurdish syllables. 
In Lekdraw group, two consonant phonemes occur at the onset of syllable. For exam-
ple, in /pshu/ two phonemes /p/ and /sh/ make a cluster and the syllable pattern is 
CCV.  Finally, Natewaw group occurs seldom, too. Each group is divided into three 
groups, Suk, Pir, and Giran [36]. Table 5 shows these groups with corresponding 
patterns and appropriate examples.  

According to Table 5, Kurdish has 9 syllable patterns; but two groups Lekdraw and 
Natewaw are used seldom and in practice, three patterns, CV, CVC, and CVCC are 
the most used patterns in Kurdish language. According to this fact, we can consider 
only Asayi group in implementations, and so the number of database syllables are less 
than 4000. In our system, we consider these syllables and extend our TTS system 
using them. 

4   Diphone Based TTS System 

Nowadays diphone is the most popular unit in synthesis systems. Diphones include a 
transition part from the first unit to the next unit, and so, have a more desirable quality 
rather than other units. Also, in some modern systems, a combination of this unit and 
other methods such as unit selection are used.  

Kurdish has 37 phonemes, so in worst case, it has 37×36=1332 diphones. How-
ever, all of these combinations are not valid. For example, in Kurdish two phonemes 

/ع/  and /غ/  or /خ/  and /ح/  do not succeed each other immediately. Also, vowels do not 
form a cluster. So, the number of serviceable diphones in Kurdish is less than 1300. 

After choosing the appropriate unit, we should choose the suitable instance for 
each unit. For this reason, we chose a proper word for each diphone and then extract 
its corresponded signal using COOL EDIT. Quality testing results are discussed in 
Section 5. 
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5   Quality Testing Results 

In this paper, we have developed three synthesis systems based on allophone, syllable, 
and diphone. In order to assess the quality of the implemented systems and to have a 
comparison of them, a subjective test was conducted. A set of seven sentences was 
used as the test material. The test sets were played to 17 volunteer native listeners (5 
female, and 12 male). The listeners were asked to rate system's intelligibility, natural-
ness and overall voice quality on a scale of 1 (bad) to 5 (good). The obtained test 
results are shown in Table 6.  

The allophone based system has the worst quality and in practice, we cannot use it 
in all-purpose system. In this system we use only 66 most important allophones and 
so, we can improve its quality using more units in the database. 

The syllable based system has intermediate overall quality and high intelligibility. 
In fact, syllable is a large unit, therefore, its prosody is constant and naturalness  
is intermediate. On the other hand, because of large size of this unit, this system  
intelligibility is high. 

The diphone based TTS system has best quality between these three systems. Intelli-
gibility and naturalness is high and overall quality is acceptable. Diphones include tran-
sition part between a specific phoneme and its next phoneme, so using this unit, we have 
smooth and pleasant output signal. Hence, diphone is most appropriate unit for develop-
ing an all purpose TTS system and in most modern TTS systems use of it as main unit.  

Table 1.  List of the proposed system standard letters 

Arabic  ئ  ا ب پ ت ج چ ح خ د ر ڕ ز ژ س ش ع غ 
Latin  - - Ş s j z rr r d x - ç c t p b a - 

Standard X G S s j z R R d x H C c t p b a A 
 

Arabic  ف ڤ ق ک گ ل ڵ م ن و و ۆ وو ه ێ  - ه ی ی 
Latin  y î e i ê h û o U w n m ll l g k q v f 

Standard  y I e i Y h U o U w n m L l g k q v f 

Table 2. The same sentence in various scripts 

Arabic Format دلوپ دلوپ باران گول ئه نووسيته وه و نمه نمه يش چاوانم تو 
Latin Format Dillop dillop baran gull enûsêtewe û nime nimeyş çawanim to 

Standard Format diLop diLop baran guL AenUsYtewe U nime nimeyS Cawanim to 

Table 3. List of phonemes and their corresponding allophones as used in the proposed system 

Phoneme P b t d K g Q F s S z J G A 
Allophones PpO*& bEB t@T d!D k?K G%g Qq FVf s $S zZ> Jj ^ A 

 

Phoneme C h H m X X n v y l r L R Y 
Allophones Cc h H mWM X X nN v y l r L R Y 

 

Phoneme E a N U u o w I i C  Ü . , 
Allophones E a # U u o w I i ~ _ . , 

Table 4. A comparison between neural network output and desired output 

NN Output DiLo&_DiLoP_baraN_GuL_AenUsY@_U,_nime_nimeyS_~awaniM_to 
Desired Output DiLo&_DiLo&_baraN_GuL_AenUsY@_U,_nime_nimeyS_~awaniM_to 
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Table 5. Kurdish syllable patterns 

 Suk Pir Giran 

Syllable Pattern CV CVC CVCC Asayi 
Example De, To Waz, Lix Kurt, Berd 

Syllable Pattern CCV CCVC CCVCC Lekdraw 

Example Bro, Chya Bjar, Bzut Xuast, Bnesht 

Syllable Pattern V VC VCC Natewaw 
Example -i -an -and 

Table 6. Subjective testing results for various systems 

 Intelligibility Naturalness Overall Quality 
Allophone Based TTS System 2.71 2.31 2.45 
Syllable Based TTS System 3.35 2.85 3.02 
Diphone Based TTS System 3.9 3.37 3.51 
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Abstract. In this paper, we introduce an adaptation of a multivariate
feature selection method to deal with functional features. In our case,
observations are described by a set of functions defined over a common
domain (e.g. a time interval). The feature selection method consists on
combining variable weighting with a feature extraction projection. Al-
though the employed method was primarily intended for observations
described by vectors in R

n, we propose a simple extension that allows
us to select a set of functional features, which is well suited for classifi-
cation. This study is complemented by the incorporation of Functional
Principal Component Analysis (FPCA) that project functions into a fi-
nite dimensional space were we can perform classification easily. Another
remarkable property of FPCA is that it can provide insight about the
nature of the functional features. The proposed algorithms are tested
on a pathological voice detection task. Two databases are considered:
Massachusetts Eye and Ear Infirmary Voice Laboratory voice disorders
database and Universidad Politécnica de Madrid voice database. As a
result, we obtain a canonical function whose time average is enough to
reach similar performances to the ones reported in the literature.

1 Introduction

Pattern recognition from the side of machine learning is more concerned with
rather general methods for extracting information from the available data, and
thence the task of handcrafting complex features for each individual problem
turns to be less crucial. Consequently, large sets of simpler features are em-
ployed, however, since these variables are less refined for each problem they
require of some processing. Feature selection has been discussed in the past by
several authors [1,2] as an important preprocessing stage to improve results dur-
ing and after training in learning processes that also attempts to overcome the
curse of dimensionality. More recent studies on this subject are found in [3,4].
A common issue in machine learning approach takes place when the number
� This is part of the project 20201004208, funded by Universidad Nacional de Colombia.

�� The author was a student at Universidad Nacional de Colombia.
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relevant features is considerably smaller and the computation time, that grows
exponentially with the number of features, becomes prohibitively large for real
time applications [5]. Yet there is a more fundamental issue related to interpre-
tation, when there is a large amount of incoming data. Reducing the size of data
either by encoding or removing irrelevant information, becomes necessary if one
wants to achieve good performance in the system as well as insightful results. In
our work, we attempt to combine feature selection and extraction with a twofold
purpose: interpretation and generalization.

Functional data analysis can be regarded as an extension of the existing mul-
tivariate methods to more involved representations. The typical framework in
multivariate statistics deals with descriptions of the objects as vectors in Rn.
In the case of functional data, we have a set of functions with the same do-
main that are extracted from each observation. Even if these functions are in a
discrete domain, the dimensionality of data poses a challenging problem. Ram-
say and Silverman [6] give a thorough presentation of the topic. Methods such
as PCA on functional data can be found in [7], and nonparametric extensions
are discussed in [8]. Despite there is clear interest on developing methods or
adaptations for this functional representations, none of these works address the
problem of selecting the functions that might provide the relevant information
for the analysis; what is more, most of the analysis focuses on objects described
by a single function. Even though the authors may argue the extension of these
methods to several functions is straightforward, there must be some concern on
the choice of the set of functions that ought be analyzed. Having irrelevant func-
tions describing the problem may hinder the effect of the relevant ones.

In this work, we use a weighting method presented in [9] for attaining sub-
set selection. The method combines feature selection and feature extraction on
the same process. Particularly, we employ Weighted Regularized Discriminant
Analysis (WRDA), which allows us to obtain a rather simple generalization to
functional data. The optimization process consists on maximizing a trace ratio
over a fixed number of discriminant directions. The paper starts with the de-
scription of the employed method for the case of regular features (vectors in Rn).
Then, we describe the adaptation process for functional data. In order to observe
the effectiveness of the proposed adaptation for the weighting algorithm, tests
on Pathological voice databases were carried out. Two databases are considered:
Massachusetts Eye and Ear Infirmary Voice Laboratory voice disorders database
distributed by Kay Elemetrics Corp. (KLM) and the Universidad Politécnica de
Madrid voice disorders database (UPM).

2 Methods

Variable selection consist basically on selecting a subset of features from a larger
set. This type of search is driven by some evaluation function that have been
defined as the relevance of a given set [2]. When this process implies exhaustive
search (binary selection), the relevance measure must take into account the di-
mensionality. Feature weighting relax this constraint allowing the calculation of
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derivatives of the target function or the use mathematical programming tools
to optimize these weights[10]. One important point is that the weights of the
irrelevant variables should be as close as possible to zero, and the weights of
the relevant features should be bounded. On the other hand. Feature extraction
aims at encoding data efficiently for the problem at hand. In the case of linear
projections for feature extraction, we can capitalize on this property to keep
a fixed dimension (projected space) and assess the relevancy of the projected
set. Thence, we can combine feature extraction methods with weighted data to
maintain a fixed set size and accommodate weights in such a manner a relevance
criterion is somehow maximized. Surprisingly, this consideration plays crucial
role in guaranteeing that low weights will vanish.

2.1 Regularized Discriminant Analysis

RDA was proposed by [11] for small sample, high dimensional data sets to over-
come the degradation of the discriminant rule. The aim of the linear variant of
this technique is to find a projection of the space where scatter between classes is
maximized maintaining the within scatter as minimal as posible. This is achieved
by maximizing the ratio between the projected between class and within class
matrices J = |UT

ΣΣΣBU|
|UT ΣΣΣW U| , where U is the projection matrix whose dimension is

given by the number of classes (k) to be linearly separated, ΣΣΣB is the between
class matrix and can be associated to the dispersion of the mean values of each
class, and ΣΣΣW is the within class matrix and can be linked to the average class
covariance matrix. The problem is defined as the constrained maximization of
|UTΣΣΣBU|, that is, maxU |UTΣΣΣBU|, subject to |UTΣΣΣWU| = 1. Conditional ex-
tremes can be obtained from Lagrange multipliers; the solutions are the k − 1
leading generalized eigenvectors ofΣΣΣB andΣΣΣW that are the leading eigenvectors
of ΣΣΣ−1

W ΣΣΣB. The need of regularization arises from small samples were ΣΣΣW can
not be directly inverted. The solution is rewritten as:

(ΣΣΣW + δI)−1 ΣΣΣBU = UΛΛΛ. (1)

After weighting data, that is XD where D is diagonal matrix with ideally zero
entries corresponding to the irrelevant features, J becomes JD = |UT DΣΣΣBDU|

|UT DΣΣΣW DU| .

2.2 Variable Weighting and Relevance Criterion

Data will be projected onto a fixed dimension subspace. For WRDA the fixed
dimension should range between 1 to k− 1; being k the number of classes. This
consideration depends on the distribution of the classes within the subspace. The
relevance of a given weighted projection of a fixed dimension is evaluated by a
separability measure. The search function will fall in some local maximum of the
target function. The parameter to be optimized is the weight matrix D, and se-
lected criterion is the ratio traces of the aforementioned within and between ma-
trices; this criterion is called J4 in [12]. For weighted-projected data this measure
is given by: J4(D,U) = trace(UT DΣΣΣBDU)

trace(UT DΣΣΣW DU) The size of U is (c×p) and p denotes the
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Algorithm 1. WRDA
1: Set dimension p = k − 1, being k the number of classes
2: Normalize each feature vector to have zero mean and ‖ · ‖2 = 1
3: Start with some initial set of orthonormal vectors U(0)

4: Compute d(r) from solution given in section 2.2, and reweigh data.
5: Compute the U(r) from solution given in section 2.1.
6: Compare U(r) and U(r−1) for some ε and return to step 3 if necessary.

We make use of the sum of absolute values of the diagonal elements of (U(r))
T
U(r−1),

which are compared to the value obtained for (U(r−1))
T
U(r−2)

fixed dimension, which is the number of projection vectors U =
(
u1 u2 · · · uf

)
.

In order to apply matrix derivatives conveniently, we may want to rewrite D
in terms of its diagonal entries and represent it as a column vector d. For this
purpose, we can use the identity trace

(
UT DKDU

)
= dT

(∑p
i=1 K ◦ uiuT

i

)
d to

rewrite the trace ratio can be rewritten in terms of Hadamard products as

J4(d) =

{
dT

(
p∑

i=1

ΣΣΣB ◦ uiu
T
i

)
d

}
/

{
dT

(
p∑

i=1

ΣΣΣW ◦ uiu
T
i

)
d

}
(2)

This target function is quite similar to the one obtained for the regularized LDA.
Therefore, the solution of d with constrained L2 norm is given by the leading
eigenvector of (

p∑
i=1

ΣΣΣW ◦ uiu
T
i + δI

)−1( p∑
i=1

ΣΣΣB ◦ uiu
T
i

)
(3)

3 Functional Data Adaptation

Let X be a set of objects that we want to classify into k different classes.
Each observation x ∈ X is represented by a c-tuple of functions defined in
the same domain, for instance x = (f1, f2, · · · , fc) and fl ∈ L2[a, b], for
l = 1, · · · , c. If we want to plug in the feature selection algorithm 1, pre-
sented in the previous sections, we need to define a way of quantifying the
variation in the space of real square integrable functions L2[a, b]. To this end,
we will define the following key elements: the expected function E[fl(t)] =∫

R
fdFl(f ; t), the expected squared norm E[‖fl‖2] =

∫ b

a

(∫
R
|f |2dFl(f ; t)

)
dt,

the expected inner product E[〈fl, gm〉] =
∫ b

a

(∫∫
R
(fg)dFlm(f, g; t)

)
dt; where

Fl(f ; t) is the first-order probability distribution of l-th stochastic process repre-
sented by fl(t, x), and Flm(f, g; t) is the joint probability distribution of the
l-th and m-th stochastic processes fl(t, x) and fm(t, x). In general, we just
have access to a discrete version fl[t] of the function fl; besides, Fl(f ; t) and
Flm(f, g; t) are unknown. The only available information is provided by the
sample {(xi, yi)}n

i=1, where xi = (f1i[t], f2i[t], · · · , fci[t]) for 1 ≤ t ≤ T ,
and yi ∈ Y = {1, 2, · · · , k} is the class label for the observed xi. Under
these conditions we define the discrete empirical estimations of the expected
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values: Eemp[fl[t]] = 1
n

∑n
i=1 fli[t], Eemp[‖fl‖2] = 1

n

∑n
i=1

(∑T
t=1 |fli[t]|2

)
, and

Eemp[〈fl, fm〉] = 1
n

∑n
i=1

(∑T
t=1 fli[t]fmi[t]

)
. With this elements we can con-

struct analogs for ΣΣΣW and ΣΣΣB . Notice that Algorithm 1, requires of a previous
normalization of data. In the functional case this can be achieved by remov-
ing to each observation xi the overall empirical mean of the sample, that is,
f̂li[t] = fli[t] − Eemp[fl[t]] for 1 ≤ l ≤ c, and scaling the values that each

function takes f̃li[t] = f̂li[t]√
nEemp[‖f̂l[t]‖2]

for 1 ≤ l ≤ c. From now and on, to ease

the notation, we will assume that fli[i] is the normalized version of the function,
that is Eemp[fl[t]] = 0 and Eemp[‖fl‖2] = 1/n. For each j class, we define the
empirical class-conditional expected values, which are computed as follows:

Eemp[T{fl}|j] =
1
nj

∑
xi|yi=j

T{fli} Eemp[T{fl, fm}|j] =
1
nj

∑
xi|yi=j

T{fli, fmi} (4)

where nj is the number of observations that belong to j-th class, T {·} and T {·, ·}
are functions over f . The j-th within class matrixΣΣΣWj has the following elements
wjlm = Eemp[〈fl − Eemp[fl|j], fm − Eemp[fm|j]〉|j], and the pooled within class
matrix ΣΣΣW cam be computed as ΣΣΣW =

∑k
j=1 njΣΣΣWj . The between class matrix

ΣΣΣB elements are blm =
∑k

j=1 nj〈Eemp[fl|j], Eemp[fl|j]〉. Once ΣΣΣW and ΣΣΣB have
been obtained, we can proceed with the rest of Algorithm 1, normally.

4 Experiments and Discussion

We refer to [13] for a complete description of KLM and UPM databases. Func-
tional features correspond to windowed estimations of Harmonic Noise RatioHNR,
Normalized Noise Energy NNE, Glottal Noise Energy GNE, Energy, and 12 Mel
Freq Cepstral Coefficients along with their first and second order derivatives
obtained as in [14] for a total 48 functional features. These time vectors were
clipped to a fixed number of windows moving from the central window to the
sides, symmetrically. The fixed length of the sampled functions was 40 instances
per functional feature in KLM, and 60 in UPM. The preliminary analysis consists
on finding a set p of canonical functions resulting from a linear combination of
the original set of c functional features using the Functional WRDA algorithm,
Υji[t] =

∑c
l=1 αjlfli[t].where αjl is obtained from the entries of the weighting

and rotation matrices D = diag(d1, d2, · · · , dl) and U =
(
u1 u2 · · · up

)
, and i

is the index for the i-th observation.
In the two class case, which is our case Pathological vs Normal, the set of

canonical functions reduces to a single function, that is, U = u1. The regular-
ization parameter δ introduced in equations (1) and (3) was set to 0.137 for
KLM and 0.12 for UPM. Some graphical results for both databases are depicted
in Figure 1. Right plots form Figures 1(a) and 1(b) present the weighted linear
combination of the original functional features (canonical function) for KLM
and UPM databases. In both databases most of the zero weights correspond to
the first and second derivatives of the original features. The right plots show
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(a) Massachusetts Eye and Ear Infirmary Voice Laboratory voice disor-
ders database (KLM)
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(b) Universidad Politécnica de Madrid voice disorders database (UPM)

Fig. 1. Weights and resulting canonical functions for KLM and UPM databases. Gray
lines are canonical functions from pathological examples and black lines are from nor-
mal observations. The left plots are the resulting weights for each one of the functional
features. The first 16 indexes are the short term energy and MFCC features. Notice
that indexes from 17 to 48 obtained zero weights; these indexes correspond to first and
second order derivatives of the functional features.

the resulting canonical functions from the whole set of examples for the two
databases.

It is possible to use these functional features to perform classification with
a kernel classifier or a distance based classifier by simply computing the inner
product or the Euclidean distance between pairs of observations that now are
represented by a canonical function. In here, we use Functional PCA (FPCA)[6]
to embed this canonical function into a smaller dimension Euclidean space and
then perform discrimination with a pooled covariance matrix classifier whose
decision function is linear. This approach is equivalent to Kernel PCA [15] using
the inner product k(xi, xj) = 〈Υ1i[t], Υ1j [t]〉 =

∑c
l=1

∑c
r=1 α1lα1r〈fli[t], frj[t]〉.

Figures 2(a) and 2(b) display the clustered classes and how the first principal
component may suffice for accurate classification of the sample. Moreover, the
shape of the first principal functions and how points are distributed in the em-
bedding suggest a particular phenomenon. The first principal function for both
databases is approximate constant, so the inner product between the canoni-
cal function and the first PC is equivalent to a time average of the canonical
function, which in turn is a sum of time averages of the selected original func-
tional features (features with non-zero weights). PCA result seem to coincide
with a LDA projection; a particular situation when both methods coincide is
for a two class problem where the within class covariance functions are isotropic
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(b) UPM database

Fig. 2. Functional PCA embedding using the first two principal components and prin-
cipal functions for KLM and UPM databases. Right plots are the principal functions
for both databases. Notice how the functions are very similar, even though, the origin
of the databases differ. The overlap of classes is higher for UPM database; this might
be due to the larger diversity in the pathologies for this database.

approximately equal with a significant difference between their means. At the
same time we carry out FPCA over the whole set of original functions. We em-
ploy a linear classifier using a pooled covariance matrix. Table 1, exhibit the
Leave-One-Out (LOO) training and test errors for 1 to 3 principal components
after applying the proposed functional feature selection process. This values are
contrasted with the LOO training and test errors for 1, 10, and 20 principal
components obtained from FPCA of the normalized original data. Our method
conveys almost the same error estimate when varying the number of compo-
nents. In the second case, we obtain incremental performance on training, but
it should be noted that as dimensionality grows, so does the confidence interval.

Table 1. LOO training and test errors for FPCA after functional WRDA and FPCA
for normalized original data. Errors are remarkably stable for the proposed method.

Database FWRDA and FPCA FPCA
1PC 2PCs 3PCs 1PC 10PCs 20PCs

KLM
train 9.09 9.23 8.15 13.03 7.78 7.0
test 9.95 10.41 10.41 12.22 8.14 7.24

UPM
train 24.65 25.08 24.65 40.89 25.21 22,79
test 25.91 26.14 25.91 40.91 27.27 25.00
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5 Conclusions

We have presented a functional feature selection criterion based on weighting
variables followed by a projection onto a fixed dimension subspace. Results
showed how reducing dimensionality benefits the overall performance of the
inference system. The canonical function devised from the application of our
method was decomposed using FPCA, an interesting result of this analysis is
that time averages can provide the necessary information to carry out successful
classification. It is also important to highlight that the set of functional features
selected for each of the databases is very similar. Although, both databases are
voice disorder databases, their origins are quite different. The similarity of the
results is also confirmed by observing the principal functions for both databases.

References

1. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection
problem. In: ICML (1994)

2. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine
learning. In: AI, vol. 97(1-2) (1997)

3. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. In: JMLR
(2003)

4. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy.
In: JMLR (2004)

5. Wolf, L., Shashua, A.: Feature selection for unsupervised and supervised inference:
the emergence of sparsity in a weighted-based approach. In: JMLR (2005)

6. Ramsay, J., Silverman, B.: Functional Data Analysis, 2nd edn. Springer, Heidelberg
(2005)

7. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, Heidelberg (2002)
8. Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis. Springer, Heidel-

berg (2006)
9. Sánchez, L., Mart́ınez, F., Castellanos, G., Salazar, A.: Feature extraction of

weighted data for implicit variable selection. In: CAIP. Springer, Heidelberg (2007)
10. Bradley, P.S., Mangasarian, O.L., Street, W.N.: Feature selection via mathematical

programming. INFORMS Journal on Computing 10 (1998)
11. Friedman, J.H.: Regularized discriminant analysis. Journal of the American Sta-

tistical Association (1989)
12. Webb, A.R.: Statistical Pattern Recognition, 2nd edn. John Wiley & Sons, Chich-

ester (2002)
13. Daza, G., Arias, J., Godino, J., Sáenz, N., Osma, V., Castellanos, G.: Dynamic

feature extraction: An application to voice pathology detection. Intelligent Au-
tomation and Soft Computing 15(4) (2009)
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Abstract. The concept of new approach for debt portfolio pattern recognition is 
presented in the paper. Aggregated prediction of sequential repayment values 
over time for a set of claims is performed by means of hybrid combination of 
various machine learning techniques, including clustering of references, model 
selection and enrichment of input variables with prediction outputs from pre-
ceding periods. Experimental studies on real data revealed usefulness of the 
proposed approach for claim appraisals. The average accuracy was over 93%, 
much higher than for simplifier methods. 

Keywords: financial pattern recognition, prediction, repayment prediction, 
claim appraisal, competence regions modeling. 

1   Introduction 

Valuation of the debt portfolio is a prediction task that assesses the possible repay-
ment value from the debt cases. All business models that rely on the cash flow from 
receivables assume to minimize the aggregated debt value. The fact that possession of 
creditors for a long time is very ineffective, especially when debtors are eventually 
not able to repay theirs arrears in short term, implies a need of sophisticated debts 
valuation. Under some circumstances, it is better for companies to sell the liabilities to 
a specialized debt collection company in order to obtain at least a part of their nomi-
nal value, rather than collect and vindicate debts on their own. In the process of sell-
ing a debt portfolio the transaction price is usually estimated based on the possible 
repayment level to be reached in the long term. In general, it is expected that the 
method of debt portfolio value appraisal will well match the future. 

2   Related Work 

There exists a wide variety of studies on prediction and classification in the literature 
e.g. [2, 12, 16]. Overall, the existing machine learning methods usually provide better 
classification and prediction accuracy than techniques based only on common statisti-
cal techniques such as regression [17, 18]. A better precision of the prediction may be 
obtained by combination of several existing methods into one hybrid solution [1, 2, 
4]. In general, hybridization could be achieved either by application of additional 
external mechanisms into existing prediction models (low level), e.g. neuro-fuzzy 
systems [11] or by combination of different methods on the high level, e.g. multiple 



338 T. Kajdanowicz  and P. Kazienko 

 

classifier systems, where separate classifiers are treated more likewise ‘black boxes’ 
[6, 7]. Hybrid prediction methods have been successfully used in a number of do-
mains such as medicine, engineering and industry. Other application areas of these 
methods are economy and finance, where hybrid systems provide specialized knowl-
edge in order to support business decisions [15].  

The paper is focused on the description of a new hybrid method for debt portfolio 
appraisal. The correct prediction of target repayment value in debt recovery is of great 
practical importance, because it reveals the level of possible expected benefit and 
chances to collect receivables. The crucial concept of this method is the combination of 
clustering of the training set and application of multiple classifiers based on their com-
petence region[12]. Additionally, a sequence of classifiers is built to obtain predictions 
over consecutive periods. Apart from the general idea, the proposed hybrid prediction 
method has been examined on real data. According to the findings achieved, the method 
appears to return more precise results compared to some common approaches.  

 

 

 

Fig. 1. The business proces of purchasing a debt portfolio based on repayment prediction 

3   Claim Appraisal 

3.1   Business Process of Debt Portfolio Recovery 

The process of debt portfolio value prediction starts when the first company offers a 
package of debts and expects a purchase proposal from the second one, see Fig. 1. 
The second company is usually a specialized debt recovery entity. Based on historical 
data of debt recovery available for the second company, a prediction model is pre-
pared. The model provides estimation of possible return from the package. The bid is 
supplemented by additional cost of repayment procedures and cash flow abilities as 
far as risk and final purchase price are proposed to the first company. The most sig-
nificant and sensitive part of the process is the repayment value prediction for debt 
portfolio as there is a strong business need for the method to be designed for efficient 
and accurate prediction with the time factor. 
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Fig. 2. Concept of sequential prediction of sequential debt profolio valuation 

Having the data of historical claim cases together with their repayment profiles 
over time, a debt collection company can build a model in order to predict receivables 
for the new claim set invited for bids. However, in order to be able to evaluate cash 
flows in the following periods (usually months), the company needs to have possibly 
precise distribution of the receivables collection. It helps to estimate the final upper 
value for the considered input debt portfolio. Hence, not only the total aggregated 
value of the receivables is useful for bidding but also their probable timing, period by 
period. 

3.2   The Concept of the Hybrid Valuation Method 

The idea of the hybrid method for prediction of debt recovery value consists of data 
flows that are executed separately for each period i (M times), Fig. 2. First, the pre-
pared historical data is clustered into groups of similar debt cases. Next, a set of mod-
els is created (learnt) separately for each cluster j using the fixed set of common, 
predefined models. The best one is selected for each cluster and becomes the cluster’s 
predictive model Pij. This assignment is done based on minimization of the standard 
deviation error. This is the main learning phase followed by the final prediction for 
the debt portfolio. For each of debt cases, the closest cluster of historical data is de-
termined and the prediction for this case is performed based on the model assigned 
and trained on that cluster, separately for each period i.  

The important characteristic of the method is that the predicted value of return on 
debt in period i is taken as the input variable for the i+1th period prediction as an 
additional feature in the model, see Fig. 3. 

Historical, reference cases are in general clustered into NG groups using partition-
ing method and the best prediction model is separately assigned to each group and 
each period i. Features directly available within the input data set or new ones derived 
from them are the only used in the clustering process. Besides, clustering is performed 
for the whole reference set, i.e. for cases being after at least one period of the recovery 
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Fig. 3. Input variable dependency in sequential prediction of debt repayment 

procedure (period 1). For the following periods, e.g. for period i, cases with to short 
history (being recovered shorter than i periods), are just removed from their clusters 
without re-clustering. As a result, the quantity of each cluster Gij may vary depending 
on the period i and it is smaller for greater i. For the jth group Gij and the ith period, 
we have: card(Gij) ≥ card(G(i+1)j). In consequence, there are the same reference groups 
for all periods but their content decreases for the following periods. This is obvious, 
because the debt collection company possesses many pending recovery cases, which 
can be used as references in prediction only for the beginning periods. If the quantity 
of one cluster for the greater period is too small than this cluster is merged with an-
other, close one for all following periods.  

Each group Gij possesses its own representation and the common similarity func-
tion is used to evaluate closeness between group Gij and each input case x just being 
predicted. Next, the single closest group, or more precise the assigned model, is ap-
plied to the input case x. 

4   Experimental Setup 

For the experimental examination of the proposed method 12 distinct real debt re-
covery data sets were used. A summary of the data profile is presented in Tab. 1. In 
total, 20 input features were extracted: 5 continuous, 9 nominal and 6 binary. The 
experiments were performed using 5 cross-fold validation setup independently  
applied for each data set [5]. As the proposed prediction process consists of algo-
rithms which efficiency depends on some parameters, some preliminary assess-
ments were applied. The key parameters of the hybrid method are: the number of 
groups that the clustering process produces, the number and types of predictors used 
and the method for the selection of the best predictor for each group. The number of 
groups was adjusted from the range of 5 to 50 by means of X-means algorithm [14]. 
The average number of groups was 17.6. Three simple predictors were used: M5P 
tree, logistic regression and regression tree. Decision of taking these relatively sim-
ple machine learning approaches was caused by the high computational cost of 
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prediction for each group and each period. The total number of predictions for only 
one data set was: 17.6 groups * 10 periods * 3 predictors * 5 cross-validations = 
2 640 models to be learnt. For 12 data sets, altogether 31 680 predictors were ex-
ploited. Obviously, the usage of more complex and sophisticated prediction meth-
ods is envisaged in future research. The best predictor assignment to each group is 
carried out based on the minimization of the prediction standard deviation. The 
research was implemented and conducted within the R statistical computing envi-
ronment with the extended and customized algorithms based on RWeka, rJava and 
tree plug-ins.  

In the experiment, the debt recovery value prediction has been conducted for 10 
consecutive periods (months). Three different scenarios were realized and finally 
compared with each other. In each scenario, the output of period i is used as the 
input variable for the following periods. The first scenario assumes simple predic-
tion to be carried out on the single model (regression tree), which is learnt and  
validated on the training data without clustering. The learning is accomplished 
separately for each period. The first scenario can be treated as the basic approach 
for value prediction of sequential and continuous variables. In the second scenario, 
also without clustering, the assessment of three distinct predictors is performed and 
the best one is chosen for each period. The full hybrid process is performed in the 
third scenario, including clustering of the reference data set, see Fig. 3 and 4. Clus-
tered data was used to train all models and the best model was determined for each 
cluster. Next, in the testing phase, the input cases were assigned to the closest clus-
ter and processed by the assigned predictor. In other words, if an appraisal case is 
close to a certain cluster, the return value would be predicted by the model assigned 
to that cluster. The second scenario extends the first one, whereas the third expands 
the second. 

Table 1. Summary of debt recovery data sets 

Data 
set 

Number 
of cases 

Data 
set 

Number 
of cases 

Data 
set 

Number 
of cases 

Data 
set 

Number 
of cases 

A 4019 D 3175 G 6818 J 6607 
B 3440 E 3736 H 1703 K 2515 
C 2764 F 4211 I 4584 L 1104 

5   Experimental Results 

Having established the methods for debt appraisal, three scenarios were launched and 
compared with each other in respect of average prediction accuracy. The results of 
experiments are presented in Tab. 2. 

The results of three distinct prediction scenarios revealed that the third scenario 
(the comprehensive, hybrid approach) performs better by 23% than the first one 
(basic prediction for sequential, continuous values with the single predictor) and by  
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Table 2. The results of debt recovery value prediction for three different scenarios 

  Prediction accuracy 

Data set 
Scenario1: single 

predictor 
Scenario 2:  

predictor selection 
Scenario3: predictor 

selection with clustering 
A 64.56% 67.03% 95.11% 
B 53.48% 60.40% 88.26% 
C 68.98% 89.51% 93.49% 
D 70.35% 80.52% 88.98% 
E 73.50% 73.72% 92.20% 
F 69.40% 95.56% 95.99% 
G 95.59% 96.24% 96.63% 
H 79.51% 92.02% 96.11% 
I 45.81% 87.97% 89.83% 
J 71.33% 86.10% 98.89% 
K 68.07% 81.95% 92.14% 
L 84.25% 91.22% 93.15% 

Average 
accuracy 

70.40% 83.52% 93.40% 

10% better than the second (with the best predictor selection). The third final 
method for debt portfolio valuation stays in high contrast with other simpler ap-
proaches, especially as regards the prediction accuracy as well as prediction error 
stability, see Tab. 4.  
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Fig. 4. The accuracy of debt recovery value prediction for three different scenarios for each 
data set from A to L 
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Studying ensemble like approaches, it is worth analyzing the error performance in 
terms of bias and variance factors. The bias and variance reflects the contribution of 
the prediction error for consecutive periods to the general error prediction [8]. Al-
though, it may happen that the aggregated value of prediction for all periods reveals 
smaller error rate than the sum of errors from all periods, the prediction for the single 
period may overestimate or underestimate. Bias and variance of the third scenario 
prediction is presented in the Fig. 5. 

0%

5%

10%

15%

20%

A B C D E F G H I J K L

Variance
Bias

 
Fig. 5. Bias / variance decomposition for sequential (period) prediction error 

As seen in Fig. 5, the stability with respect to prediction error over time is directly 
reflected in low variance term, concerning most of the error in the bias. 

6   Conclusions and Future Work 

In order to predict debt portfolio value, the proper hybrid method has been suggested 
and examined on real data. The experimental results support the conclusion that com-
bined prediction solutions are more accurate and may be efficiently applied to debt 
recovery valuation.  

In the future studies, many further aspects improving the method will be consid-
ered, in particular: combination of distinct types of classifiers, models’ tuning using 
genetic based optimization [13] and adaptive clustering.  

The application of the similar hybrid concept is also considered to be applied to so-
cial-based recommender systems [10]. 
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Abstract. Region-based approaches have been proposed to computer-
assisted colorization problem, typically using shape similarity and topol-
ogy relations between regions. Given a colored frame, the objective is to
automatically colorize consecutive frames, minimizing the user effort to
colorize the remaining regions. We propose a new colorization algorithm
based on graph matching, using Belief Propagation to explore the spatial
relations between sites through Markov Random Fields. Each frame is
represented by a graph with each region being associated to a vertex. A
colored frame is chosen as a ‘model’ and the colors are propagated to
uncolored frames by computing a correspondence between regions, ex-
ploring the spatial relations between vertices, considering three types of
information: adjacency, distance and orientation. Experiments are shown
in order to demonstrate the importance of the spatial relations when
comparing two graphs with strong deformations and with ‘topological’
differences.

1 Introduction

Computer-Assisted Cartoon Animation is one of the most challeging areas in the
field of Computer Animation. Since the seminal paper of Ed Catmull [4], which
describes the 2D animation pipelines and its main problems, intense research
has been carried out in this area. Nonetheless, many problems remain unsolved
due to several difficulties. On one hand, traditional cartoon animation relies on
artistic interpretation of reality. On the other hand, 2D animation relies on the
dynamics of an imaginary 3D world, depicted by 2D strokes from the animator.
These aspects make most of the tasks in computer-assisted cartoon animation
very hard inverse problems, which are ill-posed and closely related to perceptual
issues.

Approximations to such problems are required and we may take advantage
of structural pattern recognition, which differs from the statistical approach
� The authors are grateful to FAPESP, CNPq, CAPES and FINEP for financial sup-

port, and to Cesar Coelho for the animations used in the experiments.
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because, besides the appearance features, the former explores structural relations
between the patterns in order to improve the classification. One of the most
important ways to implement structural pattern recognition methods relies on
graph representation and matching. Here, we focus on matching two graphs,
called model and input graphs. The model graph contains all classes, while the
input graph represents the patterns to be classified.

Markov Random Fields (MRFs) have been successfully applied to low level
vision problems such as stereo and image restoration. In order to obtain a solu-
tion, a cost (or energy) function must be minimized, consisting of the observation
and the Markov components [2,7]. The observation component evaluates the ap-
pearance (e.g. gray levels of pixels), and the Markov component priviledges par-
ticular configurations of labels, simplified to pairwise interactions between sites
(e.g. smoothness). Currently, there are two popular approaches to estimate a so-
lution for MRFs: Graph Cuts (GC) [2] and Belief Propagation (BP) [7]. GC are
based on an efficient implementation of min-cut / max-flow and BP on a message
passing approach in order to propagate appearance and smoothness information
through the graph. While the GC based methods are restricted to Markov com-
ponents representing semi-metrics, the BP based approaches are more general
since they do not impose any explicit restriction to the cost function.

A general approach based on graph matching, MRF and BP, with pairwise
interactions between sites, is proposed in the present paper for point matching
problems. Here, this framework is applied to computer-assisted colorization for
cartoon animation [1]. Given an animation sequence, the goal is to track the
2D structural elements (representing regions) throughout the sequence to estab-
lish correspondences between the regions from consecutive frames [1] in order to
automatically propagate the colors to different frames. This allows fast modifica-
tions on the colors of entire animation sequences by simply editing the rendering
of one single frame. In this case, each region is represented by its centroid and
we want to find a correspondence between two points sets, one from the colored
and other from the uncolored frame.

The matching between regions corresponds to a ‘weaker’ form of isomorphism.
In practice, the isomorphism is too restrictive and a weaker form of matching is
the subgraph isomorphism, which requires that an isomorphism holds between
one of the two graphs and a vertex-induced subgraph of the other. An even
weaker form of isomorphism is the maximum common subgraph (MCS), which
maps a subgraph of the first graph to an isomorphic subgraph of the second
one [6].

Closely related to this work is the one due to Caelli and Caetano [3]. They
proposed three methods for graph matching based on MRFs, evaluated through
artificial experiments to match straight line segments. A key point which has not
been explored is the importance that spatial relations can represent, specially
when the simplest case of (pairwise) interactions between sites is considered.
Here, we extend the efficient BP message computation described in [7], keeping
efficiency while exploring three types of structural information simultaneously:
adjacency, distance and orientation between patterns. This strategy makes the
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Markov component much more discriminative than just ‘smoothness’. (Note that
in our case, smoothness is also explored by the adjacency between patterns.)

A previous work for computer-assisted colorization was presented in [1], which
was based on three factors: region area, point locations and the concept of Degree
of Topological Differences (DTD) in order to explore the adjacencies between re-
gions. Here, we propose a simple approach based on area, contour length and
point locations used to encode the spatial relations as described in [5] and [8]. The
objetive of the proposed general framework based on MRF is to overcome the
main difficulty in graph matching problems, expressed by the following question.
How to match two ‘topologically’ different graphs, with different sizes (different
number of vertices and edges), and possibly with ‘strong deformations’ in terms
of appearance / structure between the corresponding patterns? The proposed
method attempts to answer this question by exploring the contextual informa-
tion, given by the ‘labeled’ neighbors, through MRFs.

This paper is organized as follows. In Section 2, we formulate the generic
graph matching problem as MRF. Section 3 describes the proposed probabilistic
optimization approach based on BP. In Section 4, there is a description of our
proposed solution to the colorization problem. Section 5 is dedicated to the
experimental results. Finally, some conclusions are drawn in Section 6.

2 Graph Matching as MRFs

An Attributed Relational Graph (ARG) G = (V,E, µ, ν) is a directed graph
where V is the set of vertices of G and E ⊆ V × V the set of edges. Two
vertices p ∈ V , q ∈ V are adjacent if (p, q) ∈ E. µ assigns an attribute vector
to each vertex of V . Similarly, ν assigns an attribute vector to each edge of E.
Following the same notation used in [5], we focus on matching two graphs, an
input graph Gi, representing the scene (input image) with all patterns to be
classified, and a model graph Gm, representing the template with all classes.
Given two ARGs, Gi = (Vi, Ei, µi, νi) and Gm = (Vm, Em, µm, νm), we define a
MRF on the input graph Gi. For each input vertex p ∈ Vi, we want to associate
a model vertex α ∈ Vm, and the quality of a mapping (or labeling) f : Vi → Vm

is given by the cost function defined in Equation 1, which must be minimized.

E(f) =
∑
p∈Vi

Dp(fp) + λ1

∑
(p,q)∈Ei

M(fp, fq) , (1)

where λ1 is a parameter to weight the influence of the Markov component on the
result. Each vertex in each ARG has an attribute vector µi(p) in Gi and µm(α)
in Gm. The observation component Dp(fp) compares µi(p) with µm(fp), assign-
ing a cost which is proportional to the vertices attributes dissimilarity. Each
directed edge in each graph has an attribute vector νi(p, q) in Gi and νm(α, β)
in Gm, where (p, q) ∈ Ei and (α, β) ∈ Em. The Markov component M(fp, fq)
compares νi(p, q) and νm(fp, fq), assigning a cost which is proportional to the
edges attributes dissimilarity.
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3 Optimization Based on BP

In order to find a labeling with minimum cost, we use the max-product BP [7],
which works by passing messages around the graph according to the connectivity
given by the edges. Each message is a vector whose dimension is given by the
number of possible labels |Vm|. Let mt

pq be the message that vertex p sends to
a neighbor q at iteration t. Initially, all entries in m0

pq are zero and, at each
iteration, new messages are computed as defined by Equation 2.

mt
pq(fq) = min

fp

(
M(fp, fq) +Dp(fp) +

∑
s∈Np\{q}

mt−1
sp (fp)

)
(2)

where Np \ {q} denotes the neighbors of p except q. After T iterations, a belief
vector is computed for each vertex:

bq(fq) = Dq(fq) +
∑

p∈Nq

mt
pq(fq) . (3)

Finally, the label f∗
q which minimizes bq(fq) individually at each vertex is se-

lected.
In the following, we describe an efficient computation of each vector message.

Equation 2 can be rewritten as [7]:

mt
pq(fq) = min

fp

(
M(fp, fq) + h(fp)

)
, (4)

where h(fp) = Dp(fp) +
∑

mt−1
sp (fp). In order to compute the messages effi-

ciently, based on the Potts model [7], we assume:

mt
pq(fq) = min

(
H(fq),min

fp

h(fp) + d

)
. (5)

The main difference explored in the present paper relies on H(fq), which takes
into account the edges of the model graph:

H(fq) = min
fp∈Nfq∪{fq}

(
h(fp) +M(fp, fq)

)
, (6)

where, besides the neighbors inNfq , it is also necessary to examine the possibility
that p and q have the same label.

Thus, to compute each message vector, the amortized time complexity can be
upper bounded by the number of edges in the model graph. The standard way
to compute a single vector message update is to explicitly minimize Equation 2
over fp for each choice of fq, which is quadratic on the number of labels. We
propose a modification of the orginal algorithm in [7] to compute each message in
linear time on |Em|, which is based on using Equation 6 instead of H(fq) = h(fq)
for the Potts model described in [7].
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4 Computer-Assisted Colorization

The proposed general framework was applied to the computer-assisted coloriza-
tion problem. Given an animation sequence, the 2D structural elements (repre-
senting regions) must be tracked throughout the sequence in order to establish
correspondences between the regions from consecutive frames. The goal is to au-
tomatically propagate the colors to different frames using this correspondence,
which is obtained by a MCS through a cost function, considering two types of
information, appearance and structure.

More specifically, given two frames, one colored and the other uncolored, we
want to find a correspondence between regions from both frames in order to
propagate the colors from the colored to the uncolored frame. Each frame is
represented by an ARG. The colored one is the model ARG, while the uncolored
one is the input ARG.

Both input and model graphs are obtained similarly. Let W be a set of regions
(connected components) defined by the animator strokes in the drawing. Each
region in W is represented by its centroid, which is represented by a vertex.
Edges are created between adjacent regions, assuming that important contexts
are given by adjacent neighbors. Both input and model consist of planar graphs,
each one having |E| = O(|V |) edges. Therefore, the algorithm to compute each
message vector, described in Section 3, is linear on the number of labels |Vm|.

The appearance information is represented by the vertex attributes and the
structure by the edge attributes. After T iterations, the BP approach computes
the belief vector for each vertex, representing the costs of each label, and assigns
a label with minimum cost to obtain a homomorphism. In order to obtain a MCS
and to guarantee that the mapping is bijective between subsets of Vi and Vm, we
applied the same post-processing as described in [8]: for each model vertex, we
kept the cheapest input vertex, and the remaining input vertices were associated
to a NULL label, indicating they are not classified, leaving ambiguous cases for
the animator to decide which color must be used to the unclassified (uncolored)
regions.

Next we describe each term of the energy function in Equation 1.

4.1 Observation Component

For each vertex v, the appearance information µ(v) consists of two attributes:
the area and the contour length of the region corresponding to vertex v. For the
observation component, we used

Dp(fp) = max

{
|µA(p)− µA(fp)|

µA(p)
,
|µC(p)− µC(fp)|

µC(p)

}
, (7)

where µA and µC represents the area and the curve length, respectively, p ∈ Vi

and fp ∈ Vm. In order to map p to fp, both attributes must match simultaneously,
thus leaving ambiguous regions to the user.



350 A. Noma, L. Velho, and R.M. Cesar-Jr

4.2 Markov Component

For each directed edge e ∈ E, a single edge attribute ν(e) is defined as the
(normalized) vector corresponding to the directed edge. The Markov component
compares edge attributes through the dissimilarity function defined by Equa-
tion 8 [5], which compares pairs of vectors in terms of angle and lengths in order
to characterize the spatial relations.

cE(v1,v2) = λ2
|cosθ − 1|

2
+ (1− λ2)

∣∣|v1| − |v2|
∣∣ , (8)

where θ is the angle between the two vectors v1 and v2, |.| denotes the absolute
value, |v| denotes the length of v (assuming all lengths |v| are normalized be-
tween 0 and 1), and λ2 is a parameter to weight the importance between the two
terms. The Markov component M(fp, fq) is defined as the edges dissimilarities
described in [5]:

M(fp, fq) =
{
cE
(
νi(p, q), νm(fp, fq)

)
, if (fp, fq) ∈ Em

d, if (fp, fq) /∈ Em and fp �= fq
(9)

where the first case compares the respective vectors using Equation 8, and the
second penalizes the cost with a positive constant d, encouraging adjacent ver-
tices to have the same label. In this case,M(fp, fq) = M(α, α) = cE

(
ν(p, q),0

)
<

d, proportional to |ν(p, q)| (because it is assumed θ = 0 in this case), thus pe-
nalizing distant vertices. This fact implies that the proposed Markov component
is not a semi-metric, since M(α, α) may be different from zero, and the GC [2]
based methods are not guaranteed to produce good approximations. Fortunately,
this limitation does not apply for the BP algorithm.

5 Experimental Results

The proposed method was tested on four animations: ‘cufa’, ‘calango’, ‘wolf’
and ‘face’. We tested three factors: deformations in appearance due to large

(model) (input) (our result) (previous work)

Fig. 1. ‘Face’ example. From the colored frame (model), we want to colorize the next
uncolored input frame. The results from our method and from a previous work. For all
colorization experiments, we used λ2 = 0.5 (Equation 8), penalty d = 1.0 (Equation 9),
and all vectors were normalized by the maximum length of all edge attributes (vectors).
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Table 1. Quantitative results from the tested animations

animation frames |Vm| |Vi| # wrong colorizations # missings # correctly unclassified
cufa 42, 43 35 36 0 4 (11.11%) 2 (100.0%)

calango 24, 25 23 21 1 (4.76%) 3 (14.28%) 1 (100.0%)
wolf 26, 27 23 23 1 (4.35%) 8 (34.78%) 2 (100.0%)
face – 18 22 0 5 (22.72%) 1 (100.0%)

variations in the region area / contour, deformations in structure due to large
motions, and ‘topological’ differences caused by merging / splitting of regions.

Figures 1 and 2 illustrate the experiments. In all examples, one column il-
lustrates the colored frame for the model and another showing the colorization
result. White regions represent the unclassified or uncolored regions.

In Figure 2(a), there is a partial occlusion of the disc, causing one region
to disappear and a large change in the ‘area’. Also, some regions appear due to
splitting of the region near the necklace and medal. Figure 2(b) illustrates a chal-
lenging example, with strong deformations on both appearance and structure,
merging (e.g. gingiva) and splitting (background) of regions, and new teeths,
causing great topological incompatibilities. In Figure 2(c), some regions disap-
pear due to merging of regions (leg and arm).

(model) (result) (model) (result)
(a) (b)

(model) (result)
(c)

Fig. 2. Example of colorization on the (a) ‘cufa’, (b) ‘wolf’ and (c) ‘calango’ anima-
tions. For each example, we present the model and the corresponding result, respec-
tively.
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Figure 1 is used to illustrate a comparison against [1]. Quantitative results are
shown in Table 1. For instance, in the ‘face’ example, all the colored regions were
correctly matched by our approach (no wrong colorization). Although there were
5 missing regions produced by our approach (and 1 new region correctly unclas-
sified, above the tonge), the method in [1] produced 8 missings (an improvement
of 37.5%). Among the 5 missings, 4 were due to changes in the ‘adjacency’ prop-
erty, penalized by our approach: two regions of the body and the two pupils.
|Vm| and |Vi| denotes de number of model and input vertices, respectively.

6 Conclusions

This paper has proposed a novel general framework for graph matching, using
spatial relations through Markov Random Fields (MRFs) and efficient belief
propagation (BP) for inference. The edges dissimilarities described in [5] were
used as a Markov component, leading to a very useful tool for point matching
problems. The key to achieve efficiency was the assumption that important con-
textual information is concentrated on close neighbors. Both input and model
patterns were represented by planar graphs, allowing an efficient algorithm to
compute the messages, i.e. linear on the number of labels.

For the computer-assisted colorization problem, we have shown encouraging
results, illustrating the benefits of our approach for large deformations in ap-
pearance and structure, and for topological incompatibilities on the two graphs
being matched, induced by merging and splitting of regions.

Future works include the aplication of the proposed method to other impor-
tant vision problems, such as image segmentation and shape matching.
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Abstract. This paper presents a novel work for prediction of artificial habitat in 
shrimp aquaculture based on environmental signal analysis. The physical-
chemical variables that are involved into the system are studied for modeling 
and predicting environmental patterns. The prediction model is built using AR 
models that reconstruct a partial section of a particular measured signal. The 
physical-chemical variables are classified based on the negative ecological  
impact using a new statistical model that calculates the frequency and the devia-
tion of the measurements. A fuzzy inference system processes the level classifi-
cations using aquaculture rules that define all the cases calculating the condition 
of the shrimp habitat. 

Keywords: fuzzy inference systems, prediction, signal analysis, Assessment. 

1   Introduction 

The main purpose on water management and aquaculture systems is to control and 
maintain the optimal conditions for the surviving and growing of the organisms in nor-
mal farming conditions [1]. The early detection of potential problems can be decisive in 
the organism health and the economical activity of the farm. The negative impact of a 
set of physical-chemical variables can be assessed when they occur, but estimate the 
future condition of the ecosystem can be a difficult task since they are not tools for 
solving this problem. In other hand, if the concentrations levels are predicted, potential 
danger situations could be avoided before they appear [2]. There is a lack of methodolo-
gies for prediction and assessment of water quality; the methods actually developed 
have several weaknesses were the lack of a reasoning process in the assessment of the 
information is the main problem [3], [4], [5], in addition, the prediction process usually 
is confused as a present condition to be predominant for the rest of the day [6]. 

2   Data Collection 

A set of physical-chemical variables compounds the ecosystem of the shrimp; this set 
must be under control and in optimal ranges. As a result of this condition, the features 
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of the variables are studied with the objective to determine the frequency and impor-
tance of their behaviors [2]. 

The measurements of the variables depend of the exactitude of how a supervisor 
monitors the aquaculture system. A complete farm was monitored in Rancho Chapo 
located in Sonora, Mexico. The higher impact variables measured were temperature, 
dissolved oxygen, salinity and pH, using a sensor device for each variable. The period 
of monitoring was of 15 minutes. The data set contains four months of measurements; 
it means a register of 9312 values per variable. The classification levels of the physi-
cal-chemical variables (status) are defined in Table 1, for dissolved oxygen we chosen 
“hypoxia”, “low” and “normal”, for the temperature and salinity variables we chosen 
“low”, “normal” and “high”, and for the pH variable we chosen “acid”, “low”, “nor-
mal”, “high”, and “alkaline”.  

Table 1. Classification levels, tolerances (Tol) and limits (Lim) of physical-chemical variables 

Variables 
Hypoxia 

Acid 
Low Normal High Alkaline Tol. Lim. 

Temp (ºC) ------- 0 – 23 23 - 30 30 - ∞ ------- ±1 ±1 
Sal (mg/L) ------- 0 – 15 15 - 25 25 - ∞ ------- ±1 ±1 
DO (mg/L) 0 – 3 3 – 6 6 - 10 10 - ∞ ------- ±0.5 ±0.5 

PH  0 – 4 4 – 7 7 – 9 9 - ∞ 10 - 11 ±0.5 ±0.5 
 

3   Series Prediction  

3.1   Preprocessing 

Smoothing  
 

The variables signals have several peaks values, this behavior can be generated due a 
failed device, human error or environmental situations. The four signals of the physi-
cal-chemical variables are smoothed in order to be more easily for processing. A 
moving average weighted filter works using an average of signal points (measured 
concentrations) for producing new output points of the new filtered signal and 
smoothing it [7]. The smoothing process of the physical-chemical variables can be 
calculated as follows: 
ሺ݊ሻݕ  ൌ  ܾݔሺ݊ െ ݅ሻே

ୀ  (1) 

where x(n) is the original signal, y(n) is the new output signal, N is known as the filter 

order, bi are the Spencer 15 terms coefficients defined as 
ଵଷଶ [-3, -6, -5, 3, 21, 46, 67, 74, 

67, 46, 21, 3,-5,-6,-3]. The smoothing process using a moving average weighted filter is: ݕሺ݊ሻ ൌ െ 3320 ሺ݊ሻݔ െ 6320 ሺ݊ݔ െ 1ሻ െ 5320 ሺ݊ݔ െ 2ሻ  ڮ െ 3320 ሺ݊ݔ െ 14ሻ (2) 

The Fig. 1 shows examples of the original and smoothed measured variables, where 
the random perturbations are suppressed. 
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Fig. 1. Original and smoothed signal of the physical-chemical variables using a moving average 
filter 
 
Detrending 
 
The environmental series usually contain some constant amplitude offset components 
or trends. The amplitudes of these trends sometimes corrupt the results of series mod-
eling. Therefore, it is needed to remove them before performing further analysis [8]. 
The trend is calculated using the linear regression method, where the equation of the 
estimated trend for a particular variable can be expressed as follows: ݕ ൌ ܽ  ܽଵݔ   (3) ܧ

where ܽ y ܽଵ are coefficients that represent the intersection with the abscise axis and 
the pendent respectively, y is the physical-chemical variable (temp, salt, DO and pH) 
and E is the error between the modeled and the observed values. The coefficient ܽଵ 
can be calculated using: ܽଵ ൌ ݊ ∑ ݕݔ െ ∑ ݔ ∑ ݊ݕ ∑ ଶݔ െ ሺ∑ ሻଶݔ  (4) 

where n is the number of points of the series, and ݔ  is the ith measurement.  For the a0 
coefficient: ܽ ൌ തݕ െ ܽଵݔҧ (5) 

3.2   Autoregressive Model (AR) 

The AR model of a series allows predicting the current value xt, based on past values ݔ௧ିଵ, ,௧ିଶݔ . . .,  ௧ି and a prediction error. The n parameter determines the number ofݔ
past values that are used for predicting the current value (model order). The model 
order can be estimated using an error estimator, it is known as Akaike criterion [9]: 
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ܥܫܣ ൌ ܧ ൬1  ܮ2݊ ൰ (6) 
 

where L is the number of points in the time series, n is the model order and En is the 
prediction error. The AR models that describe the physical-chemical variables using 
the model order estimated with the AIC are: ݉݁ݐ௧ ൌ  ܽ݉݁ݐ௧ିଽ

ୀଵ  ݁௧ (7) ܱܦ௧ ൌ  ܽܦ ௧ܱି଼
ୀଵ  ݁௧ 

(8) 

௧ݐ݈ܽܵ ൌ  ݈ܽܵܽݐ௧ିଶ
ୀଵ  ݁௧ 

௧ܪ (9) ൌ  ܽܪ௧ିହ
ୀଵ  ݁௧ 

(10) 

where ai  is the ith AR coefficient, ݁௧ is the predicted error and p is the model order. 
The Fig. 2 shows the reconstruction of the physical-chemical signals, where a total 

of 96 points (one day/24 hours) where predicted using the AR(p) model suggested.  
 
 

 

Fig. 2. Prediction of the physical-chemical variables. The AR model predicts 96 measurements 
(24 hours). 

4   Assessment  

Historical Water Quality Index 
 

The Historical Water Quality Index (HWQI) asses aquaculture shrimp systems using 
historical information (variables set measurements). The result of the assessment is a 
status given by the behavior of the variables measured. The levels of classification of 
the HWQI are defined as Excellent, Good, Regular and Poor. 

The HWQI works in two phases; first it calculates the physical-chemical index, 
which classifies the effect level of a variable value in the ecosystem. The second 
phase consists on evaluate the result information of the Г index by a reasoning 
process using a fuzzy inference system.  
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Physical – chemical assessment index (Г) 
 

The fuzzyfication process is done using the physical-chemical index (Г) and it com-
prises three factors; frequency, amplitude and deviation of the failed tests [5].  The 
frequency (α) of failed tests in a set of 96 measurements is calculated using the next 
expression: 

 

α ൌ mm ൌ m96 (11) 

where ்݉ is the total number of measurements and ݉ is the number of measure-
ments out of the desired range. The average of the number of deviations (β) of failed 
test is calculated using: ߚ ൌ ∑ ݁݉ ் ൌ ∑ ݁ଽୀଵ96  

(12) 

where e is the deviation of the ith failed measurement (out of the desired level), i: 1, 2, 
… n, n is the number of the deviations and mT  is the number of total tests.  The varia-
ble e can be expressed as follows: 
when the value must not fall below the  level: ݁ ൌ ݈ െ ݈ݐ െ ݉ (13) 

when the value must not exceed the level: ݁ ൌ ݉ െ ݈ݐ െ ݈ (14) 

where m is the value of the test,  la is the upper limit of the range to evaluate, ta is the 
upper tolerance,  lb is the lower limit of the evaluated range and tb is the lower toler-
ance of the range (Table 1).  

The Physical – chemical index can be expressed as follows: 

Γ ൌ  ඩቀmf96ቁ2  ൬∑ ݁݅݊݅96 ൰2
2  

(15) 

Finally the membership input equation for the fuzzy inference system is defined as 
follows:  ߤ௩ ൌ ൝0 1 ൏ Γ1 െ Γ 0  Γ  1 (16) 

 
Reasoning process 
 

The level classifications of the particular variables are processed using a set of rules 
that involves all the cases of the habitat condition. There are some expressions that are 
frequently used by experts in water management, these kinds of expressions construct 
the fuzzy language of the FIS, and these rules can be expressed as follows: 
Rule 1:  If Temp is normal and Salt is normal and pH is normal y DO is normal then WQI is 

Excellent 
Rule 2:  If Temp is normal and Salt is normal and pH is normal y DO is low then WQI is Good 
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The size of the rule set depends of the number of rules that are involved in the envi-
ronment; a total of 135 rules have been used in this case. 

 
Predicted Water Quality Index (PWQI) 

 

The reasoning process generates one output membership by one rule, and this result is 
used to establish the membership of the output function (Fig. 3). 

 

 

Fig. 3. Membership functions for PWQI 

For transforming the final results (the indices results processed by the reasoning 
process) in a real output value (condition of the shrimp habitat), it is needed to realize 
the aggregation process, where all the resulting membership functions generate one 
final function (µout(x)). The deffuzification process is done when the center of gravity 
is calculated using µout(x), to do this the centroid method is used as a deffuzification 
solution: ܹܲܳܫ ൌ  ݔሻ݀ݔ௨௧ሺߤݔ ݔሻ݀ݔ௨௧ሺߤ  (17) 

 
The final score for the PWQI index have a range from the center of the poor function 
to the center of the excellent function [0.078, 0.87], therefore the different status val-
ues are located inside this range; bad is 0.078, regular is 0.3, good is 0.6 and excellent 
is 0.87. 

5   Results  

A predictability analysis shows the perform of the system.  Prediction tests were done 
using one and two days of information. The PWQI (predicted day) results were com-
pared with the HWQI (evaluated day) showing some interesting remarks (Fig. 4).  
The left column shows the predicted values versus the real values, where the curves 
have similar results. A second prediction analysis is showed in right column, where a 
relationship between estimated and real values was done, the nearest points to the 
diagonal line are a closer prediction to the real assessment of the water quality. The 
results show a closer relationship between HWQI and PWQI indices.  
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Fig. 4. Results of the prediction and assessment of the artificial habitat. The left column shows 
a comparison with different prediction horizons (24 and 48 hours) between the real and pre-
dicted data. The right column shows the relationship of predicted (PWQI) and real values 
(HWQI), where the diagonal line represents the exactitude of the prediction.  

When the number of measurements to predict is high, the prediction error increase, 
this behavior can be observed in Fig. 5, where error estimation curve is modeled. 
  

 
Fig. 5. Error estimation for different prediction horizon 

The error prediction can be estimated with the next equation: ݁ ൌ .ଶ଼ݔ7.40362 ± 1.16313 (18) 

where e is the predicted error, x is the prediction horizon expressed as the number of 
predicted points, and the term 1.16313 is the average deviation of the prediction error.  

6   Conclusions 

In this work a model for predicting the status of the ecological environment for aqua-
culture systems was developed. The model to predict the water quality status was 
built in two phases: the first predicts a section of the four signals; the second analyzes 
the four sections with the HWQI index in order to analyze the predicted signals and to 
create the PWQI index. A comparison between model (HWQI and PWQI) shows a 
good performance of the prediction process and the error analysis shows how a bigger 
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horizon prediction increases the error with a light deviation. The model proposed in 
this research is a powerful tool in the decision support for monitoring future environ-
mental problems in aquaculture shrimp systems. 
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Abstract. We propose a model based on the Word Space Model for calculating 
the plausibility of candidate arguments given one verb and one argument. The 
resulting information can be used in co-reference resolution, zero-pronoun  
resolution or syntactic ambiguity tasks. Previous work such as Selectional Pref-
erences or Semantic Frames acquisition focuses on this task using supervised 
resources, or predicting arguments independently from each other. On this work 
we explore the extraction of plausible arguments considering their co-relation, 
and using no more information than that provided by the dependency parser. 
This creates a data sparseness problem alleviated by using a distributional the-
saurus built from the same data for smoothing. We compare our model with the 
traditional PLSI method. 

1   Introduction 

Several tasks such as co-reference resolution, zero-pronoun resolution or syntactic 
ambiguity can be regarded as sentence reconstruction tasks that can be solved by 
measuring the plausibility of each candidate argument. This kind of tasks relies on 
resources such as semantic frames or selectional preferences for finding the most 
plausible candidate for a missing part given a context. Consider for example the fol-
lowing sentence: 
There is hay at the farm. The cow eats it 
We would like to connect it with hay, and not with farm. From selectional preferences 
we know that the object of eat should be something edible, so that we can say that hay 
is more edible than farm, solving this issue. From semantic frames, we have similar 
knowledge, but in a broader sense—there is an ingestor and an ingestible.  

However, this information can be insufficient in some cases where the selectional 
preference depends on other arguments from the clause. For example: 
The cow eats hay but the man will eat it 
In this case, it is not enough information to know that it should be edible, but also the 
resolution depends on who is eating. In this case it’s unlikely that the man eats hay, so 
the sentence might refer to the fact that he will eat the cow. The same happens with 
                                                           
* We thank the support of Mexican Government (SNI, SIP-IPN, COFAA-IPN, and PIFI-IPN), 

CONACYT; and the Japanese Government. The second author is currently a JSPS fellow. 
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other of arguments for verbs. For example, some of the FrameNet peripheral argu-
ments for the ingestion frame are instrument, and place. However, there are some 
things which are ingested with some instrument —e.g. soup is eaten with a spoon, 
while rice is eaten with fork, or chopsticks, depending on who is eating; or at different 
places. Plausible argument extraction allows constructing a database dictionary of this 
kind of information, which can be regarded as common sense from the fact that it is 
possible to learn what kind of activities are performed by groups of entities automati-
cally from large blocks of text. See Fig. 1. 
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Fig. 1. A verb linking groups of related arguments 

The goal of our work is to construct such a database. For this purpose we need to 
obtain information related to selectional preferences and semantic frames extraction.  

Several works are devoted to semantic plausibility extraction, but most of them use 
supervised resources or consider arguments independently from each other. This work 
is devoted to the extraction of co-related plausible arguments in an unsupervised way, 
i.e., no other resource is needed after the dependency parse. 

The following section describes work related to verb argument plausibility acquisi-
tion, and then we present the results of our experiments within two different ap-
proaches. On Section 2.5 we briefly discuss some possible applications, on Section 3 
we evaluate our approach and finally we draw or conclusions. 

2   Related Work 

The problem of automatic verb argument plausibility acquisition can be studied from 
several points of view. From the viewpoint of the kind of information extracted we 
can find related work for selectional preferences and semantic frames extraction. 
From the approach of selectional preferences, the task is focused on automatically 
obtaining classes of arguments for a given verb and a syntactic construction. From the 
approach of semantic frames, arguments are grouped by the semantic role they have, 
regardless of the syntactic construction they have. This latter approach emphasizes the 
distinction between core (indispensable) or peripheral arguments. On the other hand, 
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we can consider the viewpoint of how this information is represented: the task can be 
regarded as a case of statistic language modeling, where given a context—verb and 
other arguments, the missing argument should be inferred with high probability; or it 
can be regarded as a word space model task frequently seen in IR systems. In the next 
sections we present works related to this task from those different viewpoints. 

2.1   Selectional Preferences 

Selectional preferences acquisition can be regarded as one of the first attempts to 
automatically find argument plausibility. Early attempts dealt with simpler <verb, 
argument> pairs. Since the learning resource is sparse, all of these works use a gener-
alization, or smoothing mechanism for extending coverage. [16] uses WordNet for 
generalizing the object-argument. [1] use a class-to-class model, so that the both verb 
as well as the object-argument are generalized by belonging to a class using WordNet. 
[11] acquire selectional preferences as probability distributions over the WordNet 
noun hyponym hierarchy. They use other argument relationships aside from object-
argument. [13] combine semantic and syntactic information by estimating his model 
using corpora with semantic role annotation (i.e. FrameNet, PropBank), and then ap-
plying class-based smoothing using WordNet. They model the plausibility of a verb 
and argument in a given role as  
Plausibilityv,r,a=P(v,s,gf,r,a)=P(v)·P(s|v)·P(gf|v,s)·P(r|v,s,gf)·P(a|v,s,gf,r), 
where P(s|v)is the probability of a particular sense of a verb, P(gf|v,s) is the syntactic 
subcategorizations of a particular verb sense, P(r|v,s,gf) reflects how the verb prefers 
to realize its thematic role fillers syntactically and P(a|v,s,gf,r) is verb’s preference for 
certain argument types and estimate the fit of a verb and argument in a given role. 

2.2   Subcategorization Frames 

The following works deal with the problem of semisupervised argument plausibility 
extraction from the subcategorization frames extraction approach. [17] acquire verb 
argument structures. They generalize nouns by using a Named Entity Recognizer 
(IdentiFinder) and then they use the noisy channel framework for argument predic-
tion. Example of the kind of information they are working with are: Organization 
bought organization from organization, Thing bought the outstanding shares on 
date, and, sometimes without generalization, The cafeteria bought extra plates.  

Another semi-supervised work is [9]. They generalize by using a manually created 
thesaurus. For finding case frames they use together with the verb, the closest argu-
ment, providing verb sense disambiguation for cases similar as the example which 
motivated us, presented in Section 1. 

Next we discuss two different viewpoints for dealing with the verb argument in-
formation representation.  

2.3   Language Modeling 

We can regard the task of finding the plausibility of a certain argument for a set of 
sentences as estimating a word given an specific context. Particularly for this work we 
can consider context as the grammar relationships for a particular verb: 
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( ) ( ) ( )wcPcPcwP ⋅=,                                            (1) 

which can be estimated in many ways, particularly, using a hidden markov model, or 
using latent variables for smoothing, for PLSI [8]:,  

( ) ( ) ( ) ( )zcPzwPzPcwP
iZ
∑ ⋅⋅=,

 

The conditional probability can be calculated from n-gram frequency counts. 

 

Fig. 2. Each document in PLSI is represented as a mixture of topics 

2.4   Word Space Model 

Traditionally from Information Retrieval, words can be represented as documents and 
semantic context as features, so that it is possible to build a co-occurrence matrix, or 
word space, where each intersection of word and context shows the frequency count 
of each number. This approach has been recently used with syntactic relationships 
[13]. An important issue within this approach is the similarity measure chosen for 
comparing words (documents) given its features. Popular similarity measures range 
from simple measures such as Euclidean distance, cosine and Jaccard’s coefficient 
[10], to measures such as Hindle’s measure and Lin’s measure. 

2.5   Potential Applications 

Since Resnik [16], selectional preferences have been used in a wide range of applica-
tions: Improving parsing, since it is possible to disambiguate syntactic structures if we 
know the kind of arguments expected for a sentence [4]; Inference of meaning of un-
known words—Uttering I eat borogoves makes us think that a borogove might be 
edible; Co-reference resolution [15]; Word Sense Disambiguation [11, 12]; 
Metaphora recognition, an uncommon usage of an argument would make a sentence 
odd, thus, perhaps containing a metaphora (or a coherence mistake); Semantic Plausi-
bility [14], Malapropism detection [2, 3] “hysteric center”, instead of historic center, 
“density has brought me to you”, instead of destiny. 
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3   Methodology 

We propose a model based on the Word Space Model. Since we want to consider ar-
gument co-relation, we use the following information: 

P(v,r1,n1,r2,n2), where v is a verb, r1 is the relationship between verb and n1 (noun) 
as subject, object, preposition or adverb. r2 and n2 are analogous. If we assume that n 
has a different function when used with another relationship, then we can consider 
that r and n form a new symbol, called a. So that we can simplify our 5-tuple to 
P(v,a1,a2). We want to know, given a verb and an argument a1, which a2 is the most 
plausible, we can write this as P(a2|v,a1). For PLSI this can be estimated by  

P(a2,v,a1)=Sum(Zi,P(z)·P(a2|z)·P(v,a1|z).  
For the word space model, we can build a matrix where a2 are the rows (docu-

ments) and v, a1 are features. As this matrix is very sparse, we use a thesaurus for 
smoothing the argument values. For doing this, we loosely followed the approach 
proposed by [12] for finding the predominant sense, but in this case we use the k 
nearest neighbors of each argument ai to find the prevalence score of an unseen triple 
given its similarity to all triples present in the corpus, measuring this similarity be-
tween arguments. In other words, as in [12, 18, 19] for WSD, each similar argument 
votes for the plausibility of each triple. 

Prevalence(v, x1, x2) =

sim(a1, x1) ⋅ sim(a2, x2) ⋅ PMLE (v,a1,a2)
<v,a1 ,a2 >∈T

∑
sim _ exists(a1,a2, x1, x2)

<v,a1 ,a2 >∈T

∑
 

where T is the whole set of ＜verb, argument1, argument2> triples and 

sim _exists a1,a2,x1,x2( )=

1 if sim(a1,x1) ⋅ sim(a2,x2) > 0

0 otherwise

⎧ 
⎨ 
⎩ 

 

For measuring the similarity between arguments, we built a thesaurus using the 
method described by [5], using the Minipar browser [6] over short-distance relation-
ships, i.e., we previously separated subordinate clauses. We obtained triples <v,a1,a2> 
from this corpus, which were counted, and these were used for both building the the-
saurus as well as a source of verb and argument co-occurrences. 

3.1   Evaluation 

We compared these two models in a pseudo-disambiguation task following [20]. First 
we obtained triples v,a1,a2  from the corpus. Then, we divided the corpus in train-

ing (80%) and testing (20%) parts. With the first part we trained the PLSI model and 
created the WSM. This WSM was also used for obtaining the similarity measure for 
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every pair of arguments a2, ′ a 2 . Then we are able to calculate 
Plausibility (v,a1,a2) . For evaluation we created artificially 4-

tuples: v,a1,a2, ′ a 2 , formed by taking all the triples v,a1,a2  from the testing cor-

pus, and generating an artificial tuple v,a1, ′ a 2  choosing a random ′ a 2 with ′ r 2 = r2 , 

and making sure that this new random triple v,a1, ′ a 2  was not present in the training 

corpus. The task consisted on selecting the correct tuple.  
We compared two models based on the Statistical Language Model and the Word 

Space Model approaches respectively. Using the patent corpus from the NII Test Col-
lection for Information Retrieval System, NTCIR-5 Patent [7], we parsed 7300 mil-
lion tokens, and then we extracted the chain of relationships on a directed way, that is, 
for the sentence: X add Y to Z by W, we extracted the triples: <add, subj-X, obj-Y>, 
<add, obj-Y, to-Z>, <add, to-Z, by-W>. We obtained 706M triples in the form <v, a1, 
a2>. We considered only chained asymmetric relationships to avoid false similarities 
between words co-occurring in the same sentence. 

Following [20], we chose 20 verbs, covering high-frequency verbs and low-
frequency verbs and for each one we extracted all the triples <v, a1, a2> present in the 
triples corpus. Then we performed experiments with the PLSI algorithm, and the 
WSM algorithm. 

We experimented with different number of topics for the latent variable z in 
PLSI, and with different number of neighbors from the Lin thesaurus for expanding 
the WSM. Results are shown in Table 1 for individual words, 10 neighbors for 
WSM and 10 topics for PLSI. Figure 3 shows average results for different 
neighbors and topics. 
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Fig. 3. Results for (topics)-PLSI and (neighbors)-WSM 



 Learning Co-relations of Plausible Verb Arguments with a WSM 369 

4   Conclusions 

We have proposed a new algorithm within the WSM approach for unsupervised plau-
sible argument extraction and compared with a traditional PLSI approach, obtaining 
particular evidence to support that it is possible to achieve better results with the 
method which votes for common triples using a distributional thesaurus. The results 
look consistent with previous works using distributional thesauri [4,18,19] (see Figure 
3): adding information increases coverage with little sacrifice on precision. We should 
experiment with the upper limit of the increasing coverage, as each neighbor from the 
thesaurus is adding noise. We have experimented with building the thesaurus using 
the same corpus; however, significant differences could be found if using an encyclo-
pedia corpus for building the dictionary, as broader and richer context could be found.  

We call our work unsupervised because we are not using any other resource after 
the dependency parser, such as named entity recognizers, or labeled data used for 
training a machine learning algorithm. As a future work we plan to improve the  
overall recall measure by adding a back-off technique, which could consist simply on 
considering the information based on the verb when information of the verb and one 
argument is not available. We plan also to explore specific applications for this  
algorithm. 

Table 1. Precision (P) and Recall (R) for each verb for 10 neighbors (WSM) and 10 topics 
(PLSI) 

verb triples WSM-10 PLSI-10 
  P R P R 
eat 31 0.98 0.92 1.00 0.04  
seem 77 0.88 0.09 0.64 0.38  
learn 204 0.82 0.10 0.57 0.22  
inspect 317 0.84 0.19 0.43 0.12  
like 477 0.79 0.13 0.54 0.24  
come 1,548 0.69 0.23 0.78 0.17  
play 1,634 0.68 0.18 0.69 0.19  
go 1,901 0.81 0.25 0.80 0.15  
do 2,766 0.80 0.24 0.77 0.19  
calculate 4,676 0.91 0.36 0.81 0.13  
fix 4,772 0.90 0.41 0.80 0.13  
see 4,857 0.76 0.23 0.84 0.20  
write 6,574 0.89 0.31 0.82 0.15  
read 8,962 0.91 0.36 0.82 0.11  
add 15,636 0.94 0.36 0.81 0.10  
have 127,989 0.95 0.48 0.89 0.03  

average 11,401 0.85 0.30 0.75 0.16  
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Abstract. This paper brings a contribution to the problem of efficiently
recognizing handwritten words from a limited size lexicon. For that, a
multiple classifier system has been developed that analyzes the words
from three different approximation levels, in order to get a computational
approach inspired on the human reading process. For each approxima-
tion level a three-module architecture composed of a zoning mechanism
(pseudo-segmenter), a feature extractor and a classifier is defined. The
proposed application is the recognition of the Portuguese handwritten
names of the months, for which a best recognition rate of 97.7% was
obtained, using classifier combination.

1 Introduction

In a general way handwritten recognition systems are defined by two operations:
features extraction and classification. Feature extraction is related to informa-
tion extraction, creating the word representation used as input to the classifier.
Thus, the goal of feature extraction is to capture the most relevant and discrim-
inatory information of the object to be recognized, eliminating redundancies
and reducing the data amount to be processed. The classifier based on this rep-
resentation associates conditional probabilities to the classes by means of an
estimation process.

This study deals with recognition of the Portuguese month names represented
by a limited lexicon of 12 classes: Janeiro, Fevereiro, Março, Abril, Maio, Junho,
Julho, Agosto, Setembro, Outubro, Novembro and Dezembro. Some of these
classes share a common sub-string, which adds complexity to the problem. As
can be observed in Figure 1, there is similarity between the suffix of some classes
in the lexicon, which creates confusion and affects the performance of the rec-
ognizer. Another source of confusion is a common first letter (e.g. junho and

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 371–378, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Complexity of the recognition problem: prefix and suffix

julho), which plays a significant role in the word recognition process, as ob-
served by Schomaker[1]. Further difficulty is added by the fact that the vowels
(a, e, i, o) exhibit low discriminatory power in the human reading process[1].

Performance of the recognition system for the considered lexicon is limited by
the type of confusion illustrated in Figure 1. To overcome these constraints, we
utilize an approach based on multi-view representation and perceptual concepts,
designed to avoid the intrinsic difficulties of the lexicon. This approach is one
evolution of other previous systems published by the same research group[2,3],
however the multi-view analysis proposed here are original and it is based on
perceptual concepts. This particular choice of lexicon, does not take from the
generality of the solution, since that the same problem are founded in other
lexicons like in French language[4]. The proposed system can be applied equally
well to any similar problem, thus bringing a true contribution to the state of the
art in the area.

This paper is divided into 4 sections. Section 2 describes the overall system
developed, considering the multi-view representation and system architecture.
In Section 3, the experimental results are presented and analyzed. Finally in
Section 4 the conclusions and suggestions for future work are presented.

2 Methodology

This section presents an overview of the proposed system based on multi-view
representation. The words database used and the preprocessing operations ap-
plied are described. Next, each pseudo-segmentation scheme is defined, combined
with feature vectors extraction and the classification method utilized. The clas-
sifiers outputs are combined in order to produce a final decision for the sample
in analysis.

2.1 Multi-view Analysis

Usually, two main approaches are considered for Handwritten Word Recognition
- HWR problems: local or analytical approaches held at character level and
global approach held at word level[5].
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Fig. 2. System block diagram

The global approach extracts features from the words as a whole, therefore
making it unnecessary to explicitly segment words into characters or pseudo-
characters. This approach seeks to explore information from the word context,
allowing aspects based on psychological models to be considered. The global or
word level allows to incorporate principles of the human reading process into
computational methods[5].

The local approach utilizes the word basic elements in the recognition strategy.
These elements can be characters or segments of characters (pseudo-characters).
This approach is characterized by the difficulty to define the segmentation or sep-
aration points between characters. Therefore, success of the recognition method
will depend on success of the segmentation process[5].

Our focus is on the global level, as it seeks to understand the word as a whole,
similarly to the human reading process where the reader uses previous knowledge
about the word shape to perform recognition.

Although the global analysis does not use segmentation, pseudo-segmentation
(or zoning) mechanisms can be added to produce a robust recognition system[3].
Zoning basically consists of partitioning the word image into segments (or sub-
images) of equal or variable size. Three different zoning schemes have been em-
ployed, as described next and illustrated in Figure 2.

– 2-FS (2 fixed size sub-regions): Each image is split in two, to the right and
to the left of the word center of gravity[2];

– 8-FS (8 fixed size sub-regions): Each image is divided in 8 sub-regions of
equal size. This number corresponds to the average number of letters in the
lexicon;

– N-VS (N variable size sub-regions): The words horizontal projection his-
togram of black-white transitions is determined. The line with maximum



374 J.J. de Oliveira Jr. et al.

histogram value is called Central Line (CL). A segment is defined by two
consecutive transitions over the CL.

Multi-view analysis therefore, seeks to provide different simultaneous approx-
imations for the same image. For each zoning procedure, one specific feature
vector and classifier are defined, all based on global word interpretation. At the
end, the classifiers outputs are combined to produce the final decision, therefore
taking advantage of the zoning mechanisms complementarity.

2.2 Word Database and Preprocessing

To develop the system it was initially necessary to construct a database that can
represent the different handwriting styles present in the Brazilian Portuguese
language for the chosen lexicon. The words were digitized at 200 dpi. Figure 3
illustrates some samples from this database. To reduce the variability, slant and
baseline skew normalization algorithms were applied, using inclinated projection
profiles and shear transformation.

2.3 2-FS Feature Set

In this word representation, perceptual features and characteristics based on
contour as concavities/convexities are represented by the number of their oc-
currences. The features extracted from each word form a vector of dimension
24. Perceptual features are considered high-level features due to the important
role they play in the human reading process, which uses features like ascenders,
descenders and estimation of word length to read handwritten words[5].

The components of the feature set can be described as following[2]:

– Number of concave and convex semicircles, number of horizontal and vertical
lines, number of ascenders and descenders with loop in the left/right areas,
respectively;

– Number of crossing-points, branch-points, end-points, loops, ascenders and
descenders on the left/right areas, respectively;

– Number of horizontal axis crossings by stroke;
– Proportion of white/black pixels inside the word bounding box.

Fig. 3. Sample images from the database
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2.4 8-FS Perceptual Feature Set (P)

In this zoning mechanism, ten patterns are defined for each sub-region, thus
forming for each image a feature vector containing 80 patterns.

The 10 patterns used in the perceptual feature set are:

– x1, x2, x3, x4 - Ascender (and Descender) position and size: Position
and height of the ascender (and descender) central pixel;

– x5, x6, x7 - Closed loop size and location: Number of pixels inside a
closed loop and coordinates of the closed loop center of mass;

– x8, x9 - Concavity measure: Initially the convex hull is constructed start-
ing at the bottom-most point of the boundary. The leftmost and rightmost
points in the hull are detected and the angles (relative to the horizontal) de-
fined by the line segments joining them to the starting point are measured;

– x10 - Estimated segment length: Number of transitions (black-white) in
the central line of the sub-region outside of the closed loops.

2.5 8-FS Directional Feature Set (D)

The directional features can be considered intermediate-level features, convey-
ing relevant information about the image background[5]. In this paper, the di-
rectional features defined are based on concavity testing, where for each white
image pixel (or background pixel) it is tested which of the four main directions
(NSEW) leads to a black (contour) pixel.

Representation is made labeling the background pixels, that depends on the
combination of the open directions. The components of the feature vector for
each sub-region are obtained by counting the number of pixels for each label.

2.6 2-FS and 8-FS Classifier

To each 2-FS and 8-FS features set one classifier based on Class-Modular MLP
was defined. It follows the principle that a single task is decomposed into multiple
subtasks and each subtask is allocated to an expert network. In this paper,
as well as in Oh et al.[6], the K-classification problem is decomposed into K
2-classification subproblems. For each one of the K classes, one 2-classifier is
specifically designed.

Therefore, the 2-classifier discriminates that class from the other K−1 classes.
In the class-modular framework,K 2-classifiers solve the originalK-classification
problem cooperatively and the class decision module integrates the outputs from
the K 2-classifiers.

2.7 N-VS Feature Set

The features utilized by the N-VS zoning mechanism are the same as those
presented in sections 2.4 and 2.5, though different extraction and representation
methods were used and adapted to this approach. A symbol is designated to
represent the extracted set of features for each segment, building up a grapheme.
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In the case where no feature is extracted from the analyzed segment, an empty
symbol denoted by X is emitted. This feature set is capable of representing the
link between letters and separating graphemes[4,7].

2.8 N-VS Classifier

The N-VS zoning mechanism defines a variable number of sub-regions which
makes neural network application difficult. Therefore, Hidden Markov Model
(HMM) classifiers are more recommended in this case[4,7]. The entire and defini-
tive alphabet is composed of 29 different symbols selected from all possible sym-
bol combinations, using the mutual information criterion[4,7].

Our HMM word models are based on a left-right discrete topology where
each transition can skip at the most two states. Model training is based on the
Baum-Welch Algorithm and the Cross-Validation process is performed on two
data sets: training and validation. After the Baum-Welch Algorithm iteration
on the training data, the likelihood of the validation data is computed using the
Forward Algorithm[4,7]. During the experiments, the matching scores between
each model λi and an unknown observation sequence O are carried out using
the Forward Algorithm.

3 Experimental Results

For the experiments, the database was randomly split into three data sets: Set
1 - Training Base with 6,120 words; Set 2 - Validation Base and Set 3 - Testing
Base, both with 2,040 words. For each set, the words are evenly distributed
among the classes.

For each feature set considered in the system (2-FS and 8-FS), 12 (twelve)
Class-Modular MLP classifiers were trained and tested. In the Class-Modular ap-
proach, the classifier that presents the maximum output value indicates the class
recognized[6]. The amount of neurons in the hidden layer was empirically deter-
mined, different configurations being tested. Each K 2-classifier is independently
trained using the training and validation sets. The Back-propagation Algorithm
was used in all cases. To train a 2-classifier for each word class, we reorganized
the original training and validation sets into 2 sub-sets: Z0 that contains the
samples from current class and Z1 that contains the samples from all other K-1
classes. To recognize the input patterns, the class decision module considers only
the O0 outputs from each sub-network and uses a simple winner-takes-all scheme
to determine the recognized class[6].

The N-VS classifier was evaluated with the N-VS feature set and for each
class one HMM was trained and validated. The model that assigns maximum
probability to one test image represents the class recognized.

Table 1 shows the results obtained for each classifier individually. It can be
seen that the best result was obtained using 8-FS classifier with directional
features.
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Table 1. Recognition rate obtained for each classifier individually

Classifier 2-FS 8-FS(P) 8-FS(D) N-VS
RR 73.9% 86.3% 91.4% 81.7%

Table 2. Recognition rate obtained using classifiers combination

Classifiers RR (%)
2-FS and 8-FS(P) 90.5
2-FS and 8-FS(D) 94.4
8-FS(P) and 8-FS(D) 93.6
8-FS(P) and N-VS 93.5
8-FS(D) and N-VS 95.6
2-FS and N-VS 90.5
2-FS, 8-FS(P) and 8-FS(D) 95.4
2-FS, 8-FS(P) and N-VS 95.8
2-FS, 8-FS(D) and N-VS 97.2
8-FS(P), 8-FS(D) and N-VS 96.9
2-FS, 8-FS(P), 8-FS(D) and N-VS 97.7

3.1 Classifiers Fusion

To obtain the hybrid classifier it is necessary to define a combination rule for
the classifiers’s outputs. Initially, we made the assumption that an object Z
must be assigned to one of the K possible classes (w1, · · · , wK) and assume that
L classifiers are available, each one representing the given pattern by a distinct
measurement vector. Denote the measurement vector used by the ith classifier as
xi and the a posteriori probability P (wj |x1, · · · , xL)[8]. Therefore, the combining
rule is defined as:

– Weighted Sum (WS): Assigns Z to class wj if

L∑
i=1

αi · p(wj |xi) =
K

max
k=1

L∑
i=1

αi · p(wk|xi); (1)

where αi, i = 1, · · · , L are weights for each classifier.

To guarantee that the classifier outputs represent probabilities, an output
normalization was performed: P ∗(wj |xi) = P (wj |xi)∑

K P (wj |xi)
. The best weights were

obtained by an exhaustive search procedure, considering for each classifiers
combination, 2,000 different n-upla of weight vectors with random
adaptation.

The average recognition rates obtained considering different classifiers combi-
nation are presented in Table 2. It can be seen that the best result was obtained
using combination for 2-FS, 8-FS(P), 8-FS(D) and N-VS classifiers.

4 Discussion and Conclusions

This paper presents a hybrid system using a methodology based on multi-view
analysis, applied to the recognition of the Portuguese handwritten names of the



378 J.J. de Oliveira Jr. et al.

months. This system is based on a Global Approach, which extracts global fea-
tures from the word image, avoiding explicit segmentation. This approach is
more that one simple combination of classifiers since that explores word context
information, while allows incorporating aspects based on perceptual concepts.
Therefore, unlike other proposed systems, we have a computational approxima-
tion inspired in the human reading process.

We have evaluated the efficiency of multiple architectures using Neural Net-
work and Hidden Markov Models classifiers for the handwritten word recog-
nition problem. The main conclusion obtained is that the analyzed classifiers
are complementary and the combining strategy proposed enhances their com-
plementarity. Therefore, the classifiers arranged in the multi-view analysis are a
better solution for our problem than any of the classifiers applied individually.
This result indicates that a similar strategy can be applied to other restricted
lexicons. Future work will focus on the analysis of adaptative models that will
be applied to large lexicons.
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Abstract. In this paper, a speed-up version of the Dynamic Hierarchi-
cal Compact (DHC ) algorithm is presented. Our approach profits from
the cluster hierarchy already built to reduce the number of calculated
similarities. The experimental results on several benchmark text collec-
tions show that the proposed method is significantly faster than DHC
while achieving approximately the same clustering quality.
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1 Introduction

The World Wide Web and the number of text documents managed in organi-
zational intranets continue to grow at an amazing speed. Managing, accessing,
searching and browsing large repositories of text documents require efficient or-
ganization of the information. In dynamic information environments, such as the
World Wide Web or the stream of newspaper articles, it is usually desirable to
apply adaptive methods for document organization such as clustering.

Dynamic algorithms have the ability to update the clustering when data are
added or removed from the collection. These algorithms allow us dynamically
tracking the ever-changing large scale information being put or removed from
the web everyday, without having to perform complete re-clustering.

Hierarchical clustering algorithms have an additional interest, because they
provide data-views at different levels of abstraction, making them ideal for people
to visualize and interactively explore large document collections. Besides, clusters
very often include sub-clusters, and the hierarchical structure is indeed a natural
constraint on the underlying application domain. In the context of hierarchical
document clustering the high dimensionality of the data and the large size of
text collections are two of the major challenges facing researchers today.

In [1] a hierarchical clustering algorithm, namely Dynamic Hierarchical Com-
pact (DHC ), was proposed. This method is not only able to deal with dynamic
data while achieving a similar clustering quality than static state-of-the-art hier-
archical algorithms but also has a linear computational complexity with respect
to the number of dimensions. It uses a multi-layered clustering to update the hi-
erarchy when new documents arrive (or are removed). The process in each layer
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involves two steps: the building of similarity-based graphs and the obtaining of
the connected components for these graphs. The graph construction requires to
perform range similarity queries, that is, given a new document d and a similar-
ity threshold β, to retrieve all documents whose similarity to d is greater than
or equal to β. These documents are called β-similar. DHC needs to compute the
similarities between the new document and all existing documents, which is the
most time-consuming operation.

In the literature, many access methods such as M-Tree [2] and IQ-Tree [3]
have been proposed to efficiently perform range similarity queries. Most of them
are based on a tree structure, which is traversed to find the β-similar objects to a
given one. These methods partition the data sets and use the triangle unequality
property to prune the search space. Unfortunately, they have bad performance
in very high-dimensional and sparse spaces. This effect has been named, by
researchers in the area, the curse of dimensionality. The access methods can be
classified into two categories: exact and approximate. The first find the same
β-similar objects that would be found using the exhaustive search, whereas the
second do not guarantee to find them but they obtain an approximation faster
than the exact methods.

In this paper, we present a speed-up version of the DHC algorithm for clus-
tering of dynamic document collections. Following the idea of access methods,
this approach profits from the cluster hierarchy already built to reduce the num-
ber of calculated similarities. It uses an approximate strategy for computing the
β-similar clusters to a given one. The experimental results on several benchmark
text collections show that the proposed method is significantly faster than DHC
while achieving approximately the same clustering quality.

The remainder of the paper is organized as follows: Section 2 describes the
speed-up DHC clustering algorithm. The evaluation carried out over six text
collections is shown in Section 3. Finally, conclusions are presented in Section 4.

2 Speed-Up Dynamic Hierarchical Compact Algorithm

DHC is an agglomerative method based on graph. It uses a multi-layered clus-
tering to produce the hierarchy. The granularity increases with the layer of the
hierarchy, with the top layer being the most general and the leaf nodes being
the most specific. The process in each layer involves two steps: construction
of similarity-based graphs and obtaining the connected components for these
graphs. Each connected component represents a cluster.

DHC algorithm uses two graphs. The first one is the β-similarity graph, which
is an undirected graph whose vertexes are the clusters and there is an edge
between vertexes i and j, if the cluster j is β-similar to i. Two clusters are
β-similar if their similarity is greater than or equal to β, where β is a user-
defined parameter. Analogously, i is a β-isolated cluster if its similarity with
all clusters is less than β. As inter-cluster similarity measure we use group-
average (i.e., the average of the similarities between elements of the two clusters
to be compared). In the vector space model, the cosine similarity is the most
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Fig. 1. Dynamic Hierarchical Compact algorithm

commonly used measure to compare the documents. By using this measure we
can take advantage of a number of properties involving the composite vector of
a cluster (i.e., the sum of document vectors of the cluster) [4]. In particular, the
group-average similarity between clusters i and j is equal to the fraction between
the scalar product of the composite vectors of these clusters and the product of
clusters’ sizes.

The second graph relies on the maximum β-similarity relationship (denoted
as max-S graph) and it is a subgraph of the first one. The vertices of this graph
coincide with vertices in the β-similarity graph, and there is an edge between
vertices i and j, if i is the most β-similar cluster to j or vice versa.

Given a cluster hierarchy previously built by the algorithm, each time a new
document arrives (or is removed), the clusters at all levels of the hierarchy must
be revised (see Figure 1). When a new document arrives (or is removed), a
singleton is created (or deleted) and the β-similarity graph at the bottom level
is updated. Then, the max-S graph is updated too, which produce (or remove)
a vertex and can also produce new edges and remove others. These changes
on the max -S graph lead to the updating of the connected components. When
clusters are created or removed from a level of the hierarchy, the β-similarity
graph at the next level must be updated. This process is repeated until this
graph is completely disconnected (all vertices are β-isolated). It is possible that
the β-similarity graph became completely disconnected before the top level of
the hierarchy is reached. In this case, the next levels of the hierarchy must be
removed. Notice that the algorithm uses the same β value in all hierarchy levels.

The steps are shown in Algorithm 1. A detailed description of steps 4(a) and
4(b) can be seen in [1].

The updating of the β-similarity graph in DHC is trivial. For each vertex
to add, the similarities with the remaining vertices are calculated and the cor-
responding edges are added to the graph. On the contrary, for each vertex to
remove, all its edges are removed too. Notice that DHC needs to compute the
similarities between the new document and all existing documents at the bottom
level. Also, for each level of the hierarchy the similarities between the new clus-
ters created at the previous level and the existing clusters at the corresponding
level must be calculated too. The computation of these similarities in all levels
of the hierarchy is the most time-consuming operation.
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Algorithm 1. Dynamic Hierarchical Compact steps.
1. Arrival of a document to cluster (or to remove).
2. Put the new document in a cluster on its own (or remove the single cluster to

which the document belongs).
3. level = 0 and update the β-similarity graph at the bottom level, G0.
4. While Glevel is not completely disconnected:

(a) Update the max-S graph at level.
(b) Update the connected components for the max-S graph.
(c) Update the β-similarity graph at the next level, Glevel+1.
(d) level = level + 1

5. If there exist levels greater than level in the hierarchy, remove them.

Our proposal focuses on improving the performance of the β-similarity graph
updating. The key idea is to profit from the cluster hierarchy already built to find
out the possible β-similar clusters to a given one, without having to compute all
similarities. Each cluster in the hierarchy is associated to its composite vector.

Given a new cluster c created at a certain level l of the hierarchy, our method
traverses the hierarchy already built from the top level until the level l is reached
and attempts to only explore the branches in which the β-similar clusters to c
possibly appear. With the aim of discarding as many branches of the hierarchy as
possible, we use a similarity threshold γ. The underlying idea is that all nodes
of the hierarchy whose group-average similarity to c be lesser than γ can be
discarded, since they are less likely to contain the β-similar clusters to c.

In our speed-up version, we first compute the similarity of the new cluster c
with the clusters at the top level of the hierarchy. Remember that in our case, the
group-average similarity between two clusters is calculated from its composite
vectors. Then, those clusters that are γ-similar to c are selected and its childs
are evaluated. This process is repeated for the selected childs at each level of the
hierarchy. The traversal goes on until the level in which c was created is reached.
Once the γ-similar clusters are found in this level, the algorithm selects those
clusters that are also β-similar to c. The steps are shown in Algorithm 2.

Notice that the proposed method only computes the similarities between each
new cluster at a certain level of the hierarchy and all clusters belonging to the
explored branches, instead of the similarities with all existing clusters in this
level. This number of clusters is much lesser, allowing to reduce the number of
calculated similarities. Notice also that our method does not guarantee to find
all β-similar clusters to a given one, but an approximation of them instead.

3 Experimental Results

The performance of the proposed version of Dynamic Hierarchical Compact al-
gorithm has been evaluated using six benchmark text collections, whose general
characteristics are summarized in Table 1. They are heterogeneous in terms of
document size, number of topics and document distribution. Human annotators
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Algorithm 2. The search of β-similar clusters to a given one.
Input: A cluster c to be added at level l.
Output: The β-similar clusters of c.

1. Let level be the index of the top level.
2. Compute the similarities between c and all clusters at level.
3. Let S be the set of clusters at level that are γ-similar to c.
4. While level > l:

(a) Let S′ be the set of all childs of the clusters in S.
(b) Compute the similarities between c and all clusters in S′.
(c) Remove from S′ all clusters that are not γ-similar to c.
(d) S = S′

(e) level = level − 1
5. Remove from S all clusters that are not β-similar to c.
6. Return S.

Table 1. Description of document collections

Collection Source Documents Terms Topics
hitech San Jose Mercurya 2301 13170 6

eln TREC-4b 5829 83434 50
new3 San Jose Mercurya 9558 83487 44
tdt TDT2c 9824 55112 193
reu Reuters-21578d 10369 35297 119

oshcal Ohsumed-233445a 11162 11465 10

a http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz
b http://www.trec.nist.gov
c http://www.nist.gov/speech/test/tdt.html
d http://www.davidlewis.com/resources/testcollections/

identified the topics in each collection. For reu dataset we only used the stories
that have been tagged with the attribute “TOPICS=YES” and include a BODY
part.

In our experiments, the documents are represented using the traditional vector
space model. Document terms represent the lemmas of the words appearing in
the texts (stop words are disregarded) and they are statistically weighted using
TF (term frequency in the document).

There are several measures to evaluate the quality of hierarchical clustering.
We adopt a widely used Overall F1-measure [5], which compares the system-
generated clusters at all levels of the hierarchy with the manually labeled topics
and combines the precision and recall factors.

The F1-measure of the cluster cj with respect to the topic ti can be evaluated
as follows:

F1(ti, cj) = 2
nij

ni + nj
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where nij is the number of common members in the topic ti and the cluster cj , ni

is the cardinality of ti, and nj is the cardinality of cj . To define a global measure,
first each topic must be mapped to the cluster that produces the maximum F1-
measure:

σ(ti) = arg max
cj

{F1(ti, cj)}
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(b) eln collection (β=0.07).
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(d) tdt collection (β=0.09).
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(e) reu collection (β=0.06).
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(f) ohscal collection (β=0.04).

Fig. 2. Relative F1 scores and speed-ups obtained by our method
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Table 2. Calculated similarities with at most 5% of quality loss

DHC Our Method
Collection β F1 Calculated Sim. γ F1 % Calculated Sim. %

hitech 0.05 0.52 4103981 0.06 0.53 102 901467 21
eln 0.07 0.47 24187337 0.13 0.46 99 3779454 16

new3 0.09 0.56 70278443 0.20 0.55 99 5781763 8
tdt 0.09 0.84 75813025 0.09 0.78 95 7270998 10
reu 0.06 0.55 75590891 0.11 0.55 100 14098200 19

oshcal 0.04 0.30 88186250 0.08 0.29 97 13490358 15

Hence, the Overall F1-measure is calculated as follows:

Overall F1 =

N∑
i=1

niF1(ti, σ(ti))

N∑
i=1

ni

where N is the number of topics. The higher the Overall F1-measure, the better
the clustering is, due to the higher accuracy of the clusters mapping to the
topics.

The experiments were focused on to compare the proposed version against
the original DHC algorithm in terms of clustering quality and time efficiency.
From the results reported in [1], we choose the parameter β that produces the
best hierarchy with respect to Overall F1 measure for each text collection.

To quantitatively compare the relative performance of both methods, we di-
vided the F1 score obtained by the proposed method by the corresponding score
obtained by DHC using the same (best) β value. We referred to this ratio as
relative F1. We also calculated the speed-up obtained by the proposed method,
that is, the ratio between the execution times of DHC and our method.

Figure 2 shows the relative F1 scores, as well as the speed-ups obtained when
we vary the γ value from the best β value for each text collection to 0.2. As
we can observe, the higher γ value the speed-ups rapidly grow on while the
clustering quality slightly decreases. In all text collections, speed-ups of 2-3 can
be achieved with less than 5 % loss in clustering quality. Notice also that small
speed-ups are obtained with the same F1 score when γ = β.

Table 2 illustrates the number of calculated similarities and the Overall F1
score obtained by the original DHC and our method for the best β-value in each
document collection. In our method, we select the γ value that produces at least
a 95% of clustering quality with respect to that obtained by DHC. Columns 7 and
9 represent the percentage of F1 score and the number of calculated similarities
obtained by our method with respect to DHC, respectively. As we can see, our
algorithm significantly reduces the number of calculated similarities. This is the
reason why the proposed method achieves good speed-ups.
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4 Conclusions

In this paper, a version of Dynamic Hierarchical Compact clustering algorithm
that improves the updating of the hierarchy has been proposed. Its most im-
portant novelty is its ability to profit from the cluster hierarchy previously built
by the algorithm to efficiently find out the β-similar clusters to a given one.
Exploiting ideas from the access methods, our approach is able to significantly
reduce the number of calculated similarities.

The experimental results on several benchmark text collections show that
the proposed method is significantly faster than the original DHC algorithm
while achieving approximately the same clustering quality. Thus, we advocate
its use for tasks that require dynamic clustering of large text collections, such
as creation of document taxonomies and hierarchical topic detection.

As we showed in the experiments, the accuracy of our algorithm depends on
the parameters β and γ, and its best values are different in each text collection.
This provides further motivation to study in depth ways for estimating these
parameters.
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Abstract. Parallel texts are enriched by alignment algorithms, thus es-
tablishing a relationship between the structures of the implied languages.
Depending on the alignment level, the enrichment can be performed on
paragraphs, sentences or words, of the expressed content in the source
language and its translation. There are two main approaches to per-
form word-level alignment: statistical or linguistic. Due to the dissim-
ilar grammar rules the languages have, the statistical algorithms usu-
ally give lower precision. That is why the development of this type of
algorithms is generally aimed at a specific language pair using linguis-
tic techniques. A hybrid alignment system based on the combination of
the two traditional approaches is presented in this paper. It provides
user-friendly configuration and is adaptable to the computational en-
vironment. The system uses linguistic resources and procedures such
as identification of cognates, morphological information, syntactic trees,
dictionaries, and semantic domains. We show that the system outper-
forms existing algorithms.

Keywords: Parallel texts, word alignment, linguistic information, dic-
tionary, cognates, semantic domains, morphological information.

1 Introduction

Given a bilingual or multi-lingual corpus, i.e., a set of texts expressing the same
meaning in various languages, the text alignment task establishes a correspon-
dence between structures, e.g., words, of the texts in the two languages. For
example, given the two texts: English John loves Mary and French Jean aime
Marie, word alignment task consists in establishing the correspondences John
↔ Jean, loves ↔ aime, Mary ↔ Marie.

Text alignment is useful in various areas of natural language processing, such
as automatic or computer-aided translation, cross-lingual information retrieval
� Work done under partial support of Mexican Government (SNI, CONACYT grant
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and database querying, computational lexicography, contrastive linguistics, ter-
minology, and word sense disambiguation, to mention only a few.

In recent years, many text alignment techniques have been developed [1], [2].
Most of them follow two main approaches: linguistic and statistical or proba-
bilistic [3], [4]. Linguistic approaches use linguistic information, which implies
its reliance on availability of linguistic resources for the two languages. Proba-
bilistic approaches involve difficult-to-implement probabilistic generative models.
Statistical approaches are simpler since they are based on frequencies of occur-
rences of words, though they imply high computational cost and usually give
lower precision.

In this paper, we present a hybrid alignment algorithm based on a combination
of traditional approaches. Its flexibility allows adapting it to the computational
environment and to available linguistic resources.

2 Related Work

Ideally, the units (words, sentences, paragraphs) of the two texts ought to be in
direct one to one correspondence. However, the alignment task is complicated
by many effects that break such an ideal model. One effect is that sometimes
the correspondence is not 1 ↔ 1 (one word from the source text corresponding
to one word in its translation) but 1 ↔ M , M ↔ 1, M ↔ M , 1 ↔ ∅ and ∅↔ 1,
where M stands for many words and ∅ stands for none (empty string). Another
effect, specific mainly for the word level, is that the words in the two texts can
follow in different order, e.g., English a difficult problem vs. Spanish un problema
dif́ıcil.

Most of the alignment systems are oriented on low-inflective languages, for
this reason they use wordforms as the basic unit. In the case of highly inflective
languages this leads to high data sparseness, rendering statistic translation nearly
impossible. For instance, Spanish is a rather highly inflective language, especially
in its verbal system, where the complex conjugation produces many wordforms
from the same verbal root [5].

It is possible to construct alignment methods based on generative models [6].
Although the standard models can, theoretically, be trained without supervision,
in practice several parameters should be optimized using labeled or tagged data.
What is more, it is difficult to add characteristics to the standard generative
models [7].

Other systems are based on linguistic resources [8], [9]. The use of linguistic
resources can present yet another problem for word alignment task. There are
two cases as to the use of resources: limited or unlimited [10]. We believe that
the more resources are available to the system the better the alignment accuracy.
This leads us to the idea of a hybrid combined method for word-level alignment.

This approach is not new. In [11], for instance, a hybrid system is presented,
in which the outputs of different existing alignment systems are combined. How-
ever, in that approach, interpreting the outputs of the systems is necessary and
the user has to define the confidence threshold for each system. De Gispert et al.
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proposed in [12] a method to incorporate linguistic knowledge in statistical phrase-
based word alignment, but the linguistic information is only used to takes final de-
cisions on unaligned tokens. In [13], parse trees and a few phrase reordering heuris-
tics were incorporated after using the alignment lexicon generated by a statistical
word aligner. Another systems have just included morphosyntactic knowledge, as
in [14].

3 Alignment Algorithm

The proposed alignment algorithm combines statistical and linguistic approaches.
Due to the simplicity of statistical algorithms, approaches of this kind are a start-
ing point for the alignment in our system. Nevertheless, the morphological and
syntactical differences between the languages cause multiple errors in such align-
ment. It is for this reason that, at a later stage, linguistic-based processing is car-
ried out that reinforces or weakens the alignment hypotheses previously obtained
with the statistical methods.

3.1 Statistic Processing

There are many well-known statistical alignment methods. Some of them in-
tent to align texts written in very different characters sets, such as English
vs. Chinese. The approaches of this paradigm are classified as associative or
estimation-based. K-Vec [15] and IBM Models 1 and 2 [16] are examples of as-
sociative statistical methods.

The statistical stage of the proposed system relies on three different tech-
niques: (1) Modified K-Vec algorithm, boolean, (2) Modified K-Vec algorithm,
with frequencies and (3) IBM Model 2.

Our modified K-Vec algorithm is slightly changed as compared to the original
K-Vec presented by Fung & Church [15]. K-Vec algorithm starts with segmen-
tation of the input texts: the texts are divided into small parts and each of the
parts is processed independently. The original K-Vec algorithm allows the text
to be divided into small pieces or segments. Our modification allows the pieces
to be paragraphs, sentences, or a specific number of words (a window). These
very convenient division options streamline the statistical process, since its use
largely depends on the size of the text segments.

The next step consists in generating a list of words with an associated vector.
This vector contains the occurrences of the word in each one of the segments
resulting from the division of the text. In the first technique, (modified K-Vec),
only boolean values are used to indicate the presence (1) or absence (0) of the
word. In the second technique, the frequency of occurrences (i.e., the number of
times that the word occurs in a segment) is recorded.

The list of words founded in the text is also used to optimize the later linguistic
processing and can also contain the frequency of occurrences of each word in the
complete text.

After the list has been completed, the vector corresponding to each word in
the source language is compared to all the vectors obtained in the translation,
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V (este) = {0, 1, 0, 1, 0, 0, 1, 0, 0, 0}

V (this) = {0, 1, 0, 1, 0, 0, 1, 0, 0, 0}
V (is) = {1, 0, 0, 1, 0, 1, 1, 0, 1, 0}
V (my) = {0, 0, 0, 0, 0, 0, 1, 1, 0, 0}
V (car) = {0, 1, 0, 1, 0, 0, 1, 1, 0, 1}

Fig. 1. Comparison among vectors

with the purpose of finding those words that match as to their occurrences in
each segment. For example, in Fig. 1, the occurrences of the vector corresponding
to este coincide with those of the words this and car, with occur in the segments
2, 4 and 7.

Using the correspondences between the vectors of both languages, a contin-
gency table is built to represent information on each pair of related words. Then,
the similarity of the pair is calculated for each table. The similarity of words is
determined by means of an association test. Our system incorporates the fol-
lowing similarity measures: – Pointwise Mutual Information (PMI), – T-score,
– Log-likelihood ratio, and – Dice coefficient.

After all association values have been calculated, the word with the greatest
level of association is selected and the other candidates are discarded. In this
way, a dictionary is created from the translation words that better correspond to
each source word. If the algorithm is used in a bidirectional way, then the same
process is carried out interchanging the source and target languages [17] and the
best averages of both results are obtained to acquire the best word pairs.

If the algorithm does not use linguistic information, then after this stage a
file of final alignments is created, indentifying each word and its position in both
texts.

3.2 Linguistic Processing

The methods developed following the linguistic approach make use of diverse
resources, such as bilingual dictionaries [16], lexicons with morphological infor-
mation [9] and syntactic trees [8]. In addition to these, in our algorithm we
incorporate the use of semantic domains.

Dictionaries allow for extraction of lexical information. In this way, the word
from the source text is considered along with all its possible translations in the
target text. These data can then be employed in the calculation or adjustment
of the probabilities of the correspondences obtained in the statistical phase.

Similarly, the morphological and syntactical information are knowledge
sources useful for increasing or decreasing the certainty of each alignment hy-
pothesis. Using morphological information, it is possible to compare lemmas
and verify grammatical categories [9]. On the other hand, knowing the syntax of
the sentences allows the identification of its parts (subject, predicate, etc.) and
facilitates comparisons with its counterparts in the target language.
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Finally, semantic domains provide a natural way to establish semantic rela-
tions between the meanings of a word. Roughly speaking, the method consists of
rejecting those translations that lay in different domains from the original word,
and giving greater weight to those that lay in the same domains. We used Word-
Net Domains [18] to extract the domain labels. This is a rarely used concept,
utilized to locate or train the aligner in a specific domain [19].

In addition to the above linguistic resources, we use a heuristic of cognates.
Shared sequences of characters are looked in both texts, for example: English
organization and Spanish organización. In this way it is easier to align words
that totally or partially coincide (for example, proper nouns). The minimum
percentage of coinciding letters in the two words to consider them as cognates
is a user-defined parameter of the system. False cognates are taken into account
by using a predefined list of known false cognates.

Unlike most of the alignment models, where training is carried out with the
EM (Expectation Maximisation) algorithm [20], our system allows using previous
alignments that can be difficult to find. All the alignment hypotheses that can
be obtained with different methods will serve as a reference for future alignment
tasks. It is important to mention that the system can start the analysis using
purely linguistic data similar to some proposed methods [21], if it is configured
to do so.

4 General Architecture

In order to test the proposed ideas, we have implemented a highly configurable
and flexible system that we called HWA (Hybrid Word Aligner), which allows our
method to be adapted to the implementation environment and the availability
of resources. The combination of the statistical and linguistic approaches has the
purpose of obtaining a parameterizable algorithm that can be used in different
ways depending on the requirements of the expected results.

The architecture of the alignment system is shown in Fig. 2. The alignment
process is subdivided into three main phases: preprocessing, main algorithm, and
output generation.

5 Preliminary Results

While statistic processing can be applied to any language pairs, the linguistic
processing module requires specific grammatical resources, with the exception
of the cognate detection2 and the learning information. We have chosen for
our experiments Spanish–English parallel texts from five novels (Dracula, Don
Quixote of la Mancha, The Shop of Ghosts, Little Red Riding Hood and The
Haunted House). The selection of fragments was made randomly by the para-
graph number. It is important to emphasize that in every case the paragraphs

2 Providing the languages have the same type of characters.
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Fig. 2. General architecture of the aligner

Table 1. Results

Aligner % successes generation of dictionary? generation of alignment file?

GIZA++ 52 Yes Yes
Uplug 45 No (not as a result) Yes
K-Vec++ 35 Yes (not for all the words) No
HWA 53 Yes Yes

have been previously aligned at sentence level. While this is required for other
systems but not for our system, yet this influences the alignment quality.

Table 1 shows the obtained results in terms of precision: the percentage of
established correct alignment correspondences. We compare our results with
those of three other aligners: GIZA++ [22], original K-Vec [23], and Uplug [24].
The results of the proposed algorithm (HWA) were obtained by executing the
modified K-Vec procedure during the statistical processing and by applying the
cognates during the linguistic processing to reinforce the alignments. For the
moment, we did not apply other linguistic modules, that is why we call the
obtained results “preliminary”.

To obtain the results, each aligner was provided with the parallel texts of the
specified novels. The output of each aligner was manually verified to determine
the correct alignments, and an average percentage of the correct alignments was
obtained for the five input data sets. Due to the differences in the aligners,
similar parameters were used in each test: – input parallel texts were the same
for each alignment program, – texts had no labels, – no previous training was
applied, – learning bases were not applied, – bidirectional alignments were not
performed, – text segmentation was performed with the best consideration of
each algorithm, and – the same association test was used. It is important to
note that the results from the aligners can vary depending on the configuration
parameters and on the size of the input texts.
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6 Conclusions

We have presented an alignment algorithm that combines two main approaches,
statistical and linguistic-based, in order to improve the alignment between words
of bilingual parallel texts. We conducted experiments with short texts fragments.
The results obtained by the proposed algorithm are better than those of the
existing alignment algorithms.

The statistical techniques provides a good starting point for the alignment
processes; however, incorporation of linguistic techniques increases the efficiency
of the system by involving intrinsic characteristics of the implied languages.
The main disadvantage of linguistic processing is the need in the linguistic re-
sources given their limited availability. In addition, this has an impact on the
algorithm speed. Nonetheless, employing databases of optimization has proven
to minimize this disadvantage. The cost-benefit trade-off of linguistic techniques
implies a great emphasis on the particular configuration of the algorithm so as
to obtain the best alignments. This is due to the fact that the system allows free
incorporation or exclusion of linguistic resources at any given moment during
the process.

Combining statistical and linguistic techniques is a viable option thanks to
the current computing capacities and will be more acceptable as the speed of
computers grows, costs of hardware (memory and storage) decreases, and more
resources become available to natural language processing community.
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Abstract. A temporal image sequence increases the dimension of the
data by simply stacking images above each other. This further raises
the computational complexity of the processes. The typical content of
a pixel or a voxel is its grey or color value. With some processing, fea-
tures and fitted model parameters are added. In a pyramid these values
are repeatedly summarized in the stack of images or image descriptions
with a constant factor of reduction. From this derives their efficiency of
allowing log(diameter) complexity for global information transmission.
Content propagates bottom-up by reduction functions like inheritance or
filters. Content propagates top-down by expansion functions like interpo-
lation or projection. Moving objects occlude different parts of the image
background. Computing one pyramid per frame needs lots of bottom-
up computation and very complex and time consuming updating. In the
new concept we propose one pyramid per object and one pyramid for the
background. The connection between both is established by coordinates
that are coded in the pyramidal cells much like in a Laplacian pyramid
or a wavelet. We envision that this code will be stored in each cell and
will be invariant to the basic movements of the object. All the informa-
tion about position and orientation of the object is concentrated in the
apex. New positions are calculated for the apex and can be accurately
reconstructed for every cell in a top-down process. At the new pixel lo-
cations the expected content can be verified by comparing it with the
actual image frame.

1 Introduction

Humans and animals are able to delineate, detect and recognize objects in com-
plex scenes very rapidly. One of the most valuable and critical resources in hu-
man visual processing is time. Therefore a highly parallel model is the biological
answer to deal satisfactorily with this resource [1]. Tsotsos [2] showed that hi-
erarchical internal representation and hierarchical processing are the credible
approach to deal with space and performance constraints, observed in human
visual systems. Moreover, Tsotsos [3] concludes that in addition to spatial paral-
lelization, a hierarchical organization is among the most important features
of the human visual systems.
� Supported by the Austrian Science Fund under grants S9103-N13, P20134-N13 and
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It is now accepted that the human visual system has a hierarchical (pyramidal)
architecture and that the visual mechanisms can be adequately modeled by
hierarchical algorithms [4]. Pyramid algorithms are adequate models for the
Gestalt rules of perceptual organization such as proximity, good continuation,
etc. [5,6]. Moreover, Privitera et al. [7] showed, in a stimulation of the human
visual system, that there are two strategies to obtain and apply information
about the importance of different regions of an image: the bottom-up methods
retrieve features only from the input image, and top-down methods are driven
by available knowledge about the world. Thus the hierarchical structure must
allow the transformation of local information (based on sub-images) into global
information (based on the whole image), and be able to handle both locally
distributed and globally centralized information. This data structure is known
as hierarchical architecture or pyramid [8].

The (image) pyramid might be the answer to the time and space complexity in
computer vision systems, by implementing both processing strategies: bottom-
up and top-down. This hierarchical structure allows distribution of the global
information to be used by local processes. The main advantage of the hierar-
chical structures is rapid computation of a global information in a recursive
manner. The change of local over to global information, e.g. from pixels arrays
to descriptive data structures, is a point of discontinuity in vision systems [8].
Hierarchical structures offer a way to alleviate this discontinuity, where global
structures become local in higher levels of this hierarchy.

1.1 Recall on Image Pyramids

Tanimoto [9] defines a pyramid as a collection of images of a single scene
at different resolutions. In the classical pyramid every 2 × 2 block of cells is
merged recursively into one cell of the lower resolution. We formally describe
this structure by 2 × 2/4 which specifies the 2 × 2 reduction window and the
reduction factor of 4. This type of pyramid has been extensively studied (e.g.
[10], [11]).

Tanimoto’s formal definitions refer to this type of pyramid [12]. He defines
a cell (Tanimoto uses the term pixel) in a pyramid as a triple (x, y, v) which is
defined in a hierarchical domain of n levels:

{(x, y, v)|0 ≤ x ≤ 2v, 0 ≤ y ≤ 2v, 0 ≤ v ≤ n− 1} (1)

Then a pyramid is any function whose domain is a hierarchical domain. This
function assigns to every cell in the simplest case a value, but also structures of
higher complexity can be stored.

1.2 The Flow of Information within a Pyramid

Information necessary to connect the observed part of the object with the parts
in the adjacent cells must be passed up to the next lower resolution level (or
equivalently, to the next higher pyramid level). There, the cells cover a larger
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area and can join some parts of the level below. This process is repeated up
to successively lower resolutions until the whole object is within the observation
window of a cell. Unfortunately, in some pyramid structures a small rigid motion
(shift, rotation) of the object may cause a completely different representation
(the representation cell may be many levels below or above. [13]). This problem
is resolved by the adaptive pyramid [14] which is the direct precursor of the
irregular pyramid (see section 3).

An important class of operations is responsible for the bottom-up information
flow within the pyramid: the reduction function R. It computes the new value
of a cell exclusively from the contents of its children. Given an image in the base
of the pyramid, application of a reduction function (e.g. average) to all first level
cells fills this level. Once the cell of the first level received a value, the same
process can be repeated to fill the second level and so on to the top cell. With
these operations the levels Gi, i = 0, . . . , n of a (Gaussian) pyramid are generated
by following iterative process: G0 := I; Gi+1 := R(Gi), i = 0, . . . , n− 1.

1.3 Laplacian Image Pyramids

Burt [15] describes a method for compressing, storing and transmitting images
in a computationally efficient way.

Let Gk denote a 5×5/4 Gaussian pyramid, where k denotes the different levels
and G0 is the base. The bottom-up building process is based on the reduction
function R: Gk := R(Gk−1) , k := 1, 2, . . .n. The reduction function maps the
children’s collective content into the properties of the parent.

The Gaussian smoothing filter has a low-pass characteristic removing only the
highest frequencies. Therefore the Gaussian pyramid Gk; k = 0, . . . , n contains
a high amount of redundancy which is substantially reduced in the Laplacian
pyramid:

1. The expansion function E is the reverse function of the reduction function
R. It expands (interpolates) the properties of the parent(s) cells into the
children’s content at the higher resolution level.

2. The ’reduce - expand’ RE Laplacian pyramid compares the child’s content
with the expanded content of the parents and simply stores the difference:

Ll := Gl − E(Gl+1) for l := 0, 1, . . . , n− 1 (2)

3. Reconstruction of Gk is exact: Gk := Lk + E(Gk+1) for k := n − 1, n −
2, . . . , 0.

4. Hence storing Gn, Ln−1, Ln−2, . . . , L0 is sufficient for exact reconstruction of
the original image G0.

Note that the intensity of the reconstructed image depends on the intensity of
the apex. If the grey value of the apex is increased the intensity of the whole
reconstructed image is increased by the same value. We observe that all the
levels below the apex of the Laplacian pyramid are invariant to global changes
in intensity.
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1.4 First Steps in a Dynamic World

In [16], the Laplacian pyramid has been used to indicate a significant change in
a time-series of images. Let I(t) denote the image taken at time t, let m denote
the level at which the change shall occur. Following procedure initiates an alarm
when an unusual situation occurs in the field of view:

1. D(t) := I(t)− I(t− 1) ;
2. build Laplacian pyramid Li(t), i := 1, 2, . . . ,m with L0(t) := D(t) ;
3. square level m: Lm(t)2 ;
4. build Gaussian pyramid Gk(t), k := 1, 2, . . . , n with G0(t) := Lm(t)2 ;
5. threshold Gk(t), k := 1, 2, . . . , n: alarm.

In this case the base of the Laplacian pyramid are the frame differences. It is
computed bottom-up up to level m which identifies the frequency band at which
the event causes the alarm. This nicely eliminates high frequency components
and false-alarms caused by noise or tree branches moving in the wind.

Although this early use of pyramids for detecting dynamic changes in an image
sequence was used in several applications it focused on a single event and could
not filter out a description of the alarm causing event.

1.5 Some Words on Graphs

Graph hierarchies allow to use other spatial orderings of image primitives, not
only the regular spatial structures like arrays. Image primitives (e.g. pixels, edges,
etc.) are represented by vertices and their relations by edges of the graph. These
vertices and edges are attributed. A classical example of graph representation
of a set of primitives is the region adjacency graph (RAG), where each im-
age region is represented by a vertex, and adjacent regions are connected by
an edge. Attributes of vertices can be region area, average gray value, region
statistics etc.; and attributes of edges can be the length of the boundary, the
curvature, etc. between the pair of adjacent regions. The graph hierarchy is then
built by aggregating these primitives. The main application area of the region
based representation is image segmentation and object recognition [17]. Note
that region adjacency graph (RAG) representation is capable to encode only the
neighborhood relations.

1.6 And Some Words on Image Segmentation

An image segmentation partitions the image plane into segments that satisfy
certain homogeneity criteria (see [18] for an overview). There are many reasons
for using the hierarchical paradigm in image partitioning [19]:

– the scale at which interesting structure is important is not known in advance,
therefore a hierarchical image representation is needed;

– efficiency of computation: the results obtained from the coarse represen-
tation are used to constrain the costly computation in finer representations;
and
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– bridging the gap between elementary descriptive elements (e.g. pixels) and
more global descriptive elements, e.g. regions (see [20]).

Although the goal of image segmentation is producing a single partition of the
image, and not necessarily a hierarchy, the hierarchical representation is needed,
especially if the image context is not taken into consideration. The idea behind
this is if you do not know what you are looking for in an image, then use a
hierarchical representation of the image, and moreover a data structure that
allows the ability to access the finest partitioning (in our case the bottom of the
pyramid) or in case of ‘bad’ partitioning the faculty to repair these ‘errors’. A
wide range of computational vision tasks could make use of segmented images,
just to mention some: object recognition, image indexing, video representation
by regions etc., where such a segmentation relies on efficient computation.

1.7 Overview of the Paper

After discussing current representations of objects with both spatial and tem-
poral structure (like articulation), we recall the basic concept of irregular graph
pyramids in Section 3. Their basic properties are then efficiently applied in the
new concept for describing the temporal evolution of a tracked object (Section 4).
It relates the principles of the Laplacian pyramid with the graph pyramid to
separate two types of information: the trajectory and the dynamic orientation
is concentrated in the apex of the object (only one ’foot’ is updated at each
step), while all the lower levels code the spatial structure of the object if it is
rigid (Section 5). Extensions lossless rotation, articulated parts and adaptive
zoom are shortly addressed in Section 6. The conclusion (Section 7) summarizes
the major advantages of the new proposal and lists some of the many future
applications of the concept.

2 Objects with Structure in Space and in Time

In physics, motion means a change in the location of a “physical body” or parts
of it. Frequently the motion of a (mathematical/geometrical) point is used to
represent the motion of the whole body. However in certain cases (e.g. parking
a car) more information than a single point is required. Because describing an
object by an un-ordered set of all its points and their motion is not optimal
(considering for example storage space, redundancy, and robustness with respect
to missing or incorrect information), we can use the part structure of natural
physical bodies (e.g. “objects”) to represent them in a more efficient way.

In the context of computer vision, a representation for an object can be used
to model knowledge (e.g. appearance, structure, geometry) about the object
and its relation to the environment. This knowledge can be used for tasks like:
verifying if a certain part of an image is the object of interest, identifying invalid
configurations, guiding the search algorithm for a solution/goal, etc. These tasks
are in turn used by processes like segmentation, tracking, detection, recognition,
etc.
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Considering representations for structured objects, we identify the following
spatial and temporal scales. On the spatial scale there are representations
considering:

i. no spatial decomposition information;
ii. statistical information about the parts (e.g. number of parts/features of

different type);
iii. “static” structure i.e. adjacency of parts;
iv. degrees of freedom (e.g. articulation points);
v. pose relations between parts – correct/incorrect configurations/poses.

On the temporal scale we have:

a. no temporal information;
b. instant motion (e.g. speed and direction at a certain time instance);
c. elementary movement (e.g. moving the arm down);
d. action (e.g. a step, serving in tennis);
e. activity (e.g. running, walking, sleeping, playing tennis).

On the spatial scale, representations cover the whole domain from i. to v.
(see [21,22,23,24]). There are simple representations like points [25,26,27], ge-
ometric shapes (rectangle, ellipse) [28,29], and contours/silhouettes [30,31], but
also more complex ones [32,33]. Felzenszwalb et al. [32] use pictorial structures
to estimate 2D body part configurations from image sequences. Navaratnam et
al. [33] combine a hierarchical kinematic model with a bottom up part detection
to recover the 3D upper-body pose. In [34] a model of a hand with all degrees
of freedom and possible poses is used.

On the temporal domain, most methods use simple motion models, typically
considering the motion between a few consecutive frames. More complex rep-
resentation on the temporal domain can be found in behavior understanding,
where dynamic time warping (e.g. [35]), finite-state machines (e.g. [36]), and
hidden Markov models (e.g. [37,38]) are employed. In the fields of pose esti-
mation and action recognition there is a so-called state space representation.
For example a human can be represented by a number of sticks connected by
joints [39]. Every degree of freedom of this model is represented by an axis in
the state space. One pose of a human body is one point in this high-dimensional
space and an event/action is a trajectory in this space. This trajectory through
the state space is one possibility to represent the temporal aspect [40]. Never-
theless, there are still very few works that look at complex spatial and temporal
structure at the same time (e.g topology in the 4D spatio-temporal domain).

In the context of computer vision, properties relating the objects with the vi-
sual input also need to be represented. Considering the dynamics of a descrip-
tion created using a certain representation, one can look at how a description
and its building/adapting processes behave, when the represented information
changes. For example: number of parts or their type, static structure, type of
activity, relation to visual input (scaling, orientation), etc.
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For small changes in the information a minimal change in the description is
desired. E.g. scaling, rotation, part articulation, illumination, should only mini-
mally affect the description.

In addition to the dynamics, one can talk about the genericness of a rep-
resentation i.e. the ability to represent objects of varying degree of complexity
and abstraction (e.g. industrial robot, normal human walking, stone).

3 Irregular Graph Pyramids

Pyramids can be built also on graphs. In this case the domain is no more the
simple array structure as in Tanimoto’s definition but a graph where the function
values are stored as attributes of the vertices of the graph. A RAG encodes the
adjacency of regions in a partition. In the simplest case a vertex corresponds to
a pixel and the edges encode the 4-neighborhood relations (Fig. 1). The dual ver-
tices correspond in this case to the centers of all 2× 2 blocks, the dual edges are
the cracks between adjacent pixels. More generally, a vertex can be associated
to a region, vertices of neighboring regions are connected by an edge. Classical
RAGs do not contain any self-loops nor parallel edges. An extended region adja-
cency graph (eRAG) is a RAG that contains some pseudo edges. Pseudo edges
are the self-loops and parallel edges that are required to encode neighborhood
relations to a cell completely enclosed by one or more other cells [41] i.e. they
are required to correctly encode the topology. The dual graph of an eRAG G is
called the boundary graph (BG, see Fig. 2) and is denoted by Ḡ. The edges of
Ḡ represent the boundaries (borders) of the regions encoded by G, and the ver-
tices of Ḡ represent points where boundary segments meet. G and Ḡ are planar
graphs. There is a one-to-one correspondence between the edges of G and the
edges of Ḡ, which also induces a one-to-one correspondence between the vertices

Fig. 1. Image to primal and dual graphs

Fig. 2. A digital image I , and boundary graphs Ḡ6, Ḡ10 and Ḡ16 of the pyramid of I
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Fig. 3. Example graph pyramid

of G and the 2D cells (will be denoted by faces1) of Ḡ. The dual of Ḡ is again G.
The following operations are equivalent: edge contraction in G with edge removal
in Ḡ, and edge removal in G with edge contraction in Ḡ.

A (dual) irregular graph pyramid [41,42] is a stack of successively reduced
planar graphs P = {(G0, Ḡ0), . . . , (Gn, Ḡn)} (Fig. 3). Each level (Gk, Ḡk), 0 <
k ≤ n is obtained by first contracting edges in Gk−1 (removal in Ḡk−1), if their
end vertices have the same label (regions should be merged), and then removing
edges in Gk−1 (contraction in Ḡk−1) to simplify the structure. The contracted
and removed edges are said to be contracted or removed in (Gk−1, Ḡk−1). In each
Gk−1 and Ḡk−1 the contracted edges form trees called contraction kernels. One
vertex of each contraction kernel is called a surviving vertex and is considered
to have ‘survived’ to (Gk, Ḡk). The vertices of a contraction kernel in level k− 1
form the reduction window of the respective surviving vertex v in level k. The
receptive field of v is the (connected) set of vertices from level 0 that have been
‘merged’ to v over levels 0 . . .k.

4 Moving Objects

The study of dynamic image sequences (or videos) aims at identifying objects
in the observed image sequence and describing their integrated properties and
their dynamic behaviour. There are several possibilities to segment an object
from an image or a video:

– image segmentation methods are able to locate image regions in individual
images that are ’homogeneous’ in certain terms. Examples are David Lowe’s
SIFT-features [43], different variants of Ncut [44] or the MST pyramid [45].
Objects of interest are, however, mostly composed of several such regions
and further grouping is required.

1 Not to be confused with the vertices of the dual of a RAG (sometimes also denoted
by the term faces).
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Fig. 4. Example of an extracted object and its rigid parts

– Optical flow approaches overcome the grouping since the different parts of
an object usually move together.

– detection of interest points and tracking them individually over the sequence.
In order to preserve the structure of points belonging to the same object
pairwise relations like distances can be used efficiently to overcome failures
caused by noise or occlusions (see [46,47]).

4.1 Extraction of Structure from Videos

In [47] a graph-pyramid is used to extract a moving articulated object from a
video, and identify its rigid parts. First a spatio-temporal selection is performed,
where the spatial relationships of tracked interest points over time are analysed
and a triangulation is produced, with triangles labeled as potentially-rigid and
non-rigid. The potentially-rigid triangles are given as input to a grouping process
that creates a graph pyramid such that the each top level vertex represents a rigid
part in the scene. The orientation variation of the input triangles controls the
construction process and is used to compute the similarity between two regions.
This concept is related to the single image segmentation problem [17], where
the results should be regions with homogeneous color/texture (small internal
contrast) neighbored to regions that look very different (high external contrast).
In our case the “contrast” is interpreted as the inverse of “rigidity”. The result of
this method can be used to initialize an articulated object tracker. Fig. 4 shows
an example.

4.2 Describing the Tracking Results

Most of the current approaches describe the results in the domain of the original
data and use the image and frame coordinates. The resulting trajectory consists
in a sequence of frame coordinates where the object was at the respective time
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Fig. 5. Separating the object from the background

instance. We consider the use of a separate data structure for each moving object
in order to update independent movements and properties in clearly separated
data (i.e. to describe ’walking’).

Once an object is identified in an image (frame) or even in an image pyramid
we cut out the object from its pixel based representation into the neighborhood
graph of pixels, close its surface topologically by invisible surface patches of the
backside (Fig. 5). The remaining image is considered as background and the
pixels of the removed object are labelled as invisible.

4.3 Topological Completion: Represent a 3D Object

In a video frame, a 3D object may be occluded or partially visible. We call
the visible part of the surface the front surface. From a single image frame, the
front surface is extracted as a graph. This extracted graph embeds the topo-
logical structure and discriminative visible features of the object. In the vertex,
attributes like size, color and position of the corresponding pixels (region) can
be stored and the edges specify the spatial relationships (adjacency, border) be-
tween the vertices (regions)[46]. Topological completion closes the visible surface
by one or more invisible surface patches in order to completely cover the surface
of the volumetric object.

Each level of the irregular graph pyramid is a graph, presenting the closed
surface of the moving object in multiple resolutions. We collect the topological
structures from the visible surface of the target object. Each graph embeds both
features and structural information. Locally, features describe the object details;
globally, the relations between features encode the object structure.

For initialization, the base graph of the pyramid encodes the initial informa-
tion about the object, the graph is closed on the invisible backside to create a
closed 2D manifold. The graph pyramid can cope with this structure and the
same operations can be applied as in the case of an image. As new visible parts
of the surface would reveal previously invisible parts, the object representation is
incrementally updated automatically from observing the target object in a video
sequence. This requires the registration of the visible parts and the replacement
of some invisible patches. When some hidden structure appears, we add the
new topological structure into the previous 2D manifold to obtain the updated
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object representation. For instance, a rotating cup will reveal the handle that
was hidden before, and hide the logo when it moves out of sight.

When the camera has covered all the aspects of the object, which means all
the observable parts of the object have been integrated in the object model, the
topological structure of the target object is complete. This is the process we
defined as topological completion.

5 Walking: Only One Foot Leaves Contact with the
Ground

In the image frame every pixel establishes a contact between the moving object
and the digital image. In order to reduce efforts of updating large amounts of
data (e.g. geometrically transforming the object window) we reduce the contact
to a single point which serves as a reference similar to the foot making the next
step in walking.

5.1 Invariance to Translation

In order to keep the geometric information of the object’s surface patches we
attribute each cell v ∈ V with the coordinates of the corresponding image pix-
els, p(v) = (x, y) ∈ [0, Nx] × [0, Ny]. These coordinates could, if necessary, be
enhanced by depth values, p(v) = (x, y, d) ∈ [0, Nx]× [0, Ny]× IR, coming from
different ’shape from X’ methods (e.g. [48]).

Both the extracted objects and the remaining background image can be em-
bedded in an irregular graph pyramid either

– by using the existing image pyramid (e.g. after segmentation) or
– by rebuilding the pyramids of the objects and the background.

The coordinates of the higher level cells can be computed from the children either
by inheritance from the surviving child to the parent or by a weighted average
of the children’s coordinates or by a combination with the selection of survivors
such that the largest region survives and inherits its children’s coordinates in
the case the pyramid is rebuilt. After this bottom-up propagation each cell has
2D or 3D coordinates.

The resulting position attributes p(v) are as redundant as the grey values
of a Gaussian pyramid. Hence the idea of expanding the parent’s coordinates
p(vp) to the children, p(c), parent(c) = vp, and storing simply the difference
vector d(c) = p(c)− E(p(vp)) between the expansion and the original attribute
in analogy to the Laplacian pyramid2. Let us call the difference d(c) the child’s
correction vector. Similar to the Laplacian pyramid the original position of
each cell can be reconstructed accurately (up to numerical precision) by adding
all the correction vectors (following the equivalence p(c) = E(p(vp)) + d(c))
up to the apex (a sort of equivalent correction vector). The position of the

2 In the simplest case, expand by projection, E(x) = x.
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cell is then the position of the apex added to the sum of correction vectors

p(c0) = p(apex) +
apex∑

c=c0,parent(c0),...
d(c). As a side effect the object can be rigidly

shifted by simply translating the apex to the desired position and reconstructing
the coordinates of all the other cells if needed. This shift invariance of the lower
pyramid levels allows simple modifications and efficient reconstruction but needs
further adaptation in order to cope with rotation and scale changes.

5.2 Invariance to Rotation and Scale

So far the position of an object is coded in the coordinates p(apex) of the apex.
Every cell below the apex contains correction vectors d(c) allowing accurate re-
construction of its position by top-down refinement using the correction vectors.

Most objects have an orientation o ∈ IR3 in addition to their position p ∈ IR3.
Orientation can be derived from properties like symmetry, moving direction or
can be given by the object model a priori. Since orientation is a global property
of an object we add it to the properties of the apex of the object’s pyramid.
The vector o(apex) codes both the orientation with respect to the reference
coordinate system and a scale if the length ||o|| �= 1 is different from unit length.
Orientation and position allow to quickly transform the object pyramid from
one coordinate system to another (i.e. of another camera or viewpoint).

The orientation of the object can be used to make correction vectors invariant
to rotation and scale. Taking p(vp) as the position where both the orientation
vector and the correction vector start we can express the correction vector d(c)
as a rotated and scaled version of the orientation: d(c) = λRx(α)Ry(β)Rz(γ)o
and store the parameters r(c) = (λ, α, β, γ) as new parameters of the cell c.
The angles α, β, γ can be the Euler angles of the corresponding rigid body and
the scale factor λ = ||d(c)||/||o|| relates the vectors’ lengths. Given the position
p(vp) of the parent and the orientation o of the object each cell can accurately
reconstruct it’s position p(c) = p(vp) + λRx(α)Ry(β)Rz(γ)o. We note that in
addition to the invariance with respect to translation, the parameters r(c) are
invariant also to rotation and scale. The rotation of the object is executed by
applying the rotation to the orientation of the apex and similar with a scale
change.

All the vertices can be accessed efficiently from the apex by following the
parent - children path. The construction of the pyramid proceeds bottom - up
while the reconstruction from the apex is a top - down process. In such way we
can reconstruct the whole pyramid by only locating the apex point.

6 A Sequence of ‘Steps’

Now when analyzing a video sequence it is not necessary to compute one pyramid
for each frame, it is enough to apply all the transformations to the apex and
only to reconstruct the whole structure at the end of the process. Or we can rely
to a few distinctive interest points (as done by several other approaches) the
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position and characteristics of which are known within the new object pyramid
together with their mutual spatial relationships and track them while enforcing
the preservation of the spatial relations like in the spring-system approach.

In that way, the complexity and the computation time are reduced what allows
to adapt to the changes in the image frame in a more efficient way and being
fast enough to deal with real time processing requirements.

6.1 Lossless Rotation

Another significant advantage of the above object pyramid is that the connec-
tivity of both the foreground and the background is always preserved. This is
not always true for other image processing tools (e.g. Photoshop), for example,
when working with thin and elongated objects. Fig. 6 shows an example of a
thin line (Fig. 6 a)) which is rotated by 50 degrees. As the new coordinates of
the points of the line do not correspond to integer coordinates most of the image
processing tools interpolate and resample the rotated coordinates in order to
obtain the new position of the points. This results in a disconnected line (Fig. 6
b)) or in a thicker line if bilinear interpolation or anti-aliasing is applied. In the
images of Fig. 6 b), the (red) stars mark the new rounded coordinates of each
point and the black squares show the position of the points estimated by the
processing tool. In our approach each pyramid level is a graph and the relations
between adjacent regions are defined by the edges of the graph. When the top-
down reconstruction is done, the position of each cell in each level is updated
according to its correction vector but the edges of the graphs are always con-
necting the same vertices independently of their position. Therefore the region
adjacency relations and connectivity are preserved (Fig. 6 c)).

a) a thin line rotated b) by Photoshop

*

*

*

c) as attributed graph

Fig. 6. 50o rotation of a thin line

6.2 Articulated Objects

Our approach can be extended to articulated objects. Articulated objects are
characterized by two or more rigid parts joint by articulation points. The nodes
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of the graph corresponding to the articulation point as well as the ones corre-
sponding to the rigid parts are identified in the graph pyramid [47]. The nodes
that compose each of the rigid parts will be merged in one apex in a certain
pyramid level so that to follow the movement of each rigid part it is only needed
to apply the geometric transformations in its apex and then doing the top-down
reconstruction.

The top row of the Fig. 7 shows the movement of an arm in a sequence of 5
video frames. For the process of tracking the movement of the arm, in the first
frame the structure is initialized and the pyramid is built (Fig. 7 a) ). In this
case only the lower part of the arm is moving, so that it will be only needed to
apply all the transformations in the apex of the set of nodes that correspond to
this part of the arm and reconstruct the graph at the end (7 b)). All the other
nodes in the structure will remain in the same position. In that way, the tracking
of articulated objects can be facilitated.

a) Sequence of frames where an arm is moving

b) Structure initialization c) Top-down reconstruction.

Fig. 7. Example with an articulated object

6.3 Adaptive Zoom–In: An Approaching Object

One application of the new object pyramid is the incremental update of the
object description when the object approaches the camera. If the object gets
closer to the camera, the distance camera-object decreases while the resolution
of the object increases. We obtain a bigger picture of the object with more details
to be inserted into the existing model of the object.

From the irregular graph pyramid perspective, this new image can be seen as
a projection of the original base graph which includes more details. The pyramid
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will expand one level below the current base graph, this new base graph encodes
both structures due to a higher resolution of the object. The new base graph is
relinked to the current pyramid by finding the vertical connection between the
new base graph and the existing upper part of the pyramid.

Assumption. We assume the approaching speed is not too fast. The current size
of the target object cannot exceed twice as the one in previous image frame.
This means the maximum scaling factor cannot exceed 2. Otherwise there might
be a gap between the new base graph and the previous base graph so that we
have to insert extra levels to bridge the new base graph with the old base graph.

The integration of several resolutions is also needed in surveillance applica-
tions involving multiple cameras observing the same area. The observed object
will be closer to some cameras but further away from others. This creates the
need to integrate the different views into a consistent description.

7 Conclusion

This paper presented some aspects of the development of image pyramids from
stacks of arrays to a stack of graphs describing object’s surfaces at multiple reso-
lutions and multiple levels of abstraction. By decoupling the object’s description
from the projected view in an image frame into an object centered pyramid rep-
resentation several operations become feasible: moving the object modifies only
one cell of the structure much like the step of the foot when walking: the apex.

For a rigid object, the structure of the object pyramid is invariant to basic
geometric transformation, such as translation, scaling and rotation. All the infor-
mation about position and orientation of the object is concentrated in the apex.
All the lower levels of a rigid object are invariant to translation, rotation and
scale changes but still allowing accurate reconstruction of the object’s geometry.

Tracking of structured objects is facilitated by the fact that the pyramid re-
lates the different tracked points and can compensate tracking failures in case
of partial occlusions. Articulation between rigid parts can be expressed by first
selecting one of the related parts as the parent and describing the articulation
by the change in Euler angles in the apex of the child. Different moving ob-
ject pyramids can be related by superimposing a graph describing their spatial
arrangement. In this graph the apexes of the objects appear as nodes related
by edges describing the particular neighborhood relations. In some cases this
graph could be embedded in IR3 using a 3D combinatorial pyramid [49]. In the
future several applications of the new concept are promising besides the spatio-
temporal tracking of moving objects, i.e. the integration of views from different
view points for surveillance.
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Abstract. The paper presents an approach, which detects eccentric
events in real time surveillance video systems (e.g., escalators), based on
optical flow analysis of multitude behavour followed by Mahalanobis and
χ2 metrics. The video frames are flagged as normal or eccentric estab-
lished on the statistical classification of the distribution of Mahalanobis
distances of the normalized spatiotemporal information of optical flow
vectors. Those optical flow vectors are computed from the small blocks of
the explicit region of successive frames namely Region of Interest Image
(RII), which is discovered by RII Map (RIIM). The RIIM is obtained
from specific treatment of foreground segmentation of moving subjects.
The method essentially has been tested against a single camera data-set.

1 Introduction

Video surveillance is commonly used in security systems, but requires more in-
telligent and more robust technical approaches. An automatic video surveillance
is attractive because it pledges to replace the more costly option of staffing
video surveillance monitors with human observers. There are many applications
for systems that can detect emergencies and provide profitable and informa-
tive surveillance. For instance, escalators have become an importance portion
of metropolitan life. The USCPSC estimates that there are approximately 7300
escalator-related injuries in the United States each year [1]. The USCPSC esti-
mated an average of 5900 hospital emergency-room-treated injuries associated
with escalators each year between 1990 and 1994. However, large-scale video
surveillance of escalators would benefit from a system capable of recognizing
eccentric (abnormal) events to make the system operators alert and fully in-
formed. An event is said to be an observable action or change of state in a video
stream that would be important for security management. For detecting events,
authors in [2] focused on differences in the direction of motion and speed of
persons, authors in [3] used optical flow features and support vector machine to
detect surveillance events, while authors in [4] heavily relied on the optical flow
concept to track feature points for each frame of a video. Optical flow features
with Hidden Markov Models were used to detect emergency or eccentric events
in the crowd [5,6] but those methods were not experimented on the real world
video data-set. We will put forward an approach, which is based on statistical
treatments of spatiotemporal (optical flow) patterns of human behaviours, to
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c© Springer-Verlag Berlin Heidelberg 2009



418 Md. Haidar Sharif and C. Djeraba

detect eccentric events essentially in unidirectional crowd flow (e.g., escalators).
We get-go by calculating a Region of Interest Image Map (RIIM) during a period
of time to extract the main regions of motion activity. The use of RIIM improves
the quality of the results and reduces processing time which is an important fac-
tor for real-time applications. The optical flow information, calculated from the
Region of Interest Images defined by RIIM in successive frames, of video re-
flects the crowd multi-modal behaviors as optical flow patterns variate in time.
There is sufficient perturbation in the optical flow pattern in the crowd in case
of abnormal and/or emergencies situations [see Fig. 1 (c) and (d)]. We calculate
Mahalanobis distances using the extracted spatiotemporal information. Maha-
lanobis metric uses an appropriate correlation matrix to take into account of
differences in variable variances and correlations between variables. We study
the distribution of Mahalanobis distances along with a defined cutoff value Td

to make difference between normal and abnormal frames. To analyze the op-
tical flow patterns of human crowds scenes, we have concentrated on escalator
videos to use in our applications. One practical application of our approach is
in the detection of real-time collapsing events, which could lead to perilous and
inconsistent conditions. The exercised videos are from camera installed at an
airport to monitor the situation of mainly escalator exits. The abstraction of the
application is to have essentially escalator exits continuously observed to react
quickly in the event of any collapsing. With this aim, cameras are installed in
front of the exit locations to observe and send the video signal to a control room,
where dedicated employees can monitor and respond to the collapsing situations.

The rest of this paper has been organized as follows: Section 2 delineates the
proposed framework; Section 3 reports the experimental results; finally, Section
4 presents the conclusion of the work with few inklings for further investigation.

2 Proposed Approach

2.1 Region of Interest Image Map (RIIM)

The RIIM can be defined automatically by building a color histogram [see Fig. 1
(a) & (b) for escalator case], which is built from the accumulation of binary blobs
of moving subjects, which were extracted following foreground segmentation
method [7]. The adaptive background subtraction algorithm proposed by [7] is

Fig. 1. (a) Camera view. (b) Generated Region of Interest Image Map (RIIM) and blue
region on the RIIM recommends Region of Interest Image (RII). Ordered & disordered
optical flow vectors in (c) & (d) limn normal and abnormal circumstances respectively.
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able to model a background from a long training sequence with limited memory,
works well on moving backgrounds, illumination changes, and compressed videos
having irregular intensity distributions. The RIIM will be brought into existence
mainly off-line. On-line is possible but it makes the system complicated. Off-line
is better as the generated RIIM will be more significant and accurate when the
video duration will be very long. RIIM improves the quality of the results and
reduces processing time which is an imperative factor for real-time applications.

2.2 Spatiotemporal Information (ST-Info) Extraction

The Region of Interest Image (RII), ascertained by RIIM, is separated into small
blocks. Once we define n (say 1500) points of interest in the RII, we track those
points over the small blocks of two successive region of interest images using
the combination feature tracker of Kanade-Lucas-Shi-Tomasi [8,9] easily. To get
an acceptable distribution of optical flow pattern over the RII, we take into
account vertical coordinate of each block. Consequently, a weighing coefficient
λ is calculated according to the vertical coordinate of the block. A block far
away from the camera has small vertical coordinate, as a result its λ should be
large. Equally, block with large vertical coordinate get smaller λ. The value of
λ heavily depends on the context of application and implementation. For our
escalator videos data-set typically λ limits 0.6 ≤ λ ≤ 1. Adjacent to camera
(starting of the RII) region the value of λ = 0.6 suits well, whereas λ bears the
maximum value 1 at the opposite end. We also take down the static and noise
features. Static features are the features which moves less than two pixels. Noise
features are the isolated features which have a big angle and distance difference
with their near neighbors due to tracking calculation errors. Finally, for each
frame [such as Fig. 1 (c) & (d)] irrespective of normal or eccentric events, we
obtain an acceptable and workable spatiotemporal information, i.e., 5 features
are observed in time and put in the form of a n× 5 matrix M(j)(k) by dint of:

M(j)(k) =

⎡
⎢⎢⎢⎣

x(1)(1) x(2)(1) x(3)(1) x(4)(1) x(5)(1)
. . . . .

x(1)(i) x(2)(i) x(3)(i) x(4)(i) x(5)(i)
. . . . .

x(1)(n) x(2)(n) x(3)(n) x(4)(n) x(5)(n)

⎤
⎥⎥⎥⎦ (1)

where j = 1, 2, 3, 4, 5; k = 1, 2, . . . , n; i be a feature element in k; and x(1)(i) �→
x -coordinate of the i, x(2)(i) �→ y-coordinate of the i, x(3)(i) �→ x-velocity with
multiply by a weighing coefficient λi of the i, x(4)(i) �→ y-velocity with multiply
by a weighing coefficient λi of the i, x(5)(i) �→ acting motion direction of the i.

2.3 Statistical Treatments of the ST-Info

Normalization of Raw Data: A normalized value is a value that has been
processed in a way that makes it possible to be efficiently compared against other
values. For each column of M(j)(k), we calculate the average xj and standard
deviation σj . Subtracting the average xj from each value in the columns of
x(j)(k), and then dividing by the standard deviation σj for that column in
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x(j)(k) generated a new matrix z(j)(k) as: xj = 1
n

∑n
k=1 x(j)(k), σj =√∑

(x(j)(k)−xj)2
n−1 , z(j)(k) = x(j)(k)−xj

σj
. All values in z(j)(k) are dimensionless

and normalized, consequently, the new pattern of the M(j)(k) gives right of way:

Z(j)(k) =

⎡
⎢⎢⎢⎣

z(1)(1) z(2)(1) z(3)(1) z(4)(1) z(5)(1)
. . . . .

z(1)(i) z(2)(i) z(3)(i) z(4)(i) z(5)(i)
. . . . .

z(1)(n) z(2)(n) z(3)(n) z(4)(n) z(5)(n)

⎤
⎥⎥⎥⎦ . (2)

A covariance matrix is merely collection of several variance-covariances in the
form of a square matrix. But one problem with covariance is that it is sensitive
to the scales. To obtain a more direct indication of how two components co-
vary, we scale covariance to obtain correlation. Correlation is dimensionless while
covariation is in units obtained by multiplying the units of each variable. Using
Z(j)(k), scaling is performed by means of the following equations: rpq = Spq

SpSq
,

Spq = 1
n−1

∑n
k=1 [zp(k)zq(k)], Sl =

√
1

n−1

∑n
k=1 [zl(k)2], {p, q} ∈ j, l ∈ {p, q}.

Calculation of Mahalanobis Distance Dm(i): In statistics, Mahalanobis
distance is based on correlations between variables by which different patterns
can be identified and analyzed. It is a useful way of determining similarity of an
unknown sample set to a known one. It differs from Euclidean distance in that it
takes into account the correlations of the data set and is scale-invariant, i.e., not
dependent on the scale of measurements. The region of constant Mahalanobis
distance around the mean forms an ellipse in two dimensional space (i.e., when
only 2 variables are measured), or an ellipsoid or hyperellipsoid when more vari-
ables are used. The Mahalanobis distance is the same as the Euclidean distance
if the correlation matrix is the identity matrix. We calculate the Mahalanobis
distance Dm(i) for each row of the normalized matrix Z(j)(k) by multiplying the
row by the inverted correlation matrix, then multiplying the resulting vector by
the transpose of the row of the Z(j)(k), then dividing the obtained result by the
degree of freedom, finally grasping square root of the up-to-the-minute result as:

Dm(i) =

√√√√√√√√√

[
z(1)(i) z(2)(i) z(3)(i) z(4)(i) z(5)(i)

5

]
⎡
⎢⎢⎢⎣

1 r12 r13 r14 r15
r21 1 r23 r24 r25
r31 r32 1 r34 r35
r41 r42 r43 1 r45
r51 r52 r53 r54 1

⎤
⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎣

z(1)(i)
z(2)(i)
z(3)(i)
z(4)(i)
z(5)(i)

⎤
⎥⎥⎥⎦ (3)

where the number of columns contained in Z(j)(k) is referred to as the degree
of freedom which is 5 in this case. Geometrically, samples with an equal Dm(i)
lie on an ellipsoid (Mahalanobis Space). The Dm(i) is small for samples lying
on or close to the principal axis of the ellipsoid. Samples further away from the
principal axis have a much higher Dm(i). The larger the Dm(i) for a sample is,
the more likely the sample is an outlier. An outlier (extreme sample) is a sample
that is very different from the average sample in the data set. An outlier may
be an ordinary sample, but of which at least one attribute has been severely
corrupted by a mistake or error (e.g., tracking calculation errors). An outlier
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may also be a bona fide sample, that simply turns out to be exceptional. Since
Mahalanobis distance satisfies the conditions (symmetry, positivity, triangle in-
equality) of metric, it is a metric. The use of the Mahalanobis metric removes
several limitations of the Euclidean metric: (i) it automatically accounts for the
scaling of the coordinate axes, (ii) it corrects for correlation between the different
features, (iii) it can provide curved as well as linear decision boundaries. But,
there is a disbursement to be paid for those advantages. The computation of
the correlation matrix can give rise to problems. When the investigated data are
measured over a large number of variables, they can keep under control much
redundant or correlated information. This is so-called multicollinearity in the
data which leads to a singular correlation matrix that cannot be inverted. An-
other precinct for the calculation of the correlation matrix is that the number of
samples in the data set has to be larger than the number of variables. Yet, in the
proposed approach, both problems have been minimized by dint of 5 variables
and tracking about 1500 samples (points of interest) in each frame respectively.

2.4 Classification of Mahalanobis Distances and Td Estimation

Mahalanobis squared distances are calculated in units of standard deviation
from the group mean. Therefore, the calculated circumscribing ellipse formed
around the samples actually defines the one standard deviation of that group.
This allows the designing of a statistical probability to that measurement. In
theory, Mahalanobis squared distance is distributed as a χ2 statistic with degree
of freedom equal to the number of independent variables in the analysis. The χ2

distribution has only one parameter called the degree of freedom. The shape of a
χ2 distribution curve is skewed for very small degrees of freedom and it changes
drastically as the degrees of freedom increase. Eventually, for large degrees of
freedom, the χ2 distribution curve looks like a normal distribution curve. Like
all other continuous distribution curves, the total area under a χ2 distribution
curve is 1.0. The three sigma rule, or 68-95-99.7 rule, or empirical rule, states
that for a normal distribution, about 68%, 95%, 99.7% of the values lie within 1,
2, and 3 standard deviation of the mean respectively. Clearly, almost all values
lie within 3 standard deviations of the mean. Consequently, samples that have
a squared Mahalanobis distance larger than 3 have a probability less than 0.01.
These samples can be classified as members of non-member group. Samples those
have squared Mahalanobis distances less than 3 are then classified as members
of member group. The determination of the threshold depends on the application
and the type of samples. In the proposed approach, we settle each Dm(i) goes
either member group or non-member group. Sample with a higher Dm(i) than√

3 is treated as non-member group, otherwise member group. Member group
contains absolutely the samples of a normal event, whereas non-member group
contains essentially samples of eccentric events (including outliers). Figure 2 de-
picts, while Mahalanobis metric produces elliptical cluster where samples are well
correlated, Euclidean metric produces circular subsets. The non-member group
consists of samples S1, S2, S3, S4, S5, S6, S7, and the outlier S8, while the member
group groups the rest samples. Presuming in any non-member group, having M
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S1

S2 S3

S4 S5
S6 S7

S8

Euclidean

Mahalanobis

Fig. 2. Mahalanobis metric with respect to Euclidean metric. Samples S1, S2, S3, S4, S5,

S6, S7, and outlier S8 go to non-member group, while the rests are member group.

samples including outliers (where also assuming that in general M � outliers

satisfies), we sum up their Mahalanobis distances as: Sd =
∑M

i=1 Dm(i). Now,
we transfer each Sd into a normalized distance (probability) value ranges be-
tween 0 and 1. The normalization may be done by using the simple formula
like 1/log(Sd), but the normalized values fall into a congested range (scaling
problem) which will arise problem specially in threshold selection. To solve the
scaling problem, we take the advantage of cumulative distribution function (cdf),
which has strict lower and upper bounds between 0 and 1, we can easily pick up
the normalized distance of each Sd. Since all values of Sd are skewed to the right
(positive-definite) and their variances are also large, we can use Log-normal dis-
tribution. Skewed distributions are particularly common when mean values are
low, variances large, and values cannot be negative. Log-normal distributions are
usually characterized in terms of the log-transformed variable, using as parame-
ters the expected value, or mean (location parameter µ), of its distribution, and
the standard deviation (scale parameter σ). The σ is entitled as scale as its value
determines the scale or statistical dispersion of the probability distribution. If
Nd be the normalized value of Sd, then Nd can be gently estimated by means of:

Nd =
1
2

[
1 + erf{

log(Sd) − µ

σ
√

2
}
]

, erf(r) =
2

√
π

[
r −

r3

3
+

r5

10
−

r7

42
+ . . .

]
(4)

where erf is a Gauss error function and r = log(Sd)−µ

σ
√

2
. Using Eq. 4, and

placing congenial values of µ and σ (say µ = 0, σ = 5) we can explicitly estimate
the value of Nd between 0 and 1. Now, it is important to define an appropriate
threshold Td to make a distinction between normal and abnormal frames. We
make a similitude measure between Nd and Td to reach an explicit conclusion for
each frame, i.e., a frame is said to be eccentric if Nd > Td, otherwise normal. We
estimate Td from video stream which contains none but normal motions using:

Td =

√√√√
[
arg max

i=1...f
[Nd]i

]2

+

[
arg min

i=1...f

[
2

π2

∞∑
n=0

(−1)n(Nd)2n+1

n!(2n + 1)

]

i

]2

(5)
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where f be the total number of frames. The Td extremely depends on the con-
trolled environment. If the video stream changes, then Td should be regenerated.

3 Experimental Results

To conduct experiments we used 16 real videos, taken in spanning days and sea-
sons, of frame size 640×480 pixels, collected by cameras installed in an airport to
monitor especially the escalator egresses, provided by a video surveillance com-
pany (escalator video frames in Fig. 3 have been cropped/grayed for confidential
reasons). The videos were used to provide informative data for the security team
who may need to take prompt actions in the event of a critical situation such
as collapsing. Each video stream consists of normal and eccentric events. The
normal situations correspond to crowd flows without any eccentric event on the
escalator elsewhere. Eccentric events correspond to videos which contain collaps-
ing events mostly in the escalator egresses. Generally, in the videos we have two
escalators corresponding to two-way-traffic of opposite directions. The 1st image
(from left) of Fig. 3 describes a scenario of a collapsing event in an escalator exit
point. Some stuffs from a heavily loaded trolley have dropped just the egress
point of the moving escalator which has caused one kind of emergency situation
on the egress point. The 2nd image figures another example of an abnormal event
where a wheel from the trolley has suddenly been broken off by the friction dur-
ing its travel over an escalator and finally on the escalator exit point one kind of
perilous and inconsistent circumstances has been come off. The situations have
been detected by the proposed algorithm. But the algorithm does not work two
of the video streams where video frames bear the situations like Fig. 3 (a) and
(b) as the video sequences which include abnormal events have occurred with
occlusion. Thus the quantity of extracted optical flow vectors is not sufficient
to draw out abnormal frames. Of course, occlusion handling is a difficult part
of optical flow technique. Occluded pixels violate a major assumption of optical

Fig. 3. Curves are the outputs of algorithm. Eccentric events on escalator exits (from
left 1st two images), a sudden run of mob (3rd), turnabout of car on high-way (4th)
have been detected. But occluded abnormal events in (a) and (b) can not be detected.
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flow technique that each pixel goes somewhere. However, the detection results
have been compared with ground truth. Ground truth is the process of manually
marking what an algorithm is expected to output. Beyond the escalator unidi-
rectional flow of mob videos, the method has been tested on the videos existing
both normal and abnormal events, attributed 320× 240 pixels, where the move-
ments of people are random directions or where cars violate the traffic rules on
the high-way, e.g., scenarios depicted on the 3rd and 4th images of Fig. 3. In
the 3rd image, people has tended to leave their places with very quick motion.
The 4th image concerns the scenario of breaking high-way traffic rules. When
the car has tried to make a turnabout, it has broken the traffic rules which has
been detected by the algorithm. The blue colored curves are the output of the
algorithm. The yellow colored regions represent the abnormal motion activities.

4 Conclusion

We evinced a method which detects abnormal events in real time surveillance
video systems. ST-Info has been extracted from the small blocks of the RII
discovered by RIIM, which improves the quality of results and reduces processing
time. The study of the distribution of Mahalanobis distances with predefined
threshold Td provides the knowledge of the state of abnormality. Efficacy of the
algorithm has been evaluated on the real world crowd scenes. Obtained results,
have been compared with ground truths, show the effectiveness of the method
on detecting abnormalities. Yet, future work will make suit the method for the
cases e.g., a normal event makes less visible or unclear an abnormal event, etc.
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Abstract. Recently, to increase the classification accuracy of dissimilarity-based
classifications (DBCs), Kim and Duin [5] proposed a method of simultaneously
employing fusion strategies in representing features (representation step) as well
as in designing classifiers (generalization step). In this multiple fusion strate-
gies, however, the resulting dissimilarity matrix is sometimes an indefinite one,
causing problems in using the traditional pattern recognition tools after embed-
ding the matrix in a vector space. To overcome this problem, we study a new
way, named combine-correct-combine (CCC) scheme, of additionally employ-
ing an Euclidean correction procedure between the two steps. In CCC scheme,
we first combine dissimilarity matrices obtained with different measures to a
new dissimilarity representation using a representation combining strategy. Next,
we correct the dissimilarity matrix using a pseudo-Euclidean embedding algo-
rithm to improve the internal consistency of the matrix. After that, we again
utilize the classifier combining strategies in the refined dissimilarity matrix to
achieve an improved classification for a given data set. Our experimental re-
sults for well-known benchmark databases demonstrate that the CCC mechanism
works well and achieves further improved results in terms of the classification
accuracy compared with the previous multiple fusion approaches. The results es-
pecially demonstrate that the highest accuracies are obtained when the refined
representation is classified with the trained combiners.

1 Introduction

In statistical pattern recognition, classification is performed in two steps: representation
and generalization. In a case of dissimilarity-based classification (DBC) [9] 1, dissimi-
larity matrix is generated first from the training set in the representation step. Then, in
the generalization step, classifiers are designed in the dissimilarity matrix.
� The work of the first author was done while visiting at Delft University of Technology, The
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1 This methodology is not based on the feature measurements of the individual patterns, but
rather on a suitable dissimilarity measure between them. An introduction to DBC will appear
in a subsequent section.
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On the other hand, combination systems which fuse “pieces” of information have
received considerable attention because of its potential to improve the performance of
individual systems [6], [7]. Recently, to increase the classification accuracy of DBCs,
Kim and Duin [5] proposed a method of simultaneously employing multi-level fusion
strategies in representing features (representation step) as well as in designing classi-
fiers (generalization step). In [5], the authors first combined dissimilarity matrices ob-
tained with different measures to a new representation matrix. Then, after training some
base classifiers in the new representation matrix, they again combined the results of the
base classifiers. In this multiple combining scheme, however, the representation matrix
obtained is sometimes an indefinite one [8], causing problems in using the traditional
pattern recognition tools after embedding the matrix in a vector space [10].

Combining dissimilarity matrices of metric measures sometimes leads to non-
Euclidean ones, in which the metric requirement, such as the symmetry or the trian-
gle inequality, is disobeyed. Duin and his colleagues [10] found that classifiers based
on non-Euclidean dissimilarity representations may lead to better results than those
based on transformed dissimilarity measures that are either Euclidean or have reduced
non-Euclidean components [10]. Non-Euclidean vector spaces, however, are not well
equipped with the tools for training classifiers; distances have to be computed in a spe-
cific way and are usually not invariant to orthogonal rotations. Also densities may not be
properly defined, though some density-based classifiers can be used under some restric-
tions. So, Euclidean corrections called Euclideanization become of interest [8], [10].

To overcome the problem mentioned above, we study a new way, named combine-
correct-combine (CCC) scheme, of additionally employing an Euclidean correction
procedure between the two steps. In CCC scheme, we first combine dissimilarity ma-
trices obtained with different measures to a new representation matrix using one of
the representation combining strategies. We then correct the representation matrix us-
ing pseudo-Euclidean embedding algorithms to improve the internal consistency of the
matrix. Finally, we again utilize the classifier combining strategies in the refined dis-
similarity matrix to achieve an improved classification accuracy. Indeed, we show that
by correcting the dissimilarity representation matrix resulted from combining various
dissimilarity matrices, we can obtain a refined representation matrix, using which, in
turn, the classifier combining strategies can be employed again to improve the classi-
fication accuracy. Our experimental results for benchmark databases demonstrate that
the proposed CCC mechanism works well and achieves further improved accuracies
compared with the previous multiple fusion approaches [5].

The main contribution of this paper is to demonstrate that combined DBCs can be
optimized by employing an Euclidean correction procedure. This has been done by
executing the correction procedure prior to the classifier combining process and by
demonstrating its strength in terms of the classification accuracy. The reader should
observe that this philosophy is quite simple and distinct from that used in [5].

2 Combine-Correct-Combine Scheme for DBCs

Foundations of DBCs: A dissimilarity representation of a set of samples, T = {xi}n
i=1

∈ �d, is based on pairwise comparisons and is expressed, for example, as an n × m
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dissimilarity matrix DT,Y [i, j], where Y = {yj}m
j=1, a prototype set, is extracted from

T , and the subscripts of D represent the set of elements on which the dissimilarities are
evaluated. Thus, each entryDT,Y [i, j] corresponds to the dissimilarity between the pairs
of objects 〈xi, yj〉, where xi ∈ T and yj ∈ Y . Consequently, an object xi is represented
as a column vector as follows: [d(xi, y1), d(xi, y2), · · · , d(xi, ym)]T , 1 ≤ i ≤ n. Here,
the measure d is only required to be reflexive, i.e., d(x, x) = 0 for all x. Also, the
dissimilarity matrix D is defined as a dissimilarity space on which the d-dimensional
object, x, given in the feature space, is represented as an m-dimensional vector δ(x, Y ),
where if x = xi, δ(xi, Y ) is the i-th row of D. In this paper, the dissimilarity matrix
and its column vectors are simply denoted by D(T, Y ) and δ(xi), respectively.
Representation Combining Strategies: Here, it is interesting to note that a number of
distinct dissimilarity representations can be combined into a new one to obtain a more
powerful representation in the discrimination. The idea of this feature combination is
derived from the possibility that discriminative properties of different representations
can be enhanced by a proper fusion [9] 2. There are several schemes for combining mul-
tiple representations to solve a given classification problem. Some of them are Average,
Product, Min, and Max rules. For example, in the Average rule, two dissimilarity matri-
ces, D(1)(T, Y ) and D(2)(T, Y ), can be averaged to (α1D

(1)(T, Y ) + α2D
(2)(T, Y ))

after scaling with an appropriate weight, αi, to guarantee that they all take values in a
similar range. The details of these methods are omitted here, but can be found in [9].
Representation Correcting Strategies: A symmetric dissimilarity matrix D ∈ �n×n

can be embedded in a pseudo-Euclidean space Ξ(= �(p,q) = �(p) ⊕ �(q)), by an
isometric mapping [3], [8], [9]. The pseudo-Euclidean space Ξ is determined by eigen-
decomposition of an Gram matrix, G = − 1

2JD
∗2J , derived from D, where J is the

centering matrix 3 and D∗2 is the square dissimilarity matrix. The details of the deriva-
tion can be found in the related literature including [1], [9]. In this decomposition, p
positive and q negative eigenvalues arise, indicating the signature of Ξ . The axes of Ξ
are constituted by

√
|λi|µi, where λi and µi are the ith eigenvalue and the correspond-

ing eigenvector of G, respectively.
There are several schemes for determining the pseudo-Euclidean space to refine the

dissimilarity representation resulted from combining dissimilarity matrices. Some of
them are briefly introduced as follows:

1. NON (non-refined space): This method is the same as the multiple fusion scheme
in [5]. That is, the combiners are trained in non-refined matrix.

2. PES+ (pseudo Euclidean space): The most obvious correction for a pseudo-
Euclidean space Ξ = �(p,q) is to neglect the negative definite subspace. This discard-
ing results in a p-dimensional Euclidean space �(p) with many-to-one mappings to Ξ .
Consequently, it is possible that the class overlap increases.

3. AES (associated Euclidean space): Since �(p,q) is a vector space, we can keep
all dimensions when performing the isometric mapping, which implies that the vector
coordinates are identical to those of Ξ , but we now use the norm and distance measure
that are Euclidean.

2 This is also related to a kind of clustering ensemble which combines similarity matrices [13].
3 J = I − 1

n
11T ∈ �n×n, where I is the identity matrix and 1 is an n-elements vector of all

ones. The details of the centering matrix can be found in [1].
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4. AESR (associated Euclidean space reduction): In this correction, we can find an
Euclidean subspace based on the p′(≤ p) positive eigenvalues and q′(≤ q) negative
eigenvalues when computing a projection.
The details of the other correction procedures, such as DEC (dissimilarity enlargement
by a constant), Relax (relaxation by a power transformation), and Laplace (Laplace
transformation), are omitted here, but can be found in [3].
Classifier Combining Strategies: The basic strategy used in fusion is to solve the clas-
sification problem by designing a set of classifiers, and then combining the individual
results obtained from these classifiers in some way to achieve reduced classification er-
ror rates. Therefore, the choice of an appropriate fusion method can further improve on
the performance of the individual method. Various classifier fusion strategies have been
proposed in the literature. Some of them are Product, Sum, Average, Max, Min, Median,
Majority vote, and so on [6]. In addition, there are two commonly used approaches to
implement multiple base-level classifiers; a fixed combiner and a trainable combiner.
The fixed combiner has no extra parameter that need to be trained, while the trainable
combiner needs additional training. For example, if a single training set is available, it is
recommended to leave the base classifiers undertrained and subsequently complete the
training of the combiner on the training set [7], [11]. Various classifier fusion strategies
have been proposed in the literature - an excellent study is found in [7].

3 Combined Dissimilarity-Based Classifiers (CDBCs)

The reasons for combining several distinct dissimilarity representations and different
dissimilarity-based classifiers will be investigated in the present paper. The proposed
approach, which is referred to as a combined dissimilarity-based classifier (CDBC), is
summarized in the following:

1. Select the input training data set T as a representative subset Y .
2. Compute dissimilarity matrices, D(1)(T, Y ), D(2)(T, Y ), · · ·, D(k)(T, Y ), by us-

ing the k different dissimilarity measures for all x ∈ T and y ∈ Y .
3. Combine the dissimilarity matrices, {D(i)(T, Y )}k

i=1, into new ones, {D(j)

(T, Y )}l
j=1, by building an extended matrix or by computing their weighted average.

Following this, correct the new matrices using an Euclidean correction procedure.
4. For any D(j)(T, Y ), (j = 1, · · · , l), perform classification of the input, z, with

combined classifiers designed on the newly refined dissimilarity space as follows:
(a) Compute a dissimilarity column vector, δ(j)(z), for the input sample z, with

the same method as in measuring the D(j)(T, Y ).
(b) Classify δ(j)(z) by invoking a group of DBCs as the base classifiers designed

with n m-dimensional vectors in the dissimilarity space. The classification re-
sults are labeled as class1, class2, · · ·, respectively.

5. Obtain the final result from the class1, class2, · · ·, by combining the base classi-
fiers designed in the above step, where the base classifiers are combined to form
the final decision in the fixed or trained fashion.

The computational complexity of the proposed algorithm depends on the computational
costs associated with the dissimilarity matrix. Thus, the time complexity and the space
complexity of CDBC are O(n2 + d3) and O(n(n + d)), respectively.
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4 Experimental Results

Experimental Data: The proposed method has been tested by performing experiments
on three benchmark databases, namely, the Yale 4 , AT&T 5 , and Nist38 databases.

The face database of Yale contains 165 gray scale images of 15 individuals. The
size of each image is 243 × 320 pixels, for a total dimensionality of 77760 pixels. To
reduce the computational complexity of this experiment, facial images of Yale database
were down-sampled into 178× 236 pixels and then represented by a centered vector of
normalized intensity values. The face database of AT&T consists of ten different images
of 40 distinct subjects, for a total of 400 images. The size of each image is 112 × 92
pixels, for a total dimensionality of 10304 pixels. The data set captioned Nist38 chosen
from the NIST database [12] consists of two kinds of digits, 3 and 8, for a total of 1000
binary images. The size of each image is 32 × 32 pixels, for a total dimensionality of
1024 pixels.
Experimental Method: All our experiments were performed with a leave-one-out
(LOO) strategy. To classify an image of an object, we removed the image from the
training set and computed the dissimilarity matrix with the n− 1 images. This process
was repeated n times for every image, and a final result was obtained by averaging the
results of each image. To compute the dissimilarity matrix, we first selected all training
samples as the representative. We then measured the dissimilarities between them using
four systems: Euclidean distance (ED), Hamming distance (HD) 6, the regional distance
(RD) 7, and the spatially weighted gray-level Hausdorff distance (WD) 8 measures.

First of all, to investigate the representation combination, we experimented with three
Average methods: Ex-1, Ex-2, and Ex-3. In Ex-1, two dissimilarity matrices obtained
with ED and RD measures are averaged to a new representation after normalization,
where the scaling factors are αi = 1

2 , i = 1, 2. In Ex-2, three dissimilarity matrices
obtained with ED, RD, and HD measures are averaged to a new one with αi = 1

3 , i =
1, 2, 3. In Ex-3, four dissimilarity matrices measured with ED, RD, HD, and WD are
averaged with αi = 1

4 , i = 1, · · · , 4. In general, αi = 1
N , where N is the number of

matrices to be combined.
Next, to improve the internal consistency of the combined matrices, we refined them

with three kinds of Euclidean corrections: AES, PES+, and AESR. In AES, all dimen-
sions are kept when mapping the matrix onto a pseudo-Euclidean subspace. In PES+,

4 http://www1.cs.columbia.edu/ belhumeur/pub/images/yalefaces
5 http://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html
6 Hamming distance between two strings of equal length is the number of positions for which the

corresponding symbols are different. For binary strings α and β, for example, the Hamming
distance is equal to the number of ones in α ⊕ β (⊕ means Exclusive-OR operation).

7 The regional distance is defined as the average of the minimum difference between the gray
value of a pixel and the gray value of each pixel in a 5× 5 neighborhood of the corresponding
pixel. In this case, the regional distance compensates for a displacement of up to three pixels
of the images.

8 In WD, we compute the dissimilarity directly from input gray-level images without extracting
the binary edge images from them. Also, instead of obtaining the distance on the basis of the
entire image, we use a spatially weighted mask, which divides the image region into several
subregions according to their importance.
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Fig. 1. A comparison of the error rates of two combiners, meanc and fisherc, obtained with Ex-1
method for Yale. Here α2(= 1−α1) is the scaling factor of the dissimilarity matrix. Four markers
describing the same Euclidean corrections are connected by lines to enhance the visibility.

a subspace is found based on the positive eigenvalues only, while, in AESR, the sub-
space is found such that at least a fraction of the negative eigenvalues is preserved.
For instance, in this experiment, the cumulative fractions of the positive and negative
eigenvalues were 0.9 and 0.1, respectively.

Finally, in CDBCs, l was set as 1; only one combination of dissimilarity matrices
was made. Also, after training three base classifiers, all of the results were combined in
trainable fashion. Here, the three base classifiers and the three trained combiners were
implemented with PRTools 9, and named nmc, ldc, knnc, meanc, fisherc, and naivebc,
respectively.
Experimental Results: First of all, to examine the rationality of employing the refin-
ing techniques in CDBCs, the classification error rates of two combiners, meanc and
fisherc, were evaluated with Ex-1 method for Yale database. Here, combining dissimi-
larity matrices was done with 21 different scaling factors; α2 = 0.0, 0.05, · · · , 1.0 and
α1 = 1 − α2. Then, the resulted matrices were corrected in three ways: AES, PES+,
and AESR. Finally, the results of the base classifiers were combined in trained fashion.
Fig. 1 shows a comparison of the error rates obtained with Ex-1 method for Yale.

From the figure, it should be observed that the classification accuracies of the com-
biners trained in the refined matrix can be improved. This is clearly shown from the
results of meanc (see the left picture), where the error rates of a NON-refined matrix is
shown with the connected lines of � marker, and those of three refined matrices with
∗, ×, and + markers. Similar, not necessarily the same, characteristics could also be
observed in the results of fisherc (see the right picture). The details of the results are
omitted here in the interest of compactness.

In order to further investigate the advantage gained with utilizing the CCC scheme,
we repeated the experiments (of estimating error rates) in Ex-1, Ex-2, and Ex-3. Table 1
shows the estimated error rates of CDBCs designed as the base classifiers and the train-
able combiners for the three experimental databases. In the table, the values underlined
are the lowest ones in the 24 error rates (12 for the base classifiers and 12 for the trained
combiners per each fusion method).

9 PRTools is a Matlab toolbox for pattern recognition (refer to http://prtools.org/).
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Table 1. A comparison of the estimated error rates of DBCs designed as the base classifiers and
the trainable combiners for the three databases, where the values underlined are the lowest ones
in the 24 error rates of the base and trained combiners per each combining method

experimental combining correcting base classifiers combiners
databases method method nmc ldc knnc meanc fisherc naivebc

NON 0.2242 0.0485 0.1939 0.1455 0.0485 0.1455
Ex-1 AES 0.1030 0.0485 0.1879 0.0667 0.0485 0.1091

PES+ 0.1091 0.0424 0.1879 0.0606 0.0424 0.1030
AESR 0.1091 0.0121 0.1939 0.0364 0.0121 0.0970
NON 0.2061 0.0909 0.1939 0.1455 0.0909 0.1697

Ex-2 AES 0.1273 0.0182 0.1879 0.0424 0.0182 0.1091
Yale PES+ 0.1273 0.0182 0.1879 0.0424 0.0182 0.1091

AESR 0.1273 0.0303 0.1939 0.0424 0.0303 0.1152
NON 0.2121 0.0485 0.2121 0.1576 0.0485 0.1818

Ex-3 AES 0.1576 0.0848 0.2061 0.1273 0.0848 0.1697
PES+ 0.1576 0.0485 0.1879 0.0970 0.0485 0.1576
AESR 0.1576 0.0121 0.2061 0.0485 0.0121 0.1515
NON 0.2350 0.0075 0.0425 0.0300 0.0075 0.0300

Ex-1 AES 0.0600 0.0250 0.0175 0.0275 0.0325 0.0300
PES+ 0.0575 0.0525 0.0150 0.0300 0.0500 0.0250
AESR 0.0700 0.0150 0.0175 0.0175 0.0250 0.0225
NON 0.1950 0.0050 0.0225 0.0175 0.0050 0.0175

Ex-2 AES 0.0375 0.0350 0.0050 0.0125 0.0300 0.0100
AT&T PES+ 0.0375 0.0550 0.0050 0.0150 0.0475 0.0125

AESR 0.0375 0.0050 0.0075 0.0050 0.0050 0.0075
NON 0.2125 0.0050 0.0250 0.0175 0.0075 0.0175

Ex-3 AES 0.0375 0.0675 0.0050 0.0150 0.0475 0.0125
PES+ 0.0375 0.0925 0.0075 0.0150 0.0700 0.0150
AESR 0.0450 0.0025 0.0100 0.0025 0.0025 0.0100
NON 0.1220 0.0220 0.0190 0.0190 0.0190 0.0220

Ex-1 AES 0.0890 0.0670 0.0110 0.0370 0.0660 0.0220
PES+ 0.0930 0.0610 0.0130 0.0460 0.0130 0.0190
AESR 0.0930 0.0260 0.0110 0.0250 0.0110 0.0110
NON 0.1230 0.0210 0.0170 0.0170 0.0170 0.0220

Ex-2 AES 0.0900 0.1060 0.0110 0.0490 0.1060 0.0210
Nist38 PES+ 0.0920 0.0720 0.0150 0.0490 0.0150 0.0160

AESR 0.0910 0.0290 0.0120 0.0240 0.0120 0.0120
NON 0.1660 0.0180 0.0270 0.0180 0.0270 0.0270

Ex-3 AES 0.0990 0.1990 0.0140 0.1010 0.1990 0.0350
PES+ 0.1010 0.1120 0.0140 0.0560 0.0140 0.0170
AESR 0.0990 0.0240 0.0140 0.0180 0.0140 0.0130

The observations obtained from the table are the followings:
- The best Ex-3 results are usually better than the best Ex-2 and Ex-1 results, so

combining dissimilarity matrices is helpful.
- The corrected results (AES, PES+ and AESR) are sometimes better than the origi-

nal results (NON). So correction can be helpful, but sometimes it is not.
- The results fisherc as a trainable combining classifier are about equal to those of the

best base classifier (usually ldc, sometimes knnc) and it thereby operates as a selector.
Consequently, the combining classifier makes the system more robust.

Finally, we didn’t present standard deviations in Table 1 to save some space as
we don’t claim that some improvements are significant. A more robust analysis can
be performed in terms of quantitative measures such as the kappa or tau
coefficients [2].
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5 Conclusions

In this paper, we proposed to utilize the combine-correct-combine (CCC) scheme to
optimize dissimilarity-based classifications (DBCs). The CCC scheme involves a step
wherein the combined dissimilarity matrix is corrected prior to employing the classi-
fier combining strategies to improve the internal consistency of the dissimilarity matrix.
The presented experimental results for three benchmark databases demonstrate that the
studied CCC mechanism works well and achieves robust, good results. Despite this
success, problems remain to be addressed. First, classification performance could be
improved furthermore by developing an optimal Euclidean correction and by designing
suitable combiners in the refined dissimilarity space. Then, the experimental results also
show that the highest accuracies are achieved when the refined representation is classi-
fied with the trained combiners. The problem of theoretically analyzing this observation
remains unresolved. Future research will address these concerns.
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Abstract. Typical testors are very useful in Pattern Recognition, especially for 
Feature Selection problems. The complexity of computing all typical testors of 
a training matrix has an exponential growth with respect to the number of fea-
tures. Several methods that speed up the calculation of the set of all typical tes-
tors have been developed, but nowadays, there are still problems where this set 
is impossible to find. With this aim, a new external scale algorithm BR is pro-
posed. The experimental results demonstrate that this method clearly outper-
forms the two best algorithms reported in the literature.  

Keywords: typical testors, feature selection. 

1   Introduction 

One of the problems in Pattern Recognition is Feature Selection, which consists on 
finding the features that provide relevant information in the classification process. In 
the Logical Combinatorial Pattern Recognition [1] feature selection is commonly 
carried out by using Testor Theory [2]. In this theory, a testor is defined as a set of 
features that distinguishes the objects of different classes. A testor is called irreducible 
(typical) if none of its proper subsets is a testor. When we refer to typical testors (TT), 
we restrict us to typical Zhuravlev’s testors, where classes are crisp and disjoint sets, 
the comparison criteria for features are Boolean and the similarity measure assumes 
two objects as different if they are so in at least one of the features.  

Typical testors have been widely used to evaluate the feature relevance [3] and as 
support sets in classification algorithms [4]. In Text Mining, they have also been used 
for text categorization [5] and document summarization [6]. Several algorithms have 
been developed to calculate the typical testors. They can be classified according to its 
computational strategy into two categories: external and internal scale algorithms. The 
first perform the TT calculation by generating elements of the power set of features in 
a predefined order, but trying to avoid the analysis of irrelevant subsets. The second 
ones explore the internal structure of the training matrix and find conditions that guar-
antee the testor property. In this paper, we focus on the first strategy.  

The complexity of computing all typical testors has an exponential growth with re-
spect to the number of features. Methodologies that speed up the calculation of typical 
testors have been developed, but nowadays, there are still problems where the set of 
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all typical testors is impossible to find. Therefore, it is very important to develop 
better algorithms for obtaining typical testors. The external scale methods LEX [7] 
and CT-EXT [8] are reported to be the most efficient ones.  

With this aim, we propose BR, a new external scale method that avoids the analysis 
of a greater number of irrelevant subsets and efficiently verifies the testor property by 
profiting from the computer bit operations. The method name is due to these Binary 
operations and its Recursive nature. The experimental results demonstrate that this 
method clearly outperforms the two best algorithms reported in the literature [8].    

2   Basic Concepts 

Before presenting our method, we review the main definitions of the Testor Theory 
and we define the basic concepts of this method.  

Let TM be a training matrix containing m objects described in terms of n features 
 ℜ={X1,…,Xn} and distributed into r classes {C1,…,Cr}. Each feature Xi takes values 
in a set Di, i=1,…,n. A comparison criterion of dissimilarity ψi : Di x Di → {0,1} is 
associated to each Xi (0=similar, 1=dissimilar). Applying these comparison criteria for 
all possible pairs of objects belonging to different classes in TM, a Boolean dissimi-
larity matrix, denoted by DM, is built. Notice that the number of rows in DM is 

∑ ∑
−

= +=
=′

1

1 1

r

i

r

ij
ji CCm , where |Ci| denotes the number of objects in the class Ci. 

Let p and q be two rows of DM. p is a subrow of q if in all columns where p has 1, q 
has also it. A row p of DM is called basic if no row in DM is a subrow of p. The subma-
trix of DM containing all its basic rows (without repetitions) is called a basic matrix 
(BM). Then, a testor is a subset of features τ={Xi1,...,Xis} of TM for which a whole row 
of zeros does not appear in the remaining submatrix of BM, after eliminating all col-
umns corresponding to the features in ℜ\τ. τ is a typical testor if there is no proper sub-
set of τ that meets the testor condition [2]. Commonly, algorithms used for computing 
typical testors make use of BM instead of DM due to the substantial reduction of rows.  

Let (a1,…,au) be a binary u-tuple of elements, ai∈{0,1}, i=1,…,u. We call cardinal 
of a binary u-tuple to the number of its elements (i.e., u). The column corresponding 
to a feature X in BM is a binary u-tuple, whose cardinal is the number of rows in BM. 
We will denote this u-tuple by cX. We also define logical operations on binary u-
tuples as follows: 

(a1, a2, …, au) ∨ (e1, e2, …, eu)   = (a1 ∨ e1, a2 ∨ e2, …, au ∨ eu) 
(a1, a2, …, au) ∧ (e1, e2, …, eu) = (a1 ∧ e1, a2 ∧ e2, …, au ∧ eu) 
¬(a1, a2, …, au) = (¬a1, ¬a2, …, ¬au) 
(a1, a2, …, au) ⊗ (e1, e2, …, eu) = (a1 ⊗ e1, a2 ⊗ e2, …, au ⊗ eu), where ⊗ denotes 

the XOR operation.  
 (1,…,1) and (0,…,0) represent binary u-tuples in which all elements are one and 

zero, respectively.  
The notation [X1,…,Xs], Xi∈ℜ, is used to represent an ordered list of features and 

last([X1,…,Xs]) denotes the last element in the list, i.e. Xs. A list does not contain fea-
tures is denoted as []. We call length of a list l, denoted as |l|, to the number of its 
features. All basic operations of the set theory (difference, intersection, subset or 
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sublist, etc.) can be defined on ordered lists of features in a similar way. With the 
symbol + we denote the concatenation between ordered lists of features.  

Let l be an ordered list of features. The notation [l] represents a unitary list com-
posed by the list l. Hereafter, by list we will understand an ordered list. 

Definition 1. Let l = [X1,…,Xs] be a feature list. We call acceptance mask of l, de-
noted as aml, to the binary u-tuple in which the ith element is 1 if the ith row in BM 
has at least a 1 in the columns corresponding to the features of l and it is 0 otherwise.  

Definition 2. Let l = [X1,…,Xs] be a feature list. We call compatibility mask of l, de-
noted as cml, to the binary u-tuple in which the ith element is 1 if the ith row in BM 
has an only 1 in the columns corresponding to the features of l and it is 0 otherwise.  

Notice that the cardinal of both aml and cml is the number of rows in BM. 

Example 1. Let l1 = [X1, X2], l2 = [X5,X6,X7,X8,X9] and l3 = [X1, X2, X8] be feature lists 
of a basic matrix BM. Its acceptance and compatibility masks are the following: 
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Proposition 1. A feature list l = [X1,…,Xs] is a testor if and only if aml = (1,…,1). 

Definition 3. Let l = [X1,…,Xs] be a feature list and X∈ℜ. A row p in BM is a typical 
row of X with respect to l if it has a 1 in the column corresponding to X and zero in all 
the columns corresponding to the features in l \ [X].  

Notice that, by typical testor definition, a feature list l is a typical testor if l is a testor 
and satisfies the typicity property, i.e. for every feature X∈l there is at least a typical 
row of X with respect to l. 

Proposition 2. Let l = [X1,…,Xs] be a feature list and X ∉ l a feature of BM. The ac-
ceptance mask of the list l + [X] is calculated as follows: aml+[X] = aml ∨ cX. 

Proposition 3. Let l = [X1,…,Xs] be a feature list and X ∉ l a feature of BM. The 
compatibility mask of the list l + [X] is calculated as follows: 

cml+[X] = ((cml ⊗ cX ) ∧ cml ) ∨ (¬aml ∧ cX ) 

Notice that propositions 2 and 3 allow the updating of acceptance and compatibility 
masks, respectively when a new feature is added to a feature list. 

Proposition 4. Let l = [X1,…,Xs] be a feature list and X ∉ l a feature of BM. If at least 
one of the following conditions is satisfied: 

1.  aml+[X] =  aml  
2. ∃ Xi ∈ l such that cml+[X] ∧ cXi = (0,…,0)  

Then, X does not form a typical testor with l. In this case, we will say that X is exclu-
sive with l. 

The condition 1 means that X has no typical rows with respect to l and the second one 
indicates that Xi loses all its typical rows due to X.  
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Notice that X6 is exclusive with l1 in the Example 1, since X2 holds that cml1+[X6] ∧ 

cX2 = (1,0,1,0,1)∧(0,1,0,0,0) = (0,0,0,0,0). Notice also that X8 is non-exclusive with l1, 

because aml1+[X8] ≠aml1 (l3=l1+[X8]), cml3∧cX1= (0,0,0,0,1) and cml3 ∧cX2 = (0,1,0,0,0). 

Proposition 5. Let l = [X1,…,Xs]  be a feature list and X ∉ l a feature of BM. l + [X] is 
a typical testor if and only if X is non-exclusive with l and aml+[X] = (1,…,1). 

The first condition means that all features of l+[X] have at least a typical row with 
respect to l+[X]. The second one guarantees that l+[X] is a testor, by proposition 1. 

Definition 4. Let l = [X1,…,Xs] be a feature list, p an integer such that 1≤ p≤ s+1 and 

X∉l a feature of BM. We call substitution of X in l according to p, denoted as 
subst(l,X,p),  to the list l’= [X1,…,Xp-1,X]. If l = [] then subst(l,X,1) = [X].  

Notice that if p = s+1, subst(l,X,p) is the list l+[X]. 

Definition 5. Let l=[Xi1,…,Xip] and l’=[Xj1,…,Xjq] be feature lists such that l∩l’=[]. 
We call non-exclusive list of l with respect to l’, denoted as nonExcl(l,l’), to the list 
composed by the features Xik∈l such that Xik is non-exclusive with l’ and l’ + [Xik] is 
not a typical testor. 

For instance, in the basic matrix of Example 1, nonExcl(l2, l1) = [X7,X8]. Notice that X5 
and X9 are non-exclusive with l1, but [X1, X2, X5] and [X1, X2, X9] are typical testors. 

Definition 6. Let l=[Xi1,…,Xip] and l’=[Xj1,…,Xjq] be feature lists such that l∩l’=[]. 
We call typical list of l with respect to l’, denoted as TypL(l,l’) to the list composed by 
the lists l’ + [Xik] such that Xik∈l and l’ + [Xik] is a typical testor. 
For instance, in the basic matrix of Example 1, TypL(l2,l1) = [[X1,X2,X5],[X1,X2,X9]]. 

3   BR Method 

The proposed method firstly rearranges the rows and columns of BM in order to reduce 
the search space of typical testors. The row with the minimum number of 1’s and the 
maximum number of 1’s in the columns of BM where it has a 1 is put as the first row 
(see Steps 1a and 1b). In the Example 1, the two first rows have two 1’s, but the first 
row stays there, since it has four 1’s in the columns where it has a 1 (X1, X8). The rear-
rangement of columns (see Step 1c) allows the algorithm finishes as soon as possible, 
i.e., when the feature to be analyzed has a zero in the first row of BM. Notice that all 
possible combinations of the remaining features will not be testors. The rearrangement 
of columns also attempts to reduce the likelihood of the features to be analyzed being 
non-exclusive with a feature list, and therefore, to minimize the length of the feature 
lists that must be examined. 

The underlying idea of BR method is firstly to generate feature lists that satisfy the 
typicity property and secondly to verify the testor condition. Like LEX and CT-EXT 
algorithms, our method explores the power set of features starting from the first fea-
ture in BM and generates candidate feature lists to be typical testors. Once a candidate 
feature list has been generated, the typicity and testor properties are verified by using 
propositions 1, 4 and 5. Notice that these propositions are based on acceptance and 
compatibility masks.  
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Given a candidate feature list L, BR method builds the list LP composed by the fea-
tures Xi that are non-exclusive and do not form a typical testor with L. It means that 
L+[Xi] needs more features to form a typical testor. Unlike previous algorithms, which 
attempt to find these features in BM, our method restricts the search to the features in 
LP. This fact is based on the following proposition: 

Proposition 6. Let l=[X1,…,Xs] be a feature list and X∉l a feature of BM. If X is ex-

clusive with l, then it will also be exclusive with any list l’, such that l⊆l’ and X∉l’. 

Notice that the features Xi that form a typical testor with L are not included in LP. In 
this case, these typical testors are stored in TTR. Then, the first feature in LP is added 
to L and the remaining features in LP that are non-exclusive with L are selected again. 
This process is repeated until all typical testors containing the first feature in BM are 
found. Then, the algorithm starts from the second feature in BM and repeats all steps 
until the feature to be analyzed has a zero in the first row of BM (see Step 3c). Notice 
that the process of generating candidate feature lists and removing features from the 
lists is recursive (TL acts as a stack in which feature lists are added or removed in 
order to be reused in the analysis of new feature combinations). 

The proposed method is described as follows: 

Input: A basic matrix BM. 
Output: The set of all typical testors of BM. 

1. Sorting rows and columns of BM: 
a. Let F be the set of rows that have the minimum number of 1’s. 
b. For each row f ∈ F obtain the number of 1’s in all columns of BM that contain a 1 in f. Put the row 

with the maximum number as the first row in BM. If there is more than one row with the maximum 
value, then take any one of them. 

c. Let C1 (C0) be the set of columns with a 1 (0) in the first row of BM. Rearrange the columns such 
that columns in C1 are on the left and columns in C0 are on the right. Sort, in descending order, 
the columns in C1 according to its number of 1’s. The columns in C0 are sorted in the same way. 

2. Initialization:  
a. L = [] 
b. Let TTR be the list of typical testors, TTR = []. Notice that TTR is a list of lists. 
c. Let R be the list of all features in BM and TL = [R]. Notice that TL is also a list of lists. 

3. Process:  
a. Let RL be the last list of features in TL, i.e. RL = last(TL).  
b. Let X be the first feature of RL. 
c. If  | TL | = 1 then 

If the column corresponding to X (cX) has a zero in the first row of BM, then return TTR and END 
else, if cX = (1,…,1)  then TTR = TTR + [ [X] ], RL= RL \ [X] and go to Step 3b. 

d. L = subst(L, X, |TL|) 
e. Remove the last element (list) from TL, i.e. TL = TL \ [last(TL)]. 
f. RL = RL \ [X] 
g. LP = nonExcl (RL, L)  
h. TTR = TTR + TypL(RL, L) 
i. If  |RL| > 1, then 

 TL= TL+ [RL] 
  If  | LP | > 1, then TL= TL + [LP]  

j. Go to Step 3. 
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Notice that the list LP includes the features of RL that are non-exclusive with L but 
do not form typical testors with L, whereas TypL(RL, L) contains the features of RL 
that constitute typical testors with the features in L. Then, the Steps 3g and 3h can be 
performed simultaneously as follows: 

For each feature X’ of RL: 
1. Calculate amL+[X’] from amL by using the Proposition 2.  
2. If amL+[X’]  ≠ amL (see condition 1 of Proposition 4) then 

a. Calculate cmL+[X’] from cmL by using the Proposition 3. 
b. If cmL+[X’] ∧ cXi  ≠ (0,…,0) ∀Xi∈L (see condition 2 of Proposition 4) then 

If amL+[X’] = (1,…,1) then 
Add L+ [X’] to TTR (L + [X’] is a typical testor by Proposition 5) 

else, Add X’ to LP 

The characteristics that allow BR method to avoid the analysis of irrelevant feature 
subsets are the following: 
• The algorithm directly examines the feature combinations generated from the fea-

tures in L and those belonging to LP (non-exclusive ones with L), avoiding the 
analysis of the remaining combinations.  

• Since features that constitute a typical testor with L are not included in LP, the 
algorithm disregards all supersets of a typical testor.  

CT-EXT method firstly generates testors and secondly verifies the typicity property, 
whereas LEX and BR methods firstly generate feature subsets satisfying the typicity 
property and then, verify the testor condition. CT-EXT attempted to reduce the cost of 
verifying the typicity property of LEX, but at expense of generating a greater number 
of feature subsets. 

Example 2. The following table shows the feature subsets generated by LEX, CT-EXT 
and BR methods for the basic matrix BM until the subset {X2,X6} (represented as 26 in 
the table) is generated. Typical testors are highlighted in boldface. As we can see, BR 
generates the least number of feature subsets. Notice that LP=[X3,X4] when the first 6 
subsets are generated. Therefore, BR can jump to {X1,X3,X4} disregarding the remain-
ing combinations that include X1. However, LEX is not able to disregard these combi-
nations. On the other hand, CT-EXT examines several subsets including X1 and X2 
even though neither of them constitutes a typical testor. The definition of that a fea-
ture X contributes to a subset [8] only verifies that X has at least a typical row, but 
disregards that features in the subset can lose its typical rows due to X. Notice that X2 
contributes to {X1}, but X1 lost its typical row (the first one) due to X2. 
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4   Experimental Results 

In order to evaluate the performance of the proposed method, we compare the time 
spent to obtain all typical testors by our method and the two best algorithms reported 
in the literature: LEX and CT-EXT. It is worth mentioning that the source code of the 
CT-EXT algorithm was provided by the authors. To ensure a fair comparison all 
methods are carried out on an Intel Pentium Dual Core 1.6 GHz, 1 Gb RAM. 

For this comparison we use five data sets obtained from UCI Machine Learning 
Repository1. For each one, we generated the basic matrices regarding the strict equal-
ity as comparison criterion for all features. Table 1 shows the run time of the methods 
for the basic matrices of real data sets and two basic matrices randomly generated. 
Notice that these matrices have different dimensions (see Column 3). The last column 
(NTT) indicates the number of calculated typical testors. 

Table 1. Run times (h:m:s:ms) of the algorithms for several basic matrices 

Data set Class BM LEX CT-EXT BR NTT 
Zoo (101 x 17) 7 14 x 17 0:0:00:15 0:0:0:718 0:0:00:00 34 

Mushroom (8124 x 22) 2 30 x 22 0:0:00:16 0:0:0:750 0:0:00:00 292 
Chess (3196 x 36) 2 29 x 36 0:2:22:16 0:8:01:67 0:0:00:12 4 

Dermatology (366 x 34) 6 1124 x 34 0:25:45:7 1:43:15:6 0:0:58:22 115556 
Promoter (106 x 57) 2 2761 x 57 1:07:27:5 4:24:23:8 0:3:18:51 7456943 

Random -2 150 x 70 0:55:45:3 2:06:30:4 0:4:02:67 44165054 
Random -2 100 x 100 2:22:01:9 > 20 hrs 0:10:30:1 183051234 
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Fig. 1. Run times (in seconds) for basic matrices of 50 rows varying the number of features 

As we can observe, the higher dimension of basic matrix, the greater time is 
needed to calculate typical testors in all methods. It is important to notice also that BR 
achieves considerable time reductions with respect to LEX and CT-EXT. Unlike the 
reported results in [8], our experiments revealed that CT-EXT actually performs worse 
than LEX.  

In order to study the behavior of the algorithms, we show in Figure 1 the run times 
(in seconds) of the methods for basic matrices of 50 rows varying the number of  

                                                           
1 http://archive.ics.uci.edu/ml/ 
2 The number of classes is disregarded, because we randomly generate matrices of 0’s and 1’s. 
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features from 15 to 75. As we expected, the time of all methods grows exponentially 
when the number of features is increased. However, notice that our method runs about 
10 times faster than the best competitor, LEX and about 100 times faster than CT-
EXT.  

Thus, we can conclude that BR is significantly more efficient than other  
algorithms. 

5   Conclusions 

In this paper, a new external scale algorithm BR to calculate all typical testors of a 
training matrix has been proposed. The experimental results demonstrate that this 
method significantly outperforms the two best algorithms reported in the literature.  
The main contributions that ensure the speed up in the calculation of the set of all 
typical testors are: a new method for verifying typicity and testor properties which is 
based on binary logic and profits from the computer bit operations, the introduction of 
a generation mechanism of candidate feature subsets that avoids the analysis of a 
greater number of irrelevant subsets, and a prior ordering of the basic matrix that 
guarantees that the method finishes as soon as possible. 

Future work includes extending our method in order to obtain other generalizations 
of the typical testors not restricted to Zhuravlev’s testors (e.g. ε-testors and fuzzy 
testors [2]). We also plan to conduct additional experiments with basic matrices of 
different densities to evaluate the performance of the proposed method. 
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Abstract. We consider an algorithm to approximate each class region
by a small number of convex hulls and to apply them to classification.
The convex hull of a finite set of points is computationally hard to be
constructed in high dimensionality. Therefore, instead of the exact con-
vex hull, we find an approximate convex hull (a polyhedron) in a time
complexity that is linear in dimension. On the other hand, the set of
such convex hulls is often too much complicated for classification. Thus
we control the complexity by adjusting the number of faces of convex
hulls. For reducing the computational time, we use an upper bound of
the leave-one-out estimated error to evaluate the classifiers.

1 Introduction

In learning of classifiers, it is one promising way to estimate each class region by
a set of convex hulls including samples of the class only. Then we can assign a
class label to a given sample according to the distances of it to the estimated class
regions. Indeed, such an approach [1] using convex hulls showed a comparable
performance with SVM (Support Vector Machine) in low dimensionality [2]. In
this paper, we discuss another way of approximating class regions by a set of
polyhedral convex sets which are found in a linear order of dimension.

We can make the training error zero by using a sufficient number of convex
hulls in such the way that every training sample of a class is covered by at least
one convex hull and any other sample belonging to the other classes is excluded,
as long as no sample is shared by more than one class. Thus, according to
Occam’s razor, we should choose the simplest classifier as long as it attains the
same degree of training error. In our case, we may select the smallest number of
convex hulls with the smallest number of faces.

There are three problems to be solved. First, in high dimensions, it costs too
much to construct the convex hull of a given set of samples. Second, more than
one convex hull is generally needed to cover all training samples exclusively.
Finally, when we use the convex hulls for classification, it is required to measure
the distance between a point and the boundary of each convex hull. In this paper,
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Fig. 1. (a) Support plane h(S, w) for a directional vector w with angle θ and the convex
hull of S when all support planes are used. (b) The support function d = H(S, w)
with changing w(θ).

we describe first a method, recently developed by us, that can cope with these
three problems in a reasonable way [3]. Then a model selection procedure will
be given as the contribution of this paper.

2 Definition of the Convex Hull and Reflective Convex
Hull

In this paper, we use support functions for defining the convex hull of a set of
points S [4]. A support function of a unit vector w (‖w‖ = 1) is given by

H(S,w) = sup{〈x,w〉|x ∈ S},

where “sup” denotes the supremum and “〈·, ·〉” denotes the inner product. With
the set W0 of all possible unit vectors, the convex hull C is defined as

C = conv(S,W0) =
⋂

w∈W0

{y|〈y,w〉 ≤ H(S,w)}.

Here, h(S,w) = {y|〈y,w〉 = H(S,w)} is called a support plane. The convex hull
is an area which is surrounded by support planes h(S,w). An example of the
convex hull constructed by support planes is shown in Fig. 1.

We notice that a finite subset W ⊂ W0 gives an approximate convex hull
conv(S,W ) and thus a good selection of W derives a good approximation.

Next, let us consider separating a finite set S from another finite set T by the
convex hull of S when they are linearly or non-linearly well-separated. A support
plane of S might locate both S and T in the same side of the half-spaces specified
by it. Apparently such support planes are useless for separating S from T . For
separation of S from T , all we need is only reflective support planes which are
support planes separating S from T perfectly or partly. A reflective convex hull,
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Fig. 2. The reflective convex hull of the set of positive samples S against the set of
negative samples T . A few reflective support planes are shown.

Cr = conv(S,Wr), is the polyhedral convex set specified by the set Wr of all
unit vectors generating reflective support planes. Then the reflective convex hull
Cr is formally defined by

Cr = conv(S,Wr) =
⋂

w∈Wr

{y|〈y,w〉 ≤ H(S,w)}.

From the definition, C = conv(S,W0) ⊆ Cr = conv(S,Wr) since Wr ⊆ W0.
That is, the reflective convex hull of S is the polyhedral convex set of S whose
faces reflect rays emitted from points in T . An example of the reflective convex
hull is shown in Fig.2. Note that usually a reflective convex hull is not bounded
unlike the convex hull.

We can also define the margin M(S, T,w) between S and T in direction w as

M(S, T,w) = −H(T,−w)−H(S,w).

Note that when S and T are linearly separable, then there exists a support plane
specified by w with positive marginM(S, T,w) = M(T, S,−w). Now a reflective
support plane can be defined as a support plane hr(S,w) satisfying

H(T,w)−H(S,w) > 0.

The (signed) distance between a point x and the nearest boundary of a convex
hull conv(S,W0) is given by

D(x, ∂conv(S,W0)) = sup
w∈W0

{M(S, {x},w)}.

Here D takes a positive value for x outside of conv(S,W0) and a negative value
for x strictly inside of conv(S,W0). The closer it is, the smaller the absolute
value is. Note that, the calculation problem of D(x, ∂conv(S,W0)) is known to
be NP-hard when x is inside of the convex hull, but if W ⊂Wr is finite, we can
calculate the distance D(x, ∂conv(S,W )) in a linear order of |W | as

D(x, ∂conv(S,W )) = max
w∈W

{M(S, {x},w)}.
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3 Approximation of a Class Region by the Reflective
Convex Hulls

3.1 Algorithm

The algorithm [3] for each class is given as follows:

1. Let S be the positive sample set of a target class and T be the negative
sample set of the other classes. Let C = W = ∅. Let L be an upper bound of
the number of convex hulls and K be the number of normal vectors.

2. Find random K pairs of x (∈ S) and y (∈ T ) and put w = y−x
‖y−x‖ in set W .

3. Repeat L times the following Steps 4–5.
4. Let U = ∅. According to a random presentation order of positive samples,

add a positive sample x to U as long as conv(U ∪ {x},W ) ∩ T = ∅.
5. Add the obtained conv(U,W ) into C, unless it is already in C.
6. Select a minimal subset of C by a greedy set cover procedure for all positive

samples.

By this procedure, we have at most L approximated convex hulls that include
samples of one class only (e.g. see Fig 3 (a)). It should be noted that each convex
hull includes the positive samples maximally. We carry out this procedure twice
in each class: the first one is for finding noisy samples that are included in only
small convex hulls, and the second one is for obtaining the final convex hulls after
removal of those noisy samples. To judge a noisy sample, we use a threshold θ.
If a convex hull is small in size less than θ, that is, if the ratio of the number
of samples included in the convex hull to the number of positive samples is less
than θ(= 1% in following experiments), all samples included in it are noisy. To
emphasize the number of faces, an approximated reflective convex hull with K
directional unit vectors is called a K-directional approximated reflective convex
hull (shortly, K-ARCH). A convex hull might have less than K faces, but we
use this terminology whenever |W | = K. Roughly speaking, as K increases, the
corresponding K-ARCH approaches to the true reflective convex hull. The class
assignment of an unknown sample is carried out on the basis of distance to the
nearest boundary of K-ARCHs.

4 Classifier Selection

In reference [3], we used a fixed value of K for each dataset. In this paper, we
choose a suboptimal value of K.

4.1 The Estimation of Generalization Error

As a measure of testing error, we use the LOO (Leave-One-Out) error rate. As
well-known, LOO rate is almost unbiased, but it requires to build n classifiers
for n samples. Hence, we consider an upper bound of LOO that can be obtained
without reconstruction of classifiers. Let εLOO be the LOO error rate and V be
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Fig. 3. (a) The approximated class region by reflective convex hulls. (b) Vertices
necessary for LOO upper bound. The circled vertices are not necessary.

the set of vertices of all convex hulls and Z be the set of samples which are
outside of all convex hulls. If a single convex hull is taken in each class, εLOO is
bounded by the sum of |V | and |Z| decided by n. However, in the case that more
than one convex hull is taken in a class, a vertex of one convex hull can be hidden
by another. Fig.3 (b) illustrates such a case. Such vertices are able to be safely
removed from the calculation. We call the other vertices “effective vertices” Let
V ′ be the set of effective vertices on the boundary of the approximated class
region. Then we have an upper bound by

εLOO ≤
|V ′|+ |Z|

n
. (1)

We use the value of the right-hand side of (1). Clearly there exists a trade-off
between |V ′| and |Z|. So, we use the right-hand side term of (1) as our criterion.

4.2 Experiments

To construct W of normal vectors, We used np positive samples and np(c − 1)
negative samples, so that K = n2

p(c − 1) unit vectors were chosen randomly,
where c is the number of classes. In following, we changed the value of np in
[1, 50], thus, K in [c− 1, 2500(c− 1)].

We used 9 datasets taken from UCI machine learning repository [5]. We in-
creased the value of K until K reaches the maximum value. In each value of K,
we repeated the algorithm 10 times for reducing the effect of the other random
factors. Among 10 trials in a fixed value of K, we chose the best case in which the
LOO estimate takes the minimum. The recognition rate was estimated by 10-fold
cross validation. The loop number L of the randomized subclass method was set
to L = 20. That is, the number of convex hulls was limited to 20 in each class.

4.3 Results

We compared the proposed K-ARCH algorithm with an SVM in which an RBF
kernel with the default values of parameters (the standard deviation is σ = 10.0
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Table 1. The recognition rates of SVM and K∗-ARCH where K∗ is optimal in our
model selection criterion and |V ′| is the number of effective vertices

Dataset Classifier #SV or |V ′|
SVM K∗-ARCH (K∗) SVM K∗-ARCH

balance-scale 93.2 90.3 (98) 255.0 200.1
diabetes 64.1 75.0 (2401) 1310.0 483.3
ecoli 79.8 83.0 (252) 385.7 144.6
glass 66.3 63.6 (180) 336.9 138.0
heart-statlog 59.3 63.7 (2401) 479.4 201.8
ionosphere 94.0 90.9 (196) 132.5 331.2
iris 98.0 95.3 (18) 54.0 20.2
sonar 77.4 80.4 (121) 214.0 429.3
wine 72.5 87.0 (3200) 447.2 67.7
average 78.3 81.0 401.6 224.0
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Fig. 4. The error rate of K-ARCH as the number K of faces increases on four datasets.
The three curves show the estimated LOO error (the right-hand term of Ineq. (1)), the
training error and the testing error. The circled testing-error corresponds to the value
of K∗.
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Fig. 5. Redundant faces generated by noisy vectors

and the soft margin parameter γ = 100.0) was used [2]. For K-ARCH algorithm,
we use K∗-ARCHs for classification, where K∗ is the value of K attaining the
minimum LOO error. The result is shown in Table 1.

In Table 1, it is noted that K∗-ARCH performs better than half cases (5/9). It
was worse for easier or well-separated class problems including balance-scale,
ionosphere and iris (for these problems, the maximum recognition rate is
over 90%). This might mean that K-ARCH tends to generate a little more
complicated decision boundary compared with that of SVM. Note that a large
number K∗ is chosen for harder problems. It implies that K-ARCH formed a
complex boundary. Note also that the number of (effective) vertices is often less
than the number of support vectors. It means that K∗-ARCH often has higher
sparsity than SVM.

We can see the details in some datasets in Fig. 4. From Fig. 4, we see that
after reaching at the optimal value K∗, the testing error is not significantly
reduced anymore. In general, a model selection criterion is expected to form a
valley to simulate the testing error, but this is not the case. This implies that
K-ARCH does not change its decision boundary even if the model becomes more
complicated than necessary. We can interpret this phenomena as follows. Even
if the faces increase more than necessary, but they are limited in the location
opposite to the decision boundary. Such a situation is illustrated in Fig 5. As
shown in Fig 5, such a redundant non-reflective support plane can be generated
by some noisy samples. In this sense, we have to be careful about the value of
θ used for the judgement of noisy samples. The curve of the testing error goes
up and down to some extent as K increases. This is because small convex hulls
with very acute angles can be generated when K is large.

5 Discussion

The algorithm K-ARCH needs a relatively high cost in data number n for con-
structing the classifiers. However, the complexity grows only linearly in the fea-
ture number m. The cost of finding polyhedral regions is O(Kn2m). To have
one K-ARCH, we need O(npnn) for np positive and nn negative samples. That
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high cost prevented us from dealing with larger datasets. However, for distance
calculation of D(x, ∂conv(U,W )), we need only calculation of O(Km).

The merit of our K-ARCH approach is that we can have several useful pieces
of information in the original feature space unlike SVM. For example, the max-
imum margin in the corresponding reproducing kernel space does not always
mean the maximum margin in the original space. So, the margin should be con-
sidered in the original space. It is well known for two linearly separable classes
that the hyper-plane of SVM is equivalent to the bisector between the clos-
est points on the boundaries of the convex hulls of those two classes [6]. Re-
cently a similar relationship was revealed even for soft-margin SVM using the
reduced convex hulls [7]. Our classifier is almost identical to SVM when two
classes are linearly separable. In addition, our approaches use more than one
convex hull in each class. It maximizes the margin locally even when two classes
are non-linearly but smoothly separable. In this respect, our classifier is one of
large-margin classifiers.

6 Conclusion

In this paper, a model selection method has been proposed for a family of poly-
hedron classifiers. The family is based on polyhedral class regions close to the
convex hulls of some parts of training samples. In the family, the complexity
mainly comes from the number of faces and vertices of each polyhedral region.
The selection method employed an upper bound of the LOO error for time re-
duction and showed a satisfactory result for model selection.
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Abstract. The retinal vessel tree adds decisive knowledge in the di-
agnosis of numerous opthalmologic pathologies such as hypertension or
diabetes. One of the problems in the analysis of the retinal vessel tree is
the lack of information in terms of vessels depth as the image acquisition
usually leads to a 2D image. This situation provokes a scenario where
two different vessels coinciding in a point could be interpreted as a ves-
sel forking into a bifurcation. That is why, for traking and labelling the
retinal vascular tree, bifurcations and crossovers of vessels are considered
feature points. In this work a novel method for these retinal vessel tree
feature points detection and classification is introduced. The method ap-
plies image techniques such as filters or thinning to obtain the adequate
structure to detect the points and sets a classification of these points
studying its environment. The methodology is tested using a standard
database and the results show high classification capabilities.

Keywords: Feature points, classification of features, retinal images.

1 Introduction

In the field of medical diagnosis and disease study, it is necessary to analyse in
detail medical images. This analysis usually covers the measuring of parameters,
the calculation of values according to the image, and the monitoring of the struc-
tures. These tasks are usually performed manually by experts. This specialised
process, takes up a lot of time and, as the task is done manually, is sensitive to
subjective errors. It is, therefore, necessary to use more reliable methods.

The vascular tree of the retina can show morphological variations due to
diseases or even aging. The branches intertwine, creating points where several
vessels coincide. These points are of special importance in terms of analysis of the
tree as, depending whether they are in the same spatial plane or not, they can
be physically connected or otherwise just appear to be, due to the perspective
of the image. These will be the feature points in this work.

Many methods for extracting information from the retina vessel tree can be
found in the literature, but authors usually limit their work to a two dimen-
sional extraction of the information. An analysis of the third dimension, depth,
is needed. In the bibliography there are some works that try to solve this problem.
For instance, the work proposed by Ali Can et al. [1] tries to solve the problem
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in difficult images using the central vessel line to detect and classify the feature
points. Other methods, like the proposed by Chia-Ling Tsai et al. [2], use vessel
segments intersections as seeds to track vessel centre lines and classify feature
points according to intersection angles. The work proposed by Enrico Grisan
et al. [3] extracts the structure using a vessel tracking based method needing a
previous step before detecting feature points to fix the loss of connectivity in
the intersections. Another work, the proposed by V.Bevilacqua et al. [4], uses a
small window to analyse the whole skeleton of the vascular structure. The main
problem of this solution is the misclassification of crossovers, as they are only
properly classified when the vessel segments intersect exactly in the same pixel.

This paper proposes a method to detect feature points of the retinal vascu-
lar tree and a subsequent classification of the detected points in two classes,
bifurcations and crossovers. From an image of the retinal structure of the eye,
the vascular tree is segmented. From this segmentation the skeleton is obtained,
where the feature points are detected. In the last step, these feature points are
classified according to a local analysis and a topological study.

The paper is organised as follows: in section 2 the segmentation process is
presented. Section 3 describes the feature point detection method. In section
4 a description of the classification method used is presented. Section 5 shows
the experimental results and validation obtained using standard retinal image
databases. Finally, section 6 provides some discussion and conclusions.

2 Arteriovenous Structure Segmentation

Feature point detection implies an analysis of the vascular structure so a seg-
mentation of the retinal vessel tree is required. In this work we use an approach
with a particularly high sensitivity and specificity at classifying points as ves-
sel or non vessel points. This segmentation process is done in two main steps:
vascular structure enhancement and extraction of the arteriovenous tree.

By performing an initial enhancement the causes of a potential malfunction
of the whole process, such as noise or vessel reflections are eliminated.

The preprocessing step applies a Tophat filter [5] to enhance the biggest and
darkest structures present in the image, corresponding the vessels. Then, a me-
dian filter is applied to reduce noise and to tone down vascular reflex.

The vessel enhancement step uses a multiscalar approximation where the
eigenvalues of the Hessian matrix [6] are used to apply a filter process that
detects different sized geometric tubular structures. A function B(p) is defined
to measure the membership of a pixel, p, to vessel structures:

B(p) =
{

0 if λ2 < 0
exp(−2R2

b)(1− exp(− S2

2c2 ))
(1)

where Rb =
λ1

λ2
(one and two eigenvalue), c is the half of the max hessian norm, S

represents a measure to “second order structures”. Vessel pixels are characterised
by a small λ1 value and a higher positive λ2 value.
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Once the blood vessels are enhanced, the vascular extraction is done in two
steps: first an early segmentation and, second, a removal of isolated pixels.

An hysteresis based thresholding is done in the segmentation task. A hard
threshold (Th) obtains the pixels with a high confidence of being vessel pixels
while the weak threshold (Tw) keeps all the pixels of the tree, even spurious
ones. The final segmentation will be formed by all the pixels selected by the
weak threshold connected to, at least, one pixel obtained by the hard threshold.
Th and Tw are obtained from two image properties: the percentage of image
representing vessels and the percentage of the image classified as fundus. The
gap between both percentages will include all not classified pixels. After calcu-
lating the percentiles with Equation 2 obtaining the values for the thresholds is
immediate.

Pk = Lk +
k
(

n
100

)
− Fk

fk
∗ c, k = 1, 2, ..., 99 (2)

where Lk is percentile k lower limit, n stands for the size of data set, Fk is the
accumulated frequency for k− 1, fk represents the frequency of percentile k and
c is the size of the percentile interval (1 in this case).

To be able to obtain adequate results not only in high quality images from
healthy eyes but also in poor images or images from eyes with diseases a last
step is taken to erase spurious structures that, not belonging to the vascular
structure, reached this point. To solve this, all isolated structures smaller than
a prefixed number of pixels are erased. Figures 1(a) and 1(b) show, respectively,
the original and segmented image.

Segmentation method was validated over 40 images from DRIVE [7] database
using a 15x15 window for the Tophat filter and reaching a precision of 95%.

3 Feature Point Detection

A feature point can be defined as every non internal vessel point. Specifically,
feature points, are vessel crossovers, bifurcations or end points. The goal in this
first stage is to detect the feature points of the retinal vessel tree. It is clear
that, in the segmented image (Figure 1(b)), some properties are not constant
along all the structure, like vessel width that decreases as the branch level of
the structure becomes deeper. To unify this property, it is needed a method to
reduce vessel width to one pixel without changing direction or connectivity. The
skeleton is the structure that meets all these properties.

The results of the segmentation process force a previous preprocessing step
before the skeletonization.Fig.1(b) shows gaps inside the segmented vessels that
would give a wrong skeleton structure creating false feature points. To avoid
these spurious feature points it is necessary to “fill” the gaps inside the vessels.
For this, a dilation process using a modified median filter, to avoid erosion, is
applied making the lateral vessel borders grow towards the centre filling the
mentioned gaps. To “fill” as much white gaps as possible the dilation process is
applied several times. The value of N depends on the spatial resolution of the



452 D. Calvo et al.

(a) (b)

(c) (d)

Fig. 1. (a) Original image,(b) segmented image , (c) result of the dilation process with
N = 4 and (d) skeletonized vascular tree

images used, with the images used in this work (768x584) it was determined
empirically that optimal values for N were around 4 (Fig.1(c)).

Representing the skeleton by the medial axis function(MAF), defined as the
set of points centre of the maximum radius circles that fit inside the vessels, is a
very heavy task so template based method, versatiles and effectives, are applied
to the segmented image. In this work the Stentiford thinning method [8] is used.
Fig.1(d) shows the skeletonization results.

3.1 Feature Points Location

The feature point location is done according to the local information of the
points. so an analysis of the neighbours of each point is done. According to the
intersection number, I(V ), calculated for each point,V , as shown in 3 each point
will be marked as an end point when I(V ) = 1, internal point when I(V ) = 2
and crossover or bifurcation when I(V ) > 2.

I(V ) =
1
2

(
8∑

i=1

|Ni(V )−Ni+1(V )|
)

(3)

where, Ni(V ) are the neighbours of the analysed point V named clockwise con-
secutively.

Skeletonization process forces a pruning step to erase small artificial branches
that create spurious feature points. Branches, understood as vessel segments
between an end point and another feature point, are tracked and erased if smaller
than the maximum vessel width expected in the image, ζ.
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For the evaluation of the feature point detection process a set of 30 images from
VARIA [9] database is used. The system obtained a value of sensitivity of 89.7%
while only detecting a total of 32 false positives for a total of 662 true positives.

4 Feature Point Classification

The method used in [4] for the classification between bifurcations and crossovers,
similar to the one used in this work for the detection, can lead to an incorrect
classification of crossovers when, due to the angle and width of interwining ves-
sels, not all vessel segments coincide in the same skeleton pixel. To solve this
problem and produce a robust and valid classification a further analysis, accord-
ing to local and topological features, for points with I(V ) > 2 is done.

The first classification step is done according to local features of the points
without considering, for it, the effect of the other points. Each detected feature
point, F , is used as centre of a circumference with radius Rc used for the analysis.
n(F ) gives the number of vessel segments that intersect the circumference where
n(F ) = 3 corresponds to a bifurcation and n(F ) = 4 to a crossover. Fig.2 shows
the blood vessels, the circumference used to do the analysis, and, coloured darker,
the pixels where the vessels intersect the circumference.

To avoid missclasifications when the circumference is intersected by vessels
alien to the analysed point, a vote system with three radius is used. Two values,
C(F) and B(F), meaning the number of votes for a point F to be classified,
respectively, as a crossover and a bifurcation are used:

C(F ) = 2 ∗ C(F,R1) + C(F,Rc) + C(F,R2) (4)

B(F ) = B(F,R1) +B(F,Rc) + 2 ∗B(F,R2) (5)

where C(F,Ri) andB(F,Ri) are binary values indicating if F is classified, respec-
tively,as a crossover or abifurcationusinga radiusRi,R1 = Rc−ρandR2 = Rc+ρ,
with ρ a fixed amount, are the radius aroundRc. Note that the contribution of the
small radius is more valuable, and therefore weighted, in the crossover classification
while for bifurcations the big radius adds more information. F will be classified as
a crossover when C(F ) > B(F ) and a bifurcation otherwise.

(a) (b)

Fig. 2. Preliminary feature point classification according to the number of vessel in-
tersections where (a) represents a bifurcation and (b) a crossover
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Due to the representation of crossovers in the skeleton, this information is
not enough to assure that a feature point is a crossover while being a necessary
condition. According to this, a topological classification is needed analysing the
feature points in pairs, (F1, F2), attending to their Euclidean distance d(F1, F2).
If both F1 and F2 are connected by a vessel segment and d(F1, F2) <= 2 ∗ Rc,
both points are merged into a crossover in the middle point between them.

Not classified real crossovers would create two false bifurcations in the final re-
sult. Thus, another threshold, Rb, is needed to decide which points are accepted
as bifurcations. For each pair of bifurcations, understood as two connected bi-
furcations that minimise their Euclidean distance, a circumference with radius
Rb centred in the middle point between them is used. This circumference cannot
contain both points. So, points not fulfilling the conditions are marked as not
classified. Note that Rc and Rb parameters allow to tune the system in terms of
specificity and sensitivity as some domains would require different performances.
In the next section, some experiments and performance results are shown.

5 Results

For the analysis of the methodology a set of 45 images randomly extracted from
VARIA [9] and labelled by experts were used. These images are centred in the
optic disc with spatial resolution of 768x584 pixels.

Image preprocessing parameters are necessary to the correct performance of
later steps. For the image set used, the adequate number of dilations, N , is four,
the chosen prune threshold is ζ = 20 and the radius around Rc in the vote
system, ρ = 5.
Rc and Rb allow to tune the specificity and sensitivity of crossover and bi-

furcation classification respectively, so a quantitative study according to these
parameters is presented. The results allow to choose the adequate parameters
for a specific domain where the desired sensitivity or specificity levels can change
depending on the False Positives, True Positives and False Negatives as shown
in Fig.3(a).

The figure shows how the number of correct classified crossovers increase with
the radius size. This tendency could throw the idea of increasing the radius size
until obtaining a big number of classified crossovers, however, increasing the
radius also increases the number of misclassified crossovers.

Fig.3(b) shows the results for bifurcation classification according to the chosen
Rb radius. This figure displays a new category, the non classified points, that
includes the points that fulfilling the morphology conditions are not close enough
to be classified as crossover and not far enough not to be classified as independent
bifurcations. The bigger radius, Rb, used the more number of points without
classifying but the number of false positives will be below the 1%. Opposite to
this, if a big level of true positives is needed with a small radius the sensitivity
is over the 70%. Selecting Rc = 10 and Rb = 30, the global sensitivity of the
system is 75% and the specificity 93%.
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(a) (b)

Fig. 3. Analysis of the influence of Rc for the crossovers, (a), and Rb for the bifurca-
tions, (b) in the classification performance of the system

Table 1. Obtained results compared to the results given in [3]

Bifurcations Crossovers
Sensitivity Specificity Sensitivity Specificity

D. Calvo et al. 75% 91% 76% 96%
E. Grisan et al. 76% 87% 62% 74%

As said in Section 3, the technique shown in [4] has the problem of the
crossover misclassification due to the skeleton representation where a crossover
turns into two close bifurcations. This paper, [4], does not offer quantitative
results but our implementation of this technique shows that nearly every point
is classified as a bifurcation, being capable to classify correctly only 3% of the
crossovers. The work proposed in [3] extracts the structure using a vessel track-
ing based with the results shown in Table 1. Other previous techniques do not
offer quantitative results in the characterisation task to compare with. The main
improvement comes in the crossover rate, due to the radius proposed. In gen-
eral, the system exhibits a very high specificity rate for both classes making it
suitable for critical tasks.

6 Conclusions and Future Work

In this work a method for the detection and classification of the feature points
of the retinal vascular tree using several image processing techniques has been
presented. The detection and classification of these points is important because
it increases the information about the retinal vascular structure. Having the
feature points of the tree allows an objective analysis of the diseases that cause
modifications in the vascular morphology.

To improve the system a future work could be use vessel features to classify the
feature points. The classification method is done now according to the number
of vessels that belong to the point and in the relationship between pairs of
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points. The presented work is able to be applied in many other domains such
as authentication task, using retinal images in order to help the comparison
between points according to the classification given by this method.
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Abstract. We afford the classification of time series in the Functional
Data Analysis (FDA) context. To this aim we introduce projections
methods for the time series onto appropriate Reproducing Kernel Hilbert
Spaces (RKHSs) with the aid of Regularization Theory. Next we project
the curves onto a set of different RKHSs. Then we consider the induced
Euclidean metrics in these spaces and combine them in order to obtain a
single kernel valid for classification purposes. The methodology is tested
on some real and simulated classification examples.

Keywords: Functional data, Regularization Theory, Reproducing Ker-
nel Hilbert Spaces, Kernel Combination, Classifier Fusion.

1 Introduction

The field of Functional Data Analysis (FDA) [12,6] deals naturally with data of
very high (or intrinsically infinite) dimensionality. A typical example are time
series early studied by Parzen [11]. In practice, a functional datum is given as
a set of discrete measured values. FDA methods first convert these values to a
function and then apply some generalized multivariate procedure able to cope
with functions.

The standard way to reduce functional data dimension is to project the func-
tional data onto some space of functions. This approach has been extensively
studied, and many papers in FDA deal with the election of the best basis [12] of
the space: Fourier analysis, Wavelets, B-splines basis and Functional Principal
Component Analysis (FPCA) constitute some common examples.

The key idea in our proposal is to consider each function as a point in a
given function space and then to project these points onto a set of some finite-
dimensional function subspaces. Then, we define appropriate kernels for those
projections and combine them to obtain a kernel function valid for classification
purposes. To this aim, we consider several Mercer kernels and project the orig-
inal time series onto the Reproducing Kernel Hilbert Spaces (RKHS) [1,15,9,3]
associated to these kernels, obtaining different finite dimensional representations
of the original series.

To achieve the goal of information fusion in this context, we need to obtain a
single representation for the curves from the set of different representations. To
this aim we consider the natural (Euclidean) kernel matrices that arise from the
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obtained representations and fuse them using some kernel combination technique
[5]. Then, we use the Kernel Fusion [10] to obtain the function kernel to be used
to classify the time series using Support Vector Machines.

This work is organized as follows. In Section 2 we show how to project a set of
curves onto a RKHS generated by the eigenfunctions of a given kernel with the
aid of Regularization Theory. In Section 3 we fuse the information provided by
the previous projection in the frame of kernel combinations theory. We illustrate
the performance of the proposed combination theory for functional data in some
simulated and real experiments in Section 5 and we outline some future research
lines of research in Section 6.

2 Representing Functional Data in a Reproducing Kernel
Hilbert Space

Let {ĉ1, . . . , ĉm} denote the available sample of curves. Each sampled curve ĉl
is identified with a data set {(xi,yil) ∈ X × Y }n

i=1. X is the space of input
variables and, in most cases, Y = IR. We assume that, for each ĉl, there exists
a continuous function cl : X −→ Y such that E[yl|x] = cl(x) (with respect to
some probability measure). Thus ĉl is the sample version of cl. Notice that, for
simplicity in notation, we assume that the xi are common for all the curves, as
it is the habitual case in the literature [12].

There are several ways to introduce RKHS (see [9,1,4,15]). In a nutshell, the
essential ingredient for a Hilbert function space H to be a RKHS is the existence
of a symmetric positive definite function K : X ×X → IR named Mercer Kernel
(or reproducing kernel) for H [1]. The elements of H , called HK in the sequel,
can be expressed as finite linear combinations of the form h =

∑
s λsK(xs, ·)

where λs ∈ IR and xs ∈ X .
Consider the linear integral operator TK associated to the kernel K defined

by TK(f) =
∫

X K(·, s)f(s)ds. If we impose that
∫ ∫

K2(x, y)dxdy < ∞, then
TK has a countable sequence of eigenvalues {λj} and (orthogonal) eigenfunc-
tions {φj} and K can be expressed as K(x, y) =

∑
j λjφj(x)φj(y) (where the

convergence is absolute and uniform).
Given two function f and g in a function general space (that contains HK as

a subspace), they will be projected onto HK using the operator TK . Thus, the
projections f∗ and g∗ will belong to the range of TK , being f∗ = ΠHK (f) =
TK(f) and g∗ = ΠHK (g) = TK(g). Applying the Spectral Theorem to TK we
get:

f∗ = TK(f) =
∑

j

λj〈f, φj〉φj , g∗ = TK(g) =
∑

j

λj〈g, φj〉φj (1)

Definition 1. Let K a kernel function with eigenfunction {φj} and TK the
linear integral operator associated to K. Consider f and g two curves in a general
space Ω containing HK . Then, we define the Spectral Inner Product of f and
g in Ω by:

〈f, g〉Ω = 〈ΠHK (f), ΠHK (g)〉HK , (2)
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Notice that 〈f, g〉Ω = 〈f∗, g∗〉HK =
∑

j µjγj is the standard inner product of the
two elements f∗ =

∑
j µjφj and g∗ =

∑
j γjφj in HK .

Next we want to obtain c∗l for each cl (the function corresponding to the sample
functional data point ĉl ≡ {(xi, yil) ∈ X × Y }n

i=1) in order to have a practical
way to estimate the projections of the curves and to calculate (1) and (2). To
find the coefficients of c∗l (in terms of the φj in eq. (1), we use Regularization
Theory to express the approximation of ĉl in terms of a kernel expansion. To
this aim, we seek the function c∗l that solves the following optimization problem
[4], [9]:

arg min
c∈HK

1
n

n∑
i=1

L(yi, c(xi)) + γ‖c‖2K . (3)

where γ > 0, ‖c‖K is the norm of the function c in HK , yi = ĉi and L(yi, c(xi)) =
(c(xi) − yi)2. Expression (3) measures the trade-off between the fitness of the
function to the data and the complexity of the solution (measured by ‖c‖2K).
By the Representer Theorem [14], the solution c∗l to the problem (3) exists, is
unique and admits a representation of the form

c∗l (x) =
n∑

i=1

αliK(xi,x), ∀x ∈ X where αi ∈ IR . (4)

where αl = (αil, . . . , αnl) is the solution to the linear system (γnIn +KS)αl = yl

where KS = (K(xi,xj))i,j .

2.1 Functional Data Projections onto the Eigenfunctions Space

The particular projection we use in this work is given as follows:

Proposition 1. Let c be a curve, whose sample version is ĉ = {(xi, yi) ∈ X ×
Y }n

i=1 and K a kernel with eigenfunctions {φ1 . . . , φd} (basis of HK). Then, the
projected curve c∗(x), given by the minimization of (3), can be expressed as

c∗l (x) =
d∑

j=1

λ∗ljφj(x). (5)

where λ∗lj are the weights of the projection of c∗(x) onto the function space gen-
erated by the eigenfunctions of K (Span{φ1 . . . , φd}). In practice (where a finite
sample is available) λ∗lj can be estimated by

λ̂∗lj = λ̂j

n∑
i=1

αliφ̂ji, (6)

being λ̂j the jth eigenvalue corresponding to the eigenvector φ̂j of the matrix
KS = (K(xi,xj))i,j, d = min(n, r(KS)), and αli the solution to problem (3).
See [7] for further details.

Thus we represent each curve cl by the vector λl = (λ∗l1, ..., λ
∗
ld). This represen-

tation has the nice property that is continuous in the input data [7].
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3 Combining Projections via Kernel Combinations

In this section we show how to combine different representations of the curves
given by the projections of the time series onto different spaces. To this aim we
use some kernel combination technique to fuse the information of kernel matrices
that arise from the obtained representations.

3.1 Kernels and Induced Projections

Let K a kernel function and c1 and c2 two time series with sample versions ĉ1
and ĉ2. Consider the particular curve projection onto HK given by (3). In this
case, the Spectral Inner Product of c1 and c2 is given by 〈c1, c2〉 =

∑
j λ

∗
1jλ

∗
2j

where λ∗1 and λ∗2 are the finite dimensional representation c1 and c2 in (5). Given
that λ∗j is never available we use its estimation given by eq. (6):

∑
j λ̂

∗
1j λ̂

∗
2j .

Definition 2. Let {ĉ1, . . . , ĉm} a set of sample curves and K a kernel function.
the Spectral Kernel (SK) induced by a kernel K for two sample curves ĉl and
ĉt is defined by

K̃(ĉl, ĉt) = (λ̂∗l )
T λ̂∗t , (7)

for λ̂∗l = (λ∗l1, . . . , λ
∗
ld) and λ̂∗t = (λ∗t1, . . . , λ

∗
td) the representation of the curves l

and t estimated by eq. (6).

3.2 Combining the Representations

Let K1,K2, ...,Kp be a set of p kernels functions inducing p different RKHS
HK1 , ..., HKp and let S = {ĉ1, . . . , ĉm} a labeled set of sample curves where each
ĉt is identified with a data set ĉt = {(xi,yil, zl)}n

i=1 with zt ∈ {−1, 1} (the labels
of the curves). Let K̃S1, ..., K̃Sp the p Spectral Kernels matrices (see eq. (7))
associated to the projections of the sample curves onto the spaces HK1 , ..., HKp .

We want to combine the Spectral kernel matrices K̃S1, ..., K̃Sp to obtain a
single kernel function K∗ that induces a single representation of the curves ap-
propriate in classification problems. To this aim we select some functional kernel
combination methods proposed in [9,5]. In particular we will use the Average
Kernel Method (AKM), the Modified Average Kernel Method (MAKM), the
Absolute Value Method (AV) and the Max-Min method. However the resulting
combination matrix K∗ does not need to be positive definite and does not allow
directly to evaluate K∗

S at new points (where labels are not available). To fix
simultaneously both problems we use the Fusion Kernel proposed in [10].

Definition 3 (Fusion Kernel). Let K̃1, . . . , K̃p be a set of p kernel functions
(Spectral Kernels in our case). A kernel function K is a Fusion Kernel for the
set K̃1, . . . , K̃p when it can be expressed as

K(x,y) =
d∑

h=1

λhφh(x)φh(y), (8)
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Fig. 1. Two classes of the simulated curves of the experiment

where {λh} ∈ IR+ and φh ∈ Span〈φ11, . . . , φ1d1︸ ︷︷ ︸
K̃1

, ..., φp1, . . . , φpdp︸ ︷︷ ︸
K̃p

〉 and φjr repre-

sents the jth eigenfunction of the rth kernel.

In our case, we obtain a Fusion Kernel for the matrix K∗ assuming (following
[10]) that every φh is defined by linear combinations of the eigenfunctions of
K̃1, . . . , K̃p. In practice, we do not know neither the eigenfunctions φ∗

h of the
combined kernel matrix K∗

S, nor the eigenfunctions φjr of the Spectral kernels
K̃S1, . . . , K̃Sp. We only can compute γ̂h, the h−th eigenvector of K∗

S and φ̂jr the
jth eigenvector of the matrix KSr. However, the eigenfunctions of the kernel K∗

can be approximated, up to a normalization factor, by the eigenvectors of the
matrix K∗

S and the coefficients of the linear combinations of the eigenfunctions
φjr approximating each γh can be approximated by a least squares projection
of each γ̂h onto the set of {φ̂jr} [10]. Finally, the eigenvalues λh of K∗ in eq.
(8) can be estimated using λ̂h, the eigenvalues of the matrix K∗

S (see [2,13] for
details). However, if K∗

S is not positive definite, a transformation of them can
be considered to guarantee the positive definiteness of the kernels. In this way
we have all the ingredients for learning a kernel function corresponding to any
kernel matrix obtained by combining the set of Spectral Kernels K̃S1, . . . , K̃Sp.

4 Experiments

4.1 Kernels and Curves Projections: Illustrative Example

In this experiment we illustrate the behavior of our methodology in a simulated
example. Consider two families of 4 dimensional curves sampled at 200 points:
a) Class 1: c(x) =

∑4
j=1 ajφj(x), where a ∼ N4(µ1, Σ). b) Class 2: c(x) =∑4

j=1 bjφj(x), where b ∼ N4(µ2, Σ) with x ∈ [−5, 5], µ1 = (2, 3, 3, 2), µ2 =
(2, 2, 2, 2), Σ = diag(0.25, 0.25, 0.25, 0.25) and φ1(x) = sin(x), φ2(x) = cos(x),
φ3(x) = sin(2x), φ4(x) = cos(2x). We generated 100 curves of each class. See
Figure 1.

We consider two kernels to project the data onto two different RKHS via eq.
(5): K1(x,y) = 0.5(xT y) + 1 and K2 the data covariance matrix. We project the
curves for both kernels by solving problem 3 for each kernel using γ = 0, 0001. We
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−1400 −1200 −1000 −800 −600 −400

−1
00

0
50

 Repesentation K1

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●
●●

●

● ●

●

●

●
●

●●

●

●

●

●

●●● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●● ●

●

●●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

−30000 −25000 −20000 −15000

−2
00

0
0

10
00

 Repesentation K2

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●
●

●
●

●

●

●

●
●

●●

●

●●

●

●

● ●

●

●

●
●

●

●

●●

●
●

●
●

● ●
●

●

●●

● ●

● ●

●

● ●
●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

(a) Projections of the curves onto
the two first eigenfunctions of ker-
nels K1 (top) and K2 (down).
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(b) Projections of the curves onto
the two first eigenfunctions of the
kernel combination

Fig. 2. Curves projections by K1, K2 and the AKM method
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Fig. 3. Two classes of curves of the Phoneme data set

show the two first components of the projected curves in Figure 2 (a). It is apparent
that none of the projections are able to separate the two classes of curves. Next
we combine the Spectral kernels K̃1 and K̃2 resulting from both representations
by using the Kernel Fusion with the MAKM procedure as combination method
(see [5] for details). The projection onto the two first eigenfunctions are shown in
Figure 2 (b). Now the two classes become (linearly) separable in the fusion space.

4.2 Phoneme Data Classification

The original data [6] set correspond to 2000 discretized log-periodograms of the
phonemes ”sh”, ”iy”, ”dcl”, ”aa” and ”ao”. Each phoneme is associated with a
class of the experiment. We consider in this example those curves corresponding
to the phonemes ”aa” and ”ao” since they present similar periodograms and are
difficult to classify. A plot of 25 series of each class is shown in Figure 3.

We consider several RKHSs induced by Gaussian kernels Ki(x,y) = exp{−σi

‖x−y‖2} with a broad range of parameters σi ∈ {10, 7.5, 5, 2.5, 1, 0.1, 0.001}. We
consider γ = 0.001 in eq. (3) and we project the curves using eq. (6). We estimate
the Spectral kernels K̃i for i = 1, . . . , 7 of the representations by using. (7) and we
obtain the the Fusion Kernel in this case for the following combinations methods:
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Table 1. Comparative results for the Phoneme Data after 100 runs

Method Train Error. Std. Dev. Test Error Std. Dev

Raw data 0.0682 (0.0039) 0.2606 (0.0097)

RBFσ=10 0.1796 (0.0022) 0.2075 (0.0083)
RBFσ=7.5 0.1787 (0.0029) 0.2037 (0.0069)
RBFσ=5.0 0.1950 (0.0020) 0.2137 (0.0082)
RBFσ=2.5 0.1975 (0.0019) 0.2162 (0.0068)
RBFσ=1.0 0.2198 (0.0024) 0.2200 (0.0094)
RBFσ=0.1 0.2242 (0.0030) 0.2243 (0.0105)
RBFσ=0.001 0.2896 (0.0037) 0.2825 (0.0085)

Fusion KernelAKM 0.1868 (0.0033) 0.1906 (0.0080)
Fusion KernelMAKMτ=1 0.0000 (0.0000) 0.1881 (0.0092)
Fusion KernelMAXMIN 0.0000 (0.0000) 0.1862 (0.0069)
Fusion KernelAVτ=1 0.0000 (0.0000) 0.1875 (0.0079)

PSR 0.1866 (0.0085) 0.2033 (0.0028)
NPCDderivative 0.2205 (0.0009) 0.3468 (0.0034)
MPLSR5 0.1106 (0.0009) 0.1928 (0.0031)

AKM, MAKM, MAXMIN and AV. We use 80% of the data for training and 20%
for testing and we then apply a SVM for classification (with penalization term
C = 100) for the seven original Spectral kernels and the four Fusion Kernel
combinations. We also use (for comparison purposes) two specific techniques
designed to deal with functional data that have been shown to obtain very
competitive results: P-spline signal regression (PSR) [8] and NPCD/MPLSR
[6] with second derivative and PLS semimetrics (for dimensions 4,5,6,7 and 8).
In addition, we include the results for a SVM (with linear kernel) on the raw
data to compare classification results with a competitive technique that does not
preprocess the data. Results are shown in Table 1.

Classifications errors in this example are large for any technique due to the
overlapping of the curves. Regarding the initial RBF projections, all of them, ex-
cepting that corresponding to σ = 0.001, are able to improve the performance of
a linear SVM in a particular favorable case for the linear SVM [9]. In particular,
the best result for the five initial projection is given by σ = 7.5 with a 20.37% of
misclassification data. However, this result is improved by the proposed fusion
procedure (for all the combinations techniques) and also outperform the PSR
and the MPLSR methods. Specially accurate are the results for the combina-
tions that use labels in the fusion process as MAKM , MAXMIN and AV that
achieve errors of 18.81% and 18.62% and 18.75 respectively.

5 Conclusions

In this work we proposed a methodology for combining classifiers for functional
data (time series in this paper). By considering different kernel functions we
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induce different SVM classifiers and then we combine them obtaining a true
kernel function with the help of a Spectral Kernel called Fusion Kernel. The idea
is represent functional data by means if the eigenfunctions of kernels resulted to
be interesting from the theoretical and practical point of view. The experimental
results show how this methodology significantly improves the existent procedures
specifically designed for time series classification. It is quite remarkable that this
point of view provides different sets of basis functions in a very natural way.
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Abstract. Finding a minimal subset of objects that correctly classify the train-
ing set for the nearest neighbors classifier has been an active research area in 
Pattern Recognition and Machine Learning communities for decades. Although 
finding the Minimal Consistent Subset is not feasible in many real applications, 
several authors have proposed methods to find small consistent subsets. In this 
paper, we introduce a novel algorithm for this task, based on support graphs. 
Experiments over a wide range of repository databases show that our algorithm 
finds consistent subsets with lower cardinality than traditional methods. 

Keywords: nearest neighbor, condensing, prototype selection, minimal consis-
tent subset.  

1   Introduction 

Instance based learning has become one of the most used techniques in Machine 
Learning and Pattern Recognition. Among these techniques, the Nearest Neighbor 
(NN) classifier is one of the most popular supervised classifiers, due to its simplicity 
and high accuracy results. Two of its major advantages are that it does not assume any 
knowledge about data distribution, and its error is asymptotically bounded by twice 
the Bayes error [1].    

However, in order to classify a new instance, NN computes its distance with all the 
objects in the training set. The computational cost of classification depends not only 
on the amount of objects in the training set, but also on the distance function, which in 
some domains, such as image processing, can be computationally expensive [2]. In 
addition, the storage cost depends on the amount of instances, and the number of 
features that describe them.  

Since the introduction of the NN classifier, there is a constant research interest to 
find a reduced subset of instances with approximately the same classification power 
than the original set. Deleting redundant and irrelevant objects of the training set 



466 M. García-Borroto et al. 

seems to be one of the most successfully approach. By using a reduced set of objects, 
or condensed subset, it is possible to decrease both storage and classification cost.  

There are subsets especially important in object reduction, named consistent sub-
sets, which are those subsets that correctly classify the whole training set. Between 
them, those with minimum size, are the focus of many researches and papers. Al-
though finding a consistent subset of minimum cardinality is a NP-complete problem 
[3], finding a small subset is a common goal in many researches [4-6]  and it is still a 
challenge. 

In this paper, we introduce a new method for obtaining an approximation to the 
Minimal Consistent Subset (MCS) for the Nearest Neighbor classifier. It iteratively 
selects the less useful object for keeping the consistency using the information on a 
support graph. A support graph includes all the information about which objects 
guarantee the correct classification of other objects. This new method frequently 
obtains an object subset with fewer objects than previous methods reported in the 
literature.  

The paper is organized as follows: section two summarizes some of the previous 
works to find minimal consistent subsets, section three introduces our proposal, sec-
tion four details the numerical results of the experiments and section five offers some 
conclusions.  

2   Minimal Consistent Subset Selection 

Finding consistent subsets of objects for the Nearest Neighbor classifier has been a 
problem of interest in Pattern Recognition since 1968 when Hart proposed the Con-
densed Nearest Neighbor (CNN) algorithm [4]. In this work, he introduced the con-
cept of consistent subset, a subset of the objects that correctly classifies all samples in 
the training set. In 1991, Wilfong demonstrated that finding a consistent subset of 
minimum cardinality is a NP-complete problem [3]. However, since Hart´s work, 
there has been several attempts to find small consistent subsets.  

Among the most cited methods for finding minimal consistent subsets are RNN 
[5] and MCS [6]. The Reduced Nearest Neighbor (RNN) consists in a post 
processing of the CNN algorithm. After applying CNN, RNN deletes an object if 
this deletion does not introduce any inconsistency. Gates [5] demonstrated that if 
the minimum consistent subset is a subset of the CNN result, then RNN method 
always finds it.   

In MCS, every instance x gives a vote to each instance (of the same class) closer 
than the Nearest Unlike Neighbor (NUN) object. The NUN is the object from differ-
ent class closest to x. The MCS algorithm iteratively constructs a consistent subset, 
adding the instance with most votes, and repeating the process until a consistent sub-
set is found. 

The Generalized CNN [7] is another method that extract a consistent subset using a 
stronger criterion for removing objects. Due to this, it always obtains supersets of 
CNN result, with larger size. 



 Finding Small Consistent Subset for the Nearest Neighbor Classifier 467 

3   Condensation Based on Support Graphs 

In this section, we introduce the CSESupport algorithm. It is a modification of the 
CSE algorithm [8], aiming to obtain a better approximation to the minimal consistent 
subset. It has the following changes:  

─ CSESupport uses a support graph instead of a nearest neighbor graph. A support 
graph is a directed graph, having arcs ݔ ՜  supports ݕ if and only if the object ݕ
the object ݔ. We say that ݕ supports ݔ if ݕ is closer to ݔ than ݔ’s NUN. This 
way if ݕ belongs to the condensed subset, it guarantees the correct classification 
of ݔ with a NN classifier. In a support graph, such vertexes with more inward 
arcs are the most important for condensing, because they support more objects. 

─ CSESupport makes multiple iterations. After each iteration, the algorithm ex-
tracts a smaller consistent subset than previous step, so the NUNs of some ob-
jects can differ. This way, the support graph can change, leading to potential 
new reductions. 

Each iteration of CSESupport contains the following steps: 

1. Support graph construction. The graph is constructed with respect to the objects in 
the current solution. 

2. Add nodes with no successors (so they can not be supported by any other object) to 
the new solution if they are not assured, using the procedure Move. The Move pro-
cedure has three steps: 

a. Mark all antecessors of the node as assured. An assured node can be safely 
discarded from the training sample without affecting consistency. 

b. Delete all shared non-simultaneous deletion marks. These marks are a key 
point inherited from CSE to avoid inconsistencies in the result. They are 
added to the objects that support a deleted object, and if an object is the 
last one with such mark, it has to be included in the result. It is clear than 
the marks used by an object are different by those used by other object. 

c. Delete the node from the graph. Note than the assured nodes are not dis-
carded in this step, because their inclusion in the result can assure more 
objects. This frequently led to smaller results. 

3. Add nodes with the last non-simultaneous deletion mark to the new solution using 
Move. 

4. Delete the less important node in the graph using the Discard procedure. A node is 
considered less important than other if it contains less inward arcs, because it is 
able to support less objects. Including in the result an object that supports more ob-
jects that other usually leads to smaller size consistent subsets. This criterion 
guides the CSESupport heuristic.  
The Discard procedure has three steps: 

a. If the node is not already assured, mark all its successors with a non-
simultaneous deletion marks. 

b. Delete ݔ of every non-simultaneous deletion marks in which it appears. 
c. Delete the node from the graph.  

5. If the graph is not empty, go to step 2. 
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Fig. 1. Support graph with 9 object in 2 classes: circles and squares. The small numbers close 
to the shapes contains the number of inward arcs. 

After an iteration the algorithm stops if the current solution is equal than previous 
solution. Otherwise, a new iteration is executed using the current solution to build the 
new support graph.  

Now we will run an iteration of CSESupport with the objects in Fig. 1. In this ex-
ample we build the support graph using the Euclidean distance between the centers of 
the shapes. 

In step 2 nodes 3, 4 and A are moved to the current solution, because they have no 
successors. While moving, nodes 1, 2, C, D and E are assured. In step 4 the node 1 is 
deleted, but like it is assured no marking is necessary. In step 5 we loop to step 2. Step 
2 can not be applied because the only node with no support (object 2) is already as-
sured. In step 4 object 2 is deleted. Similarly object E is deleted in the next loop. Next 
loop node B is deleted in step 4, but like it is not assured the node C is marked with a 
non-simultaneous deletion mark. Next loop the step 3 moves node C to the result. 
Finally objects C and D are deleted without marking because they were previously 
assured. The resultant consistent subset is then {3,4,A,C}. 

CSESupport, like CSE, is not able to deal with general k-NN classifiers, because 
the support graph only contains the information about the nearest neighbor.  

4   Experimental Results 

In order to test the behavior of CSESupport for finding small consistent subsets, we 
select RNN and MCS methods, which have been commonly used in experimental 
comparisons. Other methods, like CNN and GCNN, always produce larger results 
than RNN, so we dismiss them. For comparing the performance of the selected con-
densing methods, first we applied them over 2-D synthetic databases (section 4.1). 
We also carried out numerical experiments over a wide-range of databases from the 
UCI repository of Machine Learning [9] (section 4.2). The description of the reposito-
ry databases appears in Tables 1.  

The experiments with repository databases use 10-fold cross validation. Since NN 
classifier results depend on the function used for comparing objects, we use two  
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functions: HEOM and HVDM [10]. In order to determine the best method, we compute 
object retention for each one of them, and count how many times each method had the 
lower retention rate. For determining the reduction influence in classifier accuracy, we 
made a two-tailed T-Test with significance of 0.05, with respect to the method with 
lower classifier error, and compute how many times each method had the lower error, 
according to the T-Test.   
 

Table 1. Description of repository databases 

Database non-num/ 
num feats 

Objects Database non-num/ 
num feats 

Objects 

anneal 29/9 798 hepatitis 13/6 155 
autos 10/16 205 iris 0/4 150 
balance-scale 0/4 625 labor 6/8 57 
breast-cancer 9/0 286 lymph 15/3 148 
breast-w 0/9 299 post-pat-data 7/1 90 
cmc 7/2 1473 sonar 0/60 208 
colic 15/7 368 tae 2/3 151 
credit-a 9/6 690 trains 29/4 10 
cylinder-bands 20/20 512 vehicle 0/18 846 
dermatology 1/33 366 vote 16/0 435 
glass 0/10 214 vowel 3/9 990 
heart-c 7/6 303 zoo 16/1 101 
heart-h 7/6 294    

4.1   Results with Synthetic Databases 

We generate two 2-D synthetic databases (see Fig. 1). Each database has three 
classes, represented by triangles, squares and circles, respectively. Database “Bananas 
and circle” is a modified version of the database “Bananas”, used by Kuncheva [11]. 
Database “Venn´s diagram” has three overlapped classes, forming circles as in a Venn 
diagram. In gray, silver gray and white we represent the decision region of the classes 
squares, triangles and circles, respectively.  

In figures 2-3, we show the results of each method over synthetic databases, using 
the Euclidean distance. The CSESupport method outperforms RNN in one and MCS 
in both synthetic databases. 

 

Fig. 2. a) “Bananas and circle”, b) “Venn´s diagram” 
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Abstract. An important problem in the bioinformatics field is to un-
derstand how genes are regulated and interact through gene networks.
This knowledge can be helpful for many applications, such as disease
treatment design and drugs creation purposes. For this reason, it is very
important to uncover the functional relationship among genes and then
to construct the gene regulatory network (GRN) from temporal expres-
sion data. However, this task usually involves data with a large number
of variables and small number of observations. In this way, there is a
strong motivation to use pattern recognition and dimensionality reduc-
tion approaches. In particular, feature selection is specially important in
order to select the most important predictor genes that can explain some
phenomena associated with the target genes. This work presents a first
study about the sensibility of entropy methods regarding the entropy
functional form, applied to the problem of topology recovery of GRNs.
The generalized entropy proposed by Tsallis is used to study this sen-
sibility. The inference process is based on a feature selection approach,
which is applied to simulated temporal expression data generated by an
artificial gene network (AGN) model. The inferred GRNs are validated
in terms of global network measures. Some interesting conclusions can
be drawn from the experimental results, as reported for the first time in
the present paper.

Keywords: Tsallis entropy, feature selection, inference, validation, gene
regulatory networks, bioinformatics.

1 Introduction

In general, living organisms can be viewed as networks of molecules connected
by chemical reactions. More specifically, the cell control involves the activity of
several related genes, in which the relationship among them is known or not.
Gene regulatory networks (GRNs) are used to indicate the interrelation among
genes in the genomic level [1]. Such information is very important for disease
treatment design, drugs creation purposes and to understand the activity of
living organisms in the molecular level. In this way, there is a strong motivation
for GRNs inference.
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High-throughput techniques for measurement of mRNA concentrations allow
the simultaneous verification of cell components activity (state) in multiple in-
stants of time. Some methods were proposed for modeling and identification of
GRNs from expression data sets [2,3,4,5,6,7,8,9,10,11]. This work focuses atten-
tion in a particular method proposed by Barrera et al [7] in order to evaluate the
application of Tsallis entropy [12] in the GRNs inference problem by using an
artificial gene network (AGN) model [13]. This technique is based on a feature
selection algorithm that minimizes entropy measures as the criterion function.

The Tsallis entropy has been stood out in the last years as a generalization
of the Shannon entropy [14]. This is not only due to its applications [15], but
also due to its theoretical foundation [16]. Its use becomes important on systems
with long-range interactions (which causes long-range correlations), a particular
feature of nonextensive systems. But, are the gene regulatory networks nonex-
tensive? How to interpret them in this context? In order to investigate these
questions, the present work addresses the problem about the inference and ex-
tensivity of GRNs by applying information theory. We also analyze the quality
and limitations of the adopted method [7] to infer network topologies.

Next section presents a brief description of the AGN model to generate the
ground-truth and the simulated expression signals. Section 3 presents the net-
work inference method, while Section 4 describes the similarity measures adopted
to compare the inferred and the ground-truth networks. Experimental results are
presented and discussed in Section 5. Section 6 concludes this text with possible
future directions of this work.

2 AGN Model

The AGN model [13] is composed of three main components: (1) topology, (2) net-
work state and (3) transition functions. The topology of an AGN maybe defined by
theoretical complex networks models [17,18,19]. We have adopted the uniformly-
random Erdös-Rényi (ER) and the scale-free Barabási-Albert (BA) models.

The AGN model is a complex network G = (V,E) formed by a set V =
{v1, v2, . . . , vN} of nodes or “genes”, connected by a set E = {e1, e2, . . . , eM}.
It is important to keep the same average number of connections of nodes k for
comparative analysis between ER and BA. In this way, in order to keep k fixed
for the ER model, the probability p of connecting each pair of nodes is given by
p = k

N−1 . The BA topology follows a linear preferential attachment rule, i.e., the
probability of the new node vi to connect to an existing node vj is proportional
to the degree of vj . Therefore, the nodes of ER networks have a random pattern
of connections while BA networks have some nodes highly connected and others
with few connections.

Each gene can assume a value from a discrete set D (in this work, D = {0, 1},
i.e., on/off) that represents its states. The network state s at time t is determined
by st = {v1,t, v2,t, . . . , vN,t}, called the state vector.

The transition functions F are defined by logic circuits, one for each gene of the
network vi,t+1 = F (uki,t), in which uki ∈ G represents the k genes (predictors)
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that have input edges to vi (target). The number of predictors and its influence
(measured by edges) on target genes are defined by considering a deterministic
model [20], i.e., the networks remain fixed in the choice of k input nodes, chosen
logic circuits and chosen predictors, during all instants of time.

The dynamics of an AGN is determined by applying the transition functions
to an arbitrary initial state s1 = {v1 = 1, v2 = 0, . . . , vN = 1} during T time in-
stants (i.e., the signal size). The target state at time ti+1, i = 2, 3, . . . , T is hence
obtained by observing the predictor states at ti and by applying its respective
logic circuit. As a result, we have the simulated temporal signals of length T ,
which are used for the network identification method presented in Section 3.

3 Network Inference

The use of entropy functions to infer gene interaction network topology from
time series has been showed a promising tool [7,21]. Of course, the precision of
the inference depends on the information available and the suitability of its use.

The inference method used in this work is described in [7], in which the
entropy [14] of the temporal gene expression was employed as a criterion function
in a feature selection [22] approach to identify the network topology. The main
idea is to select the predictors subset that minimizes the entropy of each target
gene from its expressions profiles.

In this context, network inference is modeled as a series of feature selection
problems, one for each gene. The inference method starts by fixing the target
gene Y . The time series determined by gene expressions are used to build a table
of conditional probabilities of the classes Y given the patterns X that minimizes
a criterion function. The classes are defined by the target values at time t + 1,
while the patterns are defined by the predictors values at time t.

The search space is normally very large, so that an exhaustive search cannot be
performed. In our approach, the Sequential Forward Floating Search (SFFS) [23]
algorithm was applied for each target gene in order to select the subset of genes X
that minimizes the criterion function given by Equation (1). As defined in [24],
the penalized mean conditional entropy of Y given all the possible instances
x ∈ X is given by:

H(Y | X) =
α(M −N) H(Y )

αM + s
+
∑N

i=1(fi + α) H(Y | X = xi)
αM + s

, (1)

where M is the number of possible instances of the feature vector X, N is the
number of observed instances (the number of non-observed instances is given by
M − N), fi is the absolute frequency (number of observations) of xi and s is
the number of samples. The α constant is the penalty weight for non-observed
instances (α = 1 in the present work).

Once we are interested to better understand the method, mainly about its
performance given a data set, we focus on the entropy function and use the gen-
eralized entropy proposed by Tsallis [12,25]. The Tsallis entropy has been studied
and applied by many researchers in different approaches (information theory [16],
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thermodynamics [26]) and systems. Its suitability has been proved [27], mainly
where the Shannon is not recommended, i.e., for long-range interactions be-
tween the nodes. As defined in [24], by the inclusion of such generalization in
Equation (1), the conditional entropy H(Y | X = xi) becomes:

H(Y | X = xi) =
1

q − 1
(1−

∑
y∈Y

(P (y | xi))q), (2)

where P (y | xi) is the conditional probability of y given the observation of an
instance xi ∈ X.

The Tsallis entropy generalizes the Shannon entropy and can be used as a
functional set by the parameter q which is defined as an entropic parameter
that characterizes the degree of nonextensivity. For q < 1 the entropies are
superextensives and for q > 1 the entropies are subextensives. Furthermore,
when q = 1 the entropies are extensive and the Shannon form is completely
recovered1.

Lower values of H yield better feature subspaces (the lower H , the larger
is the information gained about Y by observing X). In this way, the SFFS is
guided to minimize the criterion function in Equation (1). The selected features
are taken as predictor genes for each target gene, which are used to link the
genes and thus to recover the network topology.

The next section describes the similarity measures adopted to compare the
inferred and the AGN-based networks.

4 Validation

In order to quantify the similarity between A (AGN model networks) and B
(inferred networks), we adopted the validation metric based on a confusion ma-
trix [28] (Table 1).

Table 1. Confusion matrix. TP=true positive, FN=false negative, FP=false positive,
TN=true negative.

Edge Inferred in B Not Inferred in B

Present in A TP FN
Absent in A FP TN

The networks are represented in terms of their respective adjacency matrices
M , such that each edge from node i to node j implies M(i, j) = 1, with M(i, j) =
0 otherwise. The measures considered in this work are calculated as follows:

Similarity(A,B) =
√
TPR · TNR ,

TPR =
TP

(TP + FN)
, TNR =

TN

(TN + FP )
.

(3)

1 This can be easily obtained by taking the limit q → 1 in the Equation (2).
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We consider the geometrical average Similarity(A,B) between the ratios of
correct ones (TPR) and correct zeros (TNR), observing the ground-truth matrix
A and the inferred matrix B. Observe that both coincidences and differences are
taken into account by these indices, implying the maximum similarity to be
obtained for values near 1.

5 Experimental Results

This section presents the experimental results by applying Tsallis entropy [25] for
GRNs inference, as presented in Section 3, by considering three main aspects: (1)
Variationof parameter qofTsallis entropy; (2) twodifferent complexnetwork topolo-
gies (ER) and (BA); (3) complexity ofnetworks in terms of averagenodedegree (k).

For all experiments, the two network models (BA and ER) with 100 nodes
were used. The q parameter of Tsallis entropy varied from 0.1 to 3.1 in steps of
0.1, and the average node degree k varied from 1 to 5 in steps of 1. The simulated
temporal expression was generated using 10 randomly chosen initial states, each
one with length 30. These expressions were concatenated into a single signal of
size 300. The experimental results were obtained from 50 simulations for each
network topology and k value, using the default parameters of the method [24].

(a) ER (b) BA

Fig. 1. Network identification rate by increasing q of the Tsallis entropy, using: (a)
uniformly-random Erdös-Rényi (ER) and (b) scale-free Barabási-Albert (BA)

Figures 1 (a) and (b) show the median values of similarity (described in Sec-
tion 4) between the inferred networks and AGN-based networks in terms of q
of the Tsallis entropy and the average node degrees (k). These figures present a
soft increase of similarity rate by increasing the q for all average degrees k. This
result suggests a dependence of the method accuracy on the parameter q.

In order to better investigate this behavior, Figures 2 (a) and (b) present
the histograms of the frequency of target genes with best similarity rate found
for each q value, by considering respectively, ER and BA network topologies.
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(a) ER (b) BA

Fig. 2. Histogram of the frequency of target genes with best similarity value per q,
over all average node degree k., using: (a) uniformly-random Erdös-Rényi (ER) and
(b) scale-free Barabási-Albert (BA). All average node degree k was considered.

Table 2. The best results found for q = 1 and for all q values (global) by considering:
(a) uniformly-random Erdös-Rényi network topology (ER) and (b) scale-free Barabási-
Albert network topology (BA)

(a) ER

q k TP FP TN FN

1 175 195 9630 0
global

1
179 121 9700 0

1 224 137 9639 0
global

2
228 62 9710 0

1 231 136 9633 0
global

3
241 71 9688 0

1 208 184 9608 0
global

4
218 106 9676 0

1 205 206 9578 11
global

5
210 139 9643 8

(b) BA

q k TP FP TN FN

1 114 257 9629 0
global

1
114 193 9693 0

1 206 102 9692 0
global

2
206 27 9767 0

1 283 77 9636 4
global

3
290 20 9689 1

1 250 130 9508 112
global

4
289 78 9548 85

1 255 135 9423 187
global

5
283 105 9451 161

Figure 2 (a) presents higher frequency when q = 1.4, and the distribution is
concentrated between q = 0.6 and q = 2.2. On the other hand, Figure 2 (b)
presents higher frequency when q = 1.2, and the distribution is concentrated
between q = 0.7 and q = 2.2. These results reinforce the fact that the variation of
q is important for the method accuracy, i.e., the nonextensivity of the networks.

In order to estimate the improvement of the accuracy by varying q, Tables 2 (a)
and (b) present the comparisons of commonly used Shannon entropy q = 1 and
the best global results obtained by the variation of q. In general, it is possible
to notice that global results exhibit an improvement of accuracy w.r.t q = 1
for all average node degrees (k) in both network topologies (ER and BA). In
particular, the number of false positives (FP) presents higher improvement of
accuracy, achieving 55% of reduction in false positives for ER when k = 2 and
74% for BA when 2 � k � 3.
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6 Conclusion

This work described a comparative analysis in order to evaluate the application of
Tsallis entropy in a GRN inference method based on a feature selection approach
by considering three main aspects: (1) variation of the parameter q (degree of
nonextensivity) of Tsallis entropy; (2) two different complex network topologies;
(3) complexity of networks in terms of average node degree (k).

The results indicated a valuable improvement of the accuracy of the GRNs
inference by using the Tsallis entropy. This improvement was observed in both
kinds of networks (ER and BA) and also for different degrees of complexities
k (average gene degree). We have found the best similarity values on the range
0.6 � q � 2.2, where the degree of nonextensivity q around 1.4 performs better
results. In fact, the results have shown that tested networks tend to be a little
subextensive (q > 1).

These results can be seen as a first stage to better understand the inference
of network topologies by information theory approaches, i.e., by using entropy
criteria. The main point is the possibility of nonextensivity of the networks and,
therefore, the entropy related methods dependence on that.

The next stage of this work is to consider complex networks models and mea-
surements [19] (local and global) and more precise similarity measures between
two networks [29] in order to refine the analysis of the inference method and the
nonextensivity of the networks. Other relevant improvement is to include some
uncertainty in the transition functions, i.e., to use stochastic transition functions
and to measure its effect on network inference method. Other methods that ap-
ply information theory for GRNs inference could be included in the comparative
results and analysis of nonextensivity of the networks.
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Abstract. Cluster ensemble is a promising technique for improving the
clustering results. An alternative to generate the cluster ensemble is to
use different representations of the data and different similarity measures
between objects. This way, it is produced a cluster ensemble conformed
by heterogeneous partitions obtained with different point of views of the
faced problem. This diversity enhances the cluster ensemble but, it re-
stricts the combination process since it makes difficult the use of the
original data. In this paper, in order to solve these limitations, we pro-
pose a unified representation of the objects taking into account the whole
information in the cluster ensemble. This representation allows working
with the original data of the problem regardless of the used generation
mechanism. Also, this new representation is embedded in the WKF [1]
algorithm making a more robust cluster ensemble method. Experimental
results with numerical, categorical and mixed datasets show the accuracy
of the proposed method.

Keywords: Cluster ensemble, object representation, similarity measure,
co-association matrix.

1 Introduction

Cluster ensemble has emerged as a good alternative to improve the quality of
clustering results. Traditionally, given a set of objects, a cluster ensemble method
consists in two principal steps: Generation, which is about the conformation
of a set of partitions of these objects, and Consensus Function, where a new
partition which is the integration of all partitions obtained in the generation
step, is computed.

In the generation step, different representations of the objects can be used
or the same representation with different similarity (dissimilarity) measures to
obtain each partition in the cluster ensemble. Then, if it is necessary to work with
the original data after the generation step, we have to deal with the following
questions: Which representation of the objects should be used? Which similarity
(dissimilarity) measure should be applied?

To the best of the authors knowledge, these questions have not been boarded
before. Taking into account these situations, and giving them an adequate treat-
ment, we can improve the quality of the clustering ensemble algorithms and
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enlarge their scope. Then, the main goal of this paper is to give an answer to
these questions. In order to do that, we present a new way of representing the
objects unifying the information in all partitions in the cluster ensemble. This
representation is based on a new similarity matrix, which is obtained from the
co-association of the objects in the clusters of the set of partitions, but taking
into account more information than the traditional co-association matrix [2] and
therefore expressing better the relationship between objects. By using this new
representation of the objects can be applied, for example, any distance function
and compute centroids in this new representation space, even when the original
data are mixed (composed by numerical and non-numerical attributes).

This paper is organized as follows: In section 2 some related works are pre-
sented, highlighting the method proposed in [1] called WKF, as well as the mo-
tivation and problem description are outlined. Section 3 introduces our proposal
and presents a modification of the WKF method with our new object represen-
tation embedded in the steps of this method. Experimental results are discussed
in Section 4 and finally in Section 5 are the conclusions of our research.

2 Problem Discussion

We will denote X = {x1, x2, . . . , xn} the set of objects, where each object is
a tuple of some d−dimensional feature space Ωd. P= {P1, P2, . . . , Pm} is a set
of partitions, where each Pi =

{
C1

i , C
2
i , . . . , C

ki

i

}
is a partition of the set of

objects X , and Cj
i is the jth cluster of the ith partition, for all i = 1, . . . ,m.

The goal of clustering ensemble methods is to find a partition P ∗, which better
represents the properties of each partition in P.

Several clustering ensemble methods have been proposed in the literature, e.g.
Co-association methods [2] and Hyper-Graph methods [3]. In these methods, it
is not necessary to work with the original data after the generation step, i.e.,
once the set of partitions P is obtained, all the operations to obtain the consensus
partition P ∗ are achieved taking into account only the partitions in P.

For example, the co-association methods firstly compute the co-association
matrix C, where each cell has the following value:

Cij =
1
m

m∑
k=1

δ (Pk (xi) , Pk(xj)) (1)

Pk (xi) represents the associate label of the object xi in the partition Pk, and
δ (a, b) is 1, if a = b, and 0 otherwise. Then, the value in each position (i, j)
of this matrix is a measure about how many times the objects xi and xj are
in the same cluster for all partitions in P. Using the co-association matrix C as
the similarity measure between objects, the consensus partition is obtained by
applying a clustering algorithm.

The Hyper-graph methods start by representing each partition in the cluster
ensemble with a hyper-edge. Then, the problem is reduced into a hyper-graph
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partitioning problem. Three efficient heuristics CSPA, HGPA and MLCA are
presented in [3].

However, the set of objects X and their similarity (dissimilarity) values are
additional information that, if it is well-used, the combination results can be
improved. In other words, more complex methods that make use of this infor-
mation in order to achieve better results can be developed. This is the case of
the WKF method [1].

The WKF method uses the set of objects X and their similarities in an inter-
mediate step, between the generation and the consensus function called Qualita-
tive Analysis of the Cluster Ensemble (QACE). In this new step, it is estimated
the relevance of each partition for the cluster ensemble.

The idea is to assign a weight to each partition that represents how relevant
it is in the cluster ensemble. In this step, partitions which represent noise for
the cluster ensemble are detected, and its effect in the consensus partition is
minimized. The impact of this step in the final consensus partition is meaningful,
since by using the information obtained in this step, a fairer combination process
is achieved. In [1] the QACE step is performed by applying different cluster
validity indexes, where each one of them measures the fulfillment of a particular
property, e.g., compactness, separability, connectivity. Thus, to a partition that
behaves very different to the rest of the partitions with respect to this properties,
it is assigned a small weight, because it is probably a noisy partition obtained
by a not appropriate generation mechanism. Otherwise, if a partition has an
average behavior, it will have a higher weight assigned.

The consensus partition in the WKF method is computed by using a consen-
sus function able to work with the weights computed in the QACE step. For
this, each partition is represented by a graph. Furthermore, to obtain an exact
representation of the consensus into a Hilbert Space, a kernel function is used as
the similarity measure. Finally, an efficient stochastic search strategy is applied
to obtain the final consensus partition.

Despite of the advantages that the QACE step offers, it has the limitation
that the similarity between the objects must be computed on the original data
X. This may cause the appearance of some problems such as:

1. The partitions could be created by using different representations of the data,
either by completely different representations given by different modelings
of the problem, or the same representation, but using different subset of
features to obtain the partitions. Then, which representation of the data
should be used in the QACE step?

2. Besides, the partitions in the cluster ensemble could be obtained by using
different similarity (dissimilarity) measures but, which one should be used in
the QACE step? We would possibly also need to compute a distance between
objects in this step but, what can be done if we have not a distance defined
for our set of objects?

These problems are more complicated when the original data is mixed, because it
is difficult to apply cluster validity indexes to the partitions since it is difficult to
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embed the set of objects into a metric space. In this paper, we propose a solution
for these questions and it is incorporated in the steps of the WKF algorithm.

3 Generalized WKF

Firstly, we say that the fact that two objects belong to the same cluster in a
partition does not contribute with the same information for every partitions in
the cluster ensemble. For that reason, we will define the co-association signifi-
cance of two objects xi and xj that belong to the same cluster in some partition
P ∈ P. To compute this significance, we will take three factors into account:
the number of elements in the cluster to which xi and xj belong, the number of
clusters in the partition analyzed and the similarity (dissimilarity) of this objects
by using the same proximity measure used to conform the partition P . Then, we
say that two objects xi and xj , grouped in a cluster C of some partition P ∈ P,
which was obtained using the similarity measure ΓP , have a high co-association
significance if the following conditions are satisfied:

1. |C| is small (|C| is the number of elements in the cluster C)
2. |P | is large (|P | is the number of clusters in P )
3. ΓP (xi, xj) is large.

If the partition P was obtained by using a dissimilarity measure dP , we can easily
obtain an equivalent similarity measure ΓP by ΓP = 1

dP +1 . Then from now on,
we assume that the clustering algorithm applied to generate the partition P used
the similarity measure ΓP . Formally, we can define the co-association significance
as:

Definition 1. Given two objects xi, xj and a partition P , we define the co-
association significance of these objects in the partition P as:

CSP (xi, xj) =

{
|P |
|C| · ΓP (xi, xj), if ∃C ∈ P, such that xi ∈ C, xj ∈ C;
0, otherwise

which represents the significance that two objects xi and xj had been grouped
together in the same cluster or not, in the partition P .

Taking into account the co-association significance of each pair of objects in
X , in all partition in P, it is conformed the Weighted Co-Association Matrix
denoted by WC, where the (i, j) entry of the matrix has the following value:

WCi,j =
m∑

k=1

CSPk(xi, xj) (2)

The WC matrix is more expressive than the traditional co-association matrix
(1), because in the co-association matrix it is only taken into account if the
objects are together or not in the same cluster but, the rest of the information
given by the partition is not considered. Let us see an illustrative example:
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Example 1. Let PX be the set of all possible partitions of the set X . We can
define the order relationship nested in denoted by  , where P  P ′ if and
only if, for all cluster C′ ∈ P ′ there are clusters Ci1 , Ci2 , . . . , Cik

∈ P such
that C′ =

⋃k
j=1 Cij . The hierarchical clustering algorithms, like the Single Link

and Average Link, produce sequences of nested partitions where, if P  P ′

means that the criterion used to obtain P is stronger than the used to obtain
P ′. Then, the fact that a pair of objects belong to the same cluster in P , gives
more information about the likeness of these objects than the fact that they
had been grouped in the same cluster in the partition P ′. Using the traditional
co-association matrix (1) this information can not be extracted. However, by
using the weighted co-association (2) more significance is given to the partition
P since, if P  P ′ implies that |P | ≥ |P ′| and |C| ≤ |C′|. Then |P |

|C| ·ΓP (xi, xj) ≥
|P ′|
|C′| · ΓP ′(xi, xj) because in this case ΓP = ΓP ′ .

Once we have the matrix WC, it can be considered as a new representation
of the objects, where each object xi ∈ X is represented by a vector of Rn,
xi = {WCi,1,WCi,2, . . . ,WCi,n}. The representation by dis(similarities) is ex-
tensively studied in [4]. This way, all the information about the possible different
representations and proximity measures, used in the generation step, are sum-
marized in the new representation of the objects. Even, when only one represen-
tation of the set of objects, and only one similarity measure in the generation
step are used, this new representation can give advantages, e.g. when the original
data is mixed. In this case, the new representation as a vector of Rn allows the
use of the mathematical tools for vectorial spaces that have not to be available
for the original data representation.

In [5], a comparison of different cluster ensemble techniques is achieved.
Among other techniques, the co-association matrix (1) is used as a new rep-
resentation of the objects, obtaining the best results. Then, as an alternative,
the new weighted co-association matrix can be used instead of the traditional
co-association matrix in the co-association cluster ensemble methods [2]. The
results should be better since the WC matrix has more information about the
real relationship between the objects in the set of partitions P.

However, the main goal of the construction of the matrix WC is for obtaining
a new representation of the objects that allows to use the WKF method without
any constraint in the generation step.

3.1 Steps of the Generalized WKF Algorithm

In order to embed our object representation into the WKF methodology, it is
necessary to incorporate an intermediate step where the matrix WC is computed
and used as a new representation of the objects. We call the algorithm with this
modification as GWKF and its principal steps are:

1. Given a set of objects X , generate a set of partitions P of these objects, by us-
ing different clustering algorithms, different initialization of the parameters,
even using different representation of the objects, and different similarity
(dissimilarity) measures to obtain each partition.



486 S. Vega-Pons and J. Ruiz-Shulcloper

2. With the information in P, compute the weighted co-association matrix (2),
and use it as a new representation of the set of objects X .

3. Apply the QACE, where any kind of indexes can be used without taking
into account the original type of data of the problem or the way that the
partitions in the cluster ensemble were generated. The indexes are applied
by using the new data representation and can be used any distance function
(e.g., the Euclidean distance).

4. Compute an associated weight to each partition by using the indexes defined
previously.

5. Apply the consensus function as in [1]. This consensus function automatically
selects the appropriate number of clusters in the consensus partition.

4 Experimental Results

In the experiments, we used 7 datasets from the UCI Machine Learning Repos-
itory [8]. The characteristics of all datasets are given in Table 1. We denote
our method (given by the steps in the previous section) by GWKF. Also, in
order to apply the QACE step, we use three simple indexes [6]: Variance, Con-
nectivity and Dunn Index. Each one of them measures the fulfillment of a spe-
cific property. The Variance is a way to measure the compactness of the clus-
ters in the partition. The Connectivity evaluates the degree of connectedness
of clusters in the partition, by measuring how many neighbors of one object
belong to the same cluster that the object. The Dunn Index is a measure of
the ratio between the smallest inter-cluster distance and the largest intra-cluster
distance.

The three indexes use a distance function defined over the set of objects X .
Then, if it is used the WKF algorithm, these indexes can not be applied to a
dataset for which there is not defined an appropriate distance function. However,
by using the GWKF, we can apply this indexes to any dataset without taking
into account the type of data because, after the generation step the objects are
represented as vectors of Rn by using the Weighted Co-Association Matrix (2).
After that, any distance function can be applied, we use the Euclidean distance.

Table 1. Overview of datasets

Name Type #Inst. #Attrib. #Classes Inst-per-classes

Iris Numerical 150 4 3 50-50-50
Digits Numerical 100 64 10 10-11-11-11-12-5-8-12-9-11
Breast-Cancer Numerical 683 9 2 444-239
Zoo Mixed 101 18 7 41-20-5-13-4-8-10
Auto Mixed 205 26 7 0-3-22-67-54-32-27
Soybeans Categorical 47 21 4 10-10-10-17
Votes Categorical 435 16 2 267-168
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4.1 Analysis of the Experimental Results

Firstly, we show the behavior of our method (GWKF) in numerical datasets
and we compare the results with several clustering ensemble methods (see Table
2). EA-SL and EA-CL are the co-association methods [2] using the Single-Link
and Complete-Link algorithm, CSPA, HPGA and MCLA are the three hyper-
graph methods proposed in [3]. In this experiment, it is generated the cluster
ensemble always using the same representation of the objects, and by applying
the k-Means algorithm 20 times with different parameters initialization. This
experiment shows the good performance of the GWKF method in comparison
with the other cluster ensemble methods and how the final results of the GWKF
method are very close to the results of the WKF method.

Table 2. Clustering error rate of different clustering ensemble methods

Dataset Ens(Ave) EA-SL EA-AL CSPA HPGA MCLA WKF GWKF

Iris 18.1 11.1 11.1 13.3 37.3 11.2 10.6 10.8
Breast-Cancer 3.9 4.0 4.0 17.3 49.9 3.8 3.7 3.7

Digits 27.4 56.6 23.2 18.1 40.7 18.5 22.1 20.6

The WKF method can not be applied if the data is mixed or in the generation
step were used different representations of the objects. In these cases, the GWKF
method gains more importance, because it is able to deal with any type of data
and any kind of generation mechanism keeping the good performance of the
WKF method.

On the other hand, in Table 3, we compare the GWKF with simple cluster-
ing algorithms (in this case the k-Means) in two different mixed datasets with
different ensemble sizes (H). In this experiment, the partitions are obtained by
using random subset of features and applying the k-Means algorithm with a
fixed number of clusters (k). The results show that our algorithm obtains lower
errors rate than the average error rate of the k-Means algorithm.

Table 3. Cluster ensemble average error rate and GWKF error rate in mixed datasets

Dataset H k Ensemble(Ave.) GWKF

Zoo 10 7 26.8 20.7

Zoo 20 7 24.3 19.1

Auto 10 7 62.0 57.3

Auto 20 7 61.3 54.5

Finally, we compare our method with 4 algorithms proposed in [7] (CSPA-
METIS, CSPA-SPEC, CSBA-METIS and CSBA-SPEC), all of them designed
to work with categorical data. In this experiment, we use 2 categorical datasets,
and the partitions were generated by using different sets of random features (see
Table 4). As in the previous experiment, the original WKF method is not able to
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Table 4. Clustering error rate using categorical data

Dataset k Ens(Ave) CSPA-ME CSPA-SP CBPA-ME CBPA-SP GWKF

Votes 2 13.7 14.0 13.5 14.0 14.2 11.4

Soybeans 4 24.4 10.6 12.3 12.8 15.3 6.3

work with this generation mechanism, this dataset and the indexes defined for
the experiments. However, the GWKF method extends the good performance of
the WFF method to this kind of situations.

5 Conclusions

In this paper, the problem about what representation of the objects and what
similarity measure should be used in the consensus step, in the cases that many
representations and similarity measures are used in the generation step is for-
mulated and solved. A new object representation is proposed, which summarizes
the whole information in the set of partitions. This is possible thanks to the def-
inition of a new way of measuring the co-association between objects, which is
more expressive about the real similarity between objects in the cluster ensem-
ble than the classical co-association. The new representation is embedded in the
WKF method enlarging its scope and obtaining the Generalized WKF method.
The experiments with numerical, categorical and mixed datasets respectively
and by using different generation mechanisms, show the good performance of
the proposed method.
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Abstract. The Nearest Neighbor classifier is a simple but powerful non-
parametric technique for supervised classification. However, it is very sensitive 
to noise and outliers, which could decrease the classifier accuracy.  To over-
come this problem, we propose two new editing methods based on maximum 
similarity graphs. Numerical experiments in several databases show the high 
quality performance of our methods according to classifier accuracy.  

Keywords: nearest neighbor, error-based editing, prototype selection. 

1   Introduction 

One of the most popular non-parametric classifiers is the Nearest Neighbor (NN). 
This classifier combines the simplicity with a classification error bounded by twice 
the Bayes error [1].  For classifying a new object, the NN classifier compares it 
against all the objects in the training set, and assigns the new object to the class of its 
nearest object. 

An important drawback of the NN classifier is its sensitivity to noisy and misla-
beled objects [2]. Since NN introduction in 1967, there is a constant research interest 
in the Pattern Recognition community to overcome this drawback [3-5]. Editing algo-
rithms aim at improving classifier accuracy by deleting noisy or mislabeled objects. 

In this paper, we address the problem of improving NN accuracy by smoothing 
classification boundaries. We use maximum similarity graphs to determine border 
objects, and delete those noisy or mislabeled objects that most likely could affect the 
classifier accuracy.  

This paper is organized as follows: section two describes some previous works 
about NN error-based editing and their drawbacks, section three introduces our pro-
posals, section four shows the results of the experiments and section five offers some 
conclusions.  
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2   Previous Works on Error-Based Editing 

Several authors divide the algorithms to improve a training set for NN classifiers in 
two main categories: condensing algorithms and error-based editing algorithms (or 
just editing algorithms) [6]. Condensing algorithms aim at reducing the NN computa-
tional cost by obtaining a small subset of the training set, maintaining the accuracy as 
high as possible, while editing algorithms aim at improving classifier accuracy by 
deleting noisy or mislabeled objects. In this work, we focus on editing algorithms.  

The first editing algorithm was the Edited Nearest Neighbor (ENN), proposed by 
Wilson in 1972 [3]. The ENN algorithm deletes all objects misclassified by a k-NN 
classifier, where ݇ is a user-defined parameter, usually ݇ ൌ 3. The results of ENN 
strongly depend on the value of ݇, and there is not a simple procedure to find this 
value a priori. Another weak point is the use of a unique value of ݇ for the entire 
database; without taking into account the object densities in different regions. Finally, 
a major drawback of ENN comes from the behavior you can see in Fig. 1. Note that 
the border object ܣ will be removed using even a low value of ݇ ൌ 3, no matter it is 
very similar to other objects of its own class.  

 

Fig. 1. ENN can erroneously remove objects in the class boundaries 

In 1976, Tomek introduced the All-KNN algorithm[4]. All-KNN deletes an object 
if a ݇-NN classifier misclassifies it, with ݇ in the range 1  ݇    ݔܽܯ݇ where ݔܽܯ݇
is a user-defined parameter, usually ݇ݔܽܯ ൌ 7  or ݇ݔܽܯ ൌ 9. The use of several 
values for ݇ in All-KNN makes the algorithm to do more deletions than ENN. Never-
theless, in many cases, like that showed in Fig. 1, it produces an undesired behavior. 
All-KNN keeps the same drawbacks than ENN. 

Another classical editing method is MULTIEDIT, proposed by Devijver and Kitt-
ler in 1980 [5]. First, MULTIEDIT randomly divides the training set in ݊ݏ partitions. 
On each partition, it applies the ENN method using a 1-NN classifier trained with the 
next partition. After each iteration, MULTIEDIT joins the remaining objects in each 
partition and it repeats the process until no change is achieved in ݊݅ successive itera-
tions. Both ݊ݏ and ݊݅ are user-defined parameters. Usually ݊ݏ ൌ 3 and ݊݅ ൌ 2. This 
method can successfully purge noisy objects and outliers, but if two classes are very 
close, it can completely remove one or both of them (Fig. 2). Also, the strong random 
characteristic of MULTIEDIT could make the result of two consecutive executions 
over the same training set to be completely different, as you can also see in Fig. 2. 
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Fig. 2. Example of two MULTIEDIT executions: (a) one class deletion and (b) two class dele-
tion.  are the objects in the training matrix;  highlight the selected objects. 

Hattori and Takahashi in 2000 [7] proposed a new editing method, referred by us 
as NENN.  The method computes the ݇ nearest neighbors for each object. If an object 
has at least one of its neighbors in another class, NENN deletes this object from the 
training set. This condition is stronger than the one used in ENN, and could produce 
more dramatic object deletion. Unfortunately, if the boundaries between classes are 
close together, it can delete many important boundary objects, like the whole “ ° ” 
class in Fig. 1. 

In 2002, Toussaint used the Relative Neighborhood proximity graphs to edit near-
est neighbors [8]. The RNG-E algorithm computes the Relative Neighborhood graph 
of the training set, and deletes all objects misclassified by its neighbors in the graph. 
The Relative Neighborhood graph is a proximity graph with the set of edges defined 
as ݃݁ݏ ൌ ൛ሺ, :ሻݍ Λ୮,୯ ת ܶ ൌ  ,are vertexes, ܶ is the training set ݍ and  ൟ , where
and Λ୮,୯ is the intersection between the hyper-spheres centered in  and ݍ respective-
ly, with radius ԡ െ  .ԡݍ

 

Fig. 3. A common problem of RNG-E algorithm 

A common problem with RNG-E is that the proximity graph can connect faraway 
objects, because RNG-E depends on the configuration of other objects in the graph. 
For example, in Fig. 3 you can see that objects A and B are neighbors because no 
other object exists in the region R, even though they are distant. 

Caballero et al., introduced the editing methods EditRS1 and EditRS2 in 2007 [9]. 
They used elements of the Rough Set theory to obtain lower and upper approxima-
tions of the training set for computing the limit regions of each class. The EditRS1 
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algorithm computes the lower approximation of each class and deletes the objects not 
included in the lower approximation. The EditRS2 also computes the lower approxi-
mation of the classes, and the limit region or border of each class. For each limit  
region, EditRS2 applies the Generalized Editing method [10]. Finally, the method 
deletes such objects not included in the lower approximations or in the edited limit 
region. Although both methods are supported by a well-founded theory, in most of the 
tested databases they were unable to remove any object.    

The analysis of previous editing methods reveals that improving the k-NN accura-
cy by editing the training set is still an open problem. Previous methods cannot accu-
rately deal with some cases, which is the basic motivation of the methods introduced 
in this paper.  

3   Editing Based on Maximum Similarity Graphs 

In this paper, we introduce MSEditA and MSEditB, two new editing methods based 
on maximum similarity graphs (MSG). A maximum similarity graph [11] is a directed 
graph, where each object is connected to its most similar neighbor. Formally, let ܩ ൌ ሺܶ,  Two .ߠ  ሻ be a maximum similarity graph for a training set ܶ, with arcsߠ
objects ݔ, ݕ ∈ ܶ form an arc ሺݔ, ሻݕ ∈ ்∋if  max ߠ ሼ݉݅ݏሺݔ, ሻሽ ൌ ,ݔሺ݉݅ݏ  ሻݕ

where ݉݅ݏሺݔ,  ሻ is a similarity function, usually defined in terms of the normalizedݕ
Euclidean distance as 1 െ ݀ሺݔ, -ሻ, but in general it can be any similarity or dissimilarݕ
ity. This way we have an arc between an object and its most similar neighbor. If we 
have ties, we insert arcs for all the most similar neighbors. 

A MSG is very useful for object selection because it can catch the similarity rela-
tions between any object and those that are on its neighborhood. It is also immune to 
configurations like that appearing in Fig. 1, which makes most of other editing me-
thods to fail. Although in theory MSG can connect faraway objects, it is not a com-
mon behavior, because both objects have to be in complete isolation. In the example 
in Fig. 3, for example, the MSG does not connect the objects A and B. 

3.1   Proposed Methods 

Both MSEditA and MSEditB methods first compute the maximum similarity graph of 
the training set , and then decide which objects to delete.  In MSEditA, an object in 
the graph having a most similar neighbor from different class indicates a level of 
uncertainty of the correct class for the object. The idea followed in MSEditA consists 
in deleting an object if it has any most similar neighbor (successors) with different 
class. This method is different from ENN (using ݇ ൌ 1), because if the most similar 
object is not unique, ENN randomly selects one of them. In this case, MSEditA dis-
card the object if any of the neighbors belongs to a different class. 

On the other hand, MSEditB removes an object if the majority of its neighbors be-
long to a different class. We count as neighbors both successors and predecessors of 
an object in the graph, which are respectively its most similar objects and the objects 
for which the evaluated object is the most similar.  

 

T
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Pseudocode of MSEditA 

݀݁ݐ݅݀ܧ .1 ՚ ܶ 
2. Compute maximum similarity graph of ܶ.  
3. For each object in ݀݁ݐ݅݀ܧ 
4. If the object has at least one successor of different class in the maximum similarity 

class, delete the object. 
5. Return ݀݁ݐ݅݀ܧ. 

 
Pseudocode of MSEditB 

݀݁ݐ݅݀ܧ .1 ՚ ܶ 
2. Compute maximum similarity graph of ܶ  
3. For each object  in ݀݁ݐ݅݀ܧ 
4. Let be ܵ and ܣ the successors and antecessors of  in the graph. 
5. ܰ ՚ ܵ     ܣ
6. If the majority of the objects in ܰ  are not of the same class of , delete . 
7. Return ݀݁ݐ݅݀ܧ 

 
We can see the differences between MSEditA and MSEditB in Fig. 4.  

 

Fig. 4. Diferences (circled) between  MSEditA (b) and MSEditB (c) on example MSG (a) 

There are six objects from two classes: circle and cross. Each arrow represents an 
arc, so a single arrow from A to B means the successor B is the most similar object to 
the ancestor A, and a double arrow means they are simultaneously the most similar 
object of each other. 

MSEditA deletes all crosses, because they have one of their successors in a differ-
ent class, while MSEditB only deletes the central object, because most of its neigh-
bors (successors and ancestors) are in a different class. It is important to notice that 
the results of these methods are different, and it is easy to prove that, in general, the 
result of a method is not contained in the other.  
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4   Experimental Results 

In order to compare the performance of the proposed methods, we carried out some 
numerical experiments in a wide-range of databases from the UCI repository of Ma-
chine Learning [12]. The description of the tested databases appears in Table 1.  We 
perform 10-fold cross validation among all databases, averaging the results. Due to 
NN classifier is dependant on the function used for comparing objects, in our experi-
ments we use two functions: HEOM and HVDM [13].   

We select several classic, state of the art and recent methods, which are fre-
quently used for comparisons in most papers about the topic. For determining the 
best method, we made a two-tailed T-Test [14] (with significance of 0.05) of every 
method  with respect to the lowest error result. If no significant difference exists, 
the result is also considered as lowest error.  We compute how many databases 
each method attains the lowest error. The object retention ratio is calculated as the 
ratio between the amount of objects in the edited sample and the amount of objects 
in the training sample. Table 2 summarizes the results with both HEOM and 
HVDM functions. 

 

Table 1. Databases description 

Database non-num/ 
num feats Objects Database non-num/ 

num feats Objects 

anneal 29/9 798 hepatitis 13/6 155 
autos 10/16 205 iris 0/4 150 
balance-scale 0/4 625 labor 6/8 57 
breast-cancer 9/0 286 lymph 15/3 148 
breast-w 0/9 299 post-pat-data 7/1 90 
cmc 7/2 1473 sonar 0/60 208 
colic 15/7 368 tae 2/3 151 
credit-a 9/6 690 trains 29/4 10 
cylinder-bands 20/20 512 vehicle 0/18 846 
dermatology 1/33 366 vote 16/0 435 
glass 0/10 214 vowel 3/9 990 
heart-c 7/6 303 zoo 16/1 101 
heart-h 7/6 294    

 
In tae and vowel databases, using both HEOM and HVDM functions, all methods 

produce a significant degradation of the accuracy, which implies that all objects are 
very important to maintain classification accuracy. The same situation occurred in 
cylinder-bands database for the HEOM function. Both MSEditA and MSEditB have 
the best result, having the lowest error, in 22 of 25 databases. In general, usually one 
of the methods (not always the same) gets better results than the other gets, but we 
need further research to allow selecting a priori the best method for a database. It is 
important to highlight that some methods tie in most databases, so there is no categor-
ical winner. 
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Table 2. Number of databses (from 25 databases) each method had lower error (err) and object 
retention ratio (ret) 
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err HEOM 21 19 15 18 21 21 21 22 21 22 

err HVDM 22 20 14 17 22 22 22 22 23 22 

Average err 21.5 19.5 14.5 17.5 21.5 21.5 21.5 22 22 22 

ret HEOM 0.88 0.74 0.55 0.57 0.76 1.00 1.00 0.74 0.75  

ret HVDM 0.88 0.74 0.57 0.60 0.77 1.00 1.00 0.77 0.75  

 
 
According to the object retention ratio (see Table 2), we show the averaged result 

for both HEOM and HVDM functions. In cmc database, for both functions, the 
NENN method deleted all objects, so we did not average this result. The best method 
according to retention rate was MULTIEDIT, but it was the worst according to classi-
fication accuracy. Both EditRS1 and EditRS2 only reduce objects in breast-cancer 
and tae databases, in all other databases they did not delete any object of the training 
set.  

5   Conclusions 

In this paper, we introduce two new editing methods based on maximum similarity 
graphs. Both methods have the best results according to classifier accuracy in the 
tested databases, by deleting noisy and mislabeled objects. They attain the higher 
accuracy in 22 of 25 databases. MSEditA and MSEditB have object retention rate 
around 75%, comparable with other editing methods such as RNE-G and All-KNN. 
Although NN classifier depends on the function used for comparing objects, we did 
not found significant difference in the performance of the methods with both HEOM 
and HVDM functions.  

As future work, we are going to study which are the characteristics of the database 
that makes one of our methods to overcome the other. This way, we will be able to 
create a combined method with even better behavior. 
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Abstract. In this paper, a new algorithm for incremental overlapped
clustering, called Incremental Clustering by Strength Decision (ICSD),
is introduced. ICSD obtains a set of dense and overlapped clusters using
a new graph cover heuristic while reduces the amount of computation
by maintaining incrementally the cluster structure. The experimental
results show that our proposal outperforms other graph-based cluster-
ing algorithms considering quality measures and also show that ICSD
achieves a better time performance than other incremental graph-based
algorithms.

1 Introduction

Clustering is one of the most useful and common techniques in pattern recog-
nition and data mining. Nevertheless, most clustering algorithms are non-
incremental [1,2,3,4], which means that if new data is added to a training set,
the algorithm must be applied again over the whole training set, without taking
advantage of the previous clusters.

In environments like the World Wide Web, news streams and others, the data
must be organized in overlapped clusters and these clusters must be frequently
updated due to new data are continually added. Therefore, the problem of in-
cremental overlapped clustering is addressed in this work.

The graph-based algorithms have received attention by the researchers in the
last years because this kind of algorithms have features that increase their suit-
ability for many applications where overlapped clustering is needed and they also
have shown in this context a better performance that commonly used algorithms
[1,2,3].

In this paper, a new incremental overlapped clustering algorithm named Incre-
mental Clustering by Strength Decision (ICSD) is introduced. The novelty of the
proposed algorithm is its ability to obtain a set of dense and overlapped clusters
using a new graph cover heuristic while it reduces the amount of computation
by maintaining clusters structured incrementally. The experimental evaluations
showed that ICSD algorithm outperforms other graph-based algorithms [4,5,6].

The remainder of this paper is organized as follows. Section 2 presents related
work. The ICSD algorithm is presented in section 3 and finally, conclusions and
future work are given in section 5.

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 497–504, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Related Work

There are different graph-based algorithms developed during the last years that
deal with incremental clustering [5,6,7,8] or with overlapped clusters [1,2,3,4,5],
but only a few of them faced both problems at the same time [5,6].

From the group of algorithms that build overlapped clusters [1,2,3,4,5], Cstar
[4] has the best performance and outperforms two commonly used clustering
algorithms: Single-link and UPGMA algorithms [9]. However, Cstar algorithm
only groups static data and it has a computational complexity of O(n3).

Among all the incremental graph-based algorithms [5,6,7,8] only Star [5] and
Strong Compact [6] algorithms faced the problem of overlapped clusters in an
incremental context, while GLC[8] and Compact[7] build disjoint clusters; how-
ever, all these incremental algorithms have different drawbacks. The set of clus-
ters built by GLC algorithm are connected components so they could have low
cohesion. The Star, Compact and Strong Compact algorithms, on the other
hand, build a lot of clusters, each one with a few prototypes. Additionally, Star
algorithm builds clusters that depends on data order.

Star and Strong Compact algorithms, no matter how many prototypes are
added to the dataset, update the set of clusters by adding those prototypes one
by one and and they update the clusters after each addition. This is a constraint
when a lot of new data must be added at the same time, since it diminishes the
performance of these algorithms.

The algorithm proposed in this work introduces a new graph cover heuris-
tic that produces overlapped clusters with high density. Our algorithm keeps
the strengths of Cstar algorithm but with a lower computational complexity.
The proposed algorithm also allows an efficient cluster update; in this way, the
processing time is reduced.

3 Clustering by Strength Decision

The ICSD algorithm, introduced in this section, obtains a set of overlapped
clusters through a cover of the thresholded similarity graph Gβ by applying an
heuristic based on the strength of vertices in Gβ and using star-shaped sub-
graphs [5].

Let D = {p1, p2, . . . , pn} be a collection of prototypes, β a user-defined pa-
rameter and S(pi, pj) a symmetric similarity function between prototypes pi and
pj , a thresholded similarity graph is an undirected graph Gβ = 〈V,Eβ〉 where
V = D and (pi, pj) ∈ Eβ if and only if S(pi, pj) ≥ β.

An star-shaped sub-graph is a sub-graph of m + 1 vertices with an special
vertex c named center and m vertices called satellites. This sub-graph satisfies
that there is an edge between the center and each satellite. When a star-shaped
sub-graph only contains its center it is called degenerated. In this context, each
star-shaped subgraph is interpreted as a cluster.

A cover of Gβ , by this kind of sub-graphs, is determined by the set of centers C
such that every vertex of Gβ belongs to C or it is adjacent to at least one vertex
in C. Usually, to obtain a cover of Gβ , a greedy approach is applied [1,2,3,4,5].
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The strength of a vertex v is calculated in two steps: in the first step, a vertex
v receives one vote from each vertex u such that:

u ∈ v.Adj ∧ v.degree ≥ u.degree

where v.Adj is the set of adjacent vertices of v and v.degree is the number
of vertices contained in v.Adj and u.degree is defined in the same way that
v.degree. The number of votes received by v in this first step will be denoted as
strengthpre.

In a second step, v.strength is calculated as follows:

v.strength = |{u ∈ v.Adj | v.strengthpre ≥ u.strengthpre}|

The heuristic proposed in this work for building overlapped clusters considerers
only the set Q of vertices with a non null value of strength; in this way, the set
of vertices to be possibly included in C is reduced.

The set Q is sorted in descending order according to the strength and it is
processed in that order for covering Gβ as quick as possible. Each vertex v ∈ Q
is processed considering the following conditions:

1. if v is not covered in Gβ then, it is added to the set of centers,
2. if v is covered in Gβ then add v to C if and only if it has at least one not

covered adjacent vertex. This condition raises from the fact that as overlap
is allowed there would be vertices in Q which have all their satellites covered
by previous selected vertices; thus selecting those vertices as center will not
cover new vertices in Gβ , therefore, they must not be included in C.

Once the set C has been built, a process, similar to that used by Cstar [4]
to remove redundant centers, but using the degree of vertices instead of their
voting-degree, is executed.

We decided to use degree of verties because of two main reasons: (a) since a
cluster is defined by a center and its satellites then, the more degree a center
has the more density1 its cluster has, and (b) the vertex v, of a set of vertices
M , with the highest voting-degree not always forms the densest cluster, because
there could be another vertex g ∈ M , having a higher degree than v, which
received a lower voting degree due to most of its adjacent vertices gave their
vote to another adjacent vertex.

Finally, remaining vertices in C are marked as center and all other vertices in
Gβ are marked as satellites. As result, we will have a set of overlapped clusters,
where the set of clusters is built from each vertex marked as center and its
satellites.

Assuming that we have a set of overlapped clusters built using the heuristic
presented above. Now we will analyze the clusters that are affected when new
vertices or prototypes are added.

Let G′ = 〈V ′, E′〉 be a connected component of Gβ and v ∈ V , we will say that
v generates the component G′ if and only if v ∈ V ′. A cluster should be updated
1 In this paper density is defined as the average number of elements per cluster.
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if its center, or at least one of its satellites, changes its strength after adding a
new vertex. A vertex could changes its strength value only if it belongs to the
component generated by some added vertex; therefore, only those components
need to be re-clustered.

To update the clusters contained in a connected component it is important to
know, first of all, how the insertions affect the current clustering built through
the above described heuristic.

After some vertices are added to Gβ the following could happen:

a) there are uncovered vertices; therefore, new vertices must be added to set C.
b) there is at least one non center vertex v which has an strength value greater

than one of its adjacent centers or one center c ∈ C that covers some vertices
in v.Adj. All vertices like v should be considered to be included in C because
they could improve the clustering’s density.

For updating the clusters of a connected component G′ =< V ′, E′ > the set of
vertices V ′ is divided in the sets V ′

s and V ′
c which contain the set of all satellites

having strength greater than zero and the set of all centers, respectively. Each
one of these sets is processed independently to determine which vertices must
be added to the candidate list Q.

Each satellite s ∈ V ′
s is processed considering the following conditions:

a) if s is uncovered or has at least one uncovered adjacent vertex then s is
inserted into Q.

b) if s has at least one adjacent vertex v such that s.strength > w.strength,
where w is the center having the higher value of strength among all adjacent
centers of v then, s is inserted into Q and v is marked as activated ; vertices
marked as activated are useful when set Vc is processed.

Each center c ∈ V ′
c is processed considering the following conditions:

a) for each v ∈ c.Adj such that v.strength > c.strength, insert v into Q and
mark c as weak.

b) if c is marked as weak or it has at least one adjacent vertex marked
as activated then, c is removed from Vc, it is marked as satellite and if
c.strength > 0, c is inserted into Q.

Once the set Q has been built for the connected component G′, it is processed
using the heuristic proposed above for building overlapped clusters.

The pseudocode of ICSD is showed in Algorithm 1.
ICSD algorithm has a computational complexity ofO(n2) (the proof was omit-

ted due to space restrictions). ICSD unlike Star, Compact and Strong Compact
algorithms, adds all new incoming vertices to Gβ before updating the set of clus-
ters, and it also applies an heuristic which only processes the clusters that have
been actually affected due to insertions. These characteristics of ICSD make the
algorithm to save time making it able to efficiently manage multiple insertions
of prototypes.
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Algorithm 1. ICSD algorithm
Input: Gβ - a thresholded similarity graph

L - set of incoming prototypes
β - a similarity threshold

Output: Gβ - updated thresholded similarity graph
SC - set of overlapped clusters

“Add each vertex in L to Gβ and update Gβ”;1

foreach new added vertex v do2

if v is marked as not-processed then3

“Build the connected component G′ =< V ′, E′ > associated with v”;4

if G′ is an isolated vertex then “Mark v as center”;5

else6

“calculate strength property for each vertex in G′”;7

“Build V ′
s , V ′

c , and Q sets”;8

while Q �= ∅ do9

u := arg maxx{x.strength | x ∈ Q};10

if u satisfies conditions 1) or 2) then “Add u to V ′
c ”;11

Q := Q \ {u};12

end13

“Sort V ′
c in ascending order by degree”;14

“Remove from V ′
c all redundant centers”;15

“Mark vertices in V ′
c as center and vertices in V ′ \ V ′

c as satellite”;16

end17

“Mark vertices in V ′ as processed”;18

end19

end20

“Mark vertices in V as not-processed”;21

“Build set SC”;22

4 Experimental Evaluation

In this section, an experimental evaluation of the proposed algorithm is pre-
sented. Since ICSD algorithm deals with overlapping clustering, the experiments
were done over document collections where, as it was mentioned, some documents
could belong to more than one cluster.

The document collections used in our experiments were extracted from three
benchmark text collection: TREC-5, Reuters-21578 and TDT2. From these
benchmarks, six document collections were formed: (1) AFP, built from TREC-
-5; (2) Reu-Te, built using the documents in Reuters-21578 tagged as “Test”;
(3) Reu-Tr, built using the documents in Reuters-21578 tagged as “Train”; (4)
Reu-To is the union of Reu-Te and Reu-Tr; (5) TDT2-v1 and (6) TDT2-v2
are two sub-collections of TDT2. The characteristics of all these collections are
summarized in Table 1.

In the experiments, documents are represented using the Vector Space model
where index terms represent the lemmas of words appearing in the collec-
tion; Stop words were removed. The terms of each document were statistically
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Table 1. Characteristics of document collections

Collection Documents Topics Overlapping Terms

AFP 695 25 1.02 11785

Reu-Te 3587 100 1.30 15113

Reu-Tr 7780 115 1.24 21901

Reu-To 11367 120 1.26 27083

TDT2-v1 8603 176 1.17 51764

TDT2-v2 10258 174 1.19 53706

weighted using the logarithm of term’s frequency. The cosine measure was used
as similarity function.

For the experiments presented in this section, two measures commonly used to
evaluate overlapped clustering were selected: Fmeasure (Fme) [10] and Jaccard-
-index (Jindex) [11]. Both measures evaluate quality based on how much the
clustering resembles a set of classes manually labeled by experts; the higher the
value of each measure is the better the clustering is.

The experiments were focused on comparing, through Fmeasure and Jaccard-
index, the set of clusters obtained by Strong Compact (SComp), Star and Cstar
algorithms against the clusters built by ICSD algorithm; Although Cstar is a non
incremental algorithm, we decided to include it in this first experiment because
it obtained the best quality results for overlapped clustering in different works
[3,4]. Table 2 shows the best value of Fmeasure and Jaccard-index obtained by
each algorithm for β values in [0.15,0.75].

Table 2. Results for each document collection

AFP Reu-Te Reu-Tr

Measures SComp Star Cstar ICSD SComp Star Cstar ICSD SComp Star Cstar ICSD

Fme value 0.10 0.73 0.76 0.76 0.01 0.57 0.63 0.64 <0.01 0.56 0.56 0.57

β 0.15 0.25 0.25 0.25 0.15 0.25 0.25 0.25 0.15 0.20 0.25 0.25

Jindex value 0.05 0.57 0.61 0.61 0.01 0.40 0.46 0.47 <0.01 0.39 0.39 0.40

β 0.15 0.25 0.25 0.25 0.15 0.25 0.25 0.25 0.15 0.20 0.25 0.25

Reu-To TDT2-v1 TDT2-v2

Measures SComp Star Cstar ICSD SComp Star Cstar ICSD SComp Star Cstar ICSD

Fme value 0.01 0.57 0.58 0.59 0.01 0.39 0.44 0.45 0.01 0.44 0.52 0.52

β 0.15 0.20 0.25 0.25 0.15 0.30 0.30 0.30 0.15 0.30 0.30 0.30

Jindex value <0.01 0.40 0.41 0.41 0.01 0.24 0.28 0.29 <0.01 0.28 0.35 0.35

β 0.15 0.20 0.25 0.25 0.15 0.30 0.30 0.30 0.15 0.30 0.30 0.30

As it can be noticed from Table 2, ICSD algorithm outperforms all the other
algorithms in almost all cases.

Fig. 1 shows the results of a second experiment done in order to show the
time spent by ICSD, Star and SComp, to cluster the largest tested collection
(Reu-To) in an incremental way. In Fig. 1(A), curves ICSD, Star and SComp
represent the time spent by each algorithm to update the clusters each time 1000
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Fig. 1. (A) Behavior of incremental algorithm , B) total time for clustering the whole
dataset in an incremental way

Table 3. Comparison considering number and density of clusters

AFP Reu-Te Reu-Tr Reu-To TDT2-v1 TDT2-v2

Alg. Grp Dty Grp Dty Grp Dty Grp Dty Grp Dty Grp Dty

SComp 413 3.4 1981 3.5 4366 3.6 6437 3.5 4834 3.5 5587 3.5

Star 54 29.1 157 110.8 203 224.2 255 294.4 241 278.8 254 331.5

Cstar 41 68.0 101 523.9 132 1420.5 177 1980.7 168 3349.5 172 3864.6

ICSD 41 69.9 104 546.2 136 1452.0 178 2030.6 172 3401.4 175 3938.5

documents are added2 and curve CSD represents the time spent to cluster all
the prototypes from scratch. Fig. 1(B) shows the total time spent by ICSD, Star
and SComp to cluster incrementally the entire dataset; CSD was not included
in this figure to avoid scale problems.

As it can be observed, ICSD overcomes Star and SComp and also it scales
well in comparison with a non incremental clustering. A similar behavior was
observed in the other datasets.

Finally, as SComp is the algorithm which produces the large number of clus-
ters, we selected the β value (for building Gβ) for which SComp obtained the
smallest number of clusters and we compared the number and density of those
clusters with those obtained by Star, CStar and ICSD for the same β. Table 3
shows the aforementioned comparison; in this table, columns “Gpr” and “Dty”
represent the number of clusters and the density of those clusters respectively.

As it can be noticed from Table 3, ICSD outperforms Star and SComp in
all datasets getting a less number of clusters with a higher density and it also
obtains similar results than those obtained by Cstar.

2 We selected 1000 because it is a number neither big nor small considering the size
of Reu-To.



504 A.P. Suárez et al.

5 Conclusions

In this paper, a new algorithm called Incremental Clustering by Strength De-
cision (ICSD) has been proposed. ICSD algorithm builds a set of dense and
overlapped clusters applying a new heuristic for covering a thresholded similar-
ity graph which allows its application for incremental environments.

The heuristic introduced by ICSD algorithm processes only the clusters ac-
tually affected by additions, which makes ICSD to save time, making it able to
efficiently manage multiple insertions in incremental environments.

ICSD algorithm was compared against other graph-based algorithms on six
document collections. The experimental results show that our proposal outper-
forms those methods. Moreover, ICSD achieves better time performance than
previous incremental overlapped graph-based algorithms in incremental datasets.

As future work we will develop a version of ICSD that allows additions and
deletions, in order to increase its applicability in other environments.
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Multi-class Parts-Based Representations of U.S.

Marine Postures
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Abstract. This paper primarily investigates the possibility of using
multi-level learning of sparse parts-based representations of US Marine
postures in an outside and often crowded environment for training ex-
ercises. To do so, the paper discusses two approaches to learning parts-
based representations for each posture needed. The first approach uses
a two-level learning method which consists of simple clustering of inter-
est patches extracted from a set of training images for each posture, in
addition to learning the nonparametric spatial frequency distribution of
the clusters that represents one posture type. The second approach uses
a two-level learning method which involves convolving interest patches
with filters and in addition performing joint boosting on the spatial lo-
cations of the first level of learned parts in order to create a global set
of parts that the various postures share in representation. Experimental
results on video from actual US Marine training exercises are included.

1 Introduction

The ability to automate the evaluation of human performance in training exer-
cises using computer vision and behavior analysis is of recent interest in several
research fields. It is a complex goal, but a building block of this goal is to create
computer vision algorithms to detect the atomic events seen in training exercises.
This paper is a result of yielding the fundamental posture recognition computer
vision algorithms to support the automation of evaluating US Marines in their
training exercises.

The four fundamental postures of a US Marine in training are the four torso
orientations as illustrated in Figure 1. Significant posture changes are detected
in order to evaluate high-level behavior anlaysis of Marines in training[9]. To
recognize the four object types, or postures, this paper investigates the parts-
based object representations and the multiple levels of learning of the parts that
represent each posture in order to obtain robust representations of postures.

� The authors greatly appreciate and acknowledge the invaluable contribution by Noah
Lloyd-Edelman with the video dataset.

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 505–512, 2009.
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Fig. 1. Example training image from each object (US Marine posture) type

1.1 Related Work

This work is the first attempt to model multi-class human postures using parts-
based approach on uniformed soldiers in a cluttered environment. It is a chal-
lenging problem, and this paper investigates the possibility of using multi-level
learning of parts-based representation for multiclass body postures of uniformed
soldiers to overcome the challenges of representing such diverse possible appear-
ances of one posture class. This work is not the first attempt to represent objects
as parts-based representations. In [1], parts representation of faces are learned
using Multiple Cause Vector Quantization and Multiple Cause Factor Analysis,
which are similar to Principle Component Analysis and Non-negative Matrix
Factorization. In [3] and [4], a Bayesian approach to learning parts-based rep-
resentations of objects is presented. The most related to this presented work is
that of [2] and [5]. The second classifier presented is a variant of [2]. The first
classifier presented in this paper is a multi-class version similar in learning, but
different in classification to the pedestrian detector in [5].

2 Multi-level Learning and Classification of Parts-Based
Object Representations

In order to use represent postures, or more generally, object types, with sparse
representations, there must first be an attempt to learn the parts that make
up the representation. It is advantageous to learn parts progressively, requiring
multiple levels of learning. At each higher level of learning, the learning algo-
rithm is more sophisticated, and the part learned is more sophisticated in its
representation of the object type. For example, at the lowest level of learning,
unsupervised learning like clustering learns salient features, or parts, from un-
labeled parts data, that sparsely represents the object in common to the data.
However, learning parts at this level is not always enough. The more levels of
learning, the more sophisticated the parts-based representations are of the data.

The levels of learning may involve either purely one type of object or all types
of objects. In the former, parts-based representations are learned for the sole
purpose of object detection of that object type. There is no learning of parts
that are discriminant between other object types. The second type of higher
levels of learning which involve all object types, learn parts of object types that
discriminate between object types. In this case, object types may even share
parts in their individual parts-based representations. In this section, example
parts-based recognition classifiers from both approaches are presented.
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Fig. 2. Two approaches to multi-level learning of parts-based object representations

2.1 Approach 1 Example Parts-Based Object Recognition Classifier

One classifier presented in this paper is an example of a parts-based object
recognition classifier that learns its parts in two levels, where all levels learn using
data from one object type only. In other words, it is an instance of Approach 1
with L = 2 from Figure 2. This classifier is similar to [5] in the learning part,
but different in the classification process as soon described.

Level One Learning of Parts. Level one learning is entirely unsupervised
with respect to learning the parts that represent an object type. For this classifier
approach, the level one learning module as depicted in 3, inputs N1 gray-scale
training images of one object type 1, and outputs a dictionary, or set, of parts
representing that particular object type. This learning level involves three majors
steps. First, the Harris corner detector [8] is used to find the interest points
on the object type attempted to be learned. Secondly, the interest patch, or
window of size p x p extracted around each interest point, is collected from each
training image. Here, p is fixed to 9, a mid-range value of standard patch sizes.
Finally, a clustering algorithm, like the K−means clustering algorithm, is used
to cluster the extracted patches (from all training images of a posture type) into
K1 clusters, where K1 is the number of parts selected to comprise the dictionary
for object type 1. The dictionary of parts is simply the resulting cluster means.
In other words, if object part i is denoted as Pi, a p x p matrix; and the cluster i,
denoted as Ci, is the set of all interest patches that fell into the ith cluster, then
we have the following: Pi = 1

|Ci|
∑|Ci|

j=1 ipj , where ipj is the jth interest patch
that was clustered in cluster Ci and |Ci| is the cardinality of ith cluster.
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Fig. 3. Level 1 Learning of Parts

The distance metric used for clustering the image patches is the Normalized
Grayscale Cross- Correlation, NGCC. If ipj is the jth interest patch and Pi is
the ith part (cluster center), then the NGCC between the interest patch and the

cluster center is the following: NGCC(ipj , Pi) =
σ2

ipj,Pi

σipj
σPi

.

Where σ2
ipj ,Pi

is the covariance between the interest patch and the cluster cen-
ter, or equivalently, object part; and σipj and σPi are the respective standard
deviations of the interest patch and the object part.

This Level 1 learning module is extremely simple and fast as it is an unsuper-
vised learning approach to learning the dictionary of parts. However, the number
of parts chosen to represent an object type significantly affects the quality of the
dictionary of parts. Careful consideration and several trials went into the final
value of Ki = 260 parts for each object parts-based representation.

Level Two Learning of Parts. In the second level of learning, the object parts
P1, P2, . . .PKi learned for representing object type i increase by one more level
in sophistication of their meaning for representing the object type. For Approach
1, this is done by learning the nonparametric two-dimensional spatial frequency
distribution for each part for an object types’ parts-based representation.

The input of the level 2 learning module for the dictionary of parts for an
object type is the set of training images for this particular object type. The
output is the set of two-dimensional spatial frequency distribution estimators
for each dictionary part of that object type. Thus there are Ki distribution
estimators for the object type 1 dictionary of parts. As a result, each level 1
object part, P1, P2, . . .PKi has a nonparametric spatial distribution attached to
it, thus producing a level 2 set of parts to represent object type i.

Classification Using Approach 1 Parts-based Representation. Classifi-
cation of an object’s type is similar to Level 2 learning module. It attempts to
capture the level-2 parts that are in the test object and compare it with the
parts of each object type learned a priori.

First, an interest point detector is applied to find the interest points. Second,
patches of size p x p are extracted, called interest patches. Third, the NGCC
distance is computed between each interest patch and each object part of each
object type. Only those interest patches which yield an NGCC above a threshold
pass to the next step. The next step is to see (1) which object type received
the most matches with its parts and the interest patches, (2) which object type
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received matches whose interest patches had similar spatial distributions to those
of the object parts, and (3) which object type received the highest distance. The
object type which satisfies all three criteria is chosen.

2.2 Approach 2 Example Parts-Based Object Recognition Classifier

In this section, a parts-based classifier is presented that takes on the style of
Approach 2 of multi-level learning of parts-based object representations. In the
second approach to multi-level learning of parts-based representations, the high-
est level of learning, which is again L = 2, involves all possible object types in
order to choose parts that better discriminate between object type, as portrayed
in Figure 2. This approach is similar to that of [2] except that in our approach
a multi-scale-class grouping algorithm was adopted to improve the recognition
accuracy.

Level One Learning of Parts. As depicted in Figure 4, the level 1 learning
module takes as input training images of a particular object type and outputs
a set of level-1 parts that describe that object type. This approach is also un-
supervised in the way that it does not have labeled parts already to work with.
It discovers the parts itself. However, it does not use clustering to yield the
level-1 parts, as in the example for Approach 1. This level 1 module happens to
use convolution with several types of filters to create more than one represen-
tation for each interest patch extracted from an object in the training image.
More specifically, it applie8s 2D convolution with four filters: a delta function,
x and y derivatives and a Gaussian, see Figure 5 and the following equation:
vi(x, y) = [(I ∗ fi) ⊗ Pi] ∗ lTx ly, where ∗ is the convolution operator, ⊗ is the
normalized cross correlation operator, vi(x, y) is the feature vector entry i, f is
a filter, P is a patch, and lx and ly are the x, y location vectors with respect to
the center of the image respectively. The battery of filters f used are depicted in
Figure 5. The patches’ sizes are selected randomly between 9x9 to 25x25 since
it showed better results than using a fixed patch sizes. The location informa-
tion for the interest patch is recorded as well as the four responses, or level one
parts, from the filtering. Location is stored in two Gaussian 1D vectors, where
each has an offset equal to the x and y distances, respectively. This distance is
computed in a constant time. Note, each level-1 part, Pi, has one location and
four responses associated to it.

Fig. 4. Level 1 Learning of Parts
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Fig. 5. A delta function, x and y derivatives and a Gaussian

Level Two Learning of Parts. In the second level of learning parts, the
learning module takes as input the set of level 1 parts learned from each object
type and outputs a new set of level 2 parts for each object type that attempted
to maximize inter-class similarities. A joint boosting algorithm is used for multi-
class detection and classification, see [2]. This is based on a boosting algorithm
where weak learners are sequentially added to form a strong classifier. For each
class, a strong learner H(Pi, c) is computed. Where Pi is the level 1 part and
c is the object type/class. Each round of boosting, a search is conducted on all
the components, f of the level 1 part Pi, for each component, search over all the
discrete values of possible thresholds Θ and for each couple f , Θ, find the optimal
regression parameters aS and bS. Finally, select f , Θ, aS , bS that minimizes a
cost function. Note, that this level of learning, unlike the previous approach,
spans all possible object types/classes in order to choose shared features/parts
that attempt to optimize overall object type recognition accuracy.

3 Experimental Results

There were four experiments conducted on a restricted access video sequence of
169 frames called “MOV007 seq1” which used a pan-tilt-zoom camera to record
a dynamic field of view including three patrolling Marines that interact closely
in distance with each other. Results from one particular video frame is shown
in Figure 6. This sequence is part of a collection of clips showing US Marine’s
outside training exercises as part of a project on behavioral analysis [9]. A dataset
including annotated still images from multiple marines poses was used to train
the classifiers.

First, the Approach 1 multi-level learned parts-based classifier currently ex-
ecutes in a single scale, so there needs to be a standard person detector first.
Thus, the first scenario/experiment is that of running the Felzenszwalb person
detector [7] first. Then, the resulting bounding box of the detected person is
resampled to a standard size which then inputs to the Approach 1 type posture
classifier, which attempts to match the parts of the detected person to the set
of parts of each posture learned. As described earlier, the most likely posture

Fig. 6. A video frame with annotated detections/postures
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Fig. 7. Temporal analysis and classifier accuracy of all four experiments (GT=ground
truth, then Exp. 4, Third row is Exp 3, and fourth row is Exp. 2. Colors: or- 0deg;b-
90deg; gr-180deg;r-270deg;blnk-not detected/confused).

is outputted. Note, the detection time is 6-7 sec. The Approach 1 recognition
takes 5-6 seconds. The second experiment is similar to the first, except instead
of executing the Approach 1 classifier, the Approach 2 classifier, single scale is
executed. The detection time is 7-8 seconds and recognition time is 1-2 seconds.
The third experiment is similar to the first two, however the Approach 2 exam-
ple classifier is executed at multi-scale. The detection time in this case is 6 -7
seconds, while the recognition time is 6- 7 sec. Finally, the fourth experiment,
the Approach 2 classifier stands on its own and performs both detection and
multi-scale posture recognition. This takes 272- 273 seconds.

Figure 7 displays a temporal analysis of the accuracy of the experiments.
Going through the video frames, comparing the actual ground truth with the
results produced very useful inferences regarding multi-level learning of parts-
based recognitions: (1) Since the multi-level learned parts-based classifier using
the single-scale Approach 2 learning layout, outperforms the Approach 1 multi-
level learned parts-based classifier, it is better it to learn multi-level learned
parts which are produced progressively and simultaneously for all object parts
in a manner to select and share level 2 parts which discriminates between object
types’ parts; (2) The multi-scale version of the Approach 2 classifier outperforms
the single-scale version of the Approach 2 classifier, inferring that resizing the
detected persons reduces recognition accuracy.

Finally, for a large period of the video sequence, Marine 2 and Marine 3 are
overlapping, so Marine 2 was not detected often because the detector creates only
one large detected bounding box for both Marines. Also, when a Marine walking
torso 0 degrees has his head turned sideways, the posture recognition classifier
gets confused. Finally, Marine 2 was walking 180 degrees (away from camera)
most of the time; however Approach 1 classifier classified him mostly as walking
0 degrees (toward camera). (3) From these latter statements, one can infer that
with the addition of a head detector and head orientation classifier, the latter
three problems would be mitigated. The head detector and head orientation
recognition can be thought of as a third level in learning parts for postures,
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since it is more sophisticated part than the level 1, and level 2 parts proposed
in this paper. In conclusion, future work entails the addition of a head detector
with head orientation, a level 3 learned part, to the Approach 2 of parts-based
representation of US Marine postures.
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Abstract. The classification of unknown samples is among the most common 
problems found in chemometrics. For this purpose, a proper representation of 
the data is very important. Nowadays, chemical spectral data are analyzed as 
vectors of discretized data where the variables have not connection, and other 
aspects of their functional nature e.g. shape differences (structural), are also ig-
nored. In this paper, we study some advanced representations for chemical 
spectral datasets, and for that we make a comparison of the classification results 
of 4 datasets by using their traditional representation and two other: Functional 
Data Analysis and Dissimilarity Representation. These approaches allow taking 
into account the information that is missing in the traditional representation, 
thus better classification results can be achieved. Some suggestions are made 
about the more suitable dissimilarity measures to use for chemical spectral data. 

Keywords: Pattern Recognition, Chemometrics, Classification, Spectral Data, 
Dissimilarity Representation, Functional Data Analysis. 

1   Introduction 

One of the main problems that can be found in any research area is related to the clas-
sification of unknown objects. A good representation of the data is one of the most 
important aspects to be considered in this process. The more information about the 
real data is described in its representation, the higher the probability of a good classi-
fication of the samples. 

Although chemical spectral data are typically curves plotted as functions of wave-
lengths, product concentration, etc., they are traditionally represented as a sequence of 
individual observations (features) made on the objects, ignoring important aspects of 
their functional nature i.e. connectivity, shape changes, etc. 

Functional Data Analysis (FDA) [1] and Dissimilarity Representation (DR) [2] are 
rather new approaches that, in their own way, can take the functional information into 
the data representation. FDA is an extension of the traditional multivariate analysis 
for data with a functional nature, and is based on considering the observed spectra as 
a continuous real-valued function instead of an array of individual observations. Sev-
eral classical multivariate statistical methods been extended to work on it e.g. linear 
discriminant analysis (LDA) [3]. In the case of linear modeling, studies have also 
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been made in regression [4]. A number of estimation methods for functional non-
parametric classification and regression models have been introduced. Namely,  
k-Nearest Neighbor classifier (k-NN) [5], kernel classifiers e.g. Support Vector Ma-
chine (SVM) based on the Radial Basis Function (RBF) methods [6], [7], showing its 
application for chemical spectral data.  

Although profound studies of the DR on chemical spectral data sets have not been 
done, there are already some results on spectral data in general [8], demonstrating its 
advantages for its classification. In this approach, based on the important role that 
proximities play in the classification process, the authors propose to work on a space 
defined by the dissimilarities between the objects [2]. This way, the geometry and the 
structure of a class are defined by the dissimilarity measure, by which we can take 
into account the information that can help to discriminate between objects of the dif-
ferent classes. So, the selection of a suitable measure for the particular problem is 
important. The DR has shown to be advantageous in problems where the number of 
objects is small, and also when they are represented in high dimensionality spaces, 
which are both common characteristics of chemical spectral data sets.  

On the chemometrics side, some work has been done in the comparison of  
chemical spectral data. In [9], the authors are looking for similarity measures for in-
frared (IR) spectrometry. A more recent research [10] is about the comparison of 
drugs UltraViolet (UV) spectra by clustering, where they also try different dissimilar-
ity measures.  

The goal of this paper is to show, how the classification results can improve by us-
ing representations of the data that give more information about the real spectra than 
the feature representation. With this purpose, we make a comparison of the perform-
ance of 1-NN, Regularized LDA (RLDA), Soft Independent Modeling of Class  
Analogy (SIMCA) [11] and SVM classifiers on the three mentioned representations: 
feature, FDA and DR of four chemical spectral datasets. We also make a study of 
some dissimilarity measures that have already been used on these types of data, in 
order to propose which could be more suitable to take into account the main differ-
ences that can exist in spectral data sets: structure (shape) and/or concentration or 
intensity. 

2   Functional Data Analysis 

Functional Data Analysis (FDA) [1] was proposed as a way to retrieve the intrinsic 
characteristics of the underlying function from the discrete functional data. In this 
approach, the observations can be seen as continuous single entities, instead of sets of 
different variables. However, if the algorithms work on the functional spaces, their 
infinite dimensions can lead to theoretical and practical difficulties. To deal with the 
infinite dimensional problem, a filtering approach was constructed to reach a repre-
sentation of a finite dimensionality.  

For this approach, we have to select a proper family of basis functions to match the 
underlying function (s) to be estimated. In the case of spectral data, the basis of B-
splines seems to be the most appropriate. A number of knots (points) between the start 
and end wavelengths has to be chosen, and a B-spline is run from one knot to another; 

the different splines overlap. The spectral function ( )i ix x λ=
 
for sample i  and 
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wavelengths λ  , can be described by the linear combination of the basis functions 

1

K

i ik k
k

x c φ
=

= ∑ , where 
1{ }K

k kφ =  is the basis of B-splines with K the number of basis func-

tions, and
 ikc  the B-spline weights (coefficients). These are computed by minimizing 

the vertical distance between the observed spectral information and the fitted curve: 
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j kikc

x c φ λ
= =

−∑ ∑ , 

where ijx  is an element of the matrix conformed by a set of i  spectra of j wave-

lengths. The function will be explained by the coefficients and the methods will take 
these as the new representation of the data instead of the original data points. 

3   Dissimilarity Representation 

The Dissimilarity Representation (DR) [2] proposes to work on the space of the prox-
imities between the objects, instead of the space defined by their characteristics (fea-
tures), as it is usually done. 

In the new representation, instead of having a matrix X( )m n× , where m  goes for 

the objects (spectrum) and n  for the measured variables e.g. wavelengths, the set of 

objects will be represented by the matrix ( )D m q× . This matrix contains the dissimi-

larity values between each object Xx ∈ and the objects of the representation set 

1 2R( , , ..., )qp p p , ( , )m qd x p . The elements of  R  are called prototypes, and have 

preferably to be selected by some prototype selection method [12]. These prototypes 
are usually the most representative objects of each class (R X)⊆ , but the whole set 

of objects X  can be used too, obtaining the square dissimilarity matrix, ( )D m m× ; 
R can also be a completely different set of objects.  

For the DR three main approaches exist. In the first, the given dissimilarities are 
addressed directly e.g. k-NN. Another one is based on an approximate embedding of 
the dissimilarities into a pseudo-Euclidean space. The third and last one is defined as 

the dissimilarity space n⊆\ D , which is the one to be used here.  This space is 
generated by the column vectors of the dissimilarity matrix, where each dimension 

corresponds to the dissimilarity value between the objects and a prototype ( , )qd p⋅ . 

As the dissimilarities are computed to the representation set, already a dimension-
ality reduction is reached and therefore it can be less computationally expensive for 
the classification process.  Furthermore, any traditional classifier that operates on 
feature spaces can also be used in the dissimilarity space. 

3.1   Dissimilarity Measures 

A general dissimilarity measure for all types of data does not exist. For each problem 
at hand, a dissimilarity measure adapted to the type of data should be selected.  In the 
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case of spectral data, the connectivity i.e. continuity, ordering between the measured 
points, may be taken into account. In this work, we present some initial studies on 
dissimilarity measures for the dissimilarity representation of chemical spectral data, 
based on: their structures (shape changes) and/or concentration or intensity changes.  

For this purpose, we studied dissimilarity measures that are more commonly used 
in the comparison of chemical spectral data (see Section 1). Such is the case of the 
very well known Manhattan (L1-norm) and Euclidean distances. 

In [13], the Spectral Angle Mapper (SAM) measure (Eq. 1) was proposed for spec-

tral data. If we have samples (spectra) 
n

1 2,x x ∈\ , the SAM dissimilarity is com-

puted as follows: 

2 2

1 2 1 2 1 2
1 1 1

( , ) ar cos
n n

j j j j
j j j

n
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    (2) 

The dissimilarity measure in Eq. 2 is based on the Pearson Correlation Coefficient 
(PCC), and measures the angle between two vectors, like the SAM measure. The PCC 
can be also seen as the cosine of the angle between two mean-centered samples. Al-
though the previous dissimilarities are of the most used measures in the comparisons 
of chemical spectral data, the connectivity between the n  measured variables is not 
taken into account in neither of them. The variables could be easily reordered and the 
same dissimilarity value is obtained. 

The Kolmogorov-Smirnov distance (KS) (Eq. 3) is a dissimilarity measure be-
tween two probability distributions:  

( )1 2 1 2
ˆ ˆ( , ) max j j

j
d x x x xks = − . 

 
(3) 

1̂ jx  and  2ˆ jx  are the cumulative distribution functions of the object vectors. Spectra 

need to be normalized to unit area, thus the areas under the original distribution of the 
data can be compared and their shape reflected. 

In [8], the authors propose to compute the Manhattan measure on the first Gaus-
sian derivatives (Eq. 4) of the curves (Shape measure), to take into account the shape 
information that can be obtained from the derivatives: 

1 2 1 2
1

( , )
n

j j
j

shaped x x x xσ σ

=
= −∑      with    ( ),

d
x G j x

dj

σ σ= ∗ . 

 
(4) 

where ∗  denotes convolution and σ stands for a smoothing parameter.  
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4   Experimental Section and Discussion 

To evaluate the performance of different classifiers, a comparative study will be made 
with the three different representations of the data and four classifiers: 1-NN, RLDA, 
SIMCA and SVM. All the experiments were performed in Matlab. For FDA the 
FDAFuns toolbox was used, and the PRTools toolbox for the DR and classification of 
the data. For FDA, each spectrum was represented by an l  order B-spline approxima-
tion, with K  basis functions. The optimal values for the number of B-spline coeffi-
cients and the degree of the spline was chosen using leave-one-out cross validation. 
For the DR, all the samples were used as representation set.  

The comparison among the models was made by the averaged error of a 10 times 
10-fold cross-validation (CV), on the three representations: feature, functional (FDA), 
and the DR for the different dissimilarity measures presented in Section 2. For the 
SVM classifier, after trying with different kernels, the best results were achieved with 
the Gaussian kernel for Tecator dataset and the linear kernel for the rest. The regulari-
zation parameter C was optimized, as well as the number of principal components in 
SIMCA. To find the regularization parameters of RLDA an automatic regularization 
process was done. The details of all datasets are related in Table 1.  

The first data set (Fig. 1a) is composed by near infrared (NIR) transmittance spec-
tra of pharmaceutical tablets [14] of four different (classes) dosages of nominal con-
tent of active substance. In this data, the spectra of the samples of the different classes 

 

 
 

(a) 
 

 
(b)  

 

 
 

(c) 
 

 (d) 

Fig. 1. Spectrum of one sample from each of the classes of each datasets: a) Tablet, b) Tecator, 
c) Oil and d) Fuel 
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are very similar, they variate in the intensity of only one peak at 8830 cm−1. This peak 
corresponds to the only visually characteristic band of the active substance. Multipli-
cative scatter correction (MSC) was used as preprocessing method.  

The second, named Tecator [15] (Fig. 1b), consists of NIR absorbance spectra of 
meat samples. In this data, the samples of the two classes differ in their fat content 
which is reflected in changes in the shape of the spectra (structure). Standard Normal 
Variate (SNV) was used as preprocessing method. The second derivative of the spec-
tra is computed on the functional representation. 

The third dataset consists of oil samples of different origins, analyzed by Mid-
Infrared (MIR) technique [16] and was transformed to have zero mean and unit  
variance. The variations in the spectra of the classes are based in the difference in 
concentration of some substances and some shape changes also exist. 

And the last dataset consists of fuel samples of Fourier Transform Infrared (FT-IR) 
transmittance spectra; base line correction and smoothing were performed on the data. 
The samples of these classes differ in the substances by which they are composed 
(structure), and therefore they differ in shape. 

Table 1.  Details about the # samples, features and samples per class of each dataset. The last 
column is related to the # basis functions used for the FDA of each dataset. 

DataSet #Samples 
 

#Features # Samples per Class #Basis 
Functions 

Tablets 310 404 
(7400 to 10500 cm−1) 

Types: A (5mg), B (10mg), C(15mg) and 
D(20mg) 

100 

Tecator 215 100 
(850-1050 nm) 

Fat content: Low (77) , High (138) 48 

Oils 80 571 
(600-4000 cm-1) 

Origin: A (18), BB (8), BC (29) and D (25) 100 

Fuels 80 3528 
(600-4000 cm-1) 

Type: Regular Gasoline (16), Especial Gaso-
line (15), Regular Diesel (16), Naphtha(16), 

Turbo Diesel(8) and Kerosene(9) 

300 

 
As can be seen in Table 2, in general for the four datasets, the SVM shows good re-

sults on all the representations, outperforming the rest of the classifiers. These could be 
due to these datasets are mostly non-linear. The exception is Tablets, where RLDA 
seems to outperform the other classifiers for its feature and functional representation, 
but in the DR, SVM again shows superiority. The experiments show that, most of the 
time, for most classifiers, their accuracy improves when using the DR and functional 
representation of these datasets. This demonstrates the importance of a good and de-
scriptive representation of the data. In the case of DR, the results depend on whether a 
suitable dissimilarity measure is used to explain the discriminative characteristics of the 
curve, in order to obtain a better and more reliable classification of the data. It is worth 
to notice that, for both representations, the dimensionality of the datasets are reduced to 
half (or more) of the dimensionality of the feature representation. From the comparison 
of the different dissimilarity measures used, we can observe that very good results are 
achieved with the Shape dissimilarity, in which connectivity and shape information are 
considered. This proves the fact outlined in the previous paragraph, and suggests that 
this dissimilarity measure could be a good option for our purpose.  
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If we compare the results with the functional representation (FDA) and the DR of 
the data, they show that both approaches are good when the shape variations between 
the samples of different classes are appreciable. But it can be observed that, the DR 
gives the best results for most datasets (with the Shape measure). It shows the capabil-
ity of the Shape measure, which performs well not only in datasets where the  
differences are based in changes in the curvature of the spectra, but also when concen-
tration or intensity changes are present. On the other hand, in datasets like Tablet, 
where the functional information to be extracted is very poor, the FDA does not work 
very well. This lack of information in the functional data, can also be due to some of 
the information could have been lost by using only the coefficients resulting from the 
projection of the function in the B-spline basis. 

Table 2. Averaged CV error with its standard deviation (%). The results are shown for the four 
classifiers on the feature, functional, and DR of each dataset for the six dissimilarity measures 
presented. The numbers highlited in bold and underlined, stand for the lowest error among all 
the representations for each classifier. In the case of the dissimilarities, the one that performs 
best in general for each dataset is also highlited in italic.  

Data Sets Feature FDA Dm De Dsam Dpcc Dks Dshape 

Tablets 

1-NN 12,9(0,18) 9(0,15) 48,2(0,03) 13(0,02) 25,1(0,01) 13(0,02) 14,5(0,01) 15,7(0,06) 
RLDA 9,9(0,06) 10,6(0,09) 6,8(0,02) 11(0,1 e-17) 15,8(0,01) 8,4(0,03) 30,3(0) 5,1(0,1 e-17)
SIMCA 25,7(0,16) 23,3(0,27) 17,2(0,02) 16(0,03) 20,2(0,06) 35,4(0,03) 26,5(0,02) 10,7(0,03)

SVM 13,6(0,03) 16(0,09) 5,1(0,01) 5,3(0,03) 6,8(0,1 e-17) 14,8(0,02) 14,1(0,02) 5,1(0,01)

Tecator 

1-NN 3(0,17) 2,2(0,17) 5,3(0,14) 5,3(0,19) 1,9(0,04) 11,2(0,04) 11,1(0,04) 3,3(0,04) 
RLDA 4,7(0,02) 3,5(0,2 e-17) 4,7(0,09) 4,7(0,09) 1,4(0,19) 3,8(0) 15,6(0,19) 1,4(0,04) 
SIMCA 2,5(0,12) 2(0,2) 9,4(0,09) 9,8(0,4 e-17) 2,4(0,9 e-17) 16,8(0,9) 15,3(0,9) 3,2(0,04) 

SVM 1,9(0) 1(0) 1(0,04) 2,8(0,2 e-17) 1(0,2 e-17) 1,9(0,04) 4,7(0,2) 1,4(0,1 e-17)

Oils 

1-NN 13,8(0,32) 7,5(0,19) 11,1(0,51) 13,1(0,47) 7,4(0,44) 13,1(0,47) 17,4(0,29) 9,4(0,47) 
RLDA 22,4(0,13) 20(0,4 e-17) 22,8(0,25) 21,4(0,12) 22,6(0,13) 23,6(0,12) 19(0,25) 18,6(0)
SIMCA 7,9(0,56) 6,6(0,62) 16,3(0,81) 15,6(0,43) 17,9(0,42) 17(0,46) 19,2(0,62) 14(0,36) 

SVM 6,3(0) 2,5(0) 13,8(0,2) 15,9(0,37) 8,9(0,13) 8,8(0,4) 19,8(0,12) 6,3(0) 

Fuel 

1-NN 35,1(2,08) 17,7(1,71) 9,5(0,62) 33,3(0,75) 20,1(0,54) 14(0,52) 30,2(0,58) 8,6(0,42)
RLDA 22,5(0) 21(0,79) 15,1(0,54) 39,8(1,16) 15,5(0,86) 19,6(0,42) 43,1(1,02) 16,9(0,75)
SIMCA 30,4(3,73) 12,4(1,61) 12(0,38) 40,5(0,82) 20,4(0,65) 20(0,91) 57,5(0,49) 11,9(0,43)

SVM 10(0,04) 7,5(0,4 e-17) 8,6(0,12) 25,3(0,25) 13(0,50) 16(0,25) 35,1(0,13) 5,5(0,50)
 

 
In the case of Tecator dataset, good results are achieved either with the FDA repre-

sentation or the DR (for the different classifiers); there is barely a difference between 
the errors committed for some classifiers when operating on them (looking also at the 
standard deviation error). Nevertheless, FDA performed better in general. It can be 
explained by the fact that, from the functional point of view, a lot of information can 
be obtained when shape changes are present in the curve. So the FDA by B-splines is 
capable of using this information and the use of the second derivatives afterwards 
emphasizes the peaks in the curve, making easier to see the differences. In the Fuel 
dataset, a similar result could be expected if the same procedure is carried.  

However, in spite of the good performance of the DR for most cases, this is not the 
case for Oil dataset. This suggests that, although the dissimilarity measures have shown 
their ability to discriminate between spectra that are very similar (see Tablet dataset in 
Fig. 1a); they might not be robust enough for cases like this, where the shape varies so 
abruptly and so frequently in the spectrum. Still, the results could be improved if the DR 
is computed on the FDA representation. Further researches most be done on this aspect. 
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5   Conclusions 

We presented two alternative ways to improve the representation of chemical spectral 
data. The first makes use of the spectral connectivity by approximating the spectra by 
spline functions (FDA). The second makes use of the physical knowledge of the spec-
tral background of the data by modeling their relations in a dissimilarity representa-
tion. Comparisons were made by classifying four chemical spectral datasets,  
expressed by their feature and the two other representations. It was shown that, with 
the studied representations, improved classification results can be obtained. But it 
shows that the use of either of them will depend on the characteristics of the data. We 
can also conclude that, for the comparison of spectral chemical data by their dissimi-
larities, the better results are obtained with measures that take the connectivity be-
tween the points, and shape information into account.  
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Abstract. This paper presents a framework to analyse visual patterns
in a collection of medical images in a two stage procedure. First, a set of
representative visual patterns from the image collection is obtained by
constructing a visual-word dictionary under a bag-of-features approach.
Second, an analysis of the relationships between visual patterns and
semantic concepts in the image collection is performed. The most im-
portant visual patterns for each semantic concept are identified using
correlation analysis. A matrix visualization of the structure and organi-
zation of the image collection is generated using a cluster analysis. The
experimental evaluation was conducted on a histopathology image col-
lection and results showed clear relationships between visual patterns
and semantic concepts, that in addition, are of easy interpretation and
understanding.

1 Introduction

Medical research centers and medical schools today are facing the problem of
analyzing huge volumes of images from ongoing studies and the normal clinical
operation [7]. The amount of available visual information in medicine constantly
grows and discovering visual patterns in a large collection of images is a challeng-
ing task. Currently, academic image collections for classroom study or advanced
research in medicine are managed by an expert who carefully organize images
according to domain knowledge criteria. However, these collections have no more
than a few hundred images, since the capacity of human beings to deal with large
data collections is limited. Computers are an important asset to support tasks
such as the analysis of image structure [5] and the identification of common and
distinctive visual patterns in large image collections[6].

A large collection of medical images may be organized according to several
categories that describe anatomical or pathological properties, using metadata
from a hospital information system or records from a medical research survey.
So, given such a collection, the main goal is the characterization of those vi-
sual properties that are common to a set of semantically related images. In the
context of this paper, this problem is denoted visual pattern analysis on an im-
age collection. The identification of visual patterns on a collection of medical
images may lead to a better understanding of biological structures and also to
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design computer aided diagnosis tools or educational applications to train new
physicians [4]. Two main questions arise when dealing with the visual pattern
analysis task: how does the system detect or identify patterns that compose im-
age structures in the collection?, and how do those visual patterns relate with
pathological concepts?.

In this paper we propose a framework to answer these two questions. First, to
identify visual patterns inside an image collection, the use of a bag-of-features
representation is proposed, in which a dictionary or codebook is defined by group-
ing features extracted from all individual images. This dictionary constitutes a
representative set of the visual patterns in the image collection, that can be vi-
sually understood and interpreted by domain experts, a task that is not always
possible using other variety of image representations. Second, the relationships
between visual patterns and semantic concepts is analysed applying two comple-
mentary strategies: a correlation analysis and a cluster analysis. The correlation
analysis allows to identify a set of visual patterns that are frequently associated
with particular concepts, while the cluster analysis allows to visualize the dis-
tribution of patterns for similar images and the image collection structure. This
framework has been applied to a collection of histopathology images showing
how both, the feature dictionary and the subsequent analysis, are revealing the
visual and semantic structure of the collection.

The bag-of-features representation has been successfully applied for classi-
fication of natural scenes [2] and medical images [6], but its applicability on
histopathology images has been largely unexplored [1]. This paper also aims to
evaluate the suitability of this approach for histopathology images under the
proposed framework. The structure of this paper is as follows: Section 2 presents
details of the bag-of-features approach. Section 3 discusses the identification of
semantic relationships using correlation analysis and cluster analysis. Section
4 presents the experimental results on a histopathology image collection and
finally Section 5 presents the conclusions and future work.

2 The Bag-of-Features Representation

The bag-of-features representation is an adaptation of the bag-of-words scheme
used for text categorization and text retrieval. The key idea is the construction of
a codebook, that is, a visual vocabulary, in which the most representative patterns
are codified as codewords or visual words. Then, the image representation is
generated through a simple frequency analysis of each codeword inside the image.
This representation has been successfully applied in different image classification
tasks. There are three main steps to build a bag-of-features representation [2]: (i)
feature detection and description; (ii) codebook generation; and, finally; (iii) the
bag-of-features construction. Figure 1 shows an overview of those steps. The bag-
of-features approach is a novel and simple method to represent image contents
using collection dependent patterns.

In this work the following strategy has been used to generate the bag of fea-
tures representation for histopathology images: for feature detection, raw blocks
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Fig. 1. Overview of the Bag of Features representation

are extracted from a regular grid on each image using 8 × 8 pixels per block.
Each block is represented by the array of 64 gray level values which is used as
feature vector. For codebook generation, the k-means algorithm is applied over
the whole set of blocks. The size of the codebook, k, is an important parameter.
It is expected that a moderately codebook size, in the order of hundreds, wold
be enough to capture the most important patterns in the collection [1]. For the
experimentation carried on in the present work, k = 50 was used based on previ-
ous findings in the same image collection [1]. Finally, the bag of features for each
image is generated by counting the occurrence of visual words in the codebook.

3 Visual Pattern Analysis

The bag-of-features codebook constitutes a summary of the visual patterns
present in the histopathology image collection. The hypothesis is that some of
these visual patterns are related to histopathology concepts. In order to corrob-
orate it, two strategies are applied, a correlation analysis and a cluster analysis.

3.1 Correlation Analysis

The goal of the correlation analysis is to measure the strength of the relation-
ship between a particular visual pattern from the dictionary and a semantic
concept. Images in the collection are known to be in one or several predefined
categories or semantic classes. Then, we assume two random variables to anal-
yse the correlation between them: semantic concepts and visual patterns. For
semantic concepts the random variable is binary and indicates the presence or
absence of the concept in the image. For visual words, the random variable is
assumed continuous and corresponds to the relative frequency of the visual word
in the image.

Following these assumptions, we can evaluate the correlation of visual patterns
and semantic concepts. When a particular concept and a visual pattern are
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constantly exhibited in an image set, it is expected that the correlation between
them has a positive value. On the other hand, if the visual pattern is not usually
in those images that exhibit the concept, then a negative correlation is expected.
Hence, the correlation analysis is useful to identify the set of most representative
visual patterns associated to semantic concepts.

3.2 Clustering Analysis

A natural basis for organizing visual patterns is to group together those that share
similar occurrence in images. The purpose of this cluster analysis is to generate a
reordering of visual patterns to analyse the relationships with semantic concepts.
Due to the large amount of images in a collection and also to a potential large
dictionary of visual patterns, it is difficult to assimilate underlying relationships.
Therefore, we follow a visual representation that is usually applied in bioinfor-
matics to visualize and explore gene expression data in an intuitive manner for
biologists [3]. We combine clustering methods with a graphical representation of
the visual patterns in images by representing each occurrence value using a color
in a matrix, as it is shown in Figure 4. A blue color indicates a low frequency of
visual patterns in images, while a red color indicates a high frequency of the pat-
tern. Other ranges of blue and yellow indicate intermediate frequencies. Each row
in the matrix represents an image and each column represents a visual pattern.

We use agglomerative hierarchical clustering, with average linkage, to organize
both, rows and columns in the matrix and the corresponding dendrogram is also
drawn alongside the matrix representation. The distance measure applied in this
work is Euclidean distance among bag-of-features representations (rows) and the
occurrence of visual patterns in all images (columns). This analysis is expected
to organize rows such that images in each group share a semantic concept. It
highly depends on the bag-of-features representation, so that we can evaluate
how good this representation is for semantic image contents. In addition, the
column organization is expected to reveal the set of visual patterns that are
related to particular semantic concepts.

4 Results

The image dataset used in this work is a set of histopathology images used
to diagnose a special skin cancer known as basal cell carcinoma. This dataset
has been used in previous studies for automatic image annotation and retrieval
[1]. A subset of this collection has been selected to analyse the structure of 4
histopathology concepts (cystic change, lesion with fibrosis, morpheaform pat-
tern and pilosebaceous annexa). This subset of images sums up to 348 images
processed for this study (67, 90, 37 and 154 for each concept class respectively).

4.1 Correlation Analysis

The correlation analysis shows that some visual words are more relevant to iden-
tify some particular concepts than others. Figure 2 shows how the four concepts
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Fig. 2. Correlation coefficient measures between high-level concepts and visual words.
Visual words in horizontal axis are sorted by frequency of occurrence from left to right
in descending order.

Table 1. Ten visual words with highest correlation value for each concept

Concept 1 2 3 4 5 6 7 8 9 10

Cystic change

Pilosebaceous annexa

Lesion with fibrosis

Morpheaform pattern

Fig. 3. Spatial location of visual patterns in an image in the category lesion with
fibrosis. a) highlighted blocks are the ten most correlated visual patterns for the cystic
change concept. b) highlighted blocks are the ten most correlated visual patterns for
lesion with fibrosis.
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are correlated with each visual pattern. Note that cystic change is highly cor-
related with a set of visual patterns that other concepts are not. It can also be
observed for lesion with fibrosis. For all concepts it is possible to identify a set of
highly correlated visual patterns, since the plot in general shows that patterns
with high correlation with a concept present low correlation with others.

Table 1 shows top the ten visual words with highest correlation for each con-
cept. The correlation analysis assigns to each concept a set of visual words.
Cystic change, for example, is more correlated with dark elements and parts of
big circular patterns, which is consistent with a notion of large and dense cells
and nuclei. On the other hand, Lesion with fibrosis shows small gray points over
a bright background.

Figure 3 shows the spatial location of visual patterns on an image of the
category lesion with fibrosis. Relevant visual word are shown as blocks with a
lighter color. Subfigure 3.a) highlights the top-ten visual patterns from the cystic
change category, showing a low presence of those patterns. On the other hand
Subfigure 3.b) highlights the top-ten visual patterns of the lesion with fibrosis
category, which are clearly more frequent in the image.

4.2 Cluster Analysis

Cluster analysis allows to distinguish groups of related visual patterns and a
general organization of images and concepts in the collection under the bag-of-
features representation. It is achieved using a graphical representation of the
data, indicating occurrence values in a colored matrix. Colors range from dark
blue, indicating a very low frequency, to red, indicating high frequency values. To
plot this matrix, the 6 most frequent visual words were ignored since they usually
correspond to background and do not have discriminative power. Figure 4 shows
the obtained matrix for all images in the analysed collection, with visual patterns
from the codebook organized in columns, and images organized in rows. The
clustering algorithm reordered rows and columns according to their similarity.

This matrix shows group of images related to groups of visual patterns. For
instance, in Figure 4 a red box and a black box in the upper-left corner of the
matrix shows two different groups of images with a high frequency of several
visual patterns. In the vertical dendrogram these groups are colored with green
and blue respectively and all of the images in them present the cystic change
concept. The left side of the figure shows the images and the visual words as-
sociated with those regions of the cluster matrix. The orange box, in the same
figure, shows how other images in the red portion of the vertical cluster present
a high frequency for other visual words. In this group, there are images with
other concepts, mainly pilocebaceus annexa and lesion with fibrosis.

The cluster analysis shows that it is possible to find visual patterns that can
be associated with semantic concepts. The visual representation makes it easier
the task of finding those visual patterns. In this particular example, the class of
images tagged with the cystic change concept are clearly differentiated from the
other classes by a characteristic set of low-level visual patterns associated with
large cells and nuclei.
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Fig. 4. Cluster analysis on the complete image dataset with 4 concepts. The rows of
the matrix correspond to images and the columns correspond to visual words. The
color of the matrix represent the frequency of the visual words for each image: blue
represents low frequency, red represents high frequency. Both, images and visual words
are clustered using hierarchical clustering. The result is represented by the vertical and
horizontal dendograms. Three different regions of the matrix are marked by colored
boxes. The corresponding visual words, concepts and sample images of these regions
are detailed in the left side rectangles.

5 Conclusions and Future Work

This paper has presented a framework to identify and analyse visual patterns in
a collection of medical images using a bag-of-features representation. The main
hypothesis of this paper was that visual words, identified in the collection us-
ing the bag-of-features representation, can be related to semantic concepts in
histopathology images. The hypothesis was corroborated by the exploratory ex-
periments based on correlation and cluster analysis. These results suggest that
this representation may be useful for analysis and understanding of histopathol-
ogy images. The cluster analysis is analogous to the one used in bioinformatics to
analyse gene array data, where the goal is, e.g., to find how a diseases relates to
the presence or absence of a particular gene. In the image analysis context, visual
words are analogous to genes with the important advantage that they could be
directly related to specific regions of particular images. This kind of analysis is
not possible with other image descriptors such as moments, histograms or trans-
formation coefficients. In addition, these analysis may help to design and improve
automatic tools to manage image collections, such as image retrieval systems.
For instance, understanding the group of visual patterns that better describe
a set of concepts, weighting schemes or pruning strategies may be applied in a
more informed fashion.
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Abstract. Many pattern recognition tasks can be modeled as proximity
searching. Here the common task is to quickly find all the elements close
to a given query without sequentially scanning a very large database.

A recent shift in the searching paradigm has been established by using
permutations instead of distances to predict proximity. Every object in
the database record how the set of reference objects (the permutants)
is seen, i.e. only the relative positions are used. When a query arrives
the relative displacements in the permutants between the query and a
particular object is measured. This approach turned out to be the most
efficient and scalable, at the expense of loosing recall in the answers.
The permutation of every object is represented with κ short integers in
practice, producing bulky indexes of 16κn bits.

In this paper we show how to represent the permutation as a binary
vector, using just one bit for each permutant (instead of log κ in the plain
representation). The Hamming distance in the binary signature is used
then to predict proximity between objects in the database. We tested this
approach with many real life metric databases obtaining faster queries
with a recall close to the Spearman ρ using 16 times less space.

1 Introduction

A metric space is composed by an universe of objects U, and a distance function
d : U×U → R, such that for any x, y, z ∈ U, d(x, y) > 0, d(x, y) = 0 ⇐⇒ x = y,
d(x, y) = d(y, x) (symmetry), and obeying the triangle inequality: d(x, z) +
d(z, y) ≥ d(x, y).

Some common tasks require distances expensive to compute (i.e. comparing
fingerprints, searching by content in multimedia, etc) and hence sequential scan
does not scale for large problems. Proximity queries are usually of two types, for a
given database S ⊆ U with size |S| = n, (q ∈ U, r ∈ R)d = {x ∈ S | d(q, x) ≤ r},
denote a range query. The other type of query is the focus of this paper, the k
nearest neighbor, denoted kNNd(q), which retrieve the k closest elements to q in
S, formally it retrieves the set R ⊆ S such that |R| = k and ∀u ∈ R, v ∈ S −R
it follows d(q, u) ≤ d(q, v).

Most indexes use the triangle inequality to avoid a sequential scan. Upper
bounds of the distance between the query and the database objects can be
obtained by computing some distances beforehand to the so-called pivots or by
dividing the space in regions with the so-called compact partitioning indexes.
Due to space restrictions we do not overview current approaches, nevertheless a

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 529–536, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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deeper and extended catalog for searching in metric spaces can be found in [1,2,3].
We will focus on the permutations index (described in detail below) because it
has shown to be very scalable, indexing hundreds of millions of images in the
Cophir project [6].

1.1 Overview of the Permutations Based Index

The motivation behind this indexing method [4] is to shift the problem of com-
paring directly the query object against every object in the database to com-
paring the perspective in which a set of elements are perceived. Each database
element has an unique perspective of the permutants (defined below) and the
query is only compared to those elements having similar perspective of the per-
mutants.

Let S be the database of objects, and P ⊆ S be a set of distinguished objects
from the database, called permutants. Assume x is the query. Each x defines
a permutation Πx, where the elements of P are written in increasing order of
distance to x. Ties are broken using any consistent order, for example, the order
of the elements in P.

Definition 1. Let P = {p1, p2, . . . , pk} and x ∈ X. Then we define Πx as a
permutation of (1 . . .k) so that, for all 1 ≤ i < k it holds either d(pΠx(i), x) <
d(pΠx(i+1), x), or d(pΠx(i), x) = d(pΠx(i+1), x) and Πx(i) < Πx(i+ 1).

Each database element u will be represented by a permutation Πu. The query
will be represented by Πq using the same definition. Elements that are close will
have similar permutations. Defining a similarity is central to obtain good results.
An excellent predictor is the Spearman Rho, defined as the sum the squares of
differences in the relative positions of each element in both permutations. That
is, for each pi ∈ P we compute its position in Πu and Πq, namely Π−1

u (i) and
Π−1

q (i), and sum up the squares of the differences in the positions [4]. Formally
defined below in 2.

Definition 2. Given permutations Πu and Πq of (1 . . .k), Spearman Rho is
defined as

Sρ(Πu, Πq) =
∑

1≤i≤k

(
Π−1

u (i)−Π−1
q (i)

)2
.

We use the same example depicted in [4] for illustrating the definition of
Sρ(Πq, Πu). Let Πq = 6, 2, 3, 1, 4, 5 be the permutation of the query, and Πu =
3, 6, 2, 1, 5, 4 that of an element u. A particular element p3 in permutation Πu

is found two positions off with respect to its position in Πq. The differences
between permutations are: 1− 2, 2− 3, 3− 1, 4− 4, 5− 6, 6− 5, and the sum of
their squares is Sρ(Πq, Πu) = 8.

Note that we can compute Sρ(Πq, Πu) by obtaining the inverse of both per-
mutations and then computing the Euclidean distance of the inverse. It is also
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shown in [4] that we can use the sum of the absolute of the differences, without
the squares, without noticeable penalization in the index recall.

The result is a table of n rows (one per database element) and k columns (one
per permutant). Each cell needs "log2 k# bits to store one permutation at each
row. The indexing cost is kn distance computations plus O(nk log k) CPU time
to sort all the permutations.

The search has two phases. The first sorts the database according to the per-
mutation distance and selects as candidates the first elements. The second phase
is to check the list. The permutation index allows kNN searches in pseudo-metric
spaces, because the triangle inequality is not used explicitly. Our technique in-
herits this property allowing faster searches and smaller indexes.

2 The Brief Permutations

Our goal is to achieve the same performance of the permutations based index
using only one bit to represent each permutant. The Algorithm 1 shows the
algorithm Encode for condensing the permutation information into bit strings.
In Encode we can note that for big enough m (e.g m ≥ |P |

2 ) the permutants in
the center will be rarely set to 1. In order to reduce this effect we compute a
second swapped permutation codifying them in the same bit string, as depicted
in Algorithm 2.

Algorithm 1. Bit-encoding of the permutation P under the module m

Encode(Permutation P , Positive Integer m)

1: Let P−1 be the inverse P .
2: C ← 0 {Bit string of size |P |, initialized to zeros}
3: for all i from 0 to |P | − 1 do
4: if |i − P−1[i]| > m then
5: C[i] ← 1
6: end if
7: end for
8: return C

The brief index encodes all the objects in the database in different bit-strings,
the Hamming distance is used to compare objects, instead of the Spearman Rho.
The searching is shown in Algorithm 3, I is the brief index. Computing Hamming
distances is way faster than computing the Spearman Rho, and this is the only
operation needed to satisfy queries.

To fix ideas, consider the following example. Let m = 2, u = (3, 6, 2, 1, 5, 4),
r = (5, 3, 1, 6, 2, 4) and q = (6, 2, 3, 1, 4, 5). After the inverse u−1 = (4, 3, 1, 6, 5, 2),
r−1 = (3, 5, 2, 6, 1, 4) and q−1 = (4, 2, 3, 5, 6, 1). Applying algorithm 1 we have
û = (|1 − 4| > m, |2 − 3| > m, |3 − 1| > m, |4 − 6| > m, |5 − 5| > m, |6 − 2| >
m) = (1, 0, 0, 0, 0, 1), supposing |a − b| > m evaluates to 1 for true and 0 for
false. Similarly, we obtain r̂ = (0, 1, 0, 0, 1, 0) and q̂ = (1, 0, 0, 0, 0, 1). If H is the
hamming distance, H(û, q̂) = 0 and H(r̂, q̂) = 2. Clearly, q is the closer one to u,
and this can be verified using Sρ as Sρ(u, q) = 8, and Sρ(r, q) = 46.
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Algorithm 2. Bit-encoding using permutation of the center. Interchangeable with Encode.

EncodePermCenter(Permutation P , Positive Integer m)

1: Let P−1 be the inverse P
2: C ← 0|P | {Bit string of size |P |, initialized to zeros}
3: M = |P |

4
4: for all i from 0 to |P | − 1 do
5: I ← i
6: if � I

M � mod 3 �= 0 then
7: I ← I + M
8: end if
9: if |I − P−1[i]| > m then
10: C ← C|(1 << i)
11: end if
12: end for
13: return C

The binary mapping works because in essence it reproduces the same behavior
than Sρ with coarse granularity using two possible values (i.e. 0 and 1). Suppose
two vectors u and v and we want to select the closest vector to q. In the brief repre-
sentation we are neglecting (not adding) the displacements smaller than a certain
threshold.This is compensatedbyusing a largernumberof permutants in the index.

As we are using bit encoded values we can use XOR bit-operation (⊕) using
the bit parallelism inherent in the computer integer operations computing 32 or
64 operations per instruction instead of the most expensive operations difference
and product used in the Sρ. The count of the enabled bits can be calculated using
a previously calculated table for one or two bytes.

We can resume that 0⊕ 0 = 0 means an small movement difference, 0⊕ 1 = 1
meaning a big difference. 1⊕ 1 can significant a really big difference or an small
one, in order to encode in just one bit each permutant we choose only one, and
to be able to use the hamming distance we choose 1⊕ 1 = 0. Choosing 1⊕ 1 = 1
can be efficiently computed using ⊕ as OR instead of XOR.

Algorithm 3. Procedure to search kNN for q

SearchKNN(Hamming Index I, Permutants P, Distance d, Object q, Positive Integer m,
Positive Integer k, Positive Integer Cand)
1: P ← Get permutation for q under P and d.
2: ĥ ← Encode(P, m).
3: R ← Retrieve the lNN for ĥ with metric index I using l = Cand {Remember that R ⊆ S}.
4: Res ← [ ]
5: for all s ∈ R do
6: Res ← Res + [(d(s, q), s)]
7: end for
8: Res ← sort Res by the first argument in the tuple, keep the smallest k results.
9: return Res

3 Experiments

The tested databases were taken from the metric space library1 and the natix
project’s site2. Our implementation is available as open source from
1 Metric space library www.sisap.org
2 Natix web site is www.natix.org

www.sisap.org
www.natix.org
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www.natix.org. All indexes share the same distance function’s implementation.
The experiments were performed in a laptop computer with Intel Core 2 at 2.4
GHz and 2GiB of RAM, running MacOS X 10.5.6. The indexes run in main
memory and without parallelization. We have tested our index in a large num-
ber of real life databases, due to space constrains we show the results in three
databases; documents for textual information retrieval, color’s histogram vectors
for multimedia information retrieval, and fingerprints of songs used for music in-
formation retrieval. Please note that the brief representation of the permutant
space allows keeping the index in main memory. Secondary memory access is
only needed when checking candidates.

The presented results compares the full permutation index and a set of brief
indexes using different modules, the modules are presented in the Figures as
the ratio between m

|P | . The Encode algorithm is used for all of them, except for
curves named Mod 0.5:1 whose are based on the EncodePermCenter algorithm.

3.1 Documents

A collection of 25157 short news articles in the TF × IDF format from Wall
Street Journal 1987− 1989 files from TREC-3 collection. We use the angle be-
tween vectors as distance measure [5].

We extracted 100 random documents as queries, these documents were not
indexed. Each query searches for 30 nearest neighbors (a metric index, like BKT
[2] needs to check up to 98% of the database for this task). Figure 1(a) shows
the recall for 30NN. Please note that the number of distance computations is
the number of permutants plus the number of candidates, then for 30NN recall
of 0.82 we need to review only the 6% of the database instead of the 98% in the
alternative metric index (not shown for space constrains). If instead of 30NN we
search for the nearest neighbot the recall increases to 97%. The recall for the brief
permutations is closely related with the module, also note that as the number of
permutants increases the module effect decreases. We can see that module 0.5
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Fig. 1. Experiment results for brief index against full permutations using the docu-
ments TF × IDF collection and vector’s angle as distance

www.natix.org
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is a fair choice for any number of permutants. We can see in both recall Figures
that the brief index performs slightly better than the full permutants. Figure
1(b) shows the average time per search needed for each number of permutants,
naturally the brief representation is faster.

3.2 Vectors

We selected a set of 112544 color histograms (112-dimensional vectors) from an
image database3 We choose randomly 200 histogram vectors and we applied a
perturbation of ±0.5 on one random coordinate. The search consist on finding
30NN under L2 distance. The BKT needed to check 65% of the database. We
achieved only a recall of 0.7 for 2000 checked candidates (equivalent to review
a 2% of the database). This behavior is inherent to the permutations based
index, the exact reasons of this behavior is unknown, but this experiment shows
that the behavior is inherited by the brief index. Even with this poor recall, it’s
an excelent approximation for achieving fast searches for massive Multimedia
Information Retrieval approaches [6] where a recall of 0.5 is reported for a larger
database.
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Fig. 2. Results for brief index against full permutations using the color’s histogram
collection and L2 distance

The behavior of this example is similar to the previous experiment, better
times, less space for the same task.

3.3 Audio Fingerprints

A database of 10254 multi-band spectral entropy signature (MBSES) [7] using
three byte’s frame for each 46 ms. The signatures were extracted from full songs
of assorted genre4. We use a non-metric distance called probabilistic pairing psudo
3 The original database source is
http://www.dbs.informatik.uni-muenchen.de/~seidl/DATA/histo112.112682.gz

4 The fingerprint’s database is available from the www.natix.org website.

http://www.dbs.informatik.uni-muenchen.de/~seidl/DATA/histo112.112682.gz
www.natix.org
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Fig. 3. Results for brief index against full permutations for the audio collection

metric [8] which is defined as the minimum hamming distance from one short
sequence of length m against all m-grams inside a larger sequence. The distance’s
cost is O(m× (n−m+ 1)). We use excerpts of 20s as permutants and degraded
excerpts of 20s as queries, both sets are disjoint.

Figure 3(a) shows a recall of 0.92 for the full permutation index, and 0.83
for the brief index using 512 permutants. Please note that BKT can be used
at the expense of loosing some results because the probabilistic pairing pseudo
metric do not follow the triangle inequality. The BKT gives a recall above 0.9
reviewing more than 40% of the database, resulting in 30 seconds per search.
The brief index needs to review 512 distance’s evaluations to compute the per-
mutation, and 1000 distances verification (i.e. review 10% of the database, note
that this is possible because permutants and queries have the same length). The
verification is done using the transitivity kept by the distance, using only 12 or
24 frames, reducing the final cost of the query, Figure 3(b) shows the time per
search.

4 Conclusions and Future Work

We have presented a new indexing method based on permutations. Our repre-
sentation is able to use only one bit for each permutant, opposed to the 16 bit
usual representation without noticeable impact in the recall of the index and
4 to 12 faster than full permutations. We are working on experiments in very
large databases with an specialized indexing for Hamming distance for speeding
up the searches (in the paper the times shows the effect in sequential scanning
in the brief permutation space). Although module 0.5 is a good choice for any
space and any number of permutants (specially when swapping center permu-
tants as described in algorithm 2), a more careful tuning of the modulus used
for obtaining the brief representation is needed.



536 E.S. Téllez, E. Chávez, and A. Camarena-Ibarrola

Acknowledgments

We wish to thank the comments from the referees and from Rodrigo Paredes
from University of Talca, in Chile, helping to improve the presentation.

References

1. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann Publishers, San Francisco (2006)
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Abstract. In this paper we propose a machine learning approach to
classify melanocytic lesions in malignant and benign from dermatoscopic
images. The image database is composed of 433 benign lesions and 80
malignant melanoma. After an image pre-processing stage that includes
hair removal filtering, each image is automatically segmented using well
known image segmentation algorithms. Then, each lesion is characterized
by a feature vector that contains shape, color and texture information,
as well as local and global parameters that try to reflect structures used
in medical diagnosis. The learning and classification stage is performed
using AdaBoost.M1 with C4.5 decision trees. For the automatically seg-
mented database, classification delivered a false positive rate of 8.75%
for a sensitivity of 95%. The same classification procedure applied to
manually segmented images by an experienced dermatologist yielded a
false positive rate of 4.62% for a sensitivity of 95%.

1 Introduction

The incidence of melanoma in the general population is increasing worldwide.
It is estimated that by the end of this decade, four million new melanomas will
be diagnosed in the world, causing the death of half million people. If early
diagnosed and treated, the mean life expectancy of these individuals would have
been enlarged by at least 25 years. Because advanced cutaneous melanoma is
still incurable, early detection, by means of accurate screening, is an important
step toward mortality reduction. Detection of thin malignant melanoma is the
most effective way to avoid mortality related to this disease.

Dermoscopy is a noninvasive in vivo technique that assists the clinician in
melanoma detection in its early stage. Images are acquired using epiluminescence
light microscopy, that magnifies lesions and enables examination down to the
dermo-epidermal junction. This permits to visualize new morphologic features
and in most cases facilitates early diagnosis. However, evaluation of the many
morphologic characteristics is often extremely complex and subjective [1].

Advances in objective dermatology diagnosis were obtained in 1994 with the
introduction of the ABCD rule [2]. The ABCD rule specifies a list of visual
features associated to malignant lesions (Asymmetry, Border irregularity, Color
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irregularity and presence of Dermoscopic structures), from which a score is com-
puted. This methodology provided clinicians with a useful quantitative criterion,
but it did not prove efficient enough for clinically doubtful lesions (CDL). The
main reason for this is the difficulty in visually characterizing the lesions’ fea-
tures. Setting an adequate decision threshold for the score is also a difficult
problem; by now it has been fixed based in several years of clinical experience.
Many authors claim that these thresholds may lead to high rates of false diag-
noses [3]. An alternative algorithm for melanocytic lesion diagnosis is the 7-points
checklist [4]. This algorithm consists of analyzing the presence of the seven most
important color or geometric stuctures that characterize malignant melanoma
(blue whitish veil, atypical pigment network, irregular streaks, etc.).

The computerized analysis of dermatoscopic images can be an extremely use-
ful tool to measure and detect sets of features from which dermatologists make
their diagnosis. It can also be helpful for primary screening campaigns, increasing
the possibility of early diagnosis of melanoma. Currently there is no commercial
software for massive use in clinical practice. Our ultimate goal is to develop soft-
ware for the recognition of early-stage melanomas, based on images obtained by
digital dermoscopy. This would enable unsupervised classification of melanocytic
lesions, assigning a confidence index for each classification. The result of such
classification procedure will separate the “screened” lesions in two groups. The
first group corresponds to lesions that were classified with high enough con-
fidence level, while the second one corresponds to those lesions for which the
confidence level is low and consequently, requires subsequent inspection by an
experienced dermatologist. In this sense, the classification technique is actually
a semi-automated method.

The paper is organized as follows. In Section 2 we present a brief overview of
previous related work. In Section 3 we describe the composition of our database of
dermatoscopic images, and in Section 4 we present our approach to melanocytic
lesions classification. Results and performance are presented and discussed in Sec-
tion 5. We conclude in Section 6.

2 Computerized Analysis of Dermoscopic Images: State
of the Art

Computer aided image analysis in skin lesion diagnosis is a relatively new re-
search field. While the first related work in the medical literature seems to date
back to 1987 [5], its contribution was limited since by that time computer vi-
sion and machine learning were both emerging fields (the first edge detectors
where starting to appear). One of the first significant contributions from the
image processing community was reported in [6]. In this work, the authors pro-
pose a classical machine learning approach for dermatoscopic image classifica-
tion. The first stage is automatic color-based lesion segmentation. Then, over a
hundred features are extracted from the image (shape and color, and gradient
distribution in the neighbourhood of the lesion boundary). Feature selection was
obtained using sequential forward and sequential backward floating selection.
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Classification experiments, performed with a 24-NN classifier, delivered a sensi-
tivity of 77% with a specificity of 84%.

To our knowledge, up to now the best results in automated melanocytic lesion
classification where obtained by Celebi et al. [7]. See this reference for a complete
summary of the results obtained by key studies from 2001 onwards, along with
their database sizes. As in [6], the proposed approach is a classic machine learning
methodology. After an Otsu-based image segmentation, a set global features are
computed (area, aspect ratio, asymmetry and compactness). Local color and
texture features are computed after dividing the lesion in three regions: inner
region, inner border (an inner band delimited by the lesion boundary) and outer
border (an outer band delimited by the lesion boundary). Feature selection is
performed using ReliefF [8] and CFS algorithms [9]. Finally, the feature vectors
are classified into malignant and benign using SVM with model selection [10].
Performance evaluation gave a specificity of 92.34% and a sensitivity of 93.33%.

3 Database Composition

Our database is composed of 513 images of melanocytic lesions: 433 benign le-
sions and 80 malignant melanoma. Among the set of benign lesions, over a hun-
dred correspond to dysplastic melanocytic nevi. It is important to note that in
general these kind of lesions are the benign lesions that are visually the most alike
to malignant melanoma; many of them are clinically doubtful for experienced
dermatologists. This composition was based on the existence of dermatoscopic
and histopathologic studies, which were used as ground truth for the classifica-
tion procedure. Actually, the original database was larger, but some images were
discarded for the following reasons: the images do not capture the whole lesion,
poor image quality or excessive presence of hair.

Every image in this database has been manually segmented by a dermatolo-
gist, who also provided dermatoscopic diagnosis based on the ABCD rule and the
7-points checklist. This enables performance evaluation for both segmentation
and features’ measurements.

4 Dermoscopic Images Classification: Proposed Approach

Our approach follows a typical machine learning methodology. In the first stage,
we tackle image processing problems such as image filtering, restoration and
automatic segmentation to isolate the lesion’s area. The second stage consists of
extracting features from the image for further lesion classification into malignant
or benign. Features are inspired by the same elements that dermatologists use for
lesion diagnosis. Once lesions’ features have been extracted, labeled lesions are
used to train a meta-classifier obtained using boosting based on decision trees.
Classification errors and ROC curves are obtained by means of cross validation.
In this section we give details of each of these stages.
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4.1 Preprocessing and Hair Removal

Lesion segmentation in the presence of hair is usually doomed to failure. Thus,
previous application of a hair removal filter is unavoidable. Automatic hair re-
moval requires hair detection and image inpainting. We used Dullrazor [11], a
well known algorithm for hair removal. This algorithm identifies the image seg-
ments that approximate the structure of the hair, and then the regions that
contain these segments are interpolated using the information of the surround-
ing pixels. A typical result is shown in Figure 1(a)(b). For the inpainting part,
more sophisticated techniques were also explored, with similar results.

4.2 Segmentation

Segmentation of melanocytic lesions can be an extremely hard problem. Besides
the presence of hair, many lesions present diffuse borders, that can be difficult to
determine even for dermatologists. Several methods of image segmentation were
explored, based on edge detection and on region information. In general it is
appropriate to combine different features (texture, edges, color) for better results.
Methods combining these sources of information were also studied. Among the
variational methods family, we considered Otsu using color norm instead of grey
level [12], Mumford-Shah [13], Geodesic Active Contours and Geodesic Active
Regions [14]. We explored also several methods based on the topographic map,
using both boundary and color and texture region information [15,16]. We are
currently investigating spectral clustering – graph based approaches.

Overall, none of the methods outperformed the others. We decided to use the
color-based Otsu method for it is simpler and significantly faster. Of course, there
are pathological cases in which it fails, and sometimes one of the others provides
satisfactory results. This suggests that a software for clinical use should propose
the choice of a few candidate segmentations to the user in case they differ.

4.3 Feature Extraction

A set of global measurements of shape (aspect ratio, symmetry, compacity, etc.)
and border irregularity were computed from each lesion. More localized features
of texture and color distribution were also extracted. Previous to their extraction,
each lesion is decomposed into three sub-regions: the interior and the outer and
inner border (Figure 1). For each of these regions, the color features consist of
some statistics of its distribution (mean and variances per channel in RGB and
HSV spaces), and the texture features based on Gabor filters capture information
of local contrast, correlation, heterogeneity and energy. For each lesion, a total
number of 57 features are extracted.

Note that information concerning the presence or absence of several geometric
patterns that are relevant to the 7 points checklist is not included in the feature
vectors. This requires the detection of these structures, which is not a trivial
task, what explains why they are not included in any previous work, either. We
are currently investigating these detection problems, for we are confident that
the capability of detecting this structures will boost our method performance.
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(a) (b) (c) (d)

Fig. 1. (a) Original lesion. (b) Result of the hair removal filter. (c) Color-based Otsu
segmentation. (d) Definition of the three regions used for feature extraction.

4.4 Classification

The goal of this stage is to classify the feature vectors in two classes: malignant
and benign. A classification technique that prove very successful in our exper-
iments consist of performing decision trees combination via adaptive boosting.
Boosting exploits the inherent instability in learning algorithms by combining
multiple models, in a way that models complement one another. This is achieved
by assigning weights to the training data, and modifying them after each clas-
sifier by increasing the weight of misclassified samples, and decreasing these of
correctly classified ones. Hence, after each iteration, a new classifier is forced to
focus on classifying the hard samples correctly. The algorithm finishes after a
user-defined number of T iterations, that generates a set of T classifiers. To each
of them, a weight that increases with its performance is associated. Classification
of new unlabeled data is performed by a weighted vote of the T classifiers.

The algorithms we considered for the classification framework are C4.5 deci-
sion trees [17], and AdaBoost.M1 [18], using Weka’s implementations. In order
to deal with class imbalance, we applied a widely used synthetic over-sampling
technique (SMOTE [19]) to the minority class.

5 Results

Performance evaluation was conducted using 10 times - 10 fold cross-validation.
To assess the impact of the learning and classification method, we compared our
results with SVM with model selection (preceeded by ReliefF feature selection).
As in [7], a RBF kernel was used, and optimal parameters (the weight that
controls model complexity and the RBF parameter) were obtained by grid search
optimization with 10 fold cross-validation. Classification performance was also
estimated using 10 times - 10 fold cross-validation.

The same experiments were repeated, replacing automatic segmentation by
manual segmentation by a dermatologist. This was carried on to assess the in-
fluence of automatic segmentation errors.

The left plot in Figure 2 shows the overall system performance using auto-
matic segmentation, for both learning strategies. The right plot shows the results
for the manually segmented images. In both cases, the AdaBoost/C4.5 method
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Fig. 2. Left: ROC curves for the AdaBoost/C4.5 and SVM approaches for automati-
cally segmented (left) and manually segmented (right) images. See text for details.

Table 1. Performance indicators for the ROC curves in Figure 2

Method FPR for 95% sensitivity Area under ROC
Automatic segmentation, AdaBoost - C4.5 8.75 % 0.981
Automatic segmentation, SVM 9.52 % 0.963
Manual segmentation, AdaBoost - C4.5 4.62% 0.991
Manual segmentation, SVM 9.23 % 0.966

False negatives False positives

ABCD score=6 ABCD score=6.2 ABCD score=5 ABCD score=4.5 ABCD score=4.9

7 points=5 7 points=6 7 points=2 7 points=2 7 points=3

Fig. 3. All misclassified patterns corresponding to lesion images. Color-based Otsu
segmentation was used. See text for details.

outperformed the SVM-based approach. Table 1 shows performance indicators
for the four experiments.

While the SVM approach using manually or automatically segmented images
yielded essentially the same performance, the performance of Adaboost/C4.5
classification of manually segmented images was significantly higher than for
the automatically segmented ones. Note that the results we obtained with SVM
are slightly better than those reported by Celebi et al. [7] (false positive rate
of 14% for 95% sensitivity and AUC of 0.966). Our AdaBoost/C4.5 approach
shows even higher performance. Note that since the database used by Celebi et
al. is very similar to ours in size and composition (476 benign lesions and 88



Pigmented Skin Lesions Classification Using Dermatoscopic Images 543

malignant melanoma), this performance comparison makes sense, but only up
to a certain point.

Figure 3 shows the five misclassified patterns that correspond to lesion images
in the database, for the AdaBoost/C4.5 classification of automatically segmented
lesions. Among these lesions, all false positives were dysplastic melanocytic nevi,
actually suspicious lesions according to the ABCD rule (CDL scores range from
4.75 to 5.45). Moreover, note that the rightmost one qualifies as melanoma
according to the 7-points checklist algorithm (larger or equal than 3 corre-
sponds to malignant melanoma). Concerning the false negatives, posterior in-
spection by an expert dermatologist revealed subjective overestimation of their
scores, since the lesions corresponded to a patient with clinical history of
melanoma.

6 Conclusions and Future Work

In this work we presented a machine learning approach to classify melanocytic
lesions from dermatoscopic images. The learning and classification stage is per-
formed using AdaBoost.M1 with C4.5 decision trees. Using automatically seg-
mented images, we obtained a false positive rate of 8.75% for a sensitivity of
95%, and an AUC of 0.981. These results are promising and seem to be supe-
rior than those reported in the literature. However, performance evaluation is
delicate because all reported results were obtained using different databases. At
this point, construction of a large database of dermatoscopic images that could
be used as reference testbed appears to be a fundamental issue.

Concerning our algorithm, to further improve its performance, methods to
detect a larger number of geometry or texture based structures, similar to those
used in the 7 points checklist, should be developed. Because of their strong
discriminative power, we are confident that the inclusion of these patterns’ in-
formation in the features vectors will boost the classification results. This is
ongoing research and hopefully will be implemented in future versions. It seems
also, from the comparison of the results obtained from manually segmented le-
sions (FPR of 4.62% for a sensitivity of 95%), that errors in automatic segmen-
tation have an important impact and should be reduced. As we pointed out,
this is a hard problem since many melanocytic lesions show highly diffuse con-
tours. Note, however, that nothing prevents us to manually segment the training
database, and to propose to the user, for each new lesion, the choice of candidate
segmentations.

Another interesting related line of research is the characterization of the dis-
criminative power of the considered features. This can be obtained by means of
automatic feature selection strategies like the ones that were mentioned here. A
rigorous study of this topic, complemented with the comparison of the weights
assigned to visual features in the ABCD and other clinical diagnosis rules,
may yield useful recommendations to dermatologist for their medical
practice.
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Abstract. This paper proposes a method for involving domain knowl-
edge in the construction of summaries of large collections of images. This
is accomplished by using a multi-class kernel alignment strategy in or-
der to learn a kernel function that incorporates domain knowledge (class
labels). The kernel function is the basis of a clustering algorithm that
generates a subset, the summary, of the image collection. The method
was tested with a subset of the Corel image collection using a summariza-
tion quality measure based on information theory. Experimental results
show that it is possible to improve the quality of the summary when
domain knowledge is involved.

Keywords : Image collection summarization, information visualization,
clustering, multi-class kernel alignment.

1 Introduction

Effective and efficient access to large collection of images is an important chal-
lenge for information retrieval. The main problem is how to find the right images
based on their contents (content-based image retrieval, CBIR) [4]. A promising
approach to this problem is based on visualization of the whole image collection
using a 2D map metaphor. This strategy tries to exploit the human brain ca-
pacity for efficiently recognizing visual patterns, so that an ordered display of
many images at the same time may help users to find the right information. The
visualization is built in such a way that users can see different images distributed
in the screen according to their visual similarity and can intuitively start to ex-
plore the image collection. In large collections of images it is not possible to show
all images to the user due to the limitations of screen devices. Therefore, it is
necessary to provide a mechanism that summarizes the image collection. This
summary represents an overview of the data set and allows the user to start the
navigation process. After building this summary, it must be shown to the user,
this problem is called image collection projection. It is usually addressed using
dimensionality reduction methods for obtaining a low dimensional representation
of each image that can be projected in a 2D layout [7].

There are some works that have addressed the construction of image collection
summaries. Some of them use clustering methods [10,9], similarity pyramids
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methods [3], graph methods [2,6], neural networks methods [5], among others.
In all the cases, the summarization problem is approached as a non-supervised
learning problem. Typically, image clusters are identified in the collection and
representative images from each cluster are chosen to compose the summary.

This paper proposes a combined supervised and non-supervised strategy for
image collection summarization. The supervised part uses domain knowledge, in
the form of a training set of labeled images, to build an image kernel function,
which can be seen as an image similarity measure. The kernel function is based on
individual kernel functions that measure image similarity according to different
visual features. The individual kernels are optimally combined using a multi-
class kernel alignment strategy. The combined kernel is then used as input for
a k-medoids clustering algorithm and the generated medoids correspond to the
image collection summary.

The reminder of this paper is organized as follows: In Section 2, the general
summarization framework is presented and briefly discussed; in Section 3, the
kernel-based approach for improving the summarization is described; Section 4,
shows the experimental evaluation of the strategy. Finally, Section 5 presents
the conclusions and future work.

2 Image Collection Summarization Framework

We aim to generate an overview of the image collection that faithfully rep-
resents the complete collection. To accomplish this objective, we propose the
framework shown in Figure 1. The steps of the process are: selection of an image
subset for training; extraction of image features; kernel alignment for involving
domain knowledge; construction of a combination function based on the param-
eters found with kernel alignment; clustering using k-medoids for building an
image collection summary; and application of a dimensionality reduction tech-
nique for generating a 2D visualization of the summary. On the other hand,
features of the remaining images are extracted and the kernel function is cal-
culated using the combination function obtained previously. When a new image
arrives to the collection, it can be automatically classified in one of the clusters
by calculating its similarity with the medoids using the combination function
and the image is classified in the cluster of the most similar medoid.

3 Involving Domain Knowledge (Kernel Alignment)

Kernel functions have been successfully used in a wide range of problems in
pattern analysis since they provide a general framework to decouple data rep-
resentation and learning algorithms. A kernel function implicitly defines a new
representation space for the input data in which any geometry or statistical
strategy may be used to discover relationships and patterns in that new space.
Intuitively, kernel functions provide a similarity relationship between objects be-
ing processed, so they are widely also used in similarity-based learning. In this
work, we use kernel functions with a twofold purpose: first, to model a more
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Fig. 1. Framework for summarizing an image collection

appropriate similarity measure between images using low-level visual features,
and second, to learn a combination of features adapted to those particularities
of the application domain.

A histogram is a discrete and non-parametric representation of a probability
distribution function. Although histograms may be seen as feature vectors, they
have particular properties that may be exploited by a similarity function. There
are different kernel functions specially tailored to histograms. In this work, we
use the histogram intersection kernel. Consider h as a histogram with n bins,
associated to one of different visual features. The histogram intersection kernel
between two histograms is defined as k∩(hi, hj) =

∑n
l=1 min (hi(l), hj(l)). This

kernel calculates the area of the intersection of both histograms.
In this work, four different histograms are calculated for each image: borders,

texture, RGB and gray. Using k∩ and these four visual features, we obtain four
different kernel functions that will be used for building a new kernel. A ker-
nel function using just one low-level feature provides a similarity notion based
on particular aspect of the visual perception. For instance, the RGB histogram
feature is able to indicate whether two images have similar color distributions.
However, we aim to design a kernel function that provides a better notion of
image similarity according to the a priori information. We construct the new
kernel function using a linear combination of kernel functions associated to in-
dividual features. The most simple combination is obtained by assigning equal
weights to all basis kernel functions, so the new kernel induces a representation
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space with all visual features. However, depending on the particular class, some
features may have more or less importance.

Cristianini [8] proposed the kernel alignment strategy in the context of super-
vised learning to combine different visual features in an optimal way with respect
to a domain knowledge target (ideal kernel). The empirical kernel alignment, is a
similarity measure between two kernel functions, calculated over a data sample.
If Kα and Kt are the kernel matrices associated to kernel functions kα and kt

in a data sample S, the kernel alignment measure is defined as:

AS(Kα,Kt) =
〈Kα,Kt〉F√

〈Kα,Kα〉F
√
〈Kt,Kt〉F

, (1)

where 〈·, ·〉F is the Frobenius inner product defined as 〈A,B〉F =
∑

i

∑
j AijBij ,

Kα is the linear combination of basis kernels, that is, the combination of all
visual features given by kα(x, y) =

∑
f αfk∩ (hf (x), hf (y)), where hf (x) is the

f -th feature histogram of image x, and α is a weighting vector. The definition of
a target kernel function Kt, i.e. an ideal kernel with explicit domain knowledge,
is done using labels associated to each image that are extracted from previous
information (class labels). It is given by the explicit classification of images for
a particular class using yn as the labels vector associated to the n-th class, in
which yn(x) = 1 if the image x is an example of the n-th class and yn(x) = −1
otherwise. So, Kt = yy′ is the kernel matrix associated to the target for a
particular class. This configuration only considers a two-class case. We need to
build a new kernel function that takes into account the information of all classes
simultaneously (multi-class case).

Vert [12] proposes a strategy that addresses the multi-class problem in the
context of multi-class classification. Therefore, we adapted his strategy in the
context of image collection summarization. Author proposes to build the ideal
kernel matrix as follows:

Kt(x, x) =

{
1 if y=y’
−1/(Q− 1) otherwise

, (2)

where Q is the number of classes. Kt is, by construction, a valid kernel and
we will call it the ideal kernel. Under some regularity assumptions on Kα, the
alignment function is differentiable with respect to α. Upon this assumption we
can use a gradient ascent algorithm in order to maximize the alignment between
the combined kernel and the ideal kernel as follows:

α∗ = argmax
α∈Θ

AS(Kα,Kt) (3)

Due to the fact that we have a function composed of a vector of variables, we have a

gradient vector composed of partial derivatives ∇αAS =
[

∂AS

∂α1
, ∂AS

∂α2
, . . . , ∂AS

∂αd

]T

.
The optimization algorithm starts from a random α, and at each step, updates α,
in the direction of the gradient ∆αi = η ∂As

∂αi
, ∀i and αi = αi + ∆αi, where η is
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called the stepsize, or learning factor and determines how much to move in that
direction [1].

Kernel alignment strategy has been used in the context of supervised learning
and in classification problems. We use it for both, supervised and non-supervised
learning in the context of summarization of collection of images.

4 Experimentation

Our main goal in this experimentation was to measure the quality of the summary.
We used the Corel data set, which is a collection of photographic stock images and
clip art, and it is the most widely used standard data set for testing content based
image retrieval systems CBIR. A subset of 2,500 images was selected, which has
25 classes with 100 images each one (aviation, beach, cats, cards, birds, flags, for-
est, among others). The extracted features were Gray Histogram, RGB color his-
togram, Sobel Histogram (borders) and Local Binary Partitions (texture). These
four visual features were modeled as discrete probability distributions and the ker-
nel function chosenwas the histogram intersection.The summary was createdwith
a k-medoids clustering algorithm. For projecting (2D visualization), the original
high-dimensional space of the image summary was projected in a low-dimensional
space using Multidimensional Scaling (MDS) [11].

4.1 Summary Quality Evaluation

A good summary corresponds to representative set of samples from the collection,
i.e., a set that includes prototypical images from the different categories present
in the collection. Based on this idea, we define a supervised summarization qual-
ity measure that makes use of the image labels. This measure corresponds to the
entropy of the summarization and is calculated as follows:

Hsummary = −
C∑

i=1

(
#Ci

k
)log2(

#Ci

k
), (4)

where C is the number of classes, M = {m1, . . . ,mk} is the set of k medoids ob-
tained in the clustering process, and #Ci = ‖{mj ∈M |mj ∈ Ci}‖ is the number
of medoids in M that belong to class Ci. The quantity #Ci

k represents the propor-
tion of samples in the summary that belongs to class Ci. The maximum entropy is
obtained when this value is the same for all classes, e.i., ∀i, #Ci

k = 1
C . In this case,

all the classes are equally represented in the summary. The maximum entropy de-
pends on the number of classes, Hsummary = log2(C). In this experimental setup
log2(C) = log2(25) = 4.64385619. With this measure defined, we aim to assess
the quality of the summaries generated for the following kernel functions: an ideal
kernel function using the Equation 2, which will have the maximum entropy since
it has the a priori class labels information; a basis kernel function as a combina-
tion of the base kernel functions (RGB, Sobel, LBP and Gray) with equal weights
(alphas); and the aligned kernel built as was suggested in Section 3.
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Fig. 2. Entropy vs number of centroids (average for 100 runs). The kernel that involves
domain knowledge (aligned kernel) outperforms the base kernel.

4.2 Experimental Results

For learning the kernel function, we start the gradient ascent algorithm with α
values (one per visual feature) generated randomly (50 times), η = 0.1,∇αi = 0.1
and 100 iterations. Table 1 shows the α values obtained using gradient ascent for
optimizing the kernel alignment, which indicates that color feature (RGB) has the
highest weight in the combination function. It is because images of the Corel data
set have similar color distribution in each class (in other data sets it would be dif-
ferent). On the other hand, texture feature (LBP) has the lowest weight, which in-
dicates that texture is not a good class discriminant in this data set. Figure 2 shows
the quality of the three summaries: ideal kernel, basis kernel, and aligned kernel.
Results show that the aligned kernel outperforms the baseline, which proves that
the proposed method improves the quality of the summary. All three kernel in-
crease the summary entropy when the number of medoids is increased; with k=50
medoids the summary entropy is close to the maximum. Figure 3 shows the visu-
alization (2D projection) of the entire Corel data set using MDS with the medoids
of each cluster. Figure 4 shows a visualization of the the summary, which involves

Table 1. Alpha values found for the combination function obtained with multi-class
kernel alignment

Feature GRAY LBP SOBEL RGB
α 0.1537 0.0507 0.1023 0.6932
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Fig. 3. Visualization of the Corel collection with 50 medoids highlighted

Fig. 4. Visualization of the image collection summary

domain knowledge and represents the entire collection with a higher precision than
a summary without domain knowledge.

5 Conclusions and Future Work

We have presented a method for involving domain knowledge in the construction of
image collection summaries. We use kernel alignment strategy for both, supervised
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and non-supervised learning in the context of summarization of large collections
of images. We propose a quantitative measure based on information theory for as-
sessing the quality of the summary. Results show that the summary is improved
when it is built following the proposed method. With the model proposed in this
work, it is possible to automatically classify a new image that arrives to the col-
lection in one of the clusters by calculating the combination function for the new
image and calculating its similarity with respect to the images of the summary.
In future work, we will evaluate other clustering techniques and we will assess the
strategy with real users using quantitative and qualitative measures that allow us
to fit the model.
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Abstract. Correlation filters for recognition of a target in nonoverlap-
ping background noise are proposed. The object to be recognized is given
implicitly; that is, it is placed in a noisy reference image at unknown co-
ordinates. For the filters design two performance criteria are used: signal-
to-noise ratio and peak-to-output energy. Computer simulations results
obtained with the proposed filters are discussed and compared with those
of classical correlation filters in terms of discrimination capability.

Keywords: correlation filters, pattern recognition.

1 Introduction

Since the pioneering work by VanderLugt [1], correlation filters have been exten-
sively studied for the purpose of pattern recognition [2-15]. Within the context
of pattern recognition, detection and location estimation are two very important
tasks. When a correlation filter is used, such tasks may be solved in two steps;
that is, first, the detection is carried out by searching the highest correlation
peaks at the filter output, and then the coordinates of the peaks are taken as
position estimations of targets in the scene image [2].

Different criteria have been proposed to evaluate the performance of correla-
tion filters [3] such as signal-to-noise ratio (SNR), peak sharpness, light efficiency,
discrimination capability, etc. Filters are designed by maximizing one of these
criteria. Many filters have been proposed when an input scene contains a target
distorted by additive noise. The matched filter (MF) [1] is derived by maximizing
the SNR. The phase-only filter [4] maximizes light efficiency. The optimal filter
(OF) [5] minimizes the probability of anomalous errors. Several filters have been
derived for the nonoverlapping scene model [6,7,8,9,10]. The generalized matched
filter [7] was derived by maximizing the ratio of the square of the expected value
of the correlation peak to the average output variance. The generalized optimum
filter [7] maximizes the peak-to-output energy ratio (POE). Recently [11], sev-
eral correlation filters were proposed for the scene model that takes into account
linear degradations of the both scene and target.

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 555–562, 2009.
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All of these filters, however, are derived under the assumption that a target
is explicitly known. However, in real-life situations the target is often given by a
reference image, which contains the reference object at unknown coordinates, as
well as a noisy background. In a recent paper [12] a signal model was proposed
that takes into account additive noise in the reference image to design filters
for detecting a target in overlapping noise. The considered signal model is close
to practical situations, in which observed and reference images are inevitably
corrupted by noise owing to the image formation process. In this paper, extend
that work to account for the presence of a nonoverlapping background in the
input scene. We propose two correlation filters optimized with respect to the
SÑR and POE. The performance of the filters is compared to that of classical
correlation filters.

2 Analysis

We use the additive signal model for the reference image and the nonoverlapping
signal model for the input scene. For simplicity, 1-dimensional notation is used.
Formally, the scene and reference image are given, respectively, by

so (x) = t (x− xs) + b (x) w̄ (x− xs) + ns (x) , (1)
r (x) = t (x− xr) + nr (x) , (2)

where t (x) is the target, so (x) is the observed scene with the target location
xs, r (x) is the reference image with the target located at the coordinate xr , and
ns (x) and nr (x) are noise signals in the input scene and the reference image,
respectively. b (x) is the nonoverlapping background, treated as the realization
of a stationary random process with the mean µs and the power spectral density
B0 (ω), and it is multiplied by w̄ (x) the inverse support function of the target.
Both ns (x) and nr (x) are assumed to be stationary random processes. It is also
assumed that the random processes and the random target locations xs and xr

are statistically independent of each other. We will design filters to be applied
to the centered scene, that is s (x) = so (x)−µs. S (ω) and T (ω) are the Fourier
transforms of s (x) and t (x), respectively, and Ns (ω) and Nr (ω) are the power
spectral densities of ns (x) and nr (x), respectively.

Since the target signal is not available, we look for a correlation filter of the
following form:

H (ω) = A (ω)R∗ (ω) , (3)

where A (ω) is a deterministic function, R (ω) is the Fourier transform of the
realization of the reference image given in (2), and ∗ denotes complex conjugate.
Actually, it is interesting to note that the filter is given by a bank of the transfer
functions determined by a realization of the random process nr.

Because the location of the target in the reference image is xr and not the
origin, the correlation output peak is expected at the coordinate xs − xr. Note
however that as long as the target is reasonably centered in the reference image,
the location estimation of the target in the input scene will be in the vicinity of
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the true location. Even if the exact location of the target can’t be determined,
knowing the relative position is useful for applications like tracking [16], where
what is important is the tracked object’s trajectory.

The modified generalized optimum filter (GOFAN) is derived by maximizing
the POE criterion:

POE =
|E {y (xs − xr)}|2

E
{
|y (x)|2

} , (4)

where E {·} denotes the expected value and and the over-bar denotes spatial
averaging, i.e. y (x) = (1/L)

∫
y (x) dx, L is the spatial extent of the signal

y (x). The expected filter output at the location of the correlation peak can be
calculated as

E {y (xs − xr)} =
1
2π

∫
A (ω)E

{(
R (ω) eiωxr

)∗
S (ω) eiωxs

}
dω . (5)

We can calculate E
{
|y (x)|2

}
as

E
{
|y (x)|2

}
=

1
2πL

∫
|A (ω)|2 E

{
|R∗ (ω)S (ω)|2

}
dx . (6)

Substituting (5) and (6) into (4) we get

POE =
L
∣∣∣∫ A (ω)E

{(
R (ω) eiωxr

)∗
S (ω) eiωxs

}
dω
∣∣∣
2

2π
∫
|A (ω)|2 E

{
|R∗ (ω)S (ω)|2

}
dx

, (7)

and applying the Cauchy-Schwartz inequality, the expression for the GOFAN is
given by

GOFAN (ω) =

(
|T (ω)|2 − µsT (ω)W ∗ (ω)

)
R∗ (ω)

(
|T (ω)|2 +Nr (ω)

)(
|Ts (ω)|2 + 1

2πB0 (ω) ∗
∣∣W̄ (ω)

∣∣2 +Ns (ω)
) ,

(8)
where Ts (ω) is the Fourier transform of the expected value of the centered input
scene, namely ts (x) = t (x) − µsw (x). w (x) is the support function for the
target, that is w (x) = 1− w̄ (x).

The modified matched filter (GMFAN) can be derived by maximizing the SÑR
criterion:

SÑR =
|E {y (xs − xr)}|2

Var {y (x)}
, (9)

where Var {·} denotes variance. The variance of the output is given by

Var {y (x)} =
1

2πL

∫
|A (ω)|2 Var {R∗ (ω)S (ω)} dω . (10)
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Substituting (5) and (10) into (9) we obtain the following expression for the
SNR:

SÑR =
L
∣∣∣∫ A (ω)E

{(
R (ω) eiωxr

)∗
S (ω) eiωxs

}
dω
∣∣∣
2

2π
∫
|A (ω)|2 Var {R∗ (ω)S (ω)} dω

. (11)

Applying the Cauchy-Schwartz inequality we obtain the expression for the
GMFAN

GMFAN (ω) =

(
|T (ω)|2 − µsT (ω) W∗ (ω)

)
R∗ (ω)

(
|T (ω)|2 + Nr (ω)

) (
|Ts (ω)|2 + 1

2π B0 (ω) ∗
∣∣W̄ (ω)

∣∣2 + Ns (ω)
)
− |T (ω) Ts (ω)|2

.

(12)

Note that if the reference image does not contain noise, the GMFAN and the
GOFAN are equal to the classical GMF and GOF, respectively.

It can be seen that the obtained filters require knowledge of the target Fourier
transform, and the support function. This contradicts the assumption that in-
formation about the target is unknown. However, estimations may be designed
from the available information. We can apply the smoothing Wiener filter [17]
to attenuate the effects of noise in the reference image. After that, we can apply
a threshold to the resulting image and obtain an approximate support function.

r̃ (x) = r (x) ∗ hwiener (x) , (13)

w̃ (x) =

{
1 r̃ (x) ≥ τ (µt, σt, σnr )
0 otherwise

. (14)

The optimum threshold depends on the statistics of the input noise and the
target. When the target mean and standard deviation are known, these values
can be used to improve the threshold selection. If such values are unknown, the
optimum threshold can be determined in terms of the input noise statistics. If the
support function estimation is not reliable owing to the presence of high levels
of noise in the reference image, we can approximate the optimum filter transfer
function by disregarding terms that require the support function. Figure 1 shows
the regions of the parameter space in which each estimation is best. When SNR
is high, we can correctly estimate the support function and use that with the
original reference image. When SNR is not high enough, it is better to use the
Wiener filtered reference image. And in some cases, when the input SNR is low
and the target occupies a large percent of the reference image, it is better to
not consider the estimated support function because it introduces errors inside
the area occupied by the target. In these cases the noise present outside of the
target is small and affects performance less than an incorrect estimation of the
support function. Target image estimations based on the three regions are given
as follows:

t̃ (x) =

⎧
⎪⎨
⎪⎩

r̃ (x) , if input SNR is low and target is large
r̃ (x) w̃ (x) , if input SNR is low and target is small
r (x) w̃ (x) , if input SNR is high

. (15)
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Fig. 1. Regions of the SNR-Area parameter space where each estimation is best: (a)
better not to estimate the support function, (b) better to estimate target using filtered
reference image, and (c) better to estimate target using estimated support function
and the original reference image

3 Computer Simulations

In this section we present computer simulation results. The performance of the
proposed filters are compared with that of the classical filters in terms of the
discrimination capability (DC). The DC is formally defined [5] as the ability of
a filter to distinguish a target from other objects in the scene. The DC can be
expressed as follows:

DC = 1−
∣∣CB (0)

∣∣2
|CT (0)|2

, (16)

where
∣∣CB (0)

∣∣ is the maximum value in the correlation plane over the back-
ground area, and

∣∣CT (0)
∣∣ is the maximum value in the correlation plane over

the area the target occupies in the input scene. The background area and the
target area are complementary. Values of the DC close to unity, indicate a good
capacity to discriminate the target against unwanted objects. Negative values of
the DC indicate a failure to detect the target. We show simulation results when
using generalized optimum filters only. Generalized matched filters do not con-
trol the output mean value which may result in a correlation peak being buried
in output noise that has a high mean [7] and thus perform poorly in terms of
DC.

The size of all images used in the experiments is 256× 256 pixels. All filters
are implemented using the Discrete Fourier Transform. The intensity values are
in the range [0–255]. We use the butterfly shown in Fig. 2(a) as a target. There
are two background types, shown in Fig. 2: deterministic and stochastic back-
grounds. The stochastic background is a realization of a colored random process
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with the mean and standard deviation of 115 and 40, respectively, and with the
horizontal and vertical correlation coefficients of 0.95. To guarantee statistically
correct results, 30 statistical trials of each experiment for either different po-
sitions of the target or realizations of random processes were performed. The
sample reference images are corrupted by additive white Gaussian noise.

Three filters are used in the experiments: the classical GOF which is designed
with all parameters known to establish an upper bound on performance; the pro-
posed GOFAN filter when estimating the target as r (x) w̃ (x), shown as GOFAN1
in the simulation results; and the proposed filter when estimating the target as
r̃ (x) w̃ (x), shown as GOFAN2.

(a) (b) (c)

Fig. 2. (a) The target used in the experiments, (b) deterministic background, (c) ex-
ample of stochastic background

3.1 Scenario 1: Stochastic Background

In order to determine the performance of the proposed filters, we performed ex-
periments for different realizations of the background process while the location
of the target within the scene was varied. The simulation results are shown in
Fig. 3. It can be seen that the performance for the GOF remains constant. It is
because this filter is designed with all parameters known and no noise presence.
It can also be seen that the proposed filters are able to detect the target even in
the presence of noise of a Std. Dev. of up to 20. When there are higher levels of
noise in the reference image performance drops quickly. This is because we are
unable to estimate the target support function and we also can not design the
filter by ignoring the support function, because the target information is mostly
destroyed by the presence of noise. It can be seen that performance behaves
similarly regardless of the level of noise present in the input scene.

3.2 Scenario 2: Deterministic Background

We also test the performance of the proposed filters in when the background
is a deterministic scene. The results are shown in Fig. 4. In this scenario the
performance of the GOF also remains constant because it is not affected by
the reference image noise. For the proposed filters, the mean value of the DC
decreases as the noise in the reference image surpasses the same threshold as in
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Fig. 3. Performance of correlation filters in terms of DC while varying the Std. Dev.
of the reference image noise. The scene has a stochastic background and additive scene
noise Std. Dev. of (a) 5 and (b) 15.
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Fig. 4. Performance of correlation filters in terms of DC while varying the Std. Dev.
of the reference image noise. The scene has a deterministic background and additive
scene noise Std. Dev. of (a) 5 and (b) 15.

scenario 1. Detection performance decreases more as the additive noise in the
input scene increases but the behavior remains the same.

4 Conclusion

In this paper new correlation filters for recognition of a target in nonoverlapping
background noise were proposed. The filters are derived from a new reference
model, which takes into account the presence of additive noise in the reference
image. With the help of computer simulations, we showed that the proposed
filters yield good results in the presence of moderate levels of noise. It was also
shown that the proposed filters are robust to different realizations of the reference
image noise.
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Abstract. Authorship verification is the task of determining whether
documents were or were not written by a certain author. The problem
has been faced by using binary classifiers, one per author, that make in-
dividual yes/no decisions about the authorship condition of documents.
Traditionally, the same learning algorithm is used when building the clas-
sifiers of the considered authors. However, the individual problems that
such classifiers face are different for distinct authors, thus using a single
algorithm may lead to unsatisfactory results. This paper describes the
application of particle swarm model selection (PSMS) to the problem of
authorship verification. PSMS selects an ad-hoc classifier for each author
in a fully automatic way; additionally, PSMS also chooses preprocessing
and feature selection methods. Experimental results on two collections
give evidence that classifiers selected with PSMS are advantageous over
selecting the same classifier for all of the authors involved.

1 Introduction

Author verification (AV) is the task of deciding whether given text documents
were or were not written by a certain author [13]. There is a wide field of applica-
tion for this sort of methods, including spam filtering, fraud detection, computer
forensics and plagiarism detection. In all of these domains, the goal is to confirm
or reject the authorship condition for documents with respect to a set of candi-
date authors, given sample documents written by the considered authors. In the
past decade this task was confined to stylography experts who should analyze
sample texts from authors to make a decision about the authorship of docu-
ments. However, the increasing demand for AV techniques and its wide scope of
application have provoked an increasing interest on the scientific community for
developing automatic methods for AV.

The scenario we consider is as follows. For each author, we are given sample
documents1 written by her/him as well as documents written by other authors.
Features are extracted from documents for representing them in an amenable
way for statistical modeling, a model is then built (based on the derived rep-
resentations for documents) for the author. When a new document arrives, the
1 We consider digital text documents only, although the proposed methods can be

applied to other type of documents (e.g., scanned handwritten documents) as well.

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 563–570, 2009.
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model must be able to decide whether the document was written by the author
or not. Thus, the AV task can be posed as one of binary classification, with a
classifier per author. Under this setting, sample documents for the author under
consideration are considered positive examples, whereas sample documents for
other authors are considered negative examples.

Usually, the same learning algorithm is used to build all of the classifiers corre-
sponding to the set of considered authors. However, the individual problem that
each classifier faces is different for distinct authors, thus there is no guarantee
that using the same algorithm for all of the authors would lead to acceptable
results. Also, while some features may be useful for building the classifier for
author “X”, the same features may be useless for modeling author “Y”. Thus,
whenever possible, specific features and classifiers should be considered for dif-
ferent authors. Unfortunately, manually selecting specific features and classifiers
for each author is impractical and thus we must resort to automatic techniques.

This paper describes the use of particle swarm model selection (PSMS) for the
problem of authorship verification. PSMS can select an ad-hoc classifier for each
author in a fully automatic way; additionally, PSMS also chooses specific prepro-
cessing and feature selection methods for each problem. This formulation allows
us to model each author independently, which results in a more reliable mod-
eling and hence in better verification performance. We conducted experiments
on two collections comprising different numbers of authors, samples, lengths of
documents and languages, which allows us evaluating the generality of the for-
mulation. Experimental results give evidence that classifiers selected with PSMS
are advantageous over selecting the same classifier for all of the authors involved.
Also, the methods selected with PSMS can be helpful to gain insight into the
distinctive features associated to authors. The rest of this paper describes related
work on AV (Section 2); our approach to AV based on PSMS (Section 3); exper-
imental results (Section 4) that show the relevance of the proposed formulation;
and the conclusions derived from this work (Section 5).

2 Related Work

Most of the work on AV has focused on developing specific features (stylometric,
lexical, character-level, syntactic, semantic) able to characterize the writing style
of authors, thus putting emphasis on feature extraction and selection [7,11,10,1],
see [13] for a comprehensive review. However, despite these features can be help-
ful for obtaining reliable models, extracting such features from raw text is a
rather complex and time consuming process. In contrast, in this work we adopt
a simple set of features to represent the documents and focus on the development
of reliable classification models.

The AV problem has been formulated either as a one-class classification
problem or as a one-vs-all multiclass classification task. In the former case, sam-
ple documents are available from a single author [10] (Did author “X” write the
document or it was written by any other author?), while in the second case, sam-
ples are available from a set of candidate authors [7,11,1] (give the most probable
candidate from a list of authors). This paper adopts the second formulation as it is
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a more controlled and practical scenario. Those works that have adopted the one-
vs-all paradigm consider as positive examples to documents written by an author
and negative examples to documents written by the rest of the candidate authors.
Then, binary classifiers are built such that they are able to determine whether un-
seen texts have been written by an author or not.

To the best of our knowledge, all of the reported methods adopting this formu-
lation have used the same learning algorithm to build the classifiers for different
authors [7,11,1]. However, using the same learning method for all of the authors
does not guarantee that the individual models are the best ones for each author.
Also, most of the related works have used the same preprocessing processes
and features for all of the authors. The latter leads to obtain consistent out-
puts across different classifiers, which can be helpful for authorship attribution.
Nevertheless, the individual modeling will not be as effective as if we consider
specific methods for each author. For that reason, in this work we propose using
particular models for each of the authors under consideration.

Model selection is the task of selecting the best model for classification given
a set of candidates [8]. Traditionally, a single learning algorithm is considered
and the task is to optimize the model’s parameters such that its generalization
performance is maximized [12]. A problem with most model selection techniques
is that they require users to provide prior domain-knowledge or to supply pre-
processed data in order to obtain reliable models [6]. PSMS is a more ambitious
formulation that selects full models for classification without requiring much su-
pervision [4]. Only a few methods have been proposed for facing the full model
selection problem, most notably the work by Gorissen et al. [5]. Unlike the latter
method, PSMS is more efficient and simple to implement, moreover, PSMS has
shown to be robust against overfitting because of the way the search is guided.

3 Particle Swarm Model Selection for Author Verification

Our approach to AV follows the standard scenario described in Section 1, using
PSMS for constructing the model for each author. Specifically, we are given N
sample documents, each written by one of M authors. Each document di is
represented by its bag-of-words, vi ∈ [0, 1]|V |, which is a boolean vector of the
size of the collection’s vocabulary V ; each entry j in vi

j indicates whether word
wj ∈ V appears in document di or not. We build M training data sets for binary
classification considering the bags-of-words of the N samples and assigning labels
to training examples in a different way for each data set. For each author Ci ∈
{C1, . . . CM} we build a data set Di such that we assign the positive label (+1)
to documents written by author Ci and the negative one (−1) to documents
written by other authors Cj:j �=i. Thus we obtainM training sets, each of the form
Di = {(v1, l1), . . . , (vN , lN)}, with li ∈ {−1, 1}. At this stage we apply PSMS
to select a specific classification model for each author, using the corresponding
data sets. Besides classifier, PSMS selects methods for preprocessing and feature
selection, and optimizes hyperparameters for the selected methods. The model
selected with PSMS is trained using the available data and tested in a separate
test set. The rest of this section describes the PSMS technique.
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3.1 Particle Swarm Model Selection

PSMS is the application of Particle swarm optimization (PSO) to the model
selection problem in binary classification [4]. Given a machine learning toolbox
PSMS selects the best combination of methods for preprocessing, feature selec-
tion and classification. Additionally, PSMS optimizes hyperparameters of the
selected methods. PSMS explores the classifiers space by means of PSO, which
optimizes the classification error using training data; as PSO searches both lo-
cally and globally, it allows PSMS to overcome, to some extent, overfitting [4].

PSO is a bio-inspired search technique that has proved to be very effective
in several domains [3]. The algorithm mimics the behavior of biological soci-
eties that share goals and present local and social behavior. Solutions are called
particles, at each iteration t, each particle has a position in the search space
xt

i =< xt
i,1, . . . , x

t
i,d >, and a velocity vt

i =< vt
i,1, . . . , v

t
i,d > value, with d the

dimensionality of the problem. The particles are randomly initialized and iter-
atively update their positions in the search space as follows xt+1

i = xt
i + vt+1

i ,
with vt+1

i = w × vt
i + c1 × r1 × (pi − xt

i) + c2 × r2 × (gi − xt
i); where pi is the best

position obtained by xi, gi is the best particle in the swarm, c1 and c2 constants
and r1, r2 random numbers, w is the so called inertia weight, see [3] for details.
The goodness of particles is evaluated with a fitness function specific for the task
at hand. PSO stops when a fixed number of iterations is performed.

In PSMS the particles are full models (i.e., combinations of preprocessing, fea-
ture selection and classification methods), codified as numerical vectors. The op-
timization problem is minimizing an estimate of classification error. In particular,
we consider the balanced error rate (BER) as fitness function; BER = E++E−

2 ,
where E+ and E− are the error rates in the positive and negative classes, re-
spectively. As the test data are unseen during training, the error of solutions
(i.e., full models) is estimated with k−fold cross validation (CV) on the training
set. Thus, the PSO algorithm is used to search for the model that minimizes the
CV-BER. The selected model is considered the classifier for the corresponding
author in AV. We consider the PSMS implementation included in the CLOP2

toolbox. Table 1 shows the methods from which PSMS can choose, see [4] for
further details. PSMS has reported outstanding results on diverse binary clas-
sification problems without requiring significant supervision [6,4], which makes
it attractive for many applications. The application of PSMS to AV arises nat-
urally, as we want to select specific full models for each author.

4 Experimental Results

We report results on two collections described in Table 2. The collections have het-
erogeneous characteristics which make them particularly useful to test the robust-
ness of PSMS to different training set sizes, dimensionality, languages and number
of authors. Both collections have predefined partitions for training/testing that
have been used in previous works for authorship attribution [2,9]. We kept the

2 http://clopinet.com/CLOP
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Table 1. Classification (C), feature selection (F) and preprocessing (P) methods con-
sidered in our experiments; we show the object name and the number of parameters
for each method

Object name Type # pars. Description
zarbi C 0 Linear classifier
naive C 0 Näıve Bayes
logitboost C 3 Boosting with trees
neural C 4 Neural network
svc C 4 SVM classifier
kridge C 4 Kernel ridge regression
rf C 3 Random forest
lssvm C 5 Kernel ridge regression
Ftest F 4 F-test criterion
Ttest F 4 T-test criterion
aucfs F 4 AUC criterion
odds-ratio F 4 Odds ratio criterion
relief F 3 Relief ranking criterion
Pearson F 4 Pearson correlation coefficient
ZFilter F 2 Statistical filter
s2n F 2 Signal-to-noise ratio
pc − extract F 1 Principal components analysis
svcrfe F 1 SVC- recursive feature elimination
normalize P 1 Data normalization
standardize P 1 Data standardization
shift − scale P 1 Data scaling

Table 2. Collections considered for experimentation

Collection Training Testing Features Authors Language Domain Ref.
MX-PO 281 72 8,970 5 Spanish Poetry [2]
CCAT 2,500 2,500 3,400 50 English News [9]

words that appear at least in 5 and 20 documents, for the MX-PO and CCAT col-
lections, respectively. We report average precision (P) and recall (R), as well as the
F1 measure, defined as F1 = 2×R×P

R+P , and the BER of the individual classifiers.
Besides applying PSMS as described in Section 3.1 (see FMS/1 below), we

investigate the usefulness of PSMS under two other settings that have not been
tested elsewhere. This is with the goal of evaluating the benefits of introducing
prior knowledge provided by the user. The considered settings are as follows:

– FMS/1 selects preprocessing, feature selection and classification methods.
– FMS/0 selects preprocessing and feature selection methods only.
– FMS/-1 hyperparameter optimization for a fixed classifier.

Through settings FMS/0 and FMS/-1, the user provides prior knowledge by
fixing a classification method. Therefore, better results are expected with these
settings. Besides using PSMS for the selection of classifiers, we also used the
classifiers shown in Table 1 with default parameters for comparison.

Table 3 shows the average BER and the F1 measure obtained by methods we
tried for both collections. For the FMS/0 configuration we fixed the classifier to
be zarbi for both collections, as this algorithm has no hyperparameters to opti-
mize and thus PSMS would be restricted to search for preprocessing and feature
selection methods. For FMS/-1 we tried different configurations, although the
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best results were obtained by fixing neural and svc classifiers for CCAT and
MX-PO, respectively.

From Table 3, we can see that classifiers selected with PSMS show better
performance than the individual methods. Interestingly, the best results were
obtained with the FMS/0 configuration. Note that we fixed a non-parametric
classifier and PSMS selected for preprocessing and feature selection methods.
Thus, despite the individual performance of zarbi is low, its performance after
selecting appropriate methods for preprocessing and feature selection is signif-
icantly improved. The performances of the FMS/1 and FMS/-1 settings are
competitive as well outperforming most of the individual classifiers for both
collections. Therefore, in absence of any knowledge about the behavior of the
available classifiers it is recommended to use PSMS instead of trying several
classifiers and combinations of methods for preprocessing and feature selection.

Table 3. Average BER and F1-measure for the considered methods in both collections

Col./Clas. zarbi näıve lboost neural svc kridge rf lssvm FMS/-1 FMS/0FMS/1
BER

MX-PO 34.64 30.24 29.08 28.59 30.81 31.90 48.01 33.52 26.18 23.68 26.88
CCAT 14.24 26.21 15.12 41.50 29.18 27.69 47.01 36.64 35.34 13.54 16.39

F1
MX-PO 46.26 52.93 53.18 59.25 54.57 52.52 6.66 48.76 58.28 60.37 57.09
CCAT 59.69 55.73 47.11 28.46 56.46 51.85 10.58 38.54 44.11 61.17 63.41

Table 4 shows the models selected by PSMS under the FMS/1 configuration
for the MX-PO data set. We can see the variety of methods selected, which are
different for each author. The BER of the first three authors is below the mean
of individual classifiers, while the BER of models for the last two authors is
high, even when non-linear models are used for the latter. This suggest that R.
Castellanos and R. Bonifaz are more complex to model, and that better features
may be needed for building the respective classifiers.

Table 4. Full models selected by PSMS, under FMS/1, for the MX-PO collection

Poet Preprocessing Feature Selection Classifier BER
E. Huerta standardize(1) - zarbi 10.28
S. Sabines - - zarbi 26.79
O. Paz normalize(0) Zfilter(3070,0.56) zarbi 25.09
R. Castellanos normalize(0) Zfilter(7121,0.001) kridge(rbf-γ =0.45) 33.04
R. Bonifaz shift-scale(1) - neural(u=3;iter=15) 35.71

Table 5 shows statistics on the selection of methods for the CCAT data set. As
with the MX-PO data set, the classifier that is mostly selected is zarbi, used for
68% of the authors, näıve, neural and lssvm come next, whereas logitboost and
rf were not selected. The BER for linear classifiers is below the averageBER for
FMS/1, while theBER of non-linear methods is above the mean, giving evidence
of the linearity of the problem. Most of the selected models included methods for
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preprocessing and feature selection. TheBER of classifiers that used feature selec-
tion methods was higher than that of classifiers that were not used. The most used
feature selection method was pc − extract, used for 19 models; other considered
methods were Ftest (5), Ttest (5), aucfs (4) and svcrfe (3).

Table 5. Statistics on selection of methods when using PSMS for the CCAT collection

Classifiers Feature Selection Preprocessing
zarbi näıve neural svc kridge lssvm With Without With Without

Frequency of selection
68% 10% 10% 2% 2% 8% 76% 24% 88% 12%

BER
14.22 9.88 23.42 3.82 44.01 33.51 14.14 22.28 15.64 16.50

Figure 1 shows the per-author F1−measure, the best result obtained was for
the author ‘Karl-Penhaul’ (F1 = 96.91%), which considered the three prepro-
cessing methods, and Ftest for feature selection together with a näıve classifier.
The classifier was built on 104 out of the 3, 400 features (i.e., words) available,
this means that about 100 words are enough for distinguishing this author; in-
terestingly, 35 out of the 104 words selected as relevant were not used in any
document of this author, the relevant words ‘state’ and ‘also’ were used in 41
out of 50 documents written by ‘Karl-Penhaul’.

On the other hand, the worst result was obtained for ‘Peter-Humphrey’ (F1 =
14.81%), which used normalize for preprocessing and an lssvm classifier. When
we used the zarbi classifier with the FMS/0 setting, the classifier selected for
this author obtained F1 = 45.71%, such classifier used the three preprocessing
methods and Zfilter for selecting the top 234 more relevant features. This rep-
resents an improvement of over 30% in terms of F1 measure, and an important
improvement in terms of processing time, also, the result suggest the author
‘Peter-Humphrey’ can be better modeled with a linear classifier.
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5 Conclusions

We have described the application of particle swarm model selection (PSMS)
to the problem of authorship verification. The proposed approach allows us to
model each author independently, developing ad-hoc models for each author.
This is an advantage over previous work that has considered a same learning
algorithm for all of the authors. PSMS also selects methods for preprocessing
and feature selection, facilitating the design and implementation processes to
users. Experimental results show that the proposed technique can obtain reliable
models that perform better than those in which the same learning algorithm is
used for all of the authors. Results are satisfactory, despite we have used the
simplest set of features one may try (i.e., the bag-of-words representation); better
results are expected by using more descriptive features. PSMS can also be helpful
for analyzing what features are more important for building classifiers for certain
authors, which allows us to gain insight into the writing style of authors. Future
work includes extending the use of PSMS for the task of authorship attribution
and analyzing the writing style of authors by using models selected with PSMS.
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Abstract. This paper tackles the image characterization problem from
a statistical analysis of local patterns in one or several images. The in-
duced image characteristics are not defined a priori, but depends on the
content of the images to process. These characteristics are also simple
image descriptors and thus considering an histogram of these elementary
descriptors enables to apply ”bags of words” techniques. Relevance of the
approach is assessed when dealing with the image recognition problem
in a robot application framework.

Keywords: Image recognition, Vector quantization, Histogram compar-
ison.

1 Introduction

Local image description techniques usually relate to interest point detection
methods. Many image processing methods define the notion of interest point
from using a theoretical model of gray level variations on a local image neigh-
bourhood [1], [2], [3]. More recent approaches combine interest points to image
descriptors. A typical approach is the SIFT method which computes histograms
from gradient orientations near interest points locations. [4] gives an overview of
these various approaches which have often been used in ”bags of words” methods
for image indexing applications or robot navigation tasks such as Simultaneous
Localization and Mapping of the Environment (SLAM). All of these techniques
define the notion of interest point from designing an a priori model of what is a
corner or some other interesting geometric element and so elaborating a model of
what is the ideal gray level variation in the neighbourhood of the corresponding
image points.

Others approaches aim at analysing images through statistical studies con-
cerning the appearance of local image configurations (patterns). Thanks to a
coding phase the number of patterns can be decreased and the Zipf law can be
applied to model their distribution in the images [5]. This model enables to char-
acterize texture complexity but gives no piece of spatial information as for the
interest area location. This difficulty can be got round by previously partitioning
the image into small regions before carrying out any statistical analysis. This is
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the way [6] characterizes every region with a 58-value local binary pattern (LPB)
histogram and then concatenates the various image histograms to compose a sin-
gle vector which is expected to be peculiar to the image being processed. This
method has been efficiently experimented in facial expression recognition. In [7]
a codebook is built from quantizing gray level image neighbourhoods and used
within the context of texture recognition.

Our study is concerned primarily with automatic classification of basic im-
age patterns, without any prior knowledge regarding their configuration. These
patterns are local image neighbourhoods, we propose to transform before pro-
cessing, in order to give the approach the desired invariance properties. How
many classes are obtained, depends on a similarity threshold given as input to
the algorithm. Next, we propose to characterize the images from the statisti-
cal properties of the detected patterns, through ”bags of words” techniques. A
pattern codebook is built from a subset of images (learning step) and then ap-
plied to generate a feature histogram for every image (analysis step). Section 2
gives details about this extraction of characteristics. The various histograms are
stored in a database for being used as feature vectors later. Image recognition
tasks can be made by comparing the new histogram with the registered indi-
vidual histograms (section 3) and selecting the best match as the recognition
result. Section 4 evaluates the effectiveness of this method in a piece recognition
framework with several comparison functions.

2 Characteristics Extraction

This section deals with the technique of codebook generation, including a K-
means classification method.

2.1 Algorithm

We consider very basic image structures composed of image neighbourhoods.
For each neighbourhood, we assume to be of size k (let us note k = n× n), we
pick up the pixels intensities to compose vectors in a k-dimensional Euclidean
space in case of a gray level image, or in a mk-dimensional space in case of a
m-component image (e.g. colour image).

An incremental (K-means modified) clustering method is applied to construct
the codebook (learning step). Then, during the analysis step every new vector
is identified to a codeword. The codebook construction is based on three steps:

Step 1. Begin with an initial codebook.
Step 2. For each neighbourhood, find the nearest neighbour in the
codebook.
Step 3. If the distance to this codeword is less than a given
radius denoted dmax afterwards, compute the new centroid and
replace the codeword with it. Otherwise add the new word to the
codebook.
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2.2 Preliminary Image Transformation

The clustering algorithm can be applied directly on the original image, but in order
to give the algorithm some convenient invariance properties a preliminary image
transformation should be useful. The overall process is illustrated in Fig. 1 where
the pre-processing step is represented with the spatio-temporal function Ψ .

Fig. 1. Overall principle of the algorithm (with k = 9)

As we are more particularly concerned with invariance to lightning change, we
propose an implementation in which the output of the pre-processing step repre-
sents the image gradient arguments. We suggest to code the resulting image data
with 16 values, which means a π/4 quantization step. When considering colour
images, only the argument of the gradient which have the maximal magnitude
(computed as in [11]) is kept, if this magnitude is above a given threshold.

2.3 Distance Function

Whether being concerned with the training step or with the analysis step, the
vectors extracted from an image have to be compared to those gathered in the
dictionary. The metric to use depends on whether or not the image has been
pre-processed.

Referring to an original image, we propose this metric to be represented by
the Euclidian distance between the two vectors after they have been normalized.
Let us assume that x and y are the two normalized vectors to compare, the
distance between these vectors is given by:

E =

√√√√ N∑
i=1

(xi − yi)2 (1)
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As this metric is representative of the angle and does not consider the vector
modulus, it is supposed to be invariant to illumination changes. The algorithm
elaborated with this metric will be denoted algorithm 1 afterwards.

The alternative technique we propose to apply consists in pre-processing the
original image in order to make each of the vector components invariant to
illumination changes. So, we propose that this step comes down to replace each
pixel by a representation of the argument of the gradient. In order to keep only
the significant values, only the pixels whose gradient is above a given threshold
are considered.

A quantization step of π/4 leads us to get a 16-value code that have to be
completed with an additional value to code the non-significant data. Regardless
to the original image the resulting data are reduced and a simple distance can be
elaborated to compare two vectors. We propose to use the following one, based
on the L1 norm:

E =
N∑

i=1

|αi − βi| (2)

where αi and βi are respectively the ith component of the two vectors to com-
pare. The algorithm elaborated with this metric will be denoted algorithm 2
afterwards.

3 Histogram Comparison

The analysis step consists in searching for every image neighbourhood, the near-
est vector in the codebook. The various results enable either to quantize the
original image or to implement an efficient histogram algorithm. At the end of
this step, any image is supposed to be characterized by a single histogram and
so comparing the obtained histograms between them should indicate how much
the corresponding images are similar. This section addresses this problem of his-
togram comparison through a brief presentation of a few possible comparison
functions drawn from statistics, signal processing and geometry. Table 1 gives
expressions for such convenient functions, most of them found in the literature,
by dividing them into two groups according to their origin. In this table, we
assume the vectors X and Y represent the two histograms to be compared, and
the vector A is an average histogram as far as such a piece of information is
available.

4 Application to Place Recognition

The experiments have been conducted on the INDECS database [9][10], which
contains pictures of five different rooms acquired at different times of the day
under different viewpoints and locations. The system is trained for all the pic-
tures acquired under a given illumination condition and tested under the other
illumination conditions for the remaining pictures. For a given picture, the aim
is to recognize the room in which it has been acquired.
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Table 1. Distance functions considered for histogram comparison

min/max based functions χ2 and Bhattacharyya [8] based functions
⋂

(X, Y ) =
∑

i

min(Xi, Yi) χ2(X, Y ) =
∑

i

(Xi − Yi)2

Yi

⋂
av(X, Y ) =

∑
i

1
Ai

min(Xi, Yi) χ2
m(X, Y ) =

∑
i

(Xi − Yi)2

(Xi + Yi)
⋂

yav(X, Y ) =
∑

i

Yi

Ai
min(Xi, Yi) χ2

av(X, Y ) =
∑

i

(Xi − Yi)2

Ai(Xi + Yi)

Ψ(X, Y ) =
∑

i

min(Xi, Yi)
max(Xi, Yi)

Bha(X, Y ) =

∑
i

√
XiYi

√√√√
∑

i

Xi

√√√√
∑

i

Yi

Ψav(X, Y ) =
∑

i

min(Xi, Yi)
Ai max(Xi, Yi)

Bhaav(X, Y ) =

∑
i

√
XiYi

Ai
√√√√
∑

i

Xi

√√√√
∑

i

Yi

The first tests have been done with our two algorithms in order to evaluate
the different distance functions used for histogram comparison. They consist to
evaluate the classification rate (that is the successful room recognition rate) for
every image of the database, by giving each image the same weight. For better
comparison with the results obtained in [9] (where the pictures containing less
than 5 interest points were rejected) we choose to discard the images whose
histogram contains no bin. This concerns about 1% of the total number of images.
The results are plotted on figure 2 and figure 3. They indicate that the best
results are obtained with Bhattacharyya metric when we consider algorithm 1
and the χ2

m metric when we consider algorithm 2. Using this last metric, the
classification rate of algorithm 2 are around 80% and the best rate is 82.42%
with dmax = 16. The performances of algorithm 1 are weaker, but the overall
performance increases when dmax decreases. However, the evaluation has not
been done for dmax inferior to 0.35 as for this value the algorithm 1 has a
great number of clusters (6 319 clusters) and consequently becomes too slow.
Figures 4(a) and 4(b) illustrate the swift variation of the number of clusters
when dmax decreases, for both algorithms.

The classification rate is then calculated separately for each room and ac-
cording to [9] a single measure of performance is computed by averaging all the
results with equal weights. These results are plotted on figure 5 and figure 6, with
regard to the results obtained in [9] and [10] which use a local feature detector
constructed from the combination of the Harris-Laplace detector and the SIFT
descriptor. These figures clearly indicate that the performance measure obtained
with our algorithm is the best, regardless of which training set is chosen.
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Fig. 2. Global place classification rate using algorithm 1

Fig. 3. Global place classification rate using algorithm 2
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Fig. 4. Number of clusters with regard to the radius dmax, using (a) Algorithm 1, or
(b) Algorithm 2



Image Characterization from Statistical Reduction of Local Patterns 577

Fig. 5. Classification rates and performance measure after training the algorithm with
”cloudy” illumination condition

(a) (b)

Fig. 6. Classification rates and performance measure after training the algorithm with:
(a) ”nighty” or (b) “sunny” illumination condition

5 Conclusion

This study has tackled the image characterization problem by proposing a new
approach based on a statistical analysis. Though this approach is very simple, it
has been proven to be efficient and it has been empirically validated in the robotic
framework of place recognition. Studies are in progress in order to improve the
classification rates (splitting of the image into small regions, higher order statistic
reduction) or to lead to real-time implementations of the proposed method.
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6. Feng, X., Pietikäinen, M., Hadid, A., et al.: Facial Expression Recognition Based
on Local Binary Pattern. Pattern Recognition and Image Analysis 17(4), 592–598
(2007)

7. Varma, M., Zisserman, A.: A Statistical Approach to Material Classification Using
Image Patch Exemplars. To be published in IEEE PAMI

8. Thacker, N.A., Aherne, F.J., Rockett, P.I.: The Bhattacharyya Metric as an Ab-
solute Similarity Measure for Frequency Coded Data, Kybernetika, Prague, June
9-11 (1997)

9. Pronobis, A.: Indoor Place Recognition Using Support Vector Machines, Master’s
Thesis in Computer Science (2005)

10. Pronobis, A., Caputo, B., Jensfelt, P., Christensen, H.I.: IA Discriminative Ap-
proach to Robust Place Recognition. In: ICIRS, Beijing, China (2006)

11. Zenzo, S.D.: A note on the Gradient of a multi-image. In: CVGIP, vol. 33, pp.
116–125 (1986)



Semi-supervised Robust Alternating AdaBoost�
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and Enrique Canessa2
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Abstract. Semi-Supervised Learning is one of the most popular and
emerging issues in Machine Learning. Since it is very costly to label
large amounts of data, it is useful to use data sets without labels. For
doing that, normally we uses Semi-Supervised Learning to improve the
performance or efficiency of the classification algorithms.

This paper intends to use the techniques of Semi-Supervised Learning
to boost the performance of the Robust Alternating AdaBoost algorithm.

We introduce the algorithm RADA+ and compare it with RADA, re-
porting the performance results using synthetic and real data sets, the
latter obtained from a benchmark site.

Keywords: Semi-Supervised Learning, Expectation Maximization, Ma-
chine ensembles, Robust Alternating AdaBoost.

1 Introduction

In supervised learning, classification tasks require training data with a class label.
However, there are many real problems where the existence of labeled data is
scarce and unlabeled data is abundant, either due to its cost or because it is
difficult to obtain it (i.e. classification of text and web pages, processing medical
imaging, diagnosis of industrial processes, speech recognition, protein structures,
etc.). For this reason, it is necessary to build classifiers that work with a small
amount of labeled data and a large amount of unlabeled data so they can learn
from both. The main idea behind the algorithm RADA [1] (acronym for Robust
Alternating AdaBoost) is to alternate the use of classical and inverse AdaBoost
in order to lessen the impact of data outliers in the final classification.

In this paper we propose a generalization of the algorithm RADA for use in
Semi-Supervised learning problems. Basically, the aim is to make use of the ro-
bust properties of the algorithm and extend it to take advantage of unlabeled
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data to train the weak classifiers. In Section 2 we briefly introduce the algo-
rithm RADA. Section 3 presents the analysis of the generalization of RADA to
Semi-Supervised classification. In Section 4 we present the proposed algorithm
RADA+. Experimental results are presented with both synthetic data and real
data in Section 5. The last section is devoted to concluding remarks.

2 Robust Alternating AdaBoost

RADA is an acronym for Robust Alternating AdaBoost. As its name suggests,
this algorithm combines the power of classical and inverse AdaBoost to reduce
the impact of data outliers in training samples. The RADA algorithm bounds the
influence of the outliers to the empirical distribution, it detects and diminishes
the empirical probability of ”bad” examples, and it performs a more accurate
classification under contaminated data.

RADA computes the relative weight of each instance in the training set using
a different equation. Originally AdaBoost obtains the relative weight as follows:

αt =
1
2

ln
(

1− εt
εt

)
(1)

RADA uses a robustified equation of αt for smoothing the impact of an outlier
data:

αt =

⎧
⎪⎨
⎪⎩

1
2

r

√
ln
(

1−εt

εt

)
+ αγ εt < γ

1
2 ln

(
1−εt

εt

)
εt ≥ γ

(2)

where αγ = 1
2 ln

(
1−γ

γ

)
− 1

2
r

√
ln
(

1−γ
γ

)
is a constant needed so that equation (2)

is continuous.
Applying the previous equation will prevent the empiric distribution from

growing considerably in one step for any sample. However, the empirical dis-
tribution is updated at each stage, and after a few iterations the probability
weight of the samples that were misclassified repeatedly, will have bigger values
compared to other samples. To solve this problem, Allende-Cid et al. [1] intro-
duces two new variables to the algorithm: an inverting variable β(i) and an age
variable age(i) for each example i = 1 . . .n.

When the variable β(i) value is 1, the algorithm behaves as the classical
AdaBoost, i.e., the empirical distribution increases when a sample is misclassified
and decreases the value otherwise. If the value of β(i) = −1, then the algorithm
behaves like the Inverse AdaBoost, i.e., decreases the empirical distribution when
a sample is misclassified and increases it otherwise. The variable age(i) counts
the number of times a sample i has been misclassified, if the number exceeds a
threshold τ then the value of β(i) is changed to −1 (originally the value of β(i)
for all samples is 1).
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3 RADA Semi-supervised Generalization

The algorithm RADA compares the actual values of the class versus the value
estimated by the ensemble to update the sampling distribution. Thus those in-
stances that have been difficult to classify, i.e., the classification of the weak
classifier differs from the actual class, will have a bigger probability to be se-
lected in the training set on the next iteration. One of the main problems that
arise from the method presented is that an unlabeled data has no “real” class
to compare it with.

RADA algorithm defines the margin of an instance obtained in the i-th iter-
ation by the equation

αTβ(i)yihT (xi) (3)

The problem, therefore, lies in defining the margin for an unlabeled data. To
solve this problem, we take advantage of the cluster and manifold assumptions
[5]. This seeks to improve the margin of classification (equivalent to minimize
the error of the ensemble) through the selection of unlabeled data with a higher
confidence rating, and assigns the class predicted by the current classifier.

To allow the same margin to be used for both labeled and unlabeled data,
we use the same definition of pseudo-class as [4]. A subset of labeled data
in addition to a group of unlabeled data and their pseudo-class, are used for
training the weak classifier in the next iteration. This same strategy is used
by algorithms such as ASSEMBLER [4], Self-Training [10] and Semisupervised
MarginBoost [6].

First we find a mechanism to define the margin of an unlabeled data. For that
we use the same function used in RADA, defining the base classifier as hT (x) :
IR → {−1, 1} where hT is the T -th classifier in the ensemble. The set of training
labeled data, L, is n-dimensional type of x1, x2, . . .xn with their respective classes
{−1, 1}. The classifier of the ensemble HT (x) is a linear combination of classifiers
in step T

HT (x) = sign

(
T∑

t=1

αtht(x)

)
(4)

where αt is the equivalent weight in the algorithm RADA.
Now when adding a unlabeled data set, U , a margin associated with these

data must be defined (as in the case of labeled examples). However, there is no
knowledge of the true value of the class of the data, so following [6,3,8,11] we
define the margin for an unlabeled data xi as

|hT (xi)| (5)

since the above expression is an absolute value, one can apply a mathematical
simplification to represent this term

yihT (xi) (6)
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This allows to generalize the concept for both labeled and unlabeled data. If xi

is a labeled data, then yi is the known class, on the contrary, if xi is a unlabeled
data, then yi represents the pseudo-class (as defined above).

Once the problems of the margin were solved, we used the framework
Expectation-Maximization (EM) [9]. EM is a popular iterative algorithm for
maximum likelihood estimation in problems with unlabeled data. It consists two
steps: the Expectation step and the Maximization step. The first step consists in
classifying the unlabeled data based on the current hypothesis. Then the Max-
imization step re-estimates the parameters based on all the data (labeled and
unlabeled with a pseudo-class). This leads to the next iteration of the algorithm,
and so on. It has been proved that EM converge to a local minimum when the
model parameters stabilize [9].

4 Semi-supervised Robust Alternating AdaBoost

In this section we present the proposed algorithm Semi-Supervised Robust Alter-
nating AdaBoost (RADA+). The main idea of this proposal is to add unlabeled
data, after a certain number of training epochs j, to the training data set in
order to enhance the overall performance of the algorithm.

The developed framework is the following: At first we will take the labeled
data and will train a non-ensemble based supervised classifier with it (in this
particular case we took the SVM algorithm and trained it with the labeled data).
After a number of j training epochs we compare the result of the Hj classifier
with the SVM algorithm. If the result obtained from both of the classifiers is
the same, we add these data examples to the training data set, hopefully to
enrich the training phase of the algorithm. From the j+1 iteration on we use an
EM approach to update the classification of the unlabeled data with the strong
classifier Hj+1. The fundamentals behind our approach is to prove the impact
of the strong classifier Hj on the weak classifiers. For this reason we propose to
add the unlabeled data to the training data set in an iteration where the strong
classifier is robust enough so as not to affect the final classification.

The parameters are defined in the following way:

Dj(xU ) = max
x∈U

Dj(x), age(i) = 0, β(i) = 1

Dj(xU ) is the initial weight of the unlabeled data examples when they are added
to the training data set. We chose the maximum because we think that it is
important that these examples are chosen when the resampling is made.

Algorithm 1 shows our proposed Semi-Supervised Alternating AdaBoost al-
gorithm.

5 Experimental Results

In this section we empirically show the performance of our Semi-Supervised
RADA (RADA+) model proposal compared to the RADA algorithm, for both
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Algorithm 1. RADA+ Algorithm
1: Training Data Set L = {(x1, y1), . . . , (xnl , ynl )} with nl elements, where xi ∈ X

and yi ∈ Y = {−1, +1}
2: Unlabeled Data Set U = {xnl+1, . . . , xnl+nu} with nu elements, where xi ∈ X
3: Choose: τ age threshold, γ limit threshold, the robust parameter r and t = 0.
4: Train the non-ensemble based classifier with the training data set. Then perform

a classification of the unlabeled data U with the classifier and assign them the
corresponding pseudo-class y.

5: D1(i) = 1
nl

, β(i) = 1 and assign the age(i) = 0 variable to each sample (xi, yi), i =
1, . . . , nnl

6: repeat
7: Increment t by one.
8: Select a bootstrap sample Zt from Z with distribution Dt.
9: Construct ht : X → {−1, +1} classifier using the bootstrapped sample Zt as the

training set.
10: Calculate the ensemble error in step t:

εt = Pr
i∼Dt

[ht (xi) �= yi] =
n∑

i:ht(xi) �=yi

Dt(i)

11: Calculate αt as in (2).

12: if t = j then
13: Classify the unlabeled data U with Ht−1.
14: if Ht−1(xu) = y(xu) then
15: Add xu to the training set Z
16: Set the distribution Dj(xu) = maxx∈Z Dj(x), age(xu) = 0 and β(xu) = 1
17: end if
18: end if
19: if t ≥ j + 1 then
20: Classify the unlabeled data that entered in the iteration j with Ht−1

21: Update the pseudo-class
22: end if
23: Update distribution

Dt : Dt+1 =
Dt(i)

Wt
× e(−αtβ(i)yiht(xi))

where Wt =
∑

i Dt(i)
24: Final hypothesis Ht in iteration t is given by:

Ht = sign

(
t∑

k=1

αkhk(x)

)

25: Classify Z = (x1, y1), . . . , (xn, yn) with Ht

26: if Sample (xi, yi) was correctly classified by Ht (meaning that Htyi > 0) then
27: age(i) = 0 y β(i) = 1
28: else
29: Increment age(i) by one
30: If age(i) > τ then β(i) = −1 and age(i) = 0
31: end if
32: until Stopping criterion is met
33: Output: hypothesis Ht(x)
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Synthetic and Real data sets; the latter was obtained from the UCI Machine
Learning Repository [2].

The data of both synthetic and real data sets were separated in labeled,
unlabeled and test sets. The results reported for each model correspond to
the mean value of the computed metrics, over 20 runs, using the same data
sets.

For the synthetic data we used the following proportion labeled/unabeled
data: 1%, 5% and 10%. For the real data sets, we used the following propor-
tion labeled/unlabeled data: 5%, 10% and 20%. The difference lies on the data
sets sizes, for the synthetic sets the total amount of data analyzed was 15000 in-
stances, instead for the real data sets the amount of total data was approximately
5000 instances. The classifier used in the algorithms is the Bayesian Classifier
(QDA) (see [7]). The non-ensemble based clasifier used to determine whether
to add unlabeled data to the test set or not, was a Soft-margin Support Vector
Machine with a Sequential Minimal Optimization method to find the separating
hyperplane.

For the synthetic experiment we created a synthetic data set {(xi, yi)}n
i=1, as

an independent sample obtained from a mixture of gaussian distributions labeled
with the class {−1, 1}. For more information on the details of the synthetic data
sets, please refer to [1].

Table 1 shows the summary results of the performance evaluation on the
synthetic data of the RADA and RADA+ algorithms, with 1%, 5% and 10%
labeled data. As we can observe in the Test Error column, RADA and RADA+
have very similar behavior specially for the presence of a low percentage of
labeled data. However, this radically changes when the amount of labeled data
increases, i.e. 10%. Nevertheless RADA+ obtained good results in the training
set, mainly because of the EM framework.

Table 1. Summary results of the performance evaluation of the RADA and RADA+
algorithms with 5% and 10% outliers

Labeled Algorithm Outliers T Train Error Train Min. Test Error Test Min.

1%

RADA 5% 33.83 23.87 ± 10.44 15.19 25.72 ± 9.48 17.45
RADA+ 5% 15.8 7.56 ± 11.52 0.42 25.88 ± 4.52 20.14
RADA 10% 32.1 26.71 ± 7.79 16.36 26.21 ± 7.12 16.81
RADA+ 10% 13.7 8.04 ± 12.28 0.50 25.69 ± 4.05 18.63

5%

RADA 5% 25.7 25.58 ± 1.55 24.16 25.56 ± 1.47 24.11
RADA+ 5% 20.2 9.06 ± 10.49 2.36 24.52 ± 1.72 22.25
RADA 10% 15.1 23.36 ± 0.84 22.65 23.87 ± 0.83 23.14
RADA+ 10% 14.6 8.60 ± 9.81 2.28 25.07 ± 1.83 22.31

10%

RADA 5% 14.1 25.46 ± 1.16 24.08 25.42 ± 1.14 24.07
RADA+ 5% 2.6 11.65 ± 8.20 3.52 39.84 ± 11.75 24.37
RADA 10% 16.7 23.25 ± 0.95 22.26 23.36 ± 0.87 22.47
RADA+ 10% 6.7 11.24 ± 7.81 3.63 36.03 ± 11.01 22.81
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Table 2. Summary results of the performance evaluation of the RADA and RADA+
algorithms with real data sets

Data sets % Labeled Algorithm T Train Error Train Min. Test Error Test Min.

5% RADA 30.9 7.75 ± 6.22 0.73 9.55 ± 5.86 2.89
RADA+ 16.2 0.67 ± 1.04 0.07 3.24 ± 0.38 2.91

Page
10%

RADA 22.6 8.50 ± 8.52 1.69 9.72 ± 8.41 3.03
Blocks RADA+ 22.4 0.90 ± 1.17 0.22 3.48 ± 0.53 3.08

20%
RADA 20.5 8.57 ± 1.96 7.11 7.90 ± 1.83 6.61
RADA+ 29.3 3.46 ± 4.35 0.95 4.93 ± 3.14 2.96

5% RADA 9.2 0.35 ± 1.34 0.00 11.29 ± 0.44 10.23
RADA+ 24.5 0.40 ± 1.55 0.00 10.73 ± 0.55 9.99

Wave
10%

RADA 2.5 0.99 ± 2.17 0.13 12.77 ± 0.79 10.53
Forms RADA+ 19.3 1.00 ± 2.15 0.02 11.21 ± 0.62 10.30

20% RADA 5.4 3.39 ± 2.73 1.42 11.09 ± 0.43 10.05
RADA+ 30.0 2.69 ± 3.09 0.71 10.26 ± 0.49 9.62

We tested two real data sets: Page Blocks and Wave Forms. In these data sets
we changed the number of classes, mainly because both data sets had more than
two. Table 2 shows the summary results of the performance evaluation on these
real data sets of the RADA and RADA+ algorithms.

We must note that as the training information decreases, the performance gap
between the proposed algorithm RADA+ and RADA becomes larger. Note that
the difference in the training error is quite noticeable. This is due to the use of
the framework EM in the algorithm, specially when the labeled data is scarce,
which is the same result obtained for the synthetic data sets. In the T column,
we observe a different behavior regarding the results obtained for the synthetic
data sets. The number of iterations is always for the RADA+ algorithm than for
RADA, however the minimum test error is lower, wish indicates that RADA+
reaches a smaller error.

6 Concluding Remarks

The results were mixed, mainly because of the difference in the data sets used
in experiments. In the real data sets, RADA+ outperforms RADA in both of
the data sets, however the results obtained in the Page Blocks experiments were
better than the ones obtained in Wave Forms. In the synthetic data set the
performance of RADA+ was only slightly better than the one obtained with
RADA, but still there was an improvement.

It is important to analyze the effect of the algorithm Support Vector Machine
(SVM) in the proposal. The SVM is an algorithm widely used in classification
tasks, unfortunately it has a bad performance in the presence of data outliers.
Thus, the use of SVM in this proposal is beneficial for noiseless data, but for
noisy data it is rather harmful. This behavior is observed in the synthetic data
sets, where the results obtained where not as good as the ones obtained in the
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real data sets. This leaves open the opportunity to explore the use of differ-
ent supervised algorithms with the proposed RADA+. It is also likely that the
semi-supervised learning paradigm suffers from outliers. Since it tries to use dis-
tributional information from the unlabeled data, if the data contains outliers
that discovered distributional information might be misleading. Further studies
are needed to prove these conclusions.

This paper does not intend to corroborate the robustness properties of the
algorithm RADA, but rather use the concepts of Semi-Supervised Learning to
improve performance of the algorithm with large amounts of unlabeled data.
The experimental results proved that the performance of the RADA+ algorithm
is better than the one for RADA under those conditions.
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Abstract. Monitoring media broadcast content has deserved a lot of
attention lately from both academy and industry due to the technical
challenge involved and its economic importance (e.g. in advertising). The
problem pose a unique challenge from the pattern recognition point of
view because a very high recognition rate is needed under non ideal
conditions. The problem consist in comparing a small audio sequence
(the commercial ad) with a large audio stream (the broadcast) searching
for matches.

In this paper we present a solution with the Multi-Band Spectral En-
tropy Signature (MBSES) which is very robust to degradations commonly
found on amplitude modulated (AM) radio. Using the MBSES we ob-
tained perfect recall (all audio ads occurrences were accurately found
with no false positives) in 95 hours of audio from five different am radio
broadcasts. Our system is able to scan one hour of audio in 40 seconds if
the audio is already fingerprinted (e.g. with a separated slave computer),
and it totaled five minutes per hour including the fingerprint extraction
using a single core off the shelf desktop computer with no parallelization.

1 Introduction

Monitoring content in audio broadcast consists in tagging every segment of the
audio stream with metadata establishing the identity of a particular song, adver-
tising, or any other piece of audio corresponding to feature programming. This
tagging is an important part of the broadcasting and advertising businesses,
all the business partners may use a third party certification of the content for
billing purposes. Practical examples of application of this tagging include re-
mote monitoring of audio marketing campaigns, evaluating the hit parade, and
recently (in Mexico at least) monitoring announcements from political parties
during election processes.

There are several alternatives to audio stream tagging or media monitor-
ing, current solutions are ranged from low tech (e.g human listeners), to digital
content tagging, watermarking and audio fingerprinting. In this paper we are
interested in automatic techniques, where the audio stream can be analyzed
and tagged without human intervention. There are several commercial turnkey
solutions reporting about 97% precision with a very small number of false pos-
itives, the most renowned is Audible Magic http://www.audiblemagic.com/
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with massive databases of ads, songs and feature content. The core of the auto-
mated techniques is the extraction of an audio fingerprint, which is a succinct
and faithful representation of the audio stream, in both the audio stream and the
content to be found in the broadcast. This change of domain serve two purposes,
on the one hand it is faster to compare the succinct representation. On the other
hand, since only significant features of the signal are retained very high accuracy
can be obtained in the comparison. In this paper we present a tagging technique
for automatic broadcast monitoring based on the MBSES. Our technique has
perfect recall and is very fast, scoring from 12 to 40 times faster than real time
broadcasting in a single-core standard computer with no parallelization. As de-
scribed in the experimental part we were able to improve the recognition rate of
trained human operators working on a broadcast monitoring firm.

2 Related Work

It is a fact that most audio sources can be tagged prior to the broadcasting,
specially with the advent of digital radio. Even in the case of analog audio
broadcasting it is possible to embed digital data in the audio without audible
distortion and persistent to degradations in the transmission. This technique,
called audio watermarking, is suitable for applications where the broadcast sta-
tion agree to modify the analog content, and needs a receiver capable of decoding
the embedded data on the end point. This type of solutions are described in [1]
and [2]. Usually they are sold as turnkey systems with both the transmitter and
the receiver included. Watermarking is not suitable for doing audio mining or
searching in large audio logs since in most of them (if not all), audio was not
recorded with any embedded data.

A more general solution to Radio Broadcast Monitoring consist in making a
succinct and faithful representation of the audio, specific enough to distinguish
between different audio sequences and general enough to allow the identifica-
tion of degraded samples. Common degradations are white/colored noise adding,
equalization and re-recording. This technique is called audio fingerprinting and
has been studied in a large number of scientific papers and due to its flexibility
it has been the first choice mechanism for audio tagging. When small excerpts of
audio are used to identify larger pieces of the stream an additional artifact is in-
troduced to the process, the time shifting effect. This is due to the discrete audio
window being represented, and the failure to match the start of the audio window
in both the excerpt and the stream. Audio fingerprinting must be resilient to all
the above distortions without loosing specificity. Several features have been used
for audio-fingerprinting purposes, among them, the Mel-frequency Cepstral coef-
ficients (MFCC) [3], [4]; the Spectral Flatness Measure (SFM) [5]; tonality [6] and
chroma values [7], most of them are analyzed in depth in [8]. Recently in [9,10]
the use of entropy as the sole feature for audio fingerprinting proved to be much
more robust to severe degradations outperforming previous approaches. This
technique is the Multi-Band Spectral Entropy Signature or MBSES described in
some detail in this paper.
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Once the fingerprint is obtained, it is not very difficult to build on this first
piece a complete system for broadcast monitoring. Such a complete system is
discussed in [11] using a fingerprint. In Oliveira’s work [11] the relevant feature
was the energy of the signal contained in both the time and the frequency do-
mains. The authors reported a correct recognition rate of 95.4% with 1% of false
positives. Another good example of a system for broadcast monitoring with ex-
cellent results is [12] where the relevant feature chosen was the spectral flatness
which is also the feature used in the MPEG-7 wrapper (see [13] for details) for
describing audio content.

Due to the economic importance of media monitoring (up to 5% of the total
advertising budget is devoted to monitoring services) several companies have
proprietary, closed technology for broadcast monitoring. In this case we can
only compare with the performance figures publicly reported in white papers.

We selected MBSES to build our system due to its anticipated robustness. Us-
ing this fingerprint we were able to achieve perfect recall and no false positives in
very low quality audio recordings just by tuning the time resolution. This results
outperform the reported precision of both academic and industrial systems. Au-
dio tagging, particularly using a robust fingerprint such as the one described in
this paper, is a world class example of a successful pattern recognition technique.
Several lessons can be extrapolated from this exercise.

The rest of this paper is organized as follows, first we explain how the MBSES
of an audio signal is determined, then we describe the implemented system in
detail, a description of the experiments performed to test our system follows,
and finally some conclusions and future work directions are discussed in the last
section.

3 Broadcast Monitoring with MBSES

The final product of a monitoring service is a tagged audio log of the broadcast.
Assuming the role of the broadcast monitoring company, a particular client re-
quest counting a particular ad in a given number of radio stations. The search is
for some common failures in the broadcasting of audio ads, namely the absence
of the ad, airing it at a time different from the one paid (time slots have different
prices depending of the time of the day, and the day itself) and airing only a
fraction of the audio ad. Lack of synchronization between airing and marketing
campaigns may lead to large loses, for example when a special offer that lasts
one day only and the ads were aired the day after the special offer has expired.
The only legal bonding for auditing purposes is the audio log showing the lack
of synchronization, hence recording is mandatory.

When designing a system for broadcast monitoring, the above discussion jus-
tifies having an off-line design. Since recording is mandatory, the analysis of the
audio can be done off-line, we can assume the stream is a collection of audio files.
Even low tech companies with human listeners can analyze audio three times
faster than real time, playing the recordings at a higher speed and skipping fea-
ture programming when tagging the audio logs. The human listener memorize a
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set of audio ads, afterwards, when playing the recording he/she identifies one of
them and makes an annotation of the broadcast station log, writing the time of
occurrence, and the ad ID. In this case accuracy of annotations lies within min-
utes. Human listeners can process 24 hours of audio in approximately 8 hours
of work.

Our design replicates the above procedure in a digital way. We compare the
audio-fingerprint of the stream with the corresponding audio-fingerprint of the
audio ads being monitored. We then have annotations accuracy in the order of
milliseconds, and 12 to 40 times faster than real time.

3.1 The Multi Band Spectral Entropy Signature

We describe in some detail the MBSES to put the reader in the appropriate
context. The interested reader can obtain more information in references [9,10]
and [14].

Obtaining the entropy of the signal directly in the time domain (more precisely
the entropy of the energy of the signal) has proved to be very effective for
audio-fingerprinting in [10]. With this approach, called Time-domain Entropy
Signature (TES) the recall was high; but with some degradations, as equalization,
it dropped quickly. To solve this problem in [9] the signal was divided in bands
according to the Bark scale in the frequency domain, then entropy is determined
for each band. The result was a very strong signature, with perfect recall even
for strong degradations. Below we detail the extraction of the MBSES of an
audio-signal.

1. The signal is processed in frames of 256 ms, this frame size ensures an ade-
quate time support for entropy computation. The frames are overlapped by
7/8 (87.5%), therefore, a feature vector will be determined every 32 ms

2. To each frame the Hann window is applied and then its DFT is determined.
3. Shannon’s entropy is computed for the first 21 critical bands according to the

Bark scale (frequencies between 20 Hz and 7700 Hz). To compute Shannon’s
entropy, equation 1 is used. σxx and σyy also known as σ2

x and σ2
y are the

variances of the real and the imaginary part respectively and σxy = σyx is
the covariance between the real and the imaginary part of the spectrum.

H = ln(2πe) +
1
2
ln(σxxσyy − σ2

xy) (1)

4. For each band obtain the sign of the derivative of the entropy as in equation
(2). The bit corresponding to band b and frame n of the AFP is determined
using the entropy values of frames n and n− 1 for band b. Only 3 bytes for
each 32 ms of audio are needed to store this signature.

F (n, b) =
{

1 if [hb(n)− hb(n− 1)] > 0
0 Otherwise (2)

A diagram of the process of determining the MBSES of an audio-signal is de-
picted in Fig. 1.
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Fig. 1. Computing the Spectral Entropy Signature

The fingerprint of the signal is now a binary matrix, with one column rep-
resenting each frame in the signal. The most interesting part is that now the
Hamming distance (the number of non matching bits compared element by ele-
ment) is enough to measure similarity between signals.

3.2 The Monitoring Procedure

Monitoring is quite simple when we have a robust way to measure similarity
between the audio stream and an audio segment (e.g once extracted the MBSES
of both).

Figure 2 exemplifies the procedure for searching an occurrence of an ad in the
stream. The smaller matrix (the audio ad) is slide one bit at a time to search
for a match (a minimum in the distance).

We observed a peculiar phenomenon in searching for a minimum in the Ham-
ming distance, there is a sudden increase just before there is a match, Figure 3
illustrated this, an ad was found in minutes 3 and 41. This is probably because
the signature is not very repetitive, moreover, it is little compressible.

The Hamming distance can be efficiently computed with a lookup table count-
ing the number of ones in a 21 bit string. This lookup table is addressed with
the value of x⊕y with ⊕ the XOR operation between x and y the columns being
compared.

4 Experiments

For our experiments we used all-day recordings from five different local AM
(Amplitude Modulated) radio stations. This recordings were provided by Con-
tacto Media Research Mexico SA de CV (CMR) in the lossy compression format
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Fig. 2. The signature of the audio ad is the smaller matrix, the long grid is the signature
of the monitored audio. When the Hamming distance falls below a threshold we count
a match.
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Fig. 3. This plot corresponds to the Hamming distance between the ad being searched
and the corresponding segment in the audio stream. Notice a sudden increase followed
by a decrease in the distance, both above and below a clear threshold.

mp3@64kbps spread in 95 files of approximately one hour each. Thirteen record-
ings of commercial spots were also provided to us as well as the results from
manually monitoring these stations by their trained employees.

We determined the signatures of every one-hour mp3 file and stored them in
separate binary files, generating 95 long signatures at this step. The process of
checking all ad’s occurrences in one-hour files lasted 40 seconds approximately.
The whole process of checking 95 hours of audio generating the complete report
took about an hour.

The report generated by our broadcast monitoring system was compared with
the report provided by CMR. We found 272 occurrences while CMR reported
only 231, the missed 41 ads were manually verified by us. It is noticeable that
trained operators (human listeners) have failed to report those 41 spots, perhaps
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Table 1. Comparison with the reported results on similar research

System True positives rate False positives Rate
(recognition rate) (recognition mistakes rate)

Proposed System 100% 0%
Hellmuth et al [12] 99.8% -
Oliveira et al [11] 95.4% 1%

due to fatigue or distraction. On the other hand all of the ad occurrences detected
by operators were detected by our system.

The recognition rate reported by Hellmuth et al in [12] for similar experiments
since they also use off-line monitoring, degrading by lossy compression precisely
in the format mp3@64kbps and excerpts of 20 seconds (e.g the size of most
commercial ads) was 99.8%. In contrast, our experiments report a precision of
100% since no commercial ad occurrence was missed with our system. Table 1
compares this results including the results reported by Oliveira et al in, [11].

5 Conclusions and Future Work

We found our Multi-band spectral entropy signature (MBSES) to be adequate
for robust automatic radio broadcast monitoring. The time resolution of the
signature was adjusted to work with commercial spots with high speech content.

Instead of searching sequentially among the collection of spots for an occur-
rence of any of them, we will design a proximity index that would allow working
with thousands of spots without affecting the speed of the monitoring process.
On the other hand, preliminary results about using graphic processing units
(GPU) for computing the fingerprint shows an important speedup with respect
to single core computing. This also pose very interesting audio mining challenges
in archived audio logs of several-year long recordings.
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Abstract. Many remote sensing applications require on-board, real time proc-
essing with low power consumption. Solutions based in FPGA implementations 
are common in these cases to optimize the processing resources needed. In this 
paper we describe an FPGA based solution for a remote sensing application that 
processes real time video from an infrared camera in order to identify hot spots. 
The solution reduces the information in each frame to the location and spatial 
configuration of each hot spot present in the frame. The proposed method suc-
cessfully segments the image with a total processing delay equal to the acquisi-
tion time of one pixel (that is, at the video rate). This processing delay is inde-
pendent of the image size. The solution is not tied up to one specific camera, 
and may be used with several infrared cameras with minor adjustments. FPGA 
area equations are also presented in order to calculate the needed FPGA size for 
a particular application. 

Keywords: real time image processing, FPGA, remote sensing, hot spot detec-
tion, embedded computing.  

1   Introduction 

Many remote sensing applications require on board, real time processing with low 
power consumption. For many of these embedded digital signal processing applica-
tions, today´s general purpose microprocessors are not longer able to handle them [1]. 
Functional Programming Gate Array (FPGA) offer a highly parallel hardware archi-
tecture with low power consumption that is an alternative for such digital signal proc-
essing implementations. 

Field Programmable Gate Arrays, or FPGA, are devices made up of thousands of 
logic cells and memory. Logic cells, memory and interconnections between them are 
software programmable using a standard computer. Therefore, these devices offer a 
fast and cheap prototype solution for an embedded product, and when the production 
scale is small, they also offer a fine final solution.  

In this paper we present and describe a real time image processing algorithm, hot 
spot detection, implemented on an FPGA device. This solution was developed for an 
Unmanned Aerial Vehicle (UAV) System of the Department of Computer Architectu-
re, Escola Politècnica Superior de Castelldefels, Universitat Politècnica de Catalunya. 
The aim of the algorithm is to identify fire embers (that is, hot spots) in the images 
captured by an infrared video camera on the UAV. The location and characteristics of 
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the detected hot spots are then transmitted by the UAV to a firemen team fighting a 
forest fire [2]. Our solution is general enough to be integrated in other systems, and 
with different cameras.  The rest of this paper is organized as follows: section 2 ex-
plains the hot spot detection algorithm, section 3 explains the FPGA implementation, 
section 4 shows the experiments and results and section 5 explains some conclusions.   

2   Hot Spot Detection 

The problem consists on processing video as it is captured by an IR camera on an  
Unmanned Aerial Vehicle. The UAV has a network centric architecture, in which all 
sensors and different processing units are connected to an Ethernet network [2]. Our 
proposed FPGA solution is inserted between the IR camera and the network. It takes the 
analogical output of the IR camera, processes the frames in real time and returns the 
location and spatial configuration of the found hot spots (if any) in UDP packets.  As 
many infrared cameras have analogical outputs, as composed video, the proposed solu-
tion can be used for different IR cameras and is not tied up to one specific camera.  

The most important constraint for the solution is that the image needs to be proc-
essed in real time, with the minimum possible delay between the acquisition of the 
last pixel and the transmission of the results. It is also desirable that the whole appli-
cation works at the slowest possible clock frequency, to minimize the FPGA's power 
consumption. 

In order to fulfill these requirements, the proposed algorithm and hardware imple-
mentation exploit the intrinsic parallelism of the process, obtaining the results of a 
complete frame at the moment that its acquisition is finished, with a total processing 
delay equal to the acquisition time of one pixel (i.e, the camera´s pixel video fre-
quency). Moreover, as the camera delivers continuous images, the results of the pre-
vious frame are transmitted in parallel with the processing of the current frame. Fi-
nally, the application runs with the smallest possible clock frequency that allows to 
fulfill the previous requirements: the IR camera´s pixel clock frequency. This also 
simplifies the integration between the camera and the proposed solution.  

2.1   Segmentation Algorithm 

The proposed algorithm segments the image in hot and cold regions, storing the loca-
tion and spatial configuration of the found hot regions (i.e, hot spots). Its complexity 
lies in grouping the pixels in hot spots and updating the stored hot spot's data as the 
image is being captured. The IR camera's output video is first digitalized, the tem-
perature pixel is extracted and then classified as a hot o cold pixel (i.e, if the pixel 
belongs to a hot spot or not). The segmentation algorithm then checks if the adjacent 
pixels belong to hot spots and decide if the current pixel is the beginning of a new hot 
spot, if it belongs to an already existing hot spot, and whether this pixel unifies two 
previously discovered hot spots. It also updates the stored hot spot´s data accordingly.  

In this manner, the algorithm performs the segmentation of the image using only 
the current pixel and a list L that stores to which hot spot (if any) the previous line of 
pixels belong to. Therefore, there is no need for extra memory to store parts or the 
complete image, and the total processing delay is independent on the image size. The 
algorithm´s pseudo code is shown in Listing1.  
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Listing 1.  Segmentation Algorithm 

inputs: 
- pixel(m,n) 
- line L of previous pixels indicating which hot spot the belong to, if any. 
 
receive pixel(m,n) 
 if pixel(m,n) does not belong to a hot spot 
  mark in the line L that pixel(m,n) does not belong to a hot spot. 
 if pixel(m,n) belongs to a hot spot 
  if pixel(m-1,n) and pixel(m,n-1) do not belong to hot spots 
   create a new hot spot for pixel(m,n) 
   mark pixel(i,j) in the line L as belonging to the new hot spot 
 if (pixel(m-1,n) belongs to hot_spot_x and pixel(m,n-1) does not belong to any hot spot) 

 or (pixel(m-1,n) does not belong to any hot spot and pixel(m,n-1) belongs to hot_spot_x)  
 or (pixel(m-1,n) and pixel(m,n-1) belong to hot_spot_x)) 
   add pixel(m,n) to hot_spot_x in the memory 
   mark pixel(m,n) in line L as belonging to hot_spot_x 
 if (pixel(m-1,n) belongs to hot_spot_x and pixel(m, n-1) belongs to hot_spot_y 
 and id(hot_spot_x) < id(hot_spot_y)) 
   add hot_spot_y data to hot_spot_x  in the memory 
   add pixel(m,n) to hot_spot_x in the memory 

   mark  hot_spot_y  as invalid in the memory 
   mark pixel(m,n) in line L as belonging to hot_spot_x 
   for each pixel in line L  
    if (pixel belongs to hot_spot_y) 
     mark pixel as belonging to hot_spot_x 

3   FPGA Implementation 

We propose the use of FPGA technology to achieve the real time processing of the 
image, with a total processing delay equal to the acquisition time of one pixel (i.e 
video frequency). Some hardware architectures have been presented in literature 
aimed at accelerating image processing methods [3][4][5][6] but none intended for the 
segmentation of an IR image for hot spot detection.  

 

 

Fig. 1. Complete board including the video digitalizer, the FPGA and Ethernet physical driver 
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In this section we describe the FPGA implementation, focusing in the Raw Processing, 
Hot Spot Reconstructor and Double Buffer Shared Memory modules that are the core of 
the solution. These modules implement the proposed algorithm (Listing 1) in a way that 
the real time constraint is achieved. Fig. 1 shows the complete hardware solution. 

3.1   Raw Processing, Hot Spot Reconstructor and Memory Modules 

The Raw Processing module determines if the current pixel is the beginning of a new 
hot spot, if it belongs to an already existing hot spot, and whether this pixel unifies 
two previously discovered hot spots. To do this. it keeps the line L of previous pixels 
showing to which hot spot they belong to, and update this line as shown in Listing1. 

The core of the Raw Processing module is the implementation of L such as to cal-
culate which hot spot the current pixel belongs to and update all the list in only one 
pixel clock. For this purpose, L is implemented as a stack: the top of the stack stores 
the id of the hot spot that pixel(m,n-1) belongs to, and the bottom of the stack stores 
the id of the hot spot pixel(m-1,n) belongs to. This two special records can be ac-
cessed to obtain the hot spot ids needed in the algorithm. The remaining records in L 
hold the information of the line of pixels between pixel(m-1,n) and pixel(m,n-1), i.e, 
the previous line of pixels. In each clock, the hot spot id corresponding to the new 
pixel is pushed onto the stack, all the middle records are updated if necessary and 
moved to the next stack position, and the bottom record (i.e, the hot spot id of 
pixel(m-1,n)) is discarded.  

When a pixel unifies two previously discovered hot spots, say hot_spot_y and 
hot_spot_x,  hot_spot_y is marked as invalid and all the pixels belonging to that hot 
spot are added to hot_spot_x. In that case, all records in the stack have to be accessed, 
compared with the id of hot_spot_y and changed to the id of hot_spot_x (if needed) in 
one clock cycle. To accomplish this, each record of the stack has a comparator and a 
multiplexer. The result of comparing the record's id, say idA, with the id of 
hot_spot_y enables the multiplexer that either propagates idA or the id of hot_spot_x 
to the next record as needed. The implementation of one record of the list L in this 
module is shown in Fig. 2. 

The Hot Spot Reconstructor module is in charge of updating the information of hot 
spots found to the moment with the information from the current pixel, as shown in 
the algorithm in Listing 1. The Raw Processing module tells the Hot Spot Reconstruc-
tor module whether it has to create a new hot spot with the current pixel, unify two 
hot spots or simply add the pixel to an existing hot spot. This module has to access the 
hot spot Memory, retrieve the corresponding information, recalculate the data and 
write the results back, all in one pixel clock. The implementation of this module is 
shown in Fig. 3  

The Memory module is designed as a shared double buffer. Each buffer is organ-
ized as a vector of records, with one record for each hot spot. Each record stores the 
location and spatial configuration of the hot spot. The partial results of the current 
frame are stored in one buffer, while the final results of the previous frame are stored 
in the other one. In this manner, the results of the previous frame can be transmitted in 
parallel with the segmentation of the current frame.  
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Fig. 2. Implementation of a record of list L in the Raw Processing module 

 

Fig. 3. Hot Spot Reconstructor module and detail of the logic for the maximum calculation 



600 S. Pedre, A. Stoliar, and P. Borensztejn 

 

3.2   Auxiliary Modules 

The Raw Generator module generates the RAW stream by extracting the temperature 
pixels from the digitalized video. The Classification module classifies each pixel as 
belonging to a hot spot or not, depending on its IR radiation determined by the pixel´s 
value. 

The UDP Packet Generator is the module in charge of creating the correct UDP 
packets with the hot spot data of the previous frame. As this module works with the  
clock frequency of the MAC Ethernet Module and the rest of the application works 
with a different clock frequency (i.e, the IR camera´s pixel clock frequency), we use a 
FIFO to solve the associated problems with the exchange of information between two 
different clock domains.  

Finally, the configuration modules allows to configure the integrated circuits on 
the hardware board outside the FPGA: the SAA7113 digitalizer and the Ethernet 
physical driver. There is also an Application Configuration module that allows to con-
figure through the Ethernet connection variables such as the threshold for the classifi-
cation module or the ip address and port of the UAV's CPU.  

3.3    Solution Sizing 

In order to implement the high parallelism needed to achieve the proposed real time 
processing of the image, much space and hardware resources of the FPGA are used.  
The area needed for this implementation depends only on the size of the image and the 
maximum amount of hot spots that can be found in each image. In order to make the 
application suitable for different IR cameras, those parameters can be easily configured.  

There are two modules in the implementation that are resource consuming: the Raw 
Processing module and the Memory module. The Raw Processing module implements 
the list L that stores the hot spot id for each pixel in the previous line, as explained in 
section 3.1. In terms of FPGA area, the list has im_width records. Each record is wide 
enough to store a hot spot id, that is log(max_hotspot_amount) bits, and has extra logic 
needed for the hot spot unifying process. The area equations is as follows: 

 

im_width* [log(max_hotspot_amount)*(1 flip flop + 1 mux) + 1 comparator of 
log(max_hotspot_amount) bits] 

 
The Memory module stores the information of each hot spot found in the image, that 
is, the memory has max_hotspot_amount records. Each record stores the information  
needed to calculate the location and spatial configuration of one hot spot, that is: 
{maxX, minX, sumX, maxY, minY, sumY, count of pixels}. Finally, there are two mem-
ory buffers, one with the final results of the previous frame and one with the partial 
results of the current frame. The hot spot memory is implemented using the FPGA 
block rams. The needed block ram equation is as follows: 

 

2*max_hotspot_amount* [log(im_width)+log (im_width) + (2*log(im_width)-1) + 
log(im_height)+log (im_height)+(2*log(im_height)-1)+log(im_width*im_height)-1] 
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From these equations, we can see that the amount of logic cells needed depend line-
arly on the image width, while the amount or memory (block rams) depends linearly 
on the maximum amount of hot spots to be detected per frame. The image height is of 
little importance for area calculations. With these equations, it is straightforward to 
calculate the size of the needed FPGA given the size of the image and a maximum for 
the amount of hot spots expected in each frame.  

4   Experiments and Results 

Our testing environment consists of a PAL-N composed video camera, a development 
kit with a Xilinx Virtex 4 FX12-10C-ES FPGA, a SAA7113 video digitalizer and an 
Ethernet physical driver. The development environment used is the Xilinx ISE Web-
pack 10.1, with default settings for all the involved processes. The UDP packets with 
the resulting hot spots are routed to a PC in order to check the processing results.  
From the video camera we process and analyze 50 frames per second, corresponding 
to half video images even and odd, with 512 pixels by 256 lines per frame. The pixel 
clock generated by the SAA7113 digitalizer is the standard 27 Mhz clock for video 
coding ITU-R BT 656 YUV 4:2:2. The solution was configured for a 256 maximum 
amount of hot spots per frame. In Fig. 4 some results are shown.  

As all the memories were mapped into block rams, including the UDP FIFO and 
the configuration memory for the SAA7113, and the hardware MAC Ethernet in-
cluded in the Virtex 4 was used, the total area of the application was 84% of the 
FPGA slices (1 LUT + 1 flip flop) and 32% of the block rams. 

In particular, the occupied area of the main modules (Raw Processing, Hot Spot 
Reconstructor and Memory) was 79% of the FPGA slices and 25% of the block-rams. 
This area corresponds to the size equations presented in section 4, and it means that 
the entire application fits in the smallest Virtex 4 FPGA available in the market. The 
maximum operation clock obtained was of little over 100 Mhz, which is enough to 
work with the 27 Mhz clock output of the SAA7113. In the UAV application, the 
mounted IR camera is the FLIR A320, that delivers 320 pixels by 240 lines images at 
a rate of 9 fps. Therefore, the results of the tests in the laboratory experiments indicate 
that the solution is well suited for the UAV application. 

 

  

Fig. 4. left: hot spot image after classification in hot or cold pixels. right: visual representation 
of the results showing the location of the detected hot spot (the center of mass is not shown). 
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5   Conclusions 

In this paper we proposed the use of FPGA technology to achieve real time process-
ing of an IR image for hot spot detection. The proposed method successfully seg-
ments the image with a total processing delay equal to the acquisition time of one 
pixel (that is, at the video rate). This processing delay time is independent of the im-
age size. There is also no need for extra memory to store parts or the complete image. 
The proposed solution is not tied to one specific IR camera, and may be used with 
several IR camera with minor adjustments. FPGA area equations were presented in 
order to calculate the needed FPGA size for a particular application. 

The experiments show that the maximum operation clock is of little over 100 Mhz, 
which is enough to work with the 27 Mhz clock output of the SAA7113. Moreover, 
the entire application fits into the smallest Virtex 4 FPGA available in the market. The 
results also show that the proposed method is well suited to work with the FLIR A320 
camera on the UAV application.  
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Abstract. Graphics Processing Units (GPUs) can provide remarkable
performance gains when compared to CPUs for computationally-intensive
applications. In the biomedical area, most of the previous studies are fo-
cused on using Neural Networks (NNs) for pattern recognition of biomed-
ical signals. However, the long training times prevent them to be used in
real-time. This is critical for the fast detection of Ventricular Arrhyth-
mias (VAs) which may cause cardiac arrest and sudden death. In this pa-
per, we present a parallel implementation of the Back-Propagation (BP)
and the Multiple Back-Propagation (MBP) algorithm which allowed sig-
nificant training speedups. In our proposal, we explicitly specify data
parallel computations by defining special functions (kernels); therefore,
we can use a fast evaluation strategy for reducing the computational cost
without wasting memory resources. The performance of the pattern clas-
sification implementation is compared against other reported algorithms.

Keywords: GPU Computing, Parallel Programming, Neural Networks.

1 Introduction

Neural networks (NNs) have been successfully applied as pattern recognition
systems in many areas [1,2]. However building a NN solution, is usually a com-
putationally expensive task, demanding a considerable amount of time. Depend-
ing on the complexity of the problem, in most cases several NNs, with different
configurations, must be trained before achieving a good solution. Thus the time
required to train the NNs alone may prevent high quality solutions from being
found. Dedicated hardware can be used to overcome this problem. Nevertheless
this solution is often not chosen due to its high cost and reduced flexibility [1].

Graphics Processing Units (GPUs) can offer a more flexible and economi-
cal alternative to the use of dedicated hardware, yet a powerful one. Originally
GPUs were developed as specialized accelerators for triangle rasterization. The
transition to general purpose engines, aiming at high throughput floating-point
computation, is witnessed by GPU implementations of machine learning algo-
rithms [3,4]. At present computers possess a GPU that offers increasing degrees
of programmability allowing enough flexibility to be used to accelerate non-
graphics applications [5]. GPUs are much more effective in utilizing parallelism

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 603–610, 2009.
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(and pipelining) than general purpose CPUs [6]. Due to its inherent parallel ar-
chitecture, GPUs can provide remarkable performance gains when compared to
CPUs for computationally-intensive applications. Thus they provide an attrac-
tive alternative to use dedicated hardware in machine learning, namely in the NN
field [5]. Moreover, GPUs still service the large gaming industry and so they are
relatively inexpensive [3]. However, until recently, General-Purpose computation
on the GPU (GPGPU), required the programmer to master the fundamentals
of graphics shading languages that require prior knowledge on computer graph-
ics [6]. This changed when NVIDIA introduced a new data-parallel, C-language
programming API called CUDA (Compute Unified Device Architecture) that by-
passes the rendering interface and avoids the difficulties of classic GPGPU [4,6].

The rest of this paper is organized as follows. Section 2 introduces the CUDA
programming model and its architecture. Section 3 summarizes the Multiple
Back-Propagation (MBP) algorithm, whose GPU parallel implementation is dis-
cussed latter on section 4. Section 5 details the steps taken to create NNs capable
of detecting VAs based on time and frequency domain features obtained from
electrocardiography’s (ECGs). Section 6 compares the GPU and CPU imple-
mentations of the algorithms. Finally, section 7 summarizes contributions and
addresses directions for future work.

2 CUDA Programming Model and Architecture

The CUDA programming model extends the C language, allowing the program-
mer to explicitly specify data parallel computations by defining special functions,
named kernels. Kernels are executed in parallel by different CUDA threads, on
a physically separate device (GPU) that operates as a co-processor to the host
(CPU) running the program. Figure 1 shows an example of a simple Kernel.
Threads are organized into blocks that are required to execute independently.
To invoke a kernel, programmers use language extensions in order to specify
the runtime values for the number of blocks (organized into a two dimensional
grid) and the number of threads per block [7]. The CUDA programming model
is supported by an architecture built around a scalable array of multi-threaded
Streaming Multiprocessors (SMs). Each SM has eight Scalar Processor (SP)
cores. When a program on the host invokes a kernel grid, its blocks are enu-
merated and distributed to SM with available execution capacity. As thread
blocks finish their execution, new blocks are launched on the vacated SMs. Each

__global__ void WI(float * w, float * i, float * o, int size) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx < size) o[idx] = w[idx] * i[idx];

}

Fig. 1. Kernel that multiplies each element of the vector w by the corresponding
element of the vector i placing the result on the vector o
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SM creates, manages, and executes concurrent threads in hardware with zero
scheduling overhead and can implement fast barrier synchronization. These are
the keys to efficiently support fine-grained parallelism [7].

3 Multiple Back-Propagation

Multiple Back-Propagation (MBP) is a generalization of the Back-Propagation
(BP) algorithm that can be used to train Multiple Feed-Forward (MFF) net-
works [8]. Jointly MFF networks and the MBP algorithm shape an architecture
that is (in most situations) preferable to the use of feed-forward (FF) networks
trained with the BP algorithm. MFF networks are obtained by integrating two
FF networks (a main network and a space network) as shown in Figure 2 [9]. The
main network contains at least one selective activation neuron. Selective activa-
tion neurons differentiate between stimulus (patterns). Their response depends
on the space localization of a pattern p presented to the network and might be
amplified or reduced accordingly. Its output is given by (1):

yp
k = mp

kFk(ap
k) = mp

kFk(
N∑

j=1

wjky
p
j + θk) , (1)

where yp
k is the output of neuron k, mp

k the importance of the neuron, that
varies accordingly to the pattern (stimulus) presented to the network, Fk the
neuron activation function, ap

k its activation, θk the bias and wjk the weight of
the connection between neuron j and neuron k. The importance (mp

k) of each
neuron k for the current pattern p is determined by a standard FF network, that
receives the same inputs as the main network, named space network because it
is implicitly dividing the input space. The main network can only calculate its
outputs after knowing the outputs (mp

k) of the space network. Thus the two
networks will function in a collaborative manner and must be trained together.

Fig. 2. MFF Network. Squares represent input neurons, white circles hidden and out-
put neurons, gray circles multipliers and triangles the bias.
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4 BP and MBP Parallel GPU Implementation

In this phase we choose to implement exclusively the batch training mode for
both the BP and MBP algorithms, since this is the mode that can benefit the
most from a parallel implementation. The resulting implementation exploits the
widely used adaptive step size technique due to stability of the algorithms and
improved training speeds. In order to simultaneously implement both algorithms,
five kernels listed on Table 1 were created. Figure 3 illustrates the steps necessary
to train, during one epoch, a MFF network comprising a main network contain-
ing an input layer with Ni neurons, a hidden layer with Nh neurons with selective
activation and an output layer with No neurons (without selective activation)
and a space network containing an input layer with Ni neurons and an output
layer with Nh neurons. This is the configuration we will use later on section 6 to
train MFF networks for the VA problem. It is assumed the training set contains
Np patterns. First FireLayer is called with the network inputs vector x and the
weights vector of the space network ws. As a result a vector m containing the im-
portance of each neuron with selective activation, for each pattern, is calculated.
This vector is then used together with x and the vector containing the input
weights of the main network hidden layer wh to call FireLayer in order to calcu-
late the hidden layer outputs yh. To complete the calculation of the network out-
puts y, FireOutputLayer is then called using yh, the input weights of the output
layer wo and the desired outputs vector d. This will also calculate the local gra-
dients of the output layer δo. At this time the Root Mean Square (RMS) error of
the network can be calculated by calling the CalculateRMS kernel. Then CalcLo-
calGradients is used to determine the local gradients of the hidden layer δh and
the local gradients of the space layer δs. Finally CorrectWeights is called several
times to adjust the weights ws, wh and wo of the MFF network. Figure 4 shows
the percentage of time spent by the GPU in each Kernel for the VA problem.

Table 1. Kernels used to implement both the BP and the MBP algorithms. The
Kernels shown here process all the training patterns simultaneously.

Kernel Purpose

FireLayer Calculates the outputs of all neurons in a given layer.
FireOutputLayer Calculates the outputs of the NN output layer. If the layer

contains selective activation neurons, the local gradients of
the corresponding space network neurons are also calculated.

CalcLocalGradients Calculates the local gradient of all neurons in a hidden layer.
If there are selective activation neurons, the local gradients of
the corresponding space network neurons are also calculated.

CorrectWeights Adjust the weights of a given layer.
CalculateRMS Calculate the Root Mean Square (RMS) error of the network.
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Fig. 3. Model of the sequence of kernels launched by the host (in each epoch) to train a
MFF network comprising a main network with 3 layers and a space network with 2 lay-
ers (that calculates the importance of the hidden neurons of the main network). White
rectangles represent input and output vectors, whilst gray rectangles represent kernels.

Fig. 4. Percentage of time spent by the GPU in each Kernel

5 Ventricular Arrhythmias Assessment

Nowadays most countries face high and increasing rates of cardiovascular dis-
eases. In Portugal there is a 42% probability of dying of these diseases and
worldwide they are accountable by 16.7 million deaths per year [10]. In this
context VAs assume a significant role given that their prevalence can lead to
life threatening conditions that may result in cardiac arrest and sudden death.
VAs evolve from simple Premature Ventricular Contractions (PVCs) which are
usually benign, to ventricular tachycardia and finally to critical ventricular fibril-
lation episodes which are potentially fatal and the main cause of sudden cardiac
death. The detection of PVCs from an ECG is thus of major importance, since
they are associated with an increased risk of adverse cardiac events. A typical
ECG tracing of a ordinary heartbeat consists of a P wave, a QRS complex and a
T wave (see figure 5a). PVCs result from an ectopic depolarization on the ventri-
cles, which results on a wider and abnormally shaped QRS complex. Moreover,
typically QRS complexes are not preceded by P waves, and T waves are usually
larger and with opposite deflection to the QRS complex. For high-performance
detection of VAs we take advantage of the power of GPUs to significantly
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Feature Description
RRav RR mean interval
RR0 Last RR interval
SN Signal/Noise estimation
Ql Q-wave length
(Qcx, Qcy) Q-wave mass center (x,y) coordinates
(Qpx, Qpy) Q-wave peak (x,y) coordinates
Rl R-wave length
(Rcx, Rcy) R-wave mass center (x,y) coordinates
(Rpx, Rpy) R-wave peak (x,y) coordinates
Sl S-wave length
(Scx, Scy) S-wave mass center (x,y) coordinates
(Spx, Spy) S-wave peak (x,y) coordinates

Fig. 5. (a) Schematic diagram of normal sinus rhythm for a human heart as seen on
ECGs. (b) Selected features from the ECG signal.

accelerate the training of a NN based approach. The NNs take as inputs 18 fea-
tures (see figure 5b) that were chosen in [11,12]. For comparison, we also use the
same training, test and validation datasets, each one containing 19391 samples.1

6 Results for the CPU and GPU Implementations

In order to compare the performance of the GPU and the CPU versions we
respectively used (i) the proposed CUDA implementation (see section 4) and
(ii) the Multiple Back-Propagation software. Multiple Back-Propagation is a
highly optimized software, developed in C++, for training NNs with the BP
and MBP algorithms.2 The GPU version was benchmarked on two different
NVIDIA devices: a GeForce 8600 GT with 4 SM (32 cores) and a GTX 280
with 30 SM (240 cores). The CPU version was benchmarked on a Intel Core 2
6600 CPU (2.4 GHz). Results were obtained, using the VA datasets, both for
the BP and the MBP algorithms. The FF networks trained consisted of 3 lay-
ers. As for MFF networks the topology was described in section 4 (see Figure
3 description). Experiments demonstrate that the GPU implementation delivers
considerable speedups comparatively to the CPU. Figure 6 shows the number
of epochs trained per minute accordingly to the hardware. Using the GTX 280
GPU it is possible to reduce the training time more than 50 times relatively
to the CPU, as shown in Figure 7. It is interesting to note that as the number
of hidden neurons increases so does the gain of speed provided by the GPU,
because more processing that can be parallelized is required. Since currently
our implementation does not support cross validation, preliminary tests were
conducted in order to determine when to stop training. Based on the informa-
tion collected we decided to train both FF and MFF networks during 1 million

1 MIT-BIH Arrhythmia Database (http://www.physionet.org/physiobank/)
2 Multiple Back-Propagation software is freely available at http://dit.ipg.pt/MBP

http://www.physionet.org/physiobank/
http://dit.ipg.pt/MBP
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Fig. 6. Number of epochs trained per minute, accordingly to the hardware

Table 2. PVC detection: performance results of the NNs

Metrics BP (FF) MBP (MFF)
Train Test Val Train Test Val

Sensitivity 98.07 95.94 94.67 97.42 95.54 94.47
Specificity 99.84 99.62 99.61 99.87 99.68 99.70
Accuracy 99.70 99.33 99.23 99.68 99.36 99.30

Fig. 7. Increase in speed provided by the GTX 280 relatively to the CPU

epochs, varying the number of hidden neurons. It is worth to mention that dur-
ing the preliminary tests some NN were trained up to 3 million epochs, requiring
almost 9 hours of train on a GTX 280 GPU. We estimate that if such NNs were
trained on the CPU we would need almost 3 weeks to train each one. Table 2
shows the performance results of the best networks found, trained with the BP
and the MBP. The best network trained with the BP algorithm has 14 hidden
neurons and the best trained with the MBP has 13 hidden neurons with selective
activation. The results, which improve over those previously obtained in [11,12],
could not be obtained without the gain of speed provided by the GPU.
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7 Conclusion

In this paper, the parallel implementation of MBP (and BP) algorithms to train
MFF neural networks has proved highly efficient for pattern classification. Re-
sults confirm that the GPU can provide a more flexible and cheap alternative to
the use dedicated hardware in the NN field. The speedups attained, which are
already impressive, are expected to increase even more, as new GPUs contain-
ing a greater number of cores arrive to the market. This allows for researchers
and practitioners in pattern recognition to implement high quality NN solutions
that could be disregarded otherwise, due to temporal and financial constraints.
In future work online implementation of both algorithms will be considered.
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Abstract. Control Charts (CC) are important Statistic Process Con-
trol (SPC) tools developed in the 20’s to control and improve the quality
of industrial production. The use of CC requires visual inspection and
human judgement to diagnoses the process quality properly. CC assume
normal distribution in the observed variables to establish the control
limits. However, this is a requirement difficult to meet in practice since
skewness distributions are commonly observed. In this research, a novel
method that neither requires control limits nor data normality is pre-
sented. The core of the method is based on the FuzzyARTMAP (FAM)
Artificial Neural Network (ANN) that learns special and non-special pat-
terns of variation and whose internal parameters are determined through
experimental design to increase its efficiency. The proposed method was
implemented successfully in a manufacturing process determining the
statistical control state that validate our method.

Keywords: Control Charts, Neural Networks, Pattern Recognition.

1 Introduction

In manufacturing processes, the use of Control Charts (CC) is a common tech-
nique used to monitor the quality of the production. Variables are monitored
to preserve the process under statistical control and also to detect any special
variation. Should this situation occurs, then specially trained personnel take the
appropriate actions to get the process back into control. By using CC it is pos-
sible to know when the process presents a special behaviour by monitoring its
upper and lower control limits. However, using this approach, it is not possible
to determine the type of pattern. To overcome this limitation, a novel method
to recognise and analyse statistical quality patterns using the Fuzzy ARTMAP
(FAM) Artificial Neural Network (ANN) is proposed. The FAM network pa-
rameters are determined off-line using experimental design and the Monte Carlo
method which constitutes a novel method to increase the FAM efficiency elim-
inating the trial and error procedure commonly used [11]. During testing, the
FAM Learning parameters are selected automatically depending if special or
non-special pattern is encountered. The system is able to recognise both pat-
tern types such as non special: natural in control; and special: upward shift,
� Corresponding author.
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downward shift, upward trend and downward trend. In order to improve the
discrimination new patterns can be added to the Initial Knowledge Base (IKB)
forming what it is referred to as the Enhanced Knowledge Base (EKB). The
network is retrained on-line to take into account the new pattern information
which improves the pattern recognition capability of the system. The proposed
method consists of two modules, the learning process and the control process.
The first module includes basically the IKB and the EKB whereas the second
module includes the pattern recognition and the control stages.

The use of this new method also begins a new Statistical Process Control
(SPC) methodology since data normality is not required in the probability dis-
tribution of manufacturing processes as it was required in earlier production
systems (not automated) using CC.

The rest of this article is organised as follows. In section 2, background in-
formation in terms of related work done by other researchers is presented while
in section 3, the Fuzzy ARTMAP neural network is described in detail. Section
4 formally presents and describes the developed method. Results are given in
section 5 and finally conclusions are provided and further work envisaged in
section 6.

2 Related Work and Original Contribution

Considering the disadvantages of the CC, diverse investigations suggest the use of
ANN as an alternative ([13], [4], [7], [3], [12], [14], [2], and [8]). The advantages of
using ANN’s in comparison with CC are: a) It is possible to work in real-time [5].
b) The assumption of data normality is not necessary [9]; and c), great amounts
of complex data can be processed in a short time [10]. Hindi, used the Fuzzy
ARTMAP to determine the type of change presented in the process parameters
[6]. He compares the results with the obtained from the application of the X̄
and R-chart. He used values 0 and 3 for µ and 1 and 3 for σ, considering the
combination µ = 0 and σ = 1 to represent a state of statistical control. The FAM
parameter values were fixed. Guh, proposed the use of ANN Back-Propagation
(BPN) in combination with a decision tree for pattern recognition [5]. In his
work, Guh makes reference to three modules. Module A is in charge of data
preprocessing, module B works like a CC detecting abnormal cases of variation
whereas the module C determines the type of pattern based on a pre-defined
decision tree. Our method compares favourably to previous work having the
following advantages:

• Network parameters are determined through experimental design for maxi-
mum efficiency.

• Normality assumption is not required.
• High sampling size to guarantee data normality is not required.
• ANN testing parameters are selected automatically according to the type of

probability distribution.
• The model refines its knowledge through real-world data.
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3 FuzzyARTMAP (FAM)

The FuzzyARTMAP neural network is based on the Adaptive Resonance Theory
(ART) which was developed by Stephen Grossberg and Gail Carpenter at Boston
University. In Fuzzy ARTMAP there are two modules ARTa and ARTb and an
inter-ART module “map field” that controls the learning of an associative map
from ARTa recognition categories to ARTb recognition categories [1]. The FAM
architecture is shown in figure 1.

Fig. 1. FuzzyARTMAP Architecture

The map field module also controls the match tracking of ARTa vigilance
parameter. A mismatch between Map field and ARTa category activated by in-
put a and ARTb category activated by input b increases ARTa vigilance by the
minimum amount needed for the system to search for, and if necessary, learn a
new ARTa category whose prediction matches the ARTb category. The search
initiated by the inter-ART reset can shift attention to a novel cluster of features
that can be incorporated through learning into a new ARTa recognition cate-
gory, which can then be linked to a new ART prediction via associative learning
at the Map field. The algorithm uses a preprocessing step, called complement
coding which is designed to avoid category proliferation. Similar to ART-1, a vig-
ilance parameter measures the difference allowed between the input data and the
stored pattern. Therefore this parameter is determinant to affect the selectivity
or granularity of the network prediction. For learning, the FuzzyARTMAP has
4 important factors: Vigilance in the input module (ρa), vigilance in the output
module (ρb), vigilance in the Map field (ρab) and learning rate (β). These were
the considered factors in this research. The FAM algorithm was coded in C++
using the Visual Studio 2005 compiler running in a Core2Duo PC computer at
1.86 GHz.
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4 Method

The proposed method consists of three important elements: Learning process,
Control process and the use of the EKB as shown in figure 2. The first element
contains tree sub-elements; the random variable from groups of 20 data points1

and the Fuzzy ARTMAP learning using either the IKB or the IKB + EKB.

Fig. 2. General Method

Initially the FuzzyARTMAP network is trained with an IKB that was ob-
tained from the Monte Carlo simulation. The data considered special and non
special patterns as defined by the following equation: Xt = µ + nt + dt (1)
where µ is the effect of the global data (mean), Xt, nt and dt are the the data,
the effect of the natural variation and the effect of the special variation in time
t, respectively [5]. A sample data with a natural pattern has dt = 0, if it is un-
natural, then dt > 0. The Control process is formed by the pattern recognition
and the control stages, which are better explained using figure 3. Finally, the
EKB serves to add unknown patterns to the ANN learning.

4.1 Pattern Recognition

Figure 3 shows the algorithm to maintain the process under statistical control.
The algorithm uses two stages, the pattern recognition and control. During pat-
tern recognition the X vector is preprocessed as follows:

Standardization. The standardization of the X vector is obtained by Y =
(X − ε)/τ. where ε and τ are objective values for de mean and the standard
deviation respectively. The real mean and standard deviation of X vector are X̄
and S, respectively. If X̄ → ε, and S → τ , then the X vector will be a non special
pattern. Otherwise, the X vector will be a special pattern and the pattern has to
be identified among the upward or downward shift, upward or downward trend
or any other possible special pattern. The other special patterns can be cyclical,
systematic or mixture. These other special patterns were not considered in this
1 Using this group size an efficiency higher than 90% was obtained during experiments.
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Fig. 3. Process Control Method

paper since they are more dependent from the real process and its inclusion is
considered in the EKB. All special pattern data cannot have only non normal
distribution and this is the reason to group them in one IKB. Another IKB was
integrated by only the X vector with normal distribution, but, is possible to find
special and non special pattern data in it. For example, if X̄ or S are near to ε
and τ , but not sufficiently, the X vector can be special pattern data with normal
distribution and natural pattern too. If a is the absolute difference between ε
and X̄ or between τ and S, then, there exists a numeric value given by a so that
the probability distribution of X is not normal.

Coding. The coding stage consist of transforming the X vector within the range
[0,1] using a lineal transformation.

Test for normal distribution This test is important since it indicates the
type of FuzzyARTMAP learning parameters to be used depending if the data
set is normally distributed or not. After selecting the proper ANN parameters
the learning starts by training the FuzzyARTMAP network using the IKB as a
training set which establishes the internal representation of the network.

4.2 Control

Once the statistical pattern is recognised, the control stage begins. If the pattern
is not recognised by the FAM network, then user intervention is required to
statistically analyze and classify the pattern. On the other hand the pattern can
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be classified as belonging to process in control or process out of control. A pattern
belonging to a process in control indicates stability in the manufacturing process.
In this case, a new X vector will be presented. Otherwise, the manufacture
process is out control, then the special pattern is identified and a proper error
recovery strategy implemented. When a special pattern occurs the first time, this
pattern will be different from the simulated patterns used to train the FAM and
it contains real data from the process so this information is used to enhance the
previous knowledge base (IKB) forming the new EKB. In practice, this resulted
in a fine tuning mechanism to increase the expertise and robustness of the neural
network as demonstrated by the obtained results in a real process as indicated
in the following section.

5 Issues and Experiments

The FuzzyARTMAP learning parameters considered for the experimental work
are: the input base vigilance (ρa1,2), vigilance in the map-field (ρab1,2 ), learning
rate (β1,2) and the output base vigilance (ρb1,2)2.

After trials with different parameters, a factorial fractional design (2k
III), with

7 factors, 2 replicates, 16 experimental runs and a significance level of 0.05 re-
sulted appropriate. The values for the factors levels were 0.2 and 0.8 for all them,
with the exception of β1,2 where the high level was set to 1.0. This experimenta-
tion employed the Monte Carlo Simulation method to generate the train and test
set of vectors with special and non special patterns. X Vectors with non special
natural pattern (a), special natural pattern (b), and special unnatural pattern
(c) were considered during the experiments. Cases (a) and (b) have normal dis-
tribution and (c) non normal. For case (a), it was considered µ = 0 and σ = 1;
case (b) considered the combination (µ, σ) with values (0,3), (3,1) and (3,3).
Finally, for the third case (c), the special patterns were obtained varying the
term d in equation (1). The upward shift pattern was generated with d > 2.5σ,
the downward shift was generated with d < −2.5σ. The upward trend pattern
was generated with d > 0.1σ and for the downward shift d < −0.1σ. A detailed
explanation of the simulation and the selection of the network parameters it is
given in our previous work [11]. The best parameters values determined after the
experimental design are shown in the Table 1. These values are adjusted auto-
matically during the training phase of the FuzzyARTMAP network depending
on the type of detected pattern.

The validation of our method was carried out using simulated and real-world
data3. The data presented in this paper comes from a make-up manufacturing
company representing the level of quality conformance during the product pack-
ing stage. The process generated values which are the fraction of non-conform
products (X vector). In the method, considering the objective non-conform frac-
tion (p = 0.005) resulted in ε = 0.69 and τ = 0.83. The number of X vectors
processed by the algorithm are 21. The results are given in table 2.
2 Subindexes 1,2 indicate parameters used during training/testing phase, respectively.
3 Due to space limitation, only results from one industrial process are presented.
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Table 1. FuzzyARTMAP parameters

ANN Normal Dist. Nonnormal Dist.
Parameter Pattern Pattern

ρa1 0.2 0.2
ρa2 0.2 0.2
ρb1,2 0.9 > 0.7
ρab1 any 0.2
ρab2 any 0.8
β1 1.0 0.2
β2 1.0 1.0

Table 2. Results form the packing process

V ector Distribution Process Results (CC) Results (ANN)
1 Non normal Out control Out control-downward trend Downward trend

2 to 6 Non normal Out control In control Downward trend
7 Non normal Out control Out control-downward trend Downward trend
8 Non normal Out control In control Downward trend
9 Non normal Out control Out control-downward trend Downward trend

10,11 Non normal Out control In control Downward trend
12 to 19 Normal In control In control Natural In control

20 Non normal Out control Out control-downward trend Downward trend
21 Non normal Out control Out control Downward trend

6 Conclusions and Ongoing Work

An alternative method for Statistical Proces Control (SPC) that does not require
control limits, assumption of normality in the process data and high simple size
(to secure data normality) was presented.

It was observed that grouping family vectors according to its probability dis-
tribution (normal or non normal) and using two sets of network training pa-
rameters increased the neural network efficiency. The method was tested during
simulation and also with process data from a make-up company comparing the
obtained results with the use of Control Charts (CC). The proposed method
compared favourably considering that it can be applied to either continuous or
discrete variables, The efficiency of the method is improved when unknown pat-
terns are added to the Initial Knowledge Base using the incremental learning
properties of the FuzzyARTMAP network. The method is intended to be ap-
plied on-line to automatically monitor the quality of the production, therefore
on going work is looking at the implementation in other industrial sectors.
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Abstract. A major bottleneck in electronic communications is the enor-
mous dissemination of spam emails. Developing of suitable filters that
can adequately capture those emails and achieve high performance rate
become a main concern. Support vector machines (SVMs) have made
a large contribution to the development of spam email filtering. Based
on SVMs, the crucial problems in email classification are feature map-
ping of input emails and the choice of the kernels. In this paper, we
present thorough investigation of several distance-based kernels and pro-
pose the use of string kernels and prove its efficiency in blocking spam
emails. We detail a feature mapping variants in text classification (TC)
that yield improved performance for the standard SVMs in filtering task.
Furthermore, to cope for realtime scenarios we propose an online active
framework for spam filtering.

Keywords: Support Vector Machines, Feature Mapping, Spam, Online
Active, String Kernels.

1 Introduction

Electronic mail has gained immense usage in everyday communication for dif-
ferent purposes, due to its convenient, economical, fast and easy to use nature
over traditional methods. Beyond the rapid proliferation of legitimate emails
lies adaptive proliferation of unwanted emails that take the advantage of the
internet, known as spam emails. Variety of techniques have been developed to
mitigate sufferings of spam emails. In particular, many machine learning (ML)
techniques have been employed in the sake of spam filtering such as Boosting
Trees, k-nearest neighbor classifier, Rocchio algorithm, Naive Bayesian classifier,
Ripper and SVMs [4]. SVMs have made a large contribution to the development
of spam email filtering. Based on SVMs, different schemes have been proposed
through TC approaches. Recent studies on spam filtering, using SVMs, have fo-
cused on deploying classical kernels which neglects the structure and the nature
of the text. Along with common Bag-of-Word (BoW) feature mapping approach
in a batch mode [6]. In this paper, we propose an automated spam filtering in
realtime, that improves the blocking of spam emails and reduce the misclassi-
fication of legitimate emails. To reach this goal, we focus on three key aspects:

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 621–628, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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first we explore several feature mapping strategies in context of text catego-
rization. We intensively investigate the effect of various combinations of term
frequency, importance weight and normalization on spam filtering performance.
Second, we compare and analyze the use of various string kernels and different
distance-based kernels for spam filtering. In addition, we provide detailed results
for a fair comparison between different feature mapping and kernel classes using
typical spam filtering criteria. Finally, we propose a framework of various online
modes for spam filtering. We discuss the use of online SVMs, Transductive Sup-
port Vector Machines (TSVMs) and Active Online SVMs for spam filtering. We
study proposed modes using different feature mapping and kernel classes, also.

This paper is organized as follows: in next section number of feature mapping
choices that have been employed to transform email data into feature vectors
usable by machine learning methods are outlined. In section 3 we briefly in-
troduce Support Vector Machine, along with investigation of different kernels
classes used in spam filtering tasks. Section 4 describes different online SVMs
modes. In section 5 we report empirical results of proposed approaches. Finally
conclusions are presented in Section 6.

2 Input Data Format

Many researchers have pointed out the importance of text representation in the
performance of TC using SVMs. In this section, briefly, we discuss different ap-
proaches that have been applied in text representation. Generally, supervised
TC is engaged into three main phases: term selection, term weighting, and clas-
sifier learning. Among existing approaches, the text representation dissimilarity
can be shown either on what one regards the meaningful units of text or what
approach one seeks to compute term weight. Terms are usually identified with
words syntactically or statistically. In BoW, for instance, the extraction of fea-
tures is based on defining a substring of contiguous characters word w, where
word boundary is specified using a set of symbolic delimiters such as whites-
pace, etc. Using k-mer (i.e. k-gram)approach, however, the document can be
represented by predefined sequences of contiguous characters (i.e. sub-strings)
of length k. Moreover, term weighting phase is a vital step in TC, involves con-
verting each document d to vector space which can be efficiently processed by
SVMs. Term weights can be considered by occurrence of term in the corpus (term
frequency) or by its presence or absence (binary). In our experiments we adopted
seven term weighting schemes similar to [8]. In particular, the first three term
weighting schemes are different variants of term frequency which are: TF , logTF
and ITF . Next four schemes are different combinations of term frequency and
importance weight which are: TF -IDF , logTF -IDF and ITF -IDF . For large
corpus, if we consider each distinct feature for spam filtering then a very dense
feature space F is constructed. To solve this issue researchers suggest Stop words
and Stemming. More sophisticated feature selection is found by computing the
probability of dependency between term w and category c such as Information
Gain (IG), CHI statistic (χ2) and Term strength (TS). In addition, spammers
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attempt to defeat the spam filtering by writing short emails. To handle such
problem, in our experiments, we normalize emails by using L2-normalization
which yields generally to best error bounds.

3 Support Vector Machines: Kernels

SVMs are known to give accurate discrimination in high feature space [3]. Fur-
thermore, they received a great attention in many applications such as text
classification. The state of the art of SVMs evolved mapping the learning data
from input space into higher dimensional feature space where the classifica-
tion performance is increased. This has been developed by applying several
kernels each with individual characteristics. Lately, the choice of the kernel
became a widely discussed issue, since it reveals different performance result
for various applications. SVMs in classification problems, such as spam filter-
ing, explore the similarity between input emails implicitly using inner product
K(X,Y ) = 〈φ(X), φ(Y )〉 i.e. kernel functions. In distance based learning [12]
the data samples −→x are not given explicitly but only by a distance function
d(−→x ,−→x ′). In our experiments we compare the effectiveness of different kernels
in this class which are: Gaussian, Laplacian, χ2, Inv multi, Polynomial, and
Sigmoid [12]. In contrast of distance-based kernels, string kernels define the sim-
ilarity between pair of documents by measuring the total occurrence of shared
substrings of length k in feature space F . In this case, the kernel is defined via an
explicit feature map. In our experiments we adopted two classes of string kernels:
the position-aware string kernel which takes advantage of positional information
of characters/substrings in their parent strings and the position-unaware string
kernel which does not. We applied Weighted Degree kernel (WD) and Weighted
Degree kernel with Shift (WDs) [11] for position-aware kernels. Additionally, for
position-unaware kernels, Subsequence String kernel (SSK) [10], Spectrum ker-
nel and Inexact String Kernels such as Mismatch kernel, Wildcard kernel and
Gappy kernel [9].

4 Support Vector Machines: Learning and Classification

In reality, spam filtering is typically tested and deployed in an online setting, by
proceeding incrementally. To this end, Online SVM model presents to the filter
a sequence of emails, where sequence order is determined by the design (i.e. it
might be in chronological order or even randomized). We adopted a simple algo-
rithm introduced in [7] to adapt batch model to online model. Initially, suppose
a spam filter is trained on training set. In SVM model, examples closer to the hy-
perplane are most uncertain and informative. Those examples are presented by
support vectors (SVs). Furthermore, SVs are able to summarize the data space
and preserve the essential class boundary. Consequently, in our model, we use
SVs as seeds (starting point) for the future retraining and discard all non-SVs
samples. To this end, labeled data sets are not often affordable prior classifica-
tion and label data set is time consuming and tedious process. To overcome this
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problem, TSVM constructs a maximum margin by employing large collection of
unlabeled data jointly with a few labeled examples for improving generalization
performance [5]. To cope with realtime scenario, Online Active SVM presents
messages to the filter in a stream, where the filter must classify them one by
one. Each time a new example is presented to the filter, the filter has the option
of requesting a label for the given message using Angle diversity approach [1].

5 Experimental Results

Recently, spam filtering using SVM classifier has been tested and deployed us-
ing linear kernel weighted using binary weighting schemes [13,2,4]. We extend
previous research on spam filtering, as we consider three main tasks. Firstly, we
compare the use of various feature mapping techniques described in section 2
for spam email filtering. Secondly, we investigate the use of string kernels with
a number of classical kernels and exploring that in terms of accuracy, precision,
recall, F1 and running classification time. Thirdly, we report results from exper-
iments testing the effectiveness of the online, TSVM and online active learning
methods, presented in previous sections. In seek of comparison, the performance
of each task is examined using the same version of spam data set which is trec05-
p11 (92,189 labeled spam and legitimate emails) and the same pre-processing is
applied for different kernels. In the purpose of comparison evaluation, SVM light2

package was used as an implementation of SVMs. We set the value of ρ in

Fig. 1. The performance of SVM spam fil-
tering on trec05-1, where IG has been ap-
plied

Fig. 2. The performance of SVM spam fil-
tering on trec05-1, where χ2 has been ap-
plied

Fig. 3. The performance of SVM spam fil-
tering on trec05-1, where TS has been ap-
plied

Fig. 4. The performance of SVM spam fil-
tering on trec05-1, where stop words list
and stemming have been applied

1 http://plg1.cs.uwaterloo.ca/cgi-bin/cgiwrap/gvcormac/foo
2 http://svmlight.joachims.org/
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Table 1. The performance of batch SVM (SVM), TSVM, Online SVM (ON) and
Online Active SVM (ONA) spam filtering on trec05-1 using distance-based kernels
normalized using L2-norm, and without removing stop words

Kernel Precision Recall F1
SVM TSVM ON ONA SVM TSVM ON ONA SVM TSVM ON ONA

Polynomial.TF 0.779 0.800 0.798 0.787 0.805 0.807 0.810 0.817 0.792 0.804 0.804 0.802
Gaussian.TF 0.876 0.824 0.870 0.869 0.850 0.804 0.858 0.842 0.863 0.814 0.864 0.855
Laplacian.TF 0.919 0.903 0.904 0.919 0.879 0.843 0.868 0.863 0.899 0.872 0.886 0.890
χ2.TF 0.893 0.892 0.891 0.898 0.879 0.876 0.880 0.844 0.886 0.884 0.886 0.870
Sigmoid.TF 0.897 0.897 0.876 0.899 0.817 0.788 0.820 0.794 0.855 0.839 0.847 0.843
Inv multi.TF 0.779 0.791 0.798 0.787 0.824 0.807 0.868 0.813 0.801 0.799 0.831 0.799

Polynomial.logTF 0.854 0.858 0.850 0.861 0.838 0.836 0.842 0.823 0.846 0.847 0.846 0.842
Gaussian.logTF 0.819 0.815 0.833 0.837 0.849 0.824 0.853 0.835 0.834 0.820 0.843 0.836
Laplacian.logTF 0.901 0.871 0.910 0.885 0.893 0.887 0.890 0.888 0.897 0.879 0.900 0.886
χ2.logTF 0.920 0.918 0.903 0.921 0.915 0.908 0.916 0.906 0.917 0.913 0.910 0.913
Sigmoid.logTF 0.803 0.803 0.815 0.795 0.836 0.812 0.840 0.825 0.819 0.808 0.827 0.809
Inv multi.logTF 0.797 0.799 0.789 0.765 0.873 0.841 0.882 0.859 0.833 0.820 0.833 0.809

Polynomial.ITF 0.835 0.857 0.831 0.827 0.836 0.803 0.845 0.818 0.835 0.829 0.838 0.822
Gaussian.ITF 0.872 0.812 0.889 0.863 0.796 0.792 0.801 0.790 0.832 0.802 0.843 0.825
Laplacian.ITF 0.793 0.749 0.836 0.765 0.790 0.772 0.790 0.772 0.792 0.760 0.812 0.768
χ2.ITF 0.899 0.892 0.905 0.897 0.893 0.892 0.883 0.887 0.896 0.892 0.894 0.892
Sigmoid.ITF 0.769 0.783 0.797 0.774 0.795 0.765 0.783 0.793 0.782 0.774 0.790 0.783
Inv multi.ITF 0.795 0.742 0.800 0.778 0.788 0.769 0.795 0.760 0.791 0.756 0.797 0.769

Polynomial.IDF 0.683 0.708 0.698 0.679 0.768 0.716 0.778 0.757 0.723 0.712 0.736 0.716
Gaussian.IDF 0.778 0.743 0.759 0.758 0.765 0.769 0.780 0.785 0.771 0.756 0.769 0.771
Laplacian.IDF 0.747 0.746 0.760 0.729 0.801 0.709 0.812 0.786 0.773 0.727 0.785 0.756
χ2.IDF 0.719 0.713 0.729 0.732 0.737 0.767 0.759 0.778 0.728 0.739 0.744 0.755
Sigmoid.IDF 0.748 0.703 0.799 0.735 0.709 0.689 0.714 0.696 0.728 0.696 0.754 0.715
Inv multi.IDF 0.728 0.749 0.718 0.737 0.698 0.701 0.733 0.674 0.713 0.725 0.725 0.704

Polynomial.TF-IDF 0.854 0.807 0.850 0.836 0.823 0.825 0.835 0.809 0.838 0.816 0.842 0.822
Gaussian.TF -IDF 0.836 0.802 0.842 0.831 0.835 0.817 0.846 0.826 0.835 0.809 0.844 0.829
Laplacian.TF-IDF 0.832 0.850 0.820 0.861 0.889 0.885 0.898 0.893 0.860 0.867 0.857 0.877
χ2.TF-IDF 0.816 0.816 0.818 0.808 0.793 0.761 0.796 0.785 0.804 0.788 0.807 0.796
Sigmoid.TF-IDF 0.797 0.749 0.790 0.794 0.831 0.782 0.842 0.809 0.814 0.765 0.815 0.801
Inv multi.TF-IDF 0.796 0.749 0.790 0.788 0.811 0.804 0.820 0.816 0.803 0.776 0.805 0.801

Polynomial.logTF-IDF 0.742 0.747 0.768 0.732 0.752 0.740 0.769 0.745 0.747 0.743 0.768 0.739
Gaussian.logTF-IDF 0.726 0.793 0.758 0.739 0.769 0.705 0.773 0.747 0.747 0.747 0.766 0.743
Laplacian.logTF-IDF 0.827 0.840 0.831 0.818 0.866 0.863 0.866 0.888 0.846 0.851 0.848 0.851
χ2.logTF-IDF 0.817 0.803 0.820 0.800 0.891 0.786 0.892 0.793 0.852 0.795 0.855 0.797
Sigmoid.logTF-IDF 0.813 0.790 0.832 0.810 0.795 0.712 0.787 0.767 0.804 0.749 0.809 0.788
Inv multi.logTF-IDF 0.789 0.824 0.779 0.799 0.775 0.732 0.786 0.766 0.782 0.776 0.782 0.782

RBF kernels, and C for the soft margin via 10-fold cross-validation. For TSVM,
the value of C∗ is set similar to C. We ran experiments for similar length of
substrings used in string kernels (value of k parameter). We varied the value of
the decay vector λ for SSK to see its influence in the performance, where the
higher value of λ gives more weight to non-contiguous substrings (λ = 0.4 has
provided a better performance). For mismatch kernel (k, m), wildcard kernel
(k,w) and gappy kernel (g,k), the experiments have taken place with fixed val-
ues of allowed mismatch, wild card and gaps which are m = 1, w = 2, k = 2,
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Table 2. The performance of batch SVM, TSVM, Online SVM (ON) and Online Active
SVM (ONA)spam filtering on trec05-1 using string kernels

Kernel Precision Recall F1
TSVM SVM ONA ON TSVM SVM ONA ON TSVM SVM ONA ON

SSk 0.9278 0.9509 0.9505 0.9590 0.9281 0.9531 0.9468 0.9729 0.9279 0.9404 0.9341 0.9372
Spectrum 0.9249 0.9657 0.9466 0.9800 0.9362 0.9345 0.9478 0.9479 0.9305 0.9325 0.9315 0.9320
Mismatch 0.8745 0.8967 0.9012 0.9033 0.9100 0.9277 0.9145 0.9265 0.8919 0.9094 0.9006 0.9050
Wildcard 0.9356 0.9689 0.9432 0.9900 0.8890 0.9056 0.8952 0.9112 0.9117 0.9086 0.9102 0.9094
Gappy 0.9190 0.9678 0.9256 0.9943 0.9167 0.9012 0.9189 0.9043 0.9178 0.9094 0.9136 0.9115
WD 0.8978 0.9571 0.9189 0.9700 0.9021 0.9100 0.9067 0.9190 0.8999 0.9049 0.9024 0.9037
WDs 0.8987 0.9124 0.9109 0.9167 0.9189 0.9080 0.9001 0.9088 0.9087 0.9083 0.9085 0.9084

Table 3. Execution time for different combinations of frequency and distance kernels
in different modes: batch SVM (SVM) and online SVM (ON). These times do not
include time spent in feature mapping.

Polynomail Gaussian Laplacian χ2 Sigmoid Inv multi
SVM ON SVMON SVM ON SVMON SVMON SVMON

TF 0.03 0.03 0.4 0.3 3.48 2.4 0.49 0.38 0.1 0.1 3.43 3.1
logTF 0.45 0.4 1.25 1.1 5.54 4.44 5.47 5 6.36 6 3.21 2.45
ITF 1.55 1.35 2.39 1.55 6.48 6.30 5.49 4.55 3.03 3.03 4.02 4
IDF 0.47 0.46 2.02 2 2.05 2 4.57 4.5 3.07 3.01 4.11 4.05
TF-IDF 0.02 0.02 0.39 0.37 3 3 0.35 0.34 0.55 0.53 3.43 3.1
logTF-IDF 0.45 0.4 1.2 1.1 4.3 3.25 5 5 6.4 5.59 3.2 2.55

Table 4. Execution time for string kernels in different modes: batch SVM (SVM) and
online SVM (ON). These times do not include time spent in feature mapping.

SSk Spectrum Mismatch Wildcard Gappy WD WDs

SVM 20.08 19.45 21.43 20.47 20.02 19.56 20.32
ON 7.37 18.55 19.30 20.20 19.32 19.10 20.00

respectively, as allowing higher mismatch will increase the computation cost. To
examine the use of different feature mapping, we evaluate trec05p-1 data set
using generic combinations of feature mapping approaches along with different
distance-based kernels (i.e. Polynomial.TF all normalized using L2). Clearly,
classification performance is better when no feature selection techniques were
applied. Figures 1, 2, 3 and 4 show slight degradation in performance compar-
ing with the performance of spam filtering using all distinct words. Tables 1
through 2 show the comparison results obtained for distance-based and string
kernels along with different feature mapping combinations deployed in different
SVMs modes. We achieved best performance with emails weighted using dif-
ferent variant of TF and normalized using L2-norm. Besides, the kernel choice
is crucial in classification problem. The good kernel is the kernel that gives a
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valuable information about the nature of data, and report good performance.
RBF kernels have the higher performance among distance based kernels in most
of experiments. For instance, string kernels, in particular SSK, yields improved
performance compared to batch supervised learning, with reduced number of
labels and reasonable computational time. On the basis of kernels comparison
string kernels performed better than distance-based kernels. Besides F1, preci-
sion, and recall, we evaluate involved kernels in terms of their computational
efficiency, in order to provide insight into the kernels impact on filtering time.
We measured the duration of computation for all kernels (see results in Tables
3 and 4). As expected, string kernels were defeated by their computational cost
[9]. In addition, results show a clear dominance of online active learning methods,
compared to both Online SVM and TSVM.

6 Conclusion

The ultimate goal of our extensive study of automated spam filtering using SVMs
is to develop a devoted filter for spam problem in order to improve the blocking
rate of spam emails (high precision) and reduce the misclassification rate of le-
gitimate emails (high recall). The path towards such powerful filter is a thorough
study of powerful classifier to accurately distinguish spam emails from legitimate
emails and to consider the dynamic nature of spam problem. In this paper, par-
ticularly, we intensively study SVM email classification performance given by
deployed kernels in realtime environment. Indeed, we described the use of string
kernels in order to improve spam filter performance. We implemented, tested, in-
tegrated various preprocessing algorithms based on term frequency, importance
weight with normalization to investigate their impact on classifier performance.
Moreover, we applied algorithms to adapt batch theoretical models to online
real world models using string kernels and well-performed preprocessing combi-
nations, and hence maximize the overall performance. Further enhancement can
be made by taking into account user feedback and the structure of emails which
is richer than only text.
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Abstract. In this work we propose a new method to create neural net-
work ensembles. Our methodology develops over the conventional tech-
nique of bagging, where multiple classifiers are trained using a single
training data set by generating multiple bootstrap samples from the
training data. We propose a new method of sampling using the k-nearest
neighbor density estimates. Our sampling technique gives rise to more
variability in the data sets than by bagging. We validate our method by
testing on several real data sets and show that our method outperforms
bagging.

1 Introduction

The goal of constructing an ensemble of classifiers is to train a diverse set of
classifiers from a single available training data set, and to combine their outputs
using a suitable aggregation function. In the past few years there have been
numerous proposals for creating ensembles of classifiers, and in general, it have
been noticed that an ensemble of classifiers have better generalization abilities
than a single classifier. Two of the well known proposals for creating classifier
ensembles are bagging [2] and boosting [12]. Ample theoretical and experimen-
tal studies of Bagging, Boosting and their variants have been reported in the
literature, and these studies clearly point out why and under which scenarios
ensembles created by these methods can give better predictions [2,9,10,13].

Bagging is a popular ensemble method which can significantly improve gener-
alization abilities of “unstable” classifiers [2]. In bagging, given a training data
set Lx = {xxx1,xxx2, . . . ,xxxm} ⊂ �n with the associated class labels, α independent
bootstrap samples [5] are drawn from Lx each of size m. In other words, from
the original training set Lx, α different sets B1,B1, . . . ,Bα are obtained each
containing m points with their associated labels. These α different sets thus ob-
tained are used to train α different classifiers. In the discussions that follow we
shall call a single member of the ensemble as a candidate. The final decision is
made by an aggregation of the outputs of the candidates. The type of aggrega-
tion depends on the type of the output, i.e., whether it is a numerical response
or a class label. Generally, for classification a majority voting type aggregation
is applied, whereas in case of regression (function approximation) type problems
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an average or a weighted average is used. This simple procedure can decrease
the classification error and give better classifiers with good generalization abili-
ties. The intuitive reason of why bagging works is that each candidate learns a
slightly different decision boundary, and thus the combination of all the different
decision boundaries learned by the candidate classifiers give rise to less variance
in the classification error. In [2] Leo Breiman provided theoretical justification
of the fact that one can obtain significant improvement in performance by bag-
ging unstable classifiers. It was also noted in [2] that supervised feed-forward
neural networks like the multilayer perceptron (MLP) are unstable, i.e., it is not
necessary that for a trained MLP, small changes in the input will produce small
changes in the output. Thus it is expected that bagging can decrease classifica-
tion errors in MLP classifiers to a large extent

Right from the early nineties neural network ensembles has been widely stud-
ied [8,14]. A class of studies regarding neural network ensembles are directed
towards adapting suitably the general ensemble techniques in case of neural net-
works [4]. Other studies have been focussed on developing heuristics to choose
better candidates for an ensemble such that each candidate has good prediction
power along with that the selected candidates have better diversity [3,6], which
is known to affect the performance of an ensemble [9,10].

In this paper we propose a new method to create neural network ensem-
bles based on bagging. As discussed earlier, in bagging a bootstrap sample of
a given training set is used to train a candidate classifier. A bootstrap sample
is generated by sampling with replacement, so the difference among the various
bootstrap samples is that there may be some data points missing or some data
points may get repeated. In the proposed method we aim to achieve more diver-
sity in each of the training set which would be used to train the candidates of
the ensemble. In the ideal scenario it can be assumed that the training data gets
generated from a fixed but unknown time-invariant probability distribution. It
would have been the best if the different training sets for the candidates could
have been independently generated following the same probability distribution
from which the training data was generated. But, as this distribution is unknown,
so such a method cannot be developed in practice. One of the closely related
options can be to estimate the probability distribution of the training data and
thus draw different training sets from this estimated distribution. Our work is
motivated by this approach. The problem of this approach is that generally the
number of available training data is too small to have a reasonable estimate of
the distribution. So, in this work we do not attempt to estimate the true prob-
ability distribution of the training set, but we propose a method to generate
new data points such that the new points are generated according to the spatial
density of the training set, i.e., more points are generated in the dense regions
of the data and less points in the sparse regions.

The heart of our method is the k-nearest neighbor (k-NN) density estimation
and classification procedure. The new data points that are generated for train-
ing the candidates in a sense follows the k-NN density estimate of the original
training data. This technique has been successfully used for data condensation
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in [11]. But we use it for a completely different goal. We generate new points
for each candidate and mix these new points with the original training data and
train the candidate with this data. Thus, it is expected that the training sets
used for the candidates are more diverse than the bootstrap samples. Our ex-
periments demonstrate that this technique when applied to MLP ensembles can
give better results than conventional bagging.

2 k Nearest Neighbor Density Estimation

Let xxx1,xxx2, . . . ,xxxm ∈ �n be independently generated from a continuous proba-
bility distribution with density f . The nearest neighbor density estimation pro-
cedure finds the density of a point zzz. We describe the methodology in brief next.

Let ||xxx − zzz|| denote the Euclidian distance between points xxx and zzz. A n
dimensional hyper-sphere centered at xxx with radius r is given by the set Sxxx,r =
{zzz ∈ �n : ||xxx − zzz|| ≤ r}. We call the volume of this sphere as Vr = Vol(Sxxx,r).
Let k(N) be a sequence of positive integers such that limN→∞ k(N) = ∞ and
limN→∞ k(N)/N = 0. Suppose we have a sample Lx = {xxx1,xxx2, . . . ,xxxm} ⊂ �n,
and we fix a value of k(N). Let rk(N),zzz be the Euclidian distance of zzz from its
(k(N) + 1)-th nearest neighbor in Lx. Then the density at zzz is estimated as

f̂(zzz) =
k(N)
N

× 1
Vrk(N),zzz

(1)

It has been shown that this estimate is asymptotically un-biased and consistent,
but it is known that this estimate suffers from the curse of dimensionality, i.e.,
the estimate gets unstable for high dimensional data. We shall use this density
estimation technique to generate new training points, which we describe next.

3 Expanding a Training Set

Our basic motivation is to increase the variability of the individual training sets
which we shall use to train each candidate classifier. The idea is to create new
training points which are similar to the ones in the original training set. Ideally,
we want to generate points from the same probability distribution from which
the training data was generated. As that distribution is unknown to us and
obtaining a reasonable estimate from a small training set is not feasible we shall
apply some heuristic to generate new points following the rule that more points
should be generated in the denser regions of the distribution.

Given a labeled data set L = {(xxxi, yyyi) : xxxi ∈ �n, yyyi ∈ {1, 2, . . . , c}, i =
1, . . .m}, we shall call the set of the input vectors as Lx = {xxx1,xxx2, . . . ,xxxm}.
We shall denote the label (or output) associated with xxx as #(xxx). For each xxxi we
compute the distance of its k-th nearest neighbor in Lx. We call this distance
as di. From eq. (1), it is clear that the density at a point xxxi is inversely related
to the volume of the hypersphere centered at xxxi with radius di. So, it can be in-
ferred that points with higher values of di lies in less dense areas and the points
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which low values of di lies in denser areas. Our objective is to generate new
points following the density of the original data, i.e., our method must be such
that more points are generated in the denser regions and less points in sparse
regions. To achieve this, for each xxxi ∈ Lx we define a quantity p as follows:

p(xxxi) =
1
Z
e−di (2)

where

Z =
m∑

i=1

e−di (3)

This definition of p guarantees that for a point xxxi the value of p(xxxi) would be
large if di is small and vice versa. Also, because of the way we define p it is
obvious that for all xxxi ∈ Lx, 0 ≤ p(xxxi) ≤ 1, and also

∑m
i=1 p(xxxi) = 1. Thus p

can be treated as a discrete probability distribution on the set Lx. To generate
a single new point we first sample a point randomly from Lx according to the
probability distribution p. The roullet wheel selection technique can be used for
this purpose. Let xxx ∈ Lx be the sampled point. As xxx has been sampled according
to the probability p, with high probability it will lie in a dense region of the
training data. Let {zzz1, zzz2, . . . , zzzk} be the k nearest neighbors of the sampled
point xxx. Let NBRS(xxx) be the set containing the k nearest neighbors of xxx along
with xxx, i.e,

NBRS(xxx) = {zzz1, zzz2, . . . , zzzk} ∪ {xxx}.

We now generate the new point x̃xx as a random convex combination of the points
in NBRS(xxx). In other words, let each λj , for j = 1, . . . , k + 1, be generated
independently from a uniform random distribution over [0, 1], we compute x̃xx as

x̃xx =

∑k
j=1 λjzzzj + λk+1xxx∑k+1

j=1 λj

. (4)

The new point will thus lie within the convex hull of the points in NBRS(xxx), and
thus cannot be very atypical of the points already present in the training set.

The new point x̃xx was not present in the training set, so to incorporate it into
the training set we need to label this point, i.e., assign a target output to this
point. The most natural label of x̃xx would be that label which the majority of its
neighbors have. Note, that NBRS(xxx) are the k + 1 neighbors of x̃xx (including xxx
itself). Thus, the label of x̃xx is calculated as

#(x̃xx) = argmax
j=1,...,c

∑
zzz∈NBRS(xxx)

δ(j, #(zzz)),

where δ(a, b) = 1 if a = b, and δ(a, b) = 0 if a �= b.
The method described above can be repeated to obtain the desired number of

new points. The algorithm in Fig. 1 summarizes the procedure described above.
The algorithm Expand as described in Fig. 1 takes as input the training set
L, along with the parameters k and ν, where ν is the number of points that
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Algorithm Expand(L,k,ν)
1. Z ← 0;
2. for i = 1 to m;
3. di ← Distance of the k-th nearest neighbor of xxxi in Lx;
4. p(xxxi) ← e−di ;
5. Z ← Z + p(xxxi)
6. end for
7. for i = 1 to m,
8. p(xxxi) ← p(xxxi)/Z;
9. end for
10. NewPoints ← ∅;
11. while |NewPoints| < ν,
12. Select xxx from Lx with probability p(xxx)
13. {zzz1, zzz2, . . . , zzzk} ← k nearest neighbors of xxx in Lx;
14. /* Let NBRS(xxx) = {zzz1, zzz2, . . . , zzzk} ∪ xxx */
15. λ1, λ2, . . . , λk+1 ∼ U [0, 1]; Λ ←∑k+1

i=1 λi

16. x̃xx ← (
∑k

i=1 λizzzi + λk+1xxx)/Λ;
17. �(x̃xx) ← argmaxj=1,...,c

∑
zzz∈NBRS(xxx) δ(j, �(zzz)) ;

18. NewPoints ← NewPoints ∪ {(x̃xx, �(x̃xx))}
19. end while
20. return NewPoints;

Fig. 1. Algorithm to expand a training set

are required to be generated. It gives as output a set called NewPoints, which
contains ν many new points generated by the procedure.

4 Creating the Ensemble

Our strategy of creating the ensemble closely follows bagging, except the fact that
instead of using bootstrap samples for training the candidates of the ensemble
we use the algorithm Expand of Fig. 1 to create new points and mix them with
the original training set. Given a training set L we decide upon the size of the
ensemble, i.e., the number of candidate classifiers. Let us call this as α. We fix
two integers k and ν and call Expand(L, k, ν) α times. By this way we obtain
S1, S2, . . . , Sα as output, where each Si contains ν points. For training the i-
th candidate we train a multilayered perceptron using L ∪ Si. Thus obtaining
α trained networks. For using the network, we feed a test point to all the α
networks and decide the class of the test point by a majority vote. The algorithm
for creating the ensemble is depicted in Fig. 2.

The algorithm Create Ensemble takes as input the training set L, k, the num-
ber of new points to be used for each candidate ν and the size of the ensemble
α. The algorithm calls a function Train, which takes as input a training set and
a variable A which contains the parameters necessary to fix the architecture of
a network. The algorithm Train outputs a vector WWW which contains the weights
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Algorithm Create Ensemble(L,k,ν,α)
1. for i = 1 to α;
2. Si ← Expand(L,k,ν);
3. WWW i ← Train(L ∪ Si,Ai)
4. end for;
5. return (WWW 1,A1), . . . , (WWW α,Aα);

Fig. 2. Algorithm for creating the ensemble

and biases of the network. Thus A and WWW together will specify a trained net-
work. The output of Create Ensemble is α trained networks. The decision on a
test point is taken by a majority vote of these α networks.

The algorithm Train takes in two user defined parameters, k and ν. k is the
parameter for the k nearest neighbor density estimation procedure. Choosing a
proper value of k is a classical problem which do not yet have an well accepted
solution, but there exist solutions (some very complicated) which solves this
problem [7]. In the current work we do not attempt to solve this problem. In the
next section we present some simulation results using this algorithm, we tested
with numerous small values of k, we found that the performance do change
with the change of k, but we did not find any significant pattern which shows
a conclusive dependence of the parameter k with the performance. Based on
experiments we suggest a value of k near 5. The parameter ν decides the number
of new points that are to be included in each training set which is used for
training the candidates. A small value of ν will mean little variation among the
training set, and a big value of ν will mean more variability. But, the new points
generated by Expand are noisy versions of the original training set, so a very
big value of ν is not recommended. Our experiments suggest that ν being 10%
of the size of the original training data gives good results.

The computational overhead in creating the ensemble is same as bagging ex-
cept that it has the additional overhead of the function Expand. Expand requires
finding the k nearest neighbors of each data point for computing the value di,
this operation is computationally costlier than other operations involved. But
the computation of the values di are a one time operation and they are not
required to be repeated when Expand is called on the same training data mul-
tiple times. Thus, the total computational cost in creating the ensemble is not
significantly more than that of conventional bagging.

5 Experimental Results

We tried our method on six real data sets from the UCI repository [1]. The
data sets used are Iris, Wine, Liver-Disorder(Liver), Waveform-21(Wave), Pima-
Indian-Diabetes (Pima), and Wisconsin Breast cancer (WBC). For the exper-
iments we used the multilayered perceptron implementation of MATLAB. In
particular we used the Levenberg-Marquardt backpropagation algorithm imple-
mented as ’trainlm’ method in MATLAB for training.
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Table 1. The results

Data Single Conventional Proposed
set network Bagging Method

k = 3 k = 5 k = 7 k = 9
Iris 91.26±6.11 96.08±2.66 96.46±0.54 97.00±0.47 96.67±0.44 96.86±0.32

Wine 92.02±4.86 97.18±1.88 98.93±0.32 98.70±0.38 98.70±0.38 99.04±0.53

Liver 64.85±3.21 67.60±1.74 68.63±1.26 68.95±2.24 68.78±1.28 68.95±1.70

Wave 62.74±5.93 84.10±1.88 86.09±0.18 86.43±0.32 85.98±0.26 85.70±0.24

Pima 66.35±5.14 75.11±1.06 77.03±0.83 76.66 ± 0.53 76.97±0.52 76.94±0.48

WBC 95.71±0.54 96.37±0.44 95.98±0.41 96.06±0.34 96.10±0.33 95.86±0.36
Glass 62.06±3.53 67.66±1.78 70.70±1.67 70.42±1.66 69.75±1.82 70.18±1.55

Each of the results reported are for an MLP with 10 nodes in a single hidden
layer. Each node has a sigmoidal activation function. Though we agree that this
is not supposed to be ’optimal’ for all cases. We could have used a validation set
for determining the proper number of hidden unit for each data set. But, here
our objective is to show that our method performs better than conventional
bagging. So we decided to keep the number of hidden units and the number of
hidden layer to be fixed across runs irrespective of the data sets. Same decision
was taken with respect to the number of candidates in the ensemble. We fixed
the number of members in the ensemble to be 10 for all cases. For all the data
sets we take ν equal to 10% of the size of the training data.

The performance results reported are for a 10 fold cross validation repeated
10 times. The figures in Table 1 give the average performance and the standard
deviation (in percentage) for six different scenarios. The performance of a single
network, that of conventional bagging and that of our proposed method using
k = 3, 5, 7, 9.

Table 1 clearly shows that the proposed method gives better results than
conventional bagging for almost all data sets. The amount of improvement for
some data sets are statistically significant. The figures are shown in bold if the
performance of the proposed method is significantly better than conventional
bagging1.

6 Conclusion

We demonstrated a new method of creating ensembles. Our experiments demon-
strates that the method shows improvements over conventional bagging for most
of the data sets tried. We plan to address the following problems in future:

1. The procedures Expand and Train are quite general and can be used to train
other kinds of classifiers other than a MLP. We plan to apply the method for
other classifiers, in particular decision trees seem to be a good alternative.

2. Quantify the diversity among the candidates that this method yeilds.
1 These results are based on a studentized t-test with 95% confidence.
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Abstract. A system based on Artificial Neural Networks (ANN ) is pro-
posed to detect and diagnose multiple leaks in a pipeline leaks by recog-
nizing the pattern of the flow using only two measurements. A nonlinear
mathematical model of the pipeline is exploited for training, testing and
validating the ANN -based system. This system was trained with tapped
delays in order to include the system dynamics. Early results demon-
strate the effectiveness of the approach in the detection and diagnosis of
simultaneous multiple faults.

Keywords: Leak detection, Fault detection, Diagnosis, Artificial Neural
Network.

1 Introduction

Distribution of fluids in pipelines must occur under safe and trustable conditions,
because damages may be caused by environmental and weather conditions, as
well as aging or pressure changes. Pipelines are design to support impacts or
internal over pressure, but occasionally pressure surges may lead to line breaks
and leaks. In some cases, pipelines are underground or in the sea depths. And
to complicate the scenario even more, normally the fluids in transport do not
operate under steady state conditions, which makes more difficult to perform a
fault inspection. Additionally, small leaks are harder to detect, because they are
a consequence of corrosion and aging in the pipeline.

There are three approaches for leak isolation have been proposed (internal,
external and hybrid). The first approach (internal) is based on physical mod-
els, such as, mass and volume balance, pressure analysis and real-time dynamic
models. The second approach (external) is implemented using hardware, such as,
sensors with impedance or capacitance changes, optic fiber, gas sniffing, acous-
tic sensors, ground analysis or infrared image. And the third approach is hybrid
methods, which are a mixture between internal and external approaches, for
example: acoustic and pressure analysis with mass and volume balance.
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Leak isolation is still affected by expensive, noisy and vague instrumentation,
uncertainties of the analytical model, and the relation between the operating
point and leaks magnitude. A practical requirement for an automatic supervision
system must be to detect the precise leak location as soon as possible and with
a minimal amount of instrumentation.

In [1] several technologies to solve leak location applying automatic leak find-
ers in pipelines where flow and pressure head instrumentation can be imple-
mented only in their extremes is developed. In [3], a bank of observers with
fixed leak positions satisfy the leak isolation and detection only if the pipeline is
divided in three sections and two leaks are induced. The approach presented in
[4] is the design of a parametric model in steady state which reduces the search
interval. Although, these methods assure leak detection and diagnosis, they re-
quire intense mathematical formulation and a wide knowledge of the process. By
this, there is a special interest in the application of Artificial Neural Networks
(ANN ) for solving fault diagnosis problems because of their classification and
function approximation capabilities. ANN approach is convenient when an ana-
lytical model is difficult to obtain. In addition, ANN are highly robust to noisy
inputs and to missing or new input data. Additionally, because of its parallel
structure, ANN -based systems can be implemented for real time applications.

Recently, ANN -based approaches have taken special attention. In [2], two
ANN cascade architecture were proposed, demonstrating that it is possible to
detect leaks in pipeline. This work did not consider transient response when leaks
occur. [6] demonstrated that using a neural-fuzzy system in a water distribution
system makes possible to detect and classify faults in pipelines. A drawback
of this approach is that multiple meters and gauges are needed in order to
obtain the required information. Also, [5] used a fuzzy classifier to detect leaks
in pipelines; this method used the transient response of the fluid in the pipeline,
which requires very precise and continuous measurements. Finally, [10] compared
several approaches for this application versus ANN -based systems.

This paper presents a method for detecting and isolating leaks in a pipeline.
This method uses an ANN -based approach that recognizes the flow pattern
using only two measurements. A mathematical model was proposed based on
experimental data1.

The paper is organized as follows. In Section 2 the pipeline model is described.
Section 3 presents the proposed scheme. In section 4 the testing procedure that
validates the approach and results are shown. And finally, Section 5 concludes
the paper.

2 Pipeline Model with Leaks

In [7],[8], [9] and [11] the following mathematical model was introduced. The
model was also validated with experimental data. The dynamic of the fluid
through the pipeline is given by:

1 Thanks C. Verde because her support with experimental data.
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∂Q

∂t
+ gA

∂H

∂z
+ µ|Q|Q = 0 b2

∂Q

∂z
+ gA

∂H

∂t
= 0 (1)

where H is the pressure head (m), Q is the flow (m3/s), z is the length co-
ordinate (m), t is the time coordinate (s), g is the acceleration of the gravity
(m2/s), A is the cross-section area (m2), D is the pipeline diameter (m), b is the
speed of sound (m/s), and µ = f/2DA where f is the Darcy-Weissbach friction
coefficient.

A leak in point zl will cause a discontinuity in equations (1) Q|zl
= λi

√
H |zl

where λi > 0 is a function of the orifice area and discharge coefficient [12].
Because of this, a pipeline with n − 1 leaks will be described by n pairs of
differential equations, similar to equations (1) with a frontier condition between
each pipeline segment given by:

Qb|zl
= Qa|zl

+Q|zl
(2)

where Qb|zl
and Qa|zl

are the flows before and after the leak. Having a pipeline
of length L and assuming that the leaks are equally distributed along the space
z, which can be divided in n segments of length ∆z = L/n. It is possible to
approximate the partial derivatives of the pressure and flow with respect to the
spatial variable z as follows:

∂H

∂z
∼=

Hi+1 −Hi

∆z

∂Q

∂z
∼=

Qi −Qi−1

∆z
(3)

where, the index i is associated with the variables at the beginning of the section
i, and the frontier condition for each section is described by:

Qi+1 = λi

√
Hi+1 (4)

Knowing that the frontier conditions are characterized by the pressure Hri and
Hro, at the beginning and the end of the pipeline, and substituting equations (3)
in equations (1), the model could be described as a set of n coupled nonlinear
equations given by:

∂Qi

∂t
= a1(Hi −Hi+1)− µ|Qi|Qi

∂Hi

∂t
= a2(Qi−1 −Qi)− (λi−1

√
Hi)uti (5)

with H1 = Hri and Hn+1 = Hro as system inputs, and parametric constants
a1 = gπr2n/L and a2 = b2L/gπr2n with n = 4, uti = u(t− ti) is the unit step
function associated with the occurrence time ti of the leak i.

If leaks are not equally distributed, ∆z is not constant and parameters a1 and
a2 are function of the distance between leaks. For this study case, H1 and H5 are
constant pressures heads at the input and output of the pipeline, while flows Q1,
and Q4 are the measurable flows at the extremes of the pipeline. For this study,
only three leaks were considered each one at the frontier condition, Fig. 1.
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Fig. 1. Pipeline discrete model [10]

3 Proposed Scheme

Fig. 2 shows the implemented scheme. The scheme consists of an ANN that
detects the leak and its location in the pipeline. Tapped delays signal from Q1
(flow measurement at the inlet) and Q4 (flow measurement at the outlet) were
introduced as inputs of the ANN in order to include the system dynamics. The
above resulted as an improvement of the ANN performance.

Many ANN configurations were tested. All of them were feed-forward multi-
layer architecture. The classical back-propagation algorithm was used for the
learning step. The basic differences in each ANN configuration were the number
of neurons and layers; however, the number of delays in the input signals took
the highest impact in the results. The input layer neurons use a tan-sigmoid
activation function and the output layer neurons use a log-sigmoid function.

The leak detector is mainly based on the ANN performance. The ANN uses
only the inlet/outlet flow measurements. The detector system identifies the pos-
sible pipeline operating states. And based on the state, the leak can be detected.

The ANN output will generate a leak signature according to Table 1, and it
will be translated into an operating state by the state codifier. This codifier is
based on simple logic rules, which will assign a state due to the outputs generated
by the ANN.

The number of operating states that the codifier can estimate is given by the
number of sections in which the pipeline is segmented. For this case, the pipeline
was split in three segments; therefore, there are eight operating states, Table 1.

Table 1. Operating states of the pipeline

State Activated Leaks f1 f2 f3 State Activated Leaks f1 f2 f3

1 No leaks 0 0 0 5 1 and 2 1 1 0
2 1 1 0 0 6 1 and 3 1 0 1
3 2 0 1 0 7 2 and 3 0 1 1
4 3 0 0 1 8 1, 2 and 3 1 1 1
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Fig. 2. Detection and diagnosis scheme

It is important to notice that the outputs of the ANN are activated by a
hyperbolic tangent function; this means that the output can take a value between
0 and 1. A binary fault signature is needed, therefore a filter is included.

After estimating the operating state, the segment or segments of the pipeline
in which the fault occurs are found. The accuracy of this approach will depend
on the number of segments used in the pipeline.

The ANN was trained with information about all possible leaks. All the pos-
sible state transitions are included in the training step based on a Markov chain
simulation. The input data for the training step were the inlet/outlet flows and
their delays; the output data was the leak signature. It is important to mention,
that a better ANN training is possible if variations in the discharge coefficients
are introduced in the generation of the training data set.

4 Results

The proposal approach was validated with 4 tests. Test-1 was the introduction of
never seen-before data to the ANN. Test-2 consisted in adding noise (N) to the
flow signals. Test-3 corresponds of two experiments for testing the robustness.
First, the nominal pressure was changed from H1 = 11 m and H5 = 5 m to H1 =
14 m and H5 = 8 m; second, the input data was generated with variations in the
value of the discharge coefficients (λ). Finally, in Test-4 the ANN was re-trained
with a training data set that includes variations in the discharge coefficient.

The performance index corresponds to the error generated between the real
states of the pipeline (multiple possible scenarios generated by the simulator)
and the estimated states computed by the ANN.

Fig. 3 displays three plots, all of them represent the activation of leak 1. Top
plot correspond to the real operating states, middle plot shows the estimated
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states, and the bottom plot represent the filtered states. This last signal plot is
the one entering to the state codifier; and in combination with the other two
leak signals the operating state of the pipeline is determined.

Fig. 4 shows the operating states estimations. This results proof that the pro-
posal approach gives acceptable predictions of the real conditions in the pipeline.

Table 2 summaries the results. This table shows the error in the training
process, and then the ANN configuration in each experiment depends on the flow
signal delays. As it can be seen, in Test-2 two different noise levels are added,
0.01% and 0.015%. As shown in the Table, the ANN that considers more delays
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Fig. 4. State Estimation by the System. Real state of pipeline; ANN prediction.
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Table 2. Summary of the results obtained after the experimentation

ANN Error Network Test 1 Test 2 Test 3 Test 4
Architecture N = 0.01% N = 0.015% Set point λ(%)

ANN1 0.00218 2-10-10-3 1.37% 1.37% - 3.39% 27 4.53%
ANN2 4.9 × 10−8 4-4-4-3 0.4% 3.8% 6.39% 3.79% 3.09 -
ANN3 4.4 × 10−8 6-6-6-3 0.0001% 0.8% 2.4% 1.4% 12.7 6.13%

a better performance. As expected, having more information about the dynamic
behaviour helps the ANN to recognize the pattern, even with a noisy signal.
In Test-3, two validation experiments were conducted; first the head pressures
were modified (set point), and second the size of the leaks were changed. These
modifications impact directly the transient response of the flow (a new pattern
is generated), as it can be seen in Table 2; even though, the performance of the
ANN was acceptable.

The diagnosis error index (wrong estimated states/ total real states) was used
as a main indicator of the performance of each ANN. It is important to notice
that ANN2 and ANN3 used as inputs tapped delays. ANN2 used one delay,
while ANN3 used 2 delays for each input signal.

[2] proposed a similar scheme for leak detection. In that research multiple
sensors information was used in order to detect one and two leaks. In the present
work similar results were obtained using only 2 measurements: inlet and outlet
flow signals. The utilization of delayed signal allowed the algorithm to learn from
the transient response, and therefore it was not necessary to use information of
intermediate points in the pipeline.

It is important to mention that using this model allows the simulator to
divide the pipeline in many segments. If there exist more segments, more data
and operating states will be created as a consequence and therefore the accuracy
of the leak location will be improved.

5 Conclusions

The main contribution of this work is that proves to be possible to estimate
the location of the leak or leaks by only measuring the inlet and outlet flow,
disregarding the pressure measurements and the size of the leak needed in [2],
this can be observed in Fig. 3, and in Table 2, in which the ANN errors are
0.00218, 4.9×10−8 and 4.4×10−8 for the ANN1, ANN2 and ANN3, respectively.

Using tapped delays as inputs of the network demonstrated to improve the
ANN estimations, because the network is capable of learning the flow’s dynamic
behavior. And this dynamic makes possible to identify the pattern and the dif-
ferent transitions between the operational states. In addition, it can be seen how
the ANN using tapped delays has a smaller detection error, and also are more
efficient in computer cost; require less training time and achieve a better training
error value. Also, it is important to notice that the ANN2 and ANN3 were more
sensitive to the discharge coefficients variation, due to the fact that they learn
the transient response of the fluid dynamic (Table 2).
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The training data set in which the network is trained is decisive. In order to
generate a robust network, choosing a set that includes as many operational sce-
narios as possible is necessary. Therefore an acceptable detection scheme would
be created. This can be observed in test 4, in which a better design set of training
data were introduced to the networks.
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Abstract. Finding the weights of a Polynomial Cellular Neural/Nonlinear Net-
work performing a given task is not straightforward. Several approaches have 
been proposed so far, but they are often computationally expensive. Here, we 
prove that quadratic programming can solve this problem efficiently and effec-
tively in the particular case of a totalistic network. Besides the theoretical 
treatment, we present several examples in which our method is employed suc-
cessfully for any complexity index.  

Keywords: polynomial cellular neural networks, cellular automata, quadratic 
programming. 

1   Introduction 

Since the origin of the Cellular Neural Networks [1] in 1988, there is a natural concept 
relation with the Cellular Automata (CA) [2]. However, in spite of this relation, there 
are few papers that describe in a formal way the mathematical relations between them. 
Recently, it has been shown how nonlinear dynamics can give a new perspective of CA, 
by proving that Cellular Automata are a particular case of a more general paradigm 
called Cellular Neural Networks (CNNs) [3]. This approach has shed new light on CA, 
for which novel concepts – e.g., the index of complexity for one-dimensional CA – have 
been introduced. As proved in [4], the bridge between Cellular Automata and Cellular 
Neural Networks is the so-called Universal CNN cell (also known as Generalized CA). 
Nevertheless, the dynamic behavior of a Universal CNN cell can be also synthesized by 
means of other nonlinear functions, such as polynomials. On this ground, we put for-
ward Polynomial CNNs (PCNNs), a cellular paradigm that has been already applied to 
several problems, including the exclusive OR and the Game of Life [5]. The main ad-
vantage of this model is that even the simplest implementation, single-layer and space-
invariant weights, has the same computational power as a Universal Turing Machine  
but with the computational cost of the learning using genetic algorithm. In [6] the  
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authors present the relationship between polynomial CNNs and two-dimensional CA 
providing a formal method to find the weights of the network through a simple proce-
dure based on the properties of polynomials. The problem in this methodology is that is 
not easy to find the template if the order of the polynomial is more than 3. In this paper 
a new simple set of equations are presented to find the weights for any order of the 
polynomial using quadratic programming. With this model it is possible to find minimal 
solutions using the quadratic metric of the weights. The advantage is that for the specific 
case of modeling totalistic cellular automata it is not necessary to use genetic algorithm 
or other computational technique. The structure of the paper is the following: section 2, 
describes some cellular automata concepts; in section 3, PCNN’s are introduced and in 
section 4, the quadratic programming approach is presented for any order of the PCNN. 
Finally section 5presents some conclusions. 

2   Cellular Automata 

Cellular Automata consist of regular uniform lattice of cells assuming a finite number 
of states; here, we consider two-dimensional CA in which cells are arranged in an 
eight neighbor rectangular grid and can take only two states. Cells are updated syn-
chronously (discrete-time evolution) and the state of each cell at iteration n + 1 de-
pends on the states of the cells in its neighborhood at iteration n. Similarly as before, 
we consider that the neighborhood of a cell is composed by the cell itself plus its eight 
nearest neighbors. Therefore, a two-dimensional Cellular Automaton is a discrete-
time system with 9 binary inputs and 1 binary output; consequently, the dynamics of 
CA can be conveniently represented on a truth table containing 29 = 512 rows. In 

total, there are = 2512 of such tables, also called rules, corresponding to all possi-
ble ways to evolve two-dimensional binary CA. We assume without loss of generality 
that at any fixed time the value of each cell can be either +1 (active cells) or -1 (non-
active cells), exactly as in CNNs.  

2.1   Totalistic Cellular Automata 

The definition of a Totalistic Cellular Automaton is that the next state of a cell de-
pends exclusively on the number of active cells in the neighborhood at the previous 
state. This means that, the position of the active cells in the neighborhood does not 
influence the result. The truth tables defining the rules of totalistic CA (see Table 1) 
have only 10 rows corresponding to all possible combinations of active and non-
active cells in the neighborhood: from 0 (no active cell in the neighborhood) to 9 (all 
cells in the neighborhood are active). 

There are only 210 = 1024 totalistic CA rules, (from N = 0 to N = 1023). The rule 
number is given by the following formula: ܰ ൌ ∑ ቀβାଵଶ ቁଽୀ 2    (1) 

where N is the rule number, and the values of β can be retrieved from table 1. Rules of 
totalistic CA can be conveniently represented in a Cartesian coordinate system. This  
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Table 1.  Truth table for a Totalistic Cellular Automata Rule 

Active neighbors (Σ neighbors) Output Rule 51 
0 (-9) β0 1 

1 (-7) β1 1 
2 (-5) β2 -1 
3 (-3) β3 -1 
4 (-1) β4 1 
5 (+1) β5 1 
6 (+3) β6 -1 
7 (+5) β7 -1 
8 (+7) β8 -1 
9 (+9) β9 -1 

 

 

Fig. 1. CA dynamic diagram for totalistic rule 51 

 
original representation was proposed in [6], in which the sum of the nine neighbors of 
the automaton is on the horizontal axis, and the corresponding output on the vertical 
axis. Given a rule (or equivalently, a truth table), for each of the 10 input patterns we 
need to depict a red, in case of a firing pattern; blue, in case of a quenching pattern. 
For example, the rule corresponding to the truth table in Table 2 is: ܰ ൌ ∑ ቀβାଵଶ ቁଽୀ 2 ൌ 1  2  16  32 ൌ 51   (2) 

and its dynamic diagram is in Fig. 1 

3   Polynomial Cellular Neural Network 

The Polynomial Cellular Neural Networks (PCNN) was first introduced in [7] and 
other models can be found in [8]. The general form for PCNN in discrete time is: 

ሺ݊ݔ          1ሻ ൌ ܣ כ ܻሺ݊ሻ  ܤ כ ܷ  ݖ  ଶܲሺݑ, ሻݕ  ڮ  ܲሺݑ,  ሻ  (3)ݕ

where m is the order of the PCNN. Considering the previous work [6], it is possible to 
find through a rigorous method the parameters – degree of the polynomial and the 
weights of the network – of a one-layer space-invariant Polynomial Cellular Neural 
Network implementing a totalistic CA rule. When implementing a totalistic CA, the 
mathematical representation can be simplified thanks to two preliminary considera-
tions about the nature of the problem. First of all, since the output of a CA local rule 
depends exclusively on the input, also the output of the network has to be a function 
of the input pattern only. This means that no matrix, except for those convolving the 
input U and its multiples, can have non-zero elements other than the central one. In 
other words, in the model of previous equation all matrices convolving the output Y 
and its multiples must have the central element only. For instance, 
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ܣ    ൌ 0 0 00 ܽ 00 0 0൩ ൌ ܽ 0 0 00 1 00 0 0൩     (4) 

 
and, consequently:         ܣ כ ܻ ൌ            (5)ݕܽ

where the subscript c emphasizes that the only value to take into account is the central 
one. In totalistic CA all neighbors are considered at once, and hence there is also no 
reason for making a distinction among the different values of the matrices convolving 
the input U and its multiplies. For instance, ܤ ൌ ܾ ܾ ܾܾ ܾ ܾܾ ܾ ܾ൩ ൌ ܾ 1 1 11 1 11 1 1൩    (6) 

and, hence the convolution ܤ כ ܷ can be simplified as: ܤ כ ܷ ൌ ܾ ∑ ݑ ൌ ௦ሺ,ሻ∈ேሺ,ሻݑܾ    (7) 

where the subscript s emphasizes that the value us results from the sum of all nine 
neighbors. In conclusion, Eq. 3 can be rewritten as a function of us and yc as follows: 

ሺ݊ݔ           1ሻ ൌ ሺ݊ሻݕܽ  ௦ݑܾ  ݖ  ଶܲሺݑ௦, ሻݕ  ڮ  ܲሺݑ௦,  ሻ  (8)ݕ

where us ∈ {-9,-7,-5,-3,-1, 1, 3, 5, 7, 9}, which are the values obtainable by summing 
nine values ±1, and yc ∈ {-1,+1}, by definition of discrete-time PCNN. 

3.1   First Order PCNN 

The first order PCNN is equivalent to a standard CNN, whose state equation, using 
the notation just introduced, is: ݔሺ݊  1ሻ ൌ ܽଵݕሺ݊ሻ  ܾଵݑ௦   (9)     ݖ

where the subscript 1 added to the network weights a and b means that we consider a 
first order model.

 

    

(10) 

From the previous equations, it is easy to see that when a1 > 0 the network is stable, 
and it converges to the steady state y∞ . 

Choosing properly the weights b1 and z, Eq. 9 describes any line. Therefore, a first 
degree PCNN can solve only linearly separable problems, or equivalently, perform all 
linearly separable totalistic CA rules. Note that given a totalistic CA rule N there are 
infinite ways of setting b1 and z to obtain it; however, fixed values of b1 and z define 
univocally a totalistic CA rule. An example of application of first degree PCNN is 
illustrated in Fig. 2. 

 

 
 

Fig. 2. Rule 7 can be implemented by a first order Polynomial CNNs 
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3.2   Second Order PCNNs 

The generic form for the second degree polynomial P2(us, yc) is: 

   

(11) 

where in the last step we used the property that ݑ௦ ൌ 1  and ݕ ൌ 1, for i even, and ݕ ൌ ݕ , for i odd. The term p0q0 is constant and hence it can be absorbed into the 
bias z (with abuse of notation, z + p0q0 = z) and the expression can be further simpli-
fied through the substitutions p1q1 = a2 and p2q2 = b2. Finally, we can add this expres-
sion to previous equation obtaining: 

  

(12)

 
where a1, a2, b1, b2, z ∈ ℜ. If the term (a2us + a1) > 0, the network is always stable, 
and it converges to the steady state y∞ 

                 

(13) 

With this model, the PCNN is capable of implementing any totalistic CA rule whose 
firing and quenching patterns in the CA dynamic diagram can be separated by two 
lines. An example of application of second order PCNN is in Fig. 3: this CA dynami-
cal diagram describes the behavior of rule 12. 
 

 

Fig. 3. Rule 12 can be implemented by a second order Polynomial CNNs 

3.3   Third Order PCNNs 

With the same considerations as before about u0 and yi, and through the substitutions, 
the general equation for the third order PCNN implementing totalistic CA can be 
described as: 

 

(14) 

Where a1, a2, a3, b1, b2, b3, z2 ∈ ℜ. Considering , which en-

sures the stability of the PCNN, the network output can be computed as: 
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(15) 

which means this kind of network is capable of implementing any totalistic CA rule 
whose firing and quenching patterns in the CA dynamic diagram can be separated by 
three lines. An example of application of second degree PCNN is illustrated in Fig. 1: 
according to the notation introduced before, this CA dynamical map describes the 
behavior of rule 51. 

3.4   M-th Order PCNN and Continuous-Time Model  

The procedure illustrated previously can be repeated for higher degree polynomials, 
obtaining similar results: the PCNN state equation of any order contains a term multip-
lying yc(n), controlling the dynamics of the network, and another term which depends 
only on us and the network weights, determining the steady state of the network. The 
last term can be used to interpolate the points of the CA dynamic pattern, and the result-
ing linear system has always a solution since it is Vandermonde-like. Therefore, we can 
conclude that the complexity index κ of a totalistic CA rule corresponds to the order of 
the PCNN model implementing it. It can be also noticed that the complexity index in 
totalistic CA is equal to the number of lines separating firing and quenching patterns in 
the CA dynamic diagram; hence, the minimum value for κ is 0 (rule 0 and rule 1023) 
and its maximum value is 9 (rule 341 and rule 682, see Fig. 6). 

 

Fig. 4. Totalistic CA rules having complexity index κ = 9: (a) rule 341 and (b) rule 682 

4   Computing the Weights Using Quadratic Programming 

Defining the set of templates for a second order PCNN as: ்ݓ ൌ ሼܽଶ, ܽଵ, ܾଶ, ܾଵ,  ሽݖ

Equation (13) can be translated to:

 

         

(16)

 

Where  and  are the values that corresponds to outputs x(n+1) 1 and -1 respec-

tively. For example, for rule 7,  and .  
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For the general case it is possible to write the stability condition as: 

                                             (17) 

and: 

    (18)
 

Considering the previous equation, it is possible to define the following optimization 
quadratic programming problem: 

 

                  
(19)

 
 

              

(20) 

 
The first order case can be written in matrix form as: 

                   (21) 

and the general case as: 

    
(22)

 

With the previous representation is possible to use any algorithm to solve quadratic 
programming equations. Adapting the previous equation to the quadratic program-
ming function of the Matlab, we use and ε approximation for the first two rows such 
as:   ܽݓ  0 ՜ ݓܽ  ,ߝ ߝ ՜ 0. 
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Table 2. Templates obtained using PCNN 

Rule m ε Weights 
7 1 1e-9    1.0e-008* [0.1000   -0.0500   -0.2500]T 
12 2 1e-9 1.0e-008 *[0    0.1000   -0.0125   -0.1000   -0.1875] T 
51 3 1e-9 1.0e-009 *[0  0  1  -0.1042   -0.5629    0.1042    0.5629] T 

682 9 1e-9 1.0e-009*[0.3354   -0.1693    0.3354   -0.1693    0.3354   -
0.1693    0.3354   -0.1693    0.3354    0  0   -0.0020  0 

    0.0593   0  -0.5079   0  0.9507   -0.5000] T 

5   Conclusions 

The computational cost of polynomial cellular neural networks training can be im-
proved using the previous methodology. For these cases is not necessary to use genetic 
algorithm to find the solutions. It is possible to use some variations of the linear or qua-
dratic programming approach to find solutions in the integer domain or with a specific 
resolution. Using the results presented in [4] and with the results presented in this work, 
a similar approach can be obtained for semitotalistic cellular automata rules.  
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Abstract. This paper presents a method of constructing a fast orthogo-
nal neural network suitable for raw image recognition and classification.
The neural architecture of the proposed network is based on fast co-
sine transform algorithm modified to enable Fourier amplitude spectrum
computation. The presented network has reduced computational com-
plexity and it reaches low generalization error values as compared to a
standard multilayer perceptron.

Keywords: fast orthogonal neural network, Fourier amplitude spec-
trum, image recognition.

1 Introduction

Image recognition (IR) is one of the key fields of artificial intelligence applications
and still an open one. On one hand, high dimensionality and redundancy of
visual data necessitates search of effective feature extraction algorithms. On
the other hand, the practically infinite variability of possible scene composition
makes the choice of the features difficult in a general case. A satisfying level
of invariance to distortions of a given type often requires that the features are
carefully constructed by hand, which confines the autonomy of IR systems.

A radical solution is to skip the feature extraction stage, feeding the almost
raw image data to the suitable classifier. This approach may yield good results
if the size of the images is kept reasonably small and the training data is suffi-
ciently rich [1]. However, increasing the input data dimensionality usually leads
to overfitting the classifier, which results in growing generalization error.

The solution to this problem may be sought in changing the data model to e.g.
tensor representation [2], or in controlling the classifier complexity which, in the
case of a multilayer neural network, may mean reducing the size of the hidden
layers. In this paper we propose a different approach: the architecture of a neural
network based on a fast algorithm of two-dimensional Fourier transform. This
general type of neural network is referred to as fast orthogonal neural network
(FONN, [3]). Such a network consists of O(logN) sparsely connected layers, each
containingO(N) neurons, where N is the input dimensionality. Hence, the neural
weights reduction corresponds to the reduction of computational complexity
typical of fast algorithms of orthogonal transforms.
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Choosing Fourier transform as the basis for the FONN has an additional
advantage: we can add a special output layer enabling to compute Fourier am-
plitude spectrum, which is often used in IR problems for feature extraction,
due to some interesting properties (e.g. shift invariance). It should be noted,
however, that what we propose is a neural network - it can learn how to com-
pute Fourier transform in a fast way but it can also adapt for any other linear
transform realizable with its sparse architecture. Therefore, we can think of an
adaptable Fourier transform in which every basic operation of the fast algorithm
is converted to a basic operation orthogonal neuron (BOON, [3]).

The connection scheme of the proposed network is based on fast homogeneous
algorithm of two-dimensional cosine transform [4] which is modified to enable
Fourier transform computation. The details of the necessary modifications are
presented in the next section.

2 Neural Network Architecture

Our goal is to construct a fast computational scheme of Fourier transform which
is defined for a discrete two-dimensional signal x(n,m) as:

XN×M (p, q) =
N−1∑
n=0

M−1∑
m=0

x(n,m)e−j2π pn
N e−j2π qm

M , (1)

where j is the imaginary unit, p, n = 0, 1, ..., N − 1 denote the row number,
q,m = 0, 1, ...,M − 1 denote the column number, and N , M define the height
and width of the input image, respectively.

Every output value defined by eq. (1) is a complex number with real and
imaginary part equal to:

Re{XN×M(p, q)} =
N−1∑
n=0

M−1∑
m=0

x(n,m) (Cpn
N Cqm

M − Spn
N Sqm

M ) , (2)

Im{XN×M (p, q)} =
N−1∑
n=0

M−1∑
m=0

x(n,m)(−Cpn
N Sqm

M − Spn
N Cqm

M ) ,

where Ck
K = cos (2πk/K), Sk

K = sin (2πk/K). Our starting point to compute
these values is two-dimensional discrete cosine transform, type II given as [5]:

LII
N×M (p, q) = DCTII

N×M{x(n,m)} =
N−1∑
n=0

M−1∑
m=0

x(n,m)C(2n+1)p
4N C

(2m+1)q
4M . (3)

Utilizing formula (3) for computation of the values defined by eq. (2) requires a
special permutation of input values x(n,m):

xT (2n, 2m) = x(n,m) ,
xT (2n+ 1, 2m) = x(N − 1− n,m) , (4)
xT (2n, 2m+ 1) = x(n,M − 1−m) ,

xT (2n + 1, 2m+ 1) = x(N − 1− n,M − 1−m) .
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Let us consider the following decomposition of the cosine transform of the
permuted signal xT (n,m):

LII
T (p, q) =

N−1∑
n=0

M−1∑
m=0

xT (n,m)C(2n+1)p
4N C

(2m+1)q
4M =

N/2−1∑
n=0

M/2−1∑
m=0

xT (2n, 2m)C(4n+1)p
4N C

(4m+1)q
4M +

N/2−1∑
n=0

M/2−1∑
m=0

xT (2n+ 1, 2m)C(4n+3)p
4N C

(4m+1)q
4M + (5)

N/2−1∑
n=0

M/2−1∑
m=0

xT (2n, 2m+ 1)C(4n+1)p
4N C

(4m+3)q
4M +

N/2−1∑
n=0

M/2−1∑
m=0

xT (2n+ 1, 2m+ 1)C(4n+3)p
4N C

(4m+3)q
4M .

Taking into account the formulae (4) we have:

LII
T (p, q) =

N/2−1∑
n=0

M/2−1∑
m=0

x(n,m)C(4n+1)p
4N C

(4m+1)q
4M +

N/2−1∑
n=0

M/2−1∑
m=0

x(N − 1− n,m)C(4n+3)p
4N C

(4m+1)q
4M +

N/2−1∑
n=0

M/2−1∑
m=0

x(n,M − 1−m)C(4n+1)p
4N C

(4m+3)q
4M + (6)

N/2−1∑
n=0

M/2−1∑
m=0

x(N − 1− n,M − 1−m)C(4n+3)p
4N C

(4m+3)q
4M .

which enables to change the summing limits:

LII
T (p, q) =

N/2−1∑
n=0

M/2−1∑
m=0

x(n,m)C(4n+1)p
4N C

(4m+1)q
4M +

N−1∑
n=N/2

M/2−1∑
m=0

x(n,m)C(4(N−n)−1)p
4N C

(4m+1)q
4M +

N/2−1∑
n=0

M−1∑
m=M/2

x(n,m)C(4n+1)p
4N C

(4(M−m)−1)q
4M + (7)

N−1∑
n=N/2

M−1∑
m=M/2

x(n,m)C(4(N−n)−1)p
4N C

(4(M−m)−1)q
4M .
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Using the following identity for p and for q, similarly:

C
(4(N−n)−1)p
4N = cos

(
2π

(4n+ 1) p
4N

− 2πp
)

= C
(4n+1)p
4N , (8)

we can sum all the elements in eq. (7) directly, finally arriving at:

LII
T (p, q) =

N−1∑
n=0

M−1∑
m=0

x(n,m)C(4n+1)p
4N C

(4m+1)q
4M . (9)

Let us now consider computing the equation (9) in four cases. Considering the
identities:

C
(4n+1)p
4N = Cnp

N Cp
4N − Snp

N Sp
4N , (10)

C
(4n+1)(N−p)
4N = Snp

N Cp
4N + Cnp

N Sp
4N ,

and for q, similarly, we can write:

LII
T (p, q) =

N−1∑
n=0

M−1∑
m=0

x(n,m) (Cpn
N Cp

4N − Spn
N Sp

4N ) (Cqm
M Cq

4M − Sqm
M Sq

4M ) ,

LII
T (p,M − q) =

N−1∑
n=0

M−1∑
m=0

x(n,m) (Cpn
N Cp

4N − Spn
N Sp

4N ) (Sqm
M Cq

4M + Cqm
M Sq

4M ) ,

LII
T (N − p, q) =

N−1∑
n=0

M−1∑
m=0

x(n,m) (Spn
N Cp

4N + Cpn
N Sp

4N ) (Cqm
M Cq

4M − Sqm
M Sq

4M ) ,

LII
T (N − p, M − q) = (11)

=
N−1∑
n=0

M−1∑
m=0

x(n,m) (Spn
N Cp

4N + Cpn
N Sp

4N ) (Sqm
M Cq

4M + Cqm
M Sq

4M ) ,

where p = 1, ..., N/2− 1, q = 1, ...,M/2− 1.
Therefore, taking into account the equations (2) we finally arrive at:

Re{XN×M(p, q)} = LII
T (p, q)CpM+qN

4NM + LII
T (p,M − q)SpM+qN

4NM +

LII
T (N − p, q)SpM+qN

4NM − LII
T (N − p,M − q)CpM+qN

4NM ,

Im{XN×M(p, q)} = LII
T (p, q)SpM+qN

4NM − LII
T (p,M − q)CpM+qN

4NM −
LII

T (N − p, q)CpM+qN
4NM − LII

T (N − p,M − q)SpM+qN
4NM ,

(12)

Re{XN×M(N − p, q)} = LII
T (p, q)CpM−qN

4NM − LII
T (p,M − q)SpM−qN

4NM +

LII
T (N − p, q)SpM−qN

4NM + LII
T (N − p,M − q)CpM−qN

4NM ,

Im{XN×M (N − p, q)} = −LII
T (p, q)SpM−qN

4NM − LII
T (p,M − q)CpM−qN

4NM +

LII
T (N − p, q)CpM−qN

4NM − LII
T (N − p,M − q)SpM−qN

4NM .
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It is worth noting that there is no need of performing separate computations
for XN×M (p,M − q) and XN×M (N − p,M − q), due to the Fourier symmetry
property for real signals. Also, the computations may be simplified for p = 0,
q = 0, p = N/2 and q = M/2.

Considering the graph of two-dimensional homogeneous, two-stage cosine trans-
form, type II (2D FCT2, [4]) it can be seen that the equations (12) may be joined
with the computations performed by two last layers of this graph. The transform
which should be performed by these two layers after necessary modification is
given as:

⎡
⎢⎢⎣

Re{XN×M(p, q)}
Im{XN×M (p, q)}

Re{XN×M(N − p, q)}
Im{XN×M(N − p, q)}

⎤
⎥⎥⎦ = A ·

⎡
⎢⎢⎣

LT1(p, q)
LT2(p,M/2− q)
LT3(N/2− p, q)

LT4(N/2− p,M/2− q)

⎤
⎥⎥⎦ , (13)

where the matrix A is defined as follows:

A =

⎡
⎢⎢⎢⎣

C
2(pM+qN)
4NM S

2(pM+qN)
4NM S

2(pM+qN)
4NM −C2(pM+qN)

4NM

S
2(pM+qN)
4NM −C2(pM+qN)

4NM −C2(pM+qN)
4NM −S2(pM+qN)

4NM

C
2(pM−qN)
4NM −S2(pM−qN)

4NM S
2(pM−qN)
4NM C

2(pM−qN)
4NM

−S2(pM−qN)
4NM −C2(pM−qN)

4NM C
2(pM−qN)
4NM −S2(pM−qN)

4NM

⎤
⎥⎥⎥⎦ , (14)

and LT1, ...LT4 denote subblocks L1, ...L4 (cf. the 2D FCT2 graph construction
in [4]) performingDCT II

N
2 ×M

2
transform of the signal permuted with formulae (4).

The matrix A must be factorized in order to be computed by the two layers.
Preferably, their connection scheme should be the same as in the (2D FCT2)
algorithm to preserve the homogeneous structure of the whole graph. As every
row of the matrix A contain only two distinct coefficients (ignoring the sign),
its natural factorization yields only trivial operations (additions/subtractions)
in the one-but-last layer. The problem is that these operations affect the pair
of blocks: LT1, LT4 and the pair: LT2, LT3, which violates the homogeneous
scheme of the one-but-last layer, according to which the operations should affect
the pairs: LT1, LT2 and LT3, LT4.

This difficulty may be solved by swapping the blocks LT2, LT4. As their
structure and the coefficients of their basic operations are practically the same
(except of the last layer which needs minor adjustment) it is enough to simply
swap their inputs. This may be performed by an additional input permutation:

R(n) =

⎧
⎪⎪⎨
⎪⎪⎩

x(n) , for n < N/4 ;
x(n +N/4) , for n = N/4, N/4 + 1, ..., N/2− 1 ;
x(n−N/4) , for n = N/2, N/2 + 1, ..., 3 ·N/4− 1 ;
x(n) , for n ≥ 3 ·N/4 .

The permutation R is performed directly before the first layer of basic operations
of the whole graph. It should be noted that swapping the blocks LT2, LT4 implies
some changes in the types of the basic operations in the last two layers (cf. [4])
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Fig. 1. The graph of the network for Fourier transform computation (size: 4 × 4)

for the cases when p = 0, q = 0, p = N/2 and q = M/2. The complete graph
of the 4 × 4 network is presented in Fig. 1. This graph may be used either for
direct Fourier transform computation or, alternatively, its basic operations may
be treated as BOONs [3], where the coefficients u,w are neural weights adapted
by any gradient optimization method. Note that applying a special algorithm
with tangent multipliers enables to reduce the number of weights from two to
one per each BOON [3].

3 Amplitude Spectrum of Two-Dimensional Fourier
Transform

Similarly to the one-dimensional case [6], adding a special output layer is nec-
essary if we want the network to be able to compute Fourier amplitude spec-
trum (Fig. 2). Its connection scheme is quite simple, as its every basic operation
receives, as inputs, the real and the imaginary part of the same spectrum el-
ement, respectively. Hence the obtained sequence of the amplitude spectrum
elements, with an exception of the last element, is the same as in the case of the
real spectrum.

It should be stressed that this is the only non-linear layer in the network. It
is also worth noting that the set of linear transforms possible to obtain with
the preceding layers is considerably confined due to their reduced connection
scheme.
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Fig. 2. The graph of the network for amplitude spectrum computation (size: 4 × 4)

4 Experimental Validation

Image recognition experiments have been performed on the example of ETH-
80 database [7], using the testing scheme proposed by its authors (leave-one-
out crossvalidation), with two different neural networks. The first one (FONN)
was the network from Fig. 2 appended with a single linear output layer. The
second network was a classical perceptron with one hidden layer comprised of
non-linear neurons with sigmoidal, uni-polar activation function (MLP). Both
networks were tested under the same conditions; in particular the same gradi-
ent optimization methods were applied with minimal validation error stopping
criterion. In both cases the preprocessing was confined to downsampling the
images to N ×M = 32 × 32, normalization and constant component removal.
Several different numbers of hidden neurons K were used for the MLP (denoted
as MLPK). The recognition results are presented in Table 1.

The superiority of the proposed sparse neural architecture over the typical
“dense” multilayer network is clearly visible not only in the significantly better

Table 1. Image recognition results

MLP8 MLP16 MLP32 MLP64 FONN FONN

N × M 32 × 32 32 × 32 32 × 32 32 × 32 32 × 32 64 × 64
Number of weights 8,272 16,536 33,064 66,120 8,728 38,936
Recognition rate 66.59% 68.05% 69.85% 66.86% 76.77% 80.98%

Recognition per class (FONN, N × N = 64 × 64)

apple car cow cup dog horse pear tomato

76.34% 97.32% 62.20% 99.02% 67.32% 64.88% 99.76% 80.98%
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recognition rates but also in the reduced number of weights to adapt. FONN
application enables to avoid the problem of searching for the optimal number
of hidden neurons. The last column of Table 1 shows that it may be better to
increase the input space dimensionality and use the FONN instead of increasing
the number of hidden neurons in MLP which, for the examined problem, may
easily lead to slowing down the training process with no positive effect on the
classification outcome. Note that in all the presented cases the recognition rate
on the training set was in the range of 95.34% - 98.43% so the obtained results
may be interpreted in terms of the generalization error. Moreover, the process of
training the FONN is stable and converges faster than for the MLP. Usually the
same level of training error was obtained after half or one-third of the number of
epochs needed by the MLP. Searching for the best result on the test set obtained
anytime during the training yielded 85.85% recognition for the FONN from the
last column of the Table 1. This value, which may be seen as the upper possible
limit of the classifier capabilities is comparable to the best results reported in [7].

5 Conclusion

Neural network with architecture based on fast two-stage algorithm of Fourier
transform have been constructed via modifications of cosine transform algorithm.
The network, appended with the amplitude-computing layer and output linear
layer, proved to be suitable for raw image analysis and classification, providing
good recognition rate and low computational complexity. The comparison with
multilayer perceptron showed the enhanced performance, stability and faster
convergence of the training process offered by the proposed solution.

This work was supported by the Polish Ministry of Science and Higher Edu-
cation (grant no. N N516 4308 33).
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Abstract. Text classification is still a quite difficult problem to be dealt with both
by the academia and by the industrial areas. On the top of that, the importance
of aggregating a set of related amount of text documents is steadily growing in
importance these days. The presence of multi-labeled texts and great quantity of
classes turn this problem even more challenging. In this article we present an
enhanced version of Probabilistic Neural Network using centroids to tackle the
multi-label classification problem. We carried out some experiments comparing
our proposed classifier against the other well known classifiers in the literature
which were specially designed to treat this type of problem. By the achieved re-
sults, we observed that our novel approach were superior to the other classifiers
and faster than the Probabilistic Neural Network without the use of centroids.

Keywords: Information Retrieval, Probabilistic Neural Network, Multi-label
Problem.

1 Introduction

Automatic text classification is an activity that is becoming more and more important
nowadays. This might be due to the huge amount of information available and the great
challenge for the information retrieval. In addition, many of real databases are multi-
labeled and have a great amount of categories, which make the text classification task
even more difficult [1]. Such problems are tackled by the information retrieval (IR)
communities, both in academic and industrial contexts.

To treat such issues, in this paper we used a slightly modified version of the standard
structure of the Probabilistic Neural Network (PNN) presented in [3]. In this modified
version, we used centroids for the training of the PNN. In order to evaluate these PNN’s
versions, the classical one and that proposed by us in this paper, we used a set of multi-
labeled Yahoo’s databases, initially used in [6]. Furthermore, we compared their results
against the other specialized classifiers in multi-labeled classification. Both versions of
the PNN achieved better results, in our evaluation, than that performed by the other
classifiers. The enhanced PNN with centroids was the best in our evaluation.

This work is organized as follows. In Section 2, we detail our algorithms. We de-
scribe the metrics used to evaluate in Section 3. In Section 4, the experiments and results
are discussed. Finally, we present our conclusions in Section 5.

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 661–668, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 The Algorithms

The Probabilistic Neural Network is an artificial neural network for nonlinear comput-
ing which approaches the Bayes optimal decision boundaries. The original PNN algo-
rithm [2] was designed for single-label problems. Thus, its standard architecture was
slightly modified, so that it is now capable of solving multi-labeled problems.

In this modified version, instead of four, the PNN is composed of only three layers:
the input layer, the pattern layer and the summation layer, as it is showed in Figure 1.
Thus, like in the original structure, this version of PNN needs only one training step,
therefore, its training is faster than other well known feed-forward neural networks [4].

The training consists in assigning each training sample wj of category Cj to a neuron
of pattern layer of category Cj . Thus, the weight vector of this neuron is the character-
istics vector of the sample.

For each d j test instance passed by the input layer to a neuron in the pattern layer, it
computes the output for the d j. The computation is showed in Equation 1.

Fk,i(d j) =
1

2πσ2 exp(
dt

jwk,i−1

σ2 ), (1)

where the d j is the pattern characteristics input vector, and the wk,i is the kth sample for
a neuron of category Ci, k ∈ Ni, whereas Ni is the number of neurons of Ci. In addition,
d j and wk,i were normalized so that dt

jd j = 1 and wt
k,iwk,i = 1. The σ is the Gaussian

standard deviation, which determines the receptive field of the Gaussian curve.
The next step is the summation layer. In this layer, all outputs of the previous layer

are summed, Equation 2, in each cluster Ci producing pi(d j) values, where |C| is the
total number of categories and hi is the priori probability of the class Ci. Whether we
consider the priori probability from database of training, so we can inconsiderate the
fraction hi

Ni
.

Fig. 1. The modified Probabilistic Neural Network architecture
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pi(d j) =
hi

Ni

Ni

∑
k=1

Fk,i(d j) i = 1,2, . . . , |C| . (2)

Finally, for the selection of the categories which will be assigned by the neural network
to each sample, we consider the most likely categories pointed out by the summation
layer based on a chosen threshold.

Differently from other types of networks, such as those feed forward based, the pro-
posed PNN needs few parameters to be configured: the σ, (see in Equation 1) and the
determination of threshold value. Another advantage of the probabilistic neural net-
works is that it is easy to add new categories, or new training inputs, into the already
running structure, which is good for the on-line applications [4]. On the other hand,
one of its drawbacks is the great number of neurons in the pattern layer that, as a con-
sequence, may produce a high consumption of memory and slow rate of classification.
Moreover, the presence of repeated samples may harm the performance of the classifier.

2.1 Probabilistic Neural Network with Centroids

To minimize the drawbacks of the PNN, we propose a technique of centroids, such that
is used only one neuron for class in the pattern layer. Equation 3 shows a mathematical
procedure to obtain the centroid for each class Ci, where wk,i is the kth sample of training
of class Ci, Ni is the number of samples of Ci and Wi is the obtained centroid. To reduce
the loss of information, we also obtain from database the priori probability hi of each
class. Thus, the fraction hi

Ni
of Equation 2 will be reduced to hi, because Ni will be equal

to 1, and the centroid Wi is associated to the neuron of pattern layer of class Ci. Hence,
with this procedure, the PNN will have only one neuron per category in the pattern
layer.

Wi =
1
Ni

Ni

∑
k=1

wk,i hi = Ni i = 1, . . . , |C| . (3)

3 Metrics

Formalizing the problem we have at hand, text categorization may be defined as the
task of assigning documents to a predefined set of categories, or classes [1]. In multi-
label text categorization a document may be assigned to one or more categories. Let D
be the domain of documents, C = {c1,c2, . . . ,c|C |} a set of pre-defined categories, and
Ω = {d1,d2, . . . ,d|Ω|} an initial corpus of documents previously categorized by some
human specialists into subsets of categories of C .

In multi-label learning, the training(-and-validation) set TV = {d1,d2, . . . , d|TV |} is
composed of a number documents, each associated with a subset of categories in C . TV
is used to train and validate (actually, to tune eventual parameters of) a categorization
system that associates the appropriate combination of categories to the characteristics
of each document in the TV . The test set Te = {d|TV |+1,d|TV |+2, . . . ,d|Ω|}, on the other
hand, consists of documents for which the categories are unknown to the automatic
categorization systems. TV has |TV | samples and Te has |Ω|−|TV |= p samples. After
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being trained, as well as tuned, by the TV , the categorization systems are used to predict
the set of categories of each document in Te.

A multi-label categorization system typically implements a real-valued function of
the form f : D×C → R that returns a value for each pair 〈d j,c j〉 ∈D×C that, roughly
speaking, represents the evidence for the fact that the test document d j should be cat-
egorized under the category c j ∈ Cj, where Cj ⊂ C . The real-valued function f (., .)
can be transformed into a ranking function r(., .), which is an one-to-one mapping onto
{1,2, . . . , |C |} such that, if f (d j,c1) > f (d j,c2), then r(d j,c1) < r(d j,c2). If Cj is the
set of proper categories for the test document d j, then a successful categorization sys-
tem tends to rank categories in Cj higher than those not in Cj. Additionally, we also use
a threshold parameter so that those categories that are ranked above the threshold τ (i.e.,
ck| f (d j,ck)≥ τ) are the only ones to be assigned to the test document.

We have used five multi-label metrics discussed in [6] to evaluate the performance
of classifiers. We now present each one of these metrics:

Hamming Loss (hloss) evaluates how many times the test document d j is misclassi-
fied, i.e., a category not belonging to the document is predicted or a category belonging
to the document is not predicted.

hloss =
1
p

p

∑
j=1

1
|C| |Pj∆Cj|, (4)

where |C| is the number of categories and ∆ is the symmetric difference between the set
of predicted categories Pj and the set of appropriate categories Cj of the test document
d j. The predicted categories are those which rank higher than the threshold τ.

One-error (one-error) evaluates if the top ranked category is present in the set of
appropriate categories Cj of the test document d j.

one-error =
1
p

p

∑
j=1

error j, error j =
{

0 if [arg maxc∈C f (d j,c)] ∈Cj

1 otherwise.
(5)

where [arg maxc∈C f (d j,c)] returns the top ranked category for the test document d j.
Coverage (coverage) measures how far we need to go down the rank of categories in

order to cover all the possible categories assigned to a test document.

coverage =
1
p

p

∑
j=1

(maxc∈Cj r(d j,c)−1), (6)

where maxc∈Cj r(d j,c) returns the maximum rank for the set of appropriate categories
of the test document d j.

Ranking Loss (rloss) evaluates the fraction of category pairs 〈ck,cl〉, for which ck ∈
Cj and cl ∈ C̄j, that are reversely ordered for the test document d j:

rloss =
1
p

p

∑
j=1

|{(ck,cl)| f (d j,ck)≤ f (d j,cl)}|
|Cj||C̄j|

, (7)

where (ck,cl) ∈Cj× C̄j, and C̄j is the complementary set of Cj in C .
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Average Precision (avgprec) evaluates the average of precision computed after trun-
cating the ranking of categories after each category ci ∈Cj in turn:

avgprec =
1
p

p

∑
j=1

1
|Cj|

|Cj |

∑
k=1

precision j(R jk), (8)

where R jk is the set of ranked categories that goes from the top ranked category until a
ranking position k, where there is a category ci ∈Cj for d j, and precision j(R jk) is the
number of pertinent categories in R jk divided by |R jk|.

The smaller the value of hamming loss, one-error, coverage and ranking loss, and the
larger the value of average precision, the better the performance of the categorization
system. The performance is optimal when hloss= one-error= rloss = 0 and avgprec= 1.

4 Experiments

We carry out a series of experiments to compare the versions of PNN against the clas-
sifiers: ML-kNN, that is based on the kNN [6], Rank-SVM [9], a modified version of
SVM, ADTBoost.MH [7] and BoosTexter [8], that both are techniques based on deci-
sion trees. We have used 11 text databases from Yahoo domain in our experiments1,
where each database has 2000 samples to training and 3000 to test, the average number
of classes is 30 and there is a mean of 1.48 classes assigned by sample. To evaluate
the performance of the algorithms we used the metrics presented in Section 32, and the
results were obtained directly from the [6], with exception of the PNNs’ results.

In [6] is not mentioned any use of a search strategy for the optimization of the clas-
sifiers’ parameters. To turn it in a fair comparison with the other techniques, we will
test our approaches of PNNs considering only the order of magnitude of the variance’s
value. For this, we used part of training set of Arts database from Yahoo and we tested
the variance’s values 10, 1 and 0.1 on a cross-validation experiment. The chosen value
was 0.1. The threshold’s value used to the Hamming Loss metric was 0.5, the same
value used by ML-kNN, therefore, this parameter was also not optimized to the PNNs.

The results yielded with the use of the Yahoo’s database are presented in Tables from
1 to 5. Each one of the tables represents a metric, where each row is a data set and each
column is a classifier. The term “Average” in the last row means the average value of
the metric obtained by each classifier to all databases.

To accomplish a clearer evaluation of the classifiers, we adopted two criteria derived
from [6]. The first criterion creates one partial order ”% ” that evaluates the performance
between two classifiers for each metric. In that way, if the classifier A1 has a better
performance than A2 to a given metric, so we have A1 % A2. In order to perform this
task, we used two-tailed paired t-test at 5% significance level.

However, the presented criterion is insufficient to obtain the performance of classi-
fiers as a whole, therefore, we used a second criterion. In this one is applied a system

1 Databases and codes of the versions of PNN are available at
http://www.inf.ufes.br/~elias/ciarp2009.zip

2 Ranking Loss to ADTBoost.MH was not reported because, according to [6], the algorithm of
this classifier did not supply such information.

http://www.inf.ufes.br/~elias/ciarp2009.zip
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Table 1. Hamming Loss obtained by the classifiers

Data Set ML-kNN BoosTexter ADTBoost.MH Rank-SVM PNN PNN-centroid
Arts&Humanities 0.0612 0.0652 0.0585 0.0615 0.0630 0.0626

Business&Economy 0.0269 0.0293 0.0279 0.0275 0.0307 0.0289
Computers&Internet 0.0412 0.0408 0.0396 0.0392 0.0447 0.0412

Education 0.0387 0.0457 0.0423 0.0398 0.0437 0.0437
Entertainment 0.0604 0.0626 0.0578 0.0630 0.0640 0.0635

Health 0.0458 0.0397 0.0397 0.0423 0.0514 0.0481
Recreation&Sports 0.0620 0.0657 0.0584 0.0605 0.0634 0.0631

Reference 0.0314 0.0304 0.0293 0.0300 0.0307 0.0289
Science 0.0325 0.0379 0.0344 0.0340 0.0353 0.0353

Social&Science 0.0218 0.0243 0.0234 0.0242 0.0281 0.0245
Society&Culture 0.0537 0.0628 0.0575 0.0555 0.0596 0.0599

Average 0.0432 0.0459 0.0426 0.0434 0.0468 0.0454

Table 2. One-Error obtained by the classifiers

Data Set ML-kNN BoosTexter ADTBoost.MH Rank-SVM PNN PNN-centroid
Arts&Humanities 0.6330 0.5550 0.5617 0.6653 0.5597 0.5293

Business&Economy 0.1213 0.1307 0.1337 0.1237 0.1317 0.1313
Computers&Internet 0.4357 0.4287 0.4613 0.4037 0.4457 0.4557

Education 0.5207 0.5587 0.5753 0.4937 0.5463 0.5420
Entertainment 0.5300 0.4750 0.4940 0.4933 0.5530 0.4960

Health 0.4190 0.3210 0.3470 0.3323 0.4080 0.3807
Recreation&Sports 0.7057 0.5557 0.5547 0.5627 0.6037 0.5670

Reference 0.4730 0.4427 0.4840 0.4323 0.4780 0.4727
Science 0.5810 0.6100 0.6170 0.5523 0.6123 0.5930

Social&Science 0.3270 0.3437 0.3600 0.3550 0.3753 0.3703
Society&Culture 0.4357 0.4877 0.4845 0.4270 0.4647 0.4637

Average 0.4711 0.4463 0.4612 0.4401 0.4708 0.4547

Table 3. Coverage obtained by the classifiers

Data Set ML-kNN BoosTexter ADTBoost.MH Rank-SVM PNN PNN-centroid
Arts&Humanities 5.4313 5.2973 5.1900 9.2723 4.8503 4.6250

Business&Economy 2.1840 2.4123 2.4730 3.3637 2.1087 2.0527
Computers&Internet 4.4117 4.4887 4.4747 8.7910 4.0380 3.8963

Education 3.4973 4.0673 3.9663 8.9560 3.4980 3.4067
Entertainment 3.1467 3.0883 3.0877 6.5210 3.0663 2.8883

Health 3.3043 3.0780 3.0843 5.5400 3.0093 2.8730
Recreation&Sports 5.1010 4.4737 4.3380 5.6680 4.2773 4.0573

Reference 3.5420 3.2100 3.2643 6.9683 2.9097 2.7560
Science 6.0470 6.6907 6.6027 12.401 5.9930 5.6180

Social&Science 3.0340 3.6870 3.4820 8.2177 3.1357 2.9430
Society&Culture 5.3653 5.8463 4.9545 6.8837 5.3350 5.2323

Average 4.0968 4.2127 4.0834 7.5075 3.8383 3.6681

Table 4. Ranking Loss obtained by the classifiers

Data Set ML-kNN BoosTexter ADTBoost.MH Rank-SVM PNN PNN-centroid
Arts&Humanities 0.1514 0.1458 N/A 0.2826 0.1306 0.1223

Business&Economy 0.0373 0.0416 N/A 0.0662 0.0367 0.0349
Computers&Internet 0.0921 0.0950 N/A 0.2091 0.0826 0.0787

Education 0.0800 0.0938 N/A 0.2080 0.0803 0.0773
Entertainment 0.1151 0.1132 N/A 0.2617 0.1103 0.1025

Health 0.0605 0.0521 N/A 0.1096 0.0526 0.0491
Recreation&Sports 0.1913 0.1599 N/A 0.2094 0.1556 0.1432

Reference 0.0919 0.0811 N/A 0.1818 0.0732 0.0685
Science 0.1167 0.1312 N/A 0.2570 0.1166 0.1073

Social&Science 0.0561 0.0684 N/A 0.1661 0.0601 0.0546
Society&Culture 0.1338 0.1483 N/A 0.1716 0.1315 0.1286

Average 0.1024 0.1028 N/A 0.1930 0.0936 0.0879
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Table 5. Average Precision obtained by the classifiers

Data Set ML-kNN BoosTexter ADTBoost.MH Rank-SVM PNN PNN-centroid
Arts&Humanities 0.5097 0.5448 0.5526 0.4170 0.5645 0.5851

Business&Economy 0.8798 0.8697 0.8702 0.8694 0.8763 0.8779
Computers&Internet 0.6338 0.6449 0.6235 0.6123 0.6398 0.6420

Education 0.5993 0.5654 0.5619 0.5702 0.5889 0.5980
Entertainment 0.6013 0.6368 0.6221 0.5637 0.5991 0.6295

Health 0.6817 0.7408 0.7257 0.6839 0.7047 0.7207
Recreation&Sports 0.4552 0.5572 0.5639 0.5315 0.5396 0.5672

Reference 0.6194 0.6578 0.6264 0.6176 0.6441 0.6512
Science 0.5324 0.5006 0.4940 0.5007 0.5073 0.5278

Social&Science 0.7481 0.7262 0.7217 0.6788 0.7113 0.7272
Society&Culture 0.6128 0.5717 0.5881 0.5717 0.5993 0.6018

Average 0.6249 0.6378 0.6318 0.6015 0.6341 0.6480

Table 6. Relative performance of the classifiers by the two criteria

HL-Hamming Loss; OE-One-error; C-Coverage; RL-Ranking Loss; AP-Average Precision
A1-ML-kNN; A2-BoosTexter; A3-ADTBoost.MH; A4-Rank-SVM; A5-PNN; A6-PNN-centroid

Metrics Criterion 1
HL A1% A5, A1% A6, A3% A2, A4% A2, A3% A5, A3% A6, A4% A5, A4% A6, A6% A5
OE A2% A3, A2% A5, A6% A5
C A1% A4, A5% A1, A6% A1, A2% A4, A5% A2, A6% A2, A3% A4, A5% A3, A6% A3,

A5% A4, A6% A4, A6% A5
RL A1% A4, A5% A1, A6% A1, A2% A4, A5% A2, A6% A2, A5% A4, A6% A4, A6% A5
AP A2% A4, A3% A4, A6% A3, A5% A4, A6% A4, A6% A5

Techniques Criterion 2
ML-kNN {PNN, PNN-centroid} > ML-kNN > Rank-SVM

BoosTexter {PNN,PNN-centroid} > BoosTexter > Rank-SVM
ADTBoost.MH PNN-centroid > ADTBoost.MH > Rank-SVM

Rank-SVM {ML-kNN, BoosTexter, ADTBoost.MH,PNN, PNN-centroid} > Rank-SVM
PNN PNN-centroid > PNN > {ML-kNN, BoosTexter, Rank-SVM}

PNN-centroid PNN-centroid > {ML-kNN, BoosTexter, Rank-SVM, ADTBoost.MH, PNN}

based on rewards and punishes. For example, for the case of A1 % A2 the classifier A1
is rewarded with +1 and the classifier A2 is punished with -1. Then, we compare the
classifiers two a two through of the sum of their rewarded and punished between them.
In this case, if A1 have a positive value in relation to A2, so A1 is superior to A2, i. e.,
A1 > A2. Thus, the results obtained by the two criteria are shown in Table 6.

Table 6 shows that PNN-centroid is superior over to every algorithm, while the Rank-
SVM is the worst. Moreover, the PNN shows to be the second better, being inferior
just to the PNN-centroid and it had similar performance to ADTBoost.MH, whereas
the other classifiers (ML-kNN, ADTBoost.MH and BoosTexter) were superior just to
Rank-SVM. In addition, the PNN-centroid had a low time for classification (more than
10 times faster) and a small consumption of memory, when we compared with the PNN.
Finally, the training phase of both PNNs was faster than the other algorithms.

5 Conclusions

The problem of text classification is still greatly challenging, due to the huge amount of
information available. Other issues are the great quantity of classes and the presence of
multi-labeled databases, which together increase the difficult of this task.

In this work, we presented an experimental evaluation on multi-label text classifi-
cation of the performance of Probabilistic Neural Network and another version of it
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with centroids. Therefore, we conducted a comparative study of these PNNs and other
four classifiers specially designed to solve this problem. The results showed that both
versions of PNN devised by us presented good results, specially the PNN with cen-
troids, that was superior to all the other classifiers. In addition, our approach is faster
and consumed less memory than PNN without centroids.

A direction for future works is to study methods that can improve the results found
in this article even more. Moreover, we are planning to tackle the problem of on-line
learning using the proposed neural network in this paper.
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Abstract. This paper discusses use of Super Paramagnetic Clustering (SPC) 
and Spatio Temporal Artificial Neuron in on-line writer identification, on Farsi 
handwriting. In online cases, speed and automation are advantages of one me-
thod on others, therefore we used unsupervised and relatively quick clustering 
method, which in comparison with conventional approaches, give us better re-
sult. Moreover, regardless of various parameters that available from acquisition 
systems, we only consider to displacement of pen tip at determined direction 
that lead to quick system due to its quick preprocessing and clustering. Also we 
use a threshold that remove displacement between disconnected point of a word 
that lead to a better classification result on on-line Farsi writers. 

Keywords: Writer Identification, Super Paramagnetic Clustering, Spatio Tem-
poral Neural Network. 

1   Introduction 

With the rapid development of the information technology, true user authentication, 
using biometrics information will be required to get the more reliable password. the 
necessity of person identification is increasing for example, in bank, shop, e-
commerce and so on. In this work, person identification using handwriting, is referred 
to as writer identification. the target of writer identification is to quest for the personal 
identity, among a group of possible candidates, which is mainly used in security-
oriented applications.  

Writer identification problem is largely classified into two classes. One is offline 
methods, based on only static visual information, and the other is, on-line methods, 
based on dynamics of the handwriting process. A major advantage of the later method 
is very difficult to forge or copy the invisible dynamic features. We can say writer 
identification is identifying, writer from a written script such as character, signature 
and etc. Many methods of on-line signature recognition have been proposed at [1], 
[2], [3]. In the online methods, dynamic features of handwriting process have been 
used, such as pen point coordination [4], writing velocity [5], azimuth [6] and other 
features which are available from a digitizer. Due to the seemingly uniqueness of 
physiological and behavioral characteristics of each individual, writer identification 
has shown [1] to be a feasible task. Each writer’s writing, has a set of characteristics 
which is exclusive to him, only. 
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However a few methods for on-line writer identification (exclusively, handwriting 
and not signature) have been presented. It is known that Farsi handwriting (words) 
consist of several stroks and are different from continuous English handwriting.  

In this paper, we propose a novel approach for on-line writer identification based 
on Super Paramagnetic Clustering (SPC) algorithm [9] and Spatio Temporal Artificial 
Neuron (STAN) [10],[11] on Farsi handwriting. The rest of this paper is organized as 
follows. Section 2 gives a short overview of the SPC. Section 3 describes the writer 
identification procedure based on the SPC clustering and STAN classification. Ex-
perimental results and conclusion are provided in Section 4. 

2   Overview of Super Paramagnetic Clustering 

The key idea of Super Paramagnetic Clustering (SPC) is based on magnetic property 
of material at different temperature. Each material reach to high magnetic properties 
at special temperature. We use this temperature as a best value for clustering with 
SPC. The following is key ideas of Super Paramagnetic Clustering (SPC) [7], which 
is based on simulated interactions between each point and its k-nearest neighbors.  

There are q different states per each magnetic particle. First step is to represent the 

m selected features of each spike i by a point x i  in an m-dimensional phase space. 

The interaction strength between points x i  is then defined as: 

If x i  is a nearest neighbor of x j  
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where a is the average nearest-neighbors distance and k is the number of nearest 

neighbors. Note that the strength of interaction J ij  between nearest neighbor spikes 

decays exponentially, with increasing Euclidean distance 
2

jiij xxd −= , which 

corresponds to the similarity of the selected features. In the second step, an initial 

random state s from 1 to q is assigned to each point x i  .Then N Monte Carlo itera-

tions are run for different temperatures T, given an initial configuration of states s. A 

point x i  is randomly selected and its state s changed to a new state s new , which is 

randomly chosen between 1 and q. probability that, the nearest neighbors of x i  will 
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Where T is the temperature in which, this probability compute. Note that only those 

nearest neighbors of x i  which were in the same previous state s, are candidates to 

change their states to s new . Neighbors which change their values, create a frontier and 

cannot change their state again, during the same iteration. Points which do not change 
their state in a first attempt, can do so, if revisited during the same iteration. Then for 
each point of the frontier, we apply equation (2), again to calculate the probability of 

changing state to s new  for their respective neighbors. The frontier is updated, and the 

update is repeated until the frontier does not change any more. 
At that stage, we start the procedure again from another point and repeat it several 

times, in order to get the representative statistics. Points which are close together, 
(corresponding to a given cluster) change their state together. This can be quantified 

by measuring the point to point correlation 
ji ss ,δ  and defining x i  and x j  to be 

members of the same cluster if 
ji ss ,δ  ≥ θ, for a given threshold θ. Clustering results, 

mainly depend on temperature and are robust to small changes on other parameters, 
like, threshold, number of nearest neighbors and states [9]. This method remains bet-
ter results in sorting of spikes in comprise with other approach (Table.1). 

3   Writer Identification Based on SPC and Spatio Temporal 
Neural Network 

In this section we describe on-line writer identification. We get data from a tablet and 
apply preprocessing to produce displacement, which is converted to impulses in the 
form of spatio temporal coding in polar coordinates. Accumulated impulses at a tem-
poral window go to a clustering unit as an input. After clustering, clustered data at 
another pass of algorithm, can produce impulses, like previous phase. Accumulated 
impulses from this section are representative of a person who must be identified. 

3.1   Data Acquisition and Preprocessing 

On-line writer identification methods, often use a data convertor device. The user 
registers his/her own written samples with a special pen, and handwriting, received 
online. The device we use at this experiment is a tablet from Wacom company, at A4 
size, in which the sampling rate is 200 points per second. We record samples of each 
person in a text file. From the tablet we acquire signals of position coordinates of pen 
on surface of the tablet. Note that each handwriting word, consists of a sequence of 
pen tip coordinates. We can use displacement from these positions. Since the begin-
ning of each word can be any point at writing surface, we use displacements at dis-
crete directions [10], [11] which make this system translation invariant. Each dis-
placement take place at one direction, by quantization of direction to nearest basic 
direction, among 8 defined direction which is the best number of features for input  to  
our proposed method according to experiments. According to Fig.1, we make a vector 
with dimension equal to number of quantized direction that achieve at our experiment. 
Therefore we have 8 components. displacements at a direction take place on one of 
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these components that can be an impulse at time. There are sequences of displace-
ments at each handwriting. Then we must convert them to sequences of impulses.  

This process is a spatio temporal problem. thus each displacement can be an im-
pulse at a given time. We present spatio temporal coding by complex number [10]. 
Each signal x at time t is shown with amplitude η  and phase φ  (temporal position) 

from a reference time, at polar coordinate ( )φη,                            

φη iex =  and 
( ) τµφ t=tan

 (3) 

( )τµη tiex arctan=  
(4) 

and because of decreasing amplitude of  x due to time, we have:                       

( ) ( )τµτµη ts i
i eetx arctan−−=

 
(5) 

TWts

1== µµ
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( ) ( ) ( )( )1212 arctan
12

ttitt
j

ts eetx −−−−= µµη  (7) 

Where ix  is an impulse at ith component of 8 dimensional displacement vector at 

time t, and TW is a temporal window in which feature vectors are created. When a 

new impulse jx is emitted on a given component at time 2t ,it is accumulated with 

the previous impulse according to (7). We need, creation of primary feature vector for 
clustering unit and also, feature vector for classification unit, so we consider the suit-
able temporal window which obtain from data set. 

 

 
Fig. 1. A) Pen tip displacement at writing a word. B) Quantized direction. C) Sequence of 
displacement at quantized direction as impulse. 
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Preprocessing have an important role in obtaining better results. Preprocessing al-
gorithm used in [11] was suitable for continuous English words. Since for Farsi 
handwritten word, each word can consist of one or some disjoint part, this algorithm 
can’t work well on Farsi handwriting with disjoint sub words. Sudden jumping of pen 
tip at disjoint parts of a word that usually occurs between marks of a letter and other 
strokes of word or occurs between two disjoint sub words of a word (Fig.2) can lead 
to unuseful features, thus we use a threshold for displacement at defined direction and 
avoid displacement higher than this threshold. 

3.2   Clustering of Sub Words 

Handwriting, created from sub words that sequence of them, create whole word. We 
consider for each of sub word, a feature vector which, will be extracted at a defined 
temporal window. We can define each displacement at quantized direction at time, as 
an impulse. We convert asynchronous but continuous flow of impulses from preproc-
essing unit to spatio temporal vectors. These vectors are made using spatio temporal 
coding and accumulation of impulses at temporal window in preprocessing phase.  

Thus each vector saves impulse information (sub word information) at temporal 
window. Therefore at each period of time, equal to TW, we have a vector, considered 
as an input to clustering unit. 

 
Fig. 2. Sudden jumping from one disjoint sub word to another disjoint sub word. Note that the, 
arrow line shows sudden jumping. 

Temporal window is defined according to experimental results, obtained from da-
taset. Note that TW is selected so that performance of system does not decrease. Cre-
ated vectors of this section are representative of a sub word (Fig.3). Sequence of these 
sub words vector, for each person at defined TW are behavioral identifier for a per-
son. Now we configure SPC algorithm for this application. We get feature vector of 
preprocessing unit which has 8 dimensions and run SPC for different ranges of tem-
perature T, until finding maxima of T, in which each cluster have at minimum 20 
points. To run this algorithm automatically, we use a criterion based on size of clus-
ters. First we define minimum number of data samples which must be in a cluster. 
This is because that increasing temperature can lead to cluster with a few point in it. 
In fact at high temperature the number of clusters increases [9], so we can overcome 
this problem, with size criterion of clusters so that we can define size of a cluster to be 
fraction of data set. If there isn’t enough points in each cluster, we use minimum tem-
perature. With this work we guarantee automation of method (one of advantage over 
Kmeans clustering) and find optimized temperature. We set parameters of SPC as 
below according to [9]: number of state q=20, number of nearest neighbor k=11, and  
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Fig. 3. A) A word includes sequence of sub words. B) Sequence of sub words in form of im-
pulse at determined TW. C) Feature vector of whole word for classification. 

also number of iteration N=500 and correlation threshold θ =0.5. Note that changing 
above parameters does not affect result and classification rate depends on temperature 
only. Due to each iteration we change temperature T from 0 to 0.2 by step 0.01 and 
find maximum temperature in which each cluster included at minimum, 20 points or 
fraction of dataset that is determined.  

3.3   Handwriting Feature Vector Classification 

Feature vectors of previous section are saved according to the time of occurrence (end 
time of TW). In this section we can extract feature vectors of classification unit. Be-
cause of each handwriting word is a sequence of sub words at specific times, we use 
spatio temporal coding like preprocessing unit. Then using ST-RCE [10], [11] algo-
rithm which is a spatio temporal neural network, classify feature vectors. 

Output vector of clustering units has a dimension equal to number of clusters, that 
relevant element of this vector with cluster of vector is activated, when a vector of 
previous section come into clustering unit. Time of this event is the same as the refer-
ence time that was saved with vector. Accumulation of signals on a dimension are 
computed based on a reference time (here, mean sampling time of each word at data-
base) according to (5),(6),(7). Each vector is corresponds to with a handwriting word 
of a person and each person corresponds to a class. Thus we can classify them using 
ST_RCE algorithm. This algorithm uses hermitian distance given in (8) or (9) to de-
termine, belonging a vector to a class or not. 

( ) j

n

j
j xwWXV ∑

=

=
1

,
 

(8) 

( )( )∑
=

−−=
n

j
jjjj wxwxwxD

1

),(
 

(9) 

Where D and V are distances between vector x and weight of neural network. 
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4   Experiments and Conclusion 

In one experiment we used two databases according to table1. These databases were 
made using handwritings of 20 persons acquired by a tablet. We asked each person to 
writes 66 words generally selected from names of cities. We need enough number of 
samples. Thus we asked each person to write each word 7 times. At the second data-
base for simplicity we use the first database with a little change: we force three per-
sons to try to forge 20 words of handwriting next to original handwriting and next to 
original person.  

We divided database to 5 dataset to train and test. Several algorithms can be used 
for spike clustering and best of them is an algorithm that has more discriminant 
strength. In order to show these differences with the proposed method we compare 
results of SPC clustering with Kmeans [11]. Experimental results (Table.1) shows, in 
cases that discrimination between spike shapes are relatively easy, two algorithms are 
the same, but in cases that shapes of spikes are very similar (trying to forge), SPC has 
acceptable advantage over Kmeans. Moreover, with SPC, we have an fully unsuper-
vised clustering unlike Kmeans that we define number of clusters.  

In another experiments we used five databases. We divide our dataset to four data-
bases (Table.2) according to the sudden jumping in each word (Fig.2). With removing 
unnecessary displacement at sub words by preprocessing (jumping from disjoint sub 
words to another disjoint sub words of a word) the performance of classifier can in-
crease according to (Table.2). 

We found that other features beside to displacement can not increase precision of 
classification and moreover increase time of classification.  

Note that some of the human being behaviors, like, difficulty in writing on special 
surface or writing with special pen can lead to undesired results, which we encountered 
them at the data acquisition phase. Therefore the accuracy of data acquisition, can lead 
to a better classification results. Unfortunately there isn’t any standard database at this 
context and make difficult comprise of result, achieved from various method. 

Table 1. Precision of methods on each type of database according to the number of forgeries 

 All  
samples 

Forgeries 
With Kmeans[11] With  

preprocessing 
Proposed  
method 

Database1 9240 0 71.3% 75.2% 76.2% 
Database2 420 68.2% 73.1% 79.1% 

 
9240 

    

Table 2. Precision of methods on each databases according to the number of jumping at a word 

 number of sudden  
jumping 

Samples With [11] With SPC [11]with  
preprocessing 

Proposed 
method 

Db1 1 18*20*7 78.2% 82.1% 82.6% 84.2% 
Db2 2 17*20*7 77.2% 79.1% 80.6% 81.8% 
Db3 3 12*20*7 72% 76.6% 79.4% 80.1% 
Db4 4 12*20*7 69.1% 71% 73.3% 77.3% 
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Abstract. The measure of leaf damage is a basic tool in plant epidemi-
ology research. Measuring the area of a great number of leaves is sub-
jective and time consuming. We investigate the use of machine learning
approaches for the objective segmentation and quantification of leaf area
damaged by mites in avocado leaves. After extraction of the leaf veins,
pixels are labeled with a look-up table generated using a Support Vec-
tor Machine with a polynomial kernel of degree 3, on the chrominance
components of YCrCb color space. Spatial information is included in the
segmentation process by rating the degree of membership to a certain
class and the homogeneity of the classified region. Results are presented
on real images with different degrees of damage.

Keywords: Leaf damage, segmentation, quantification, machine
learning.

1 Introduction

The persea mite, Oligonychus perseae, is a serious pest of avocado harvesting
and every year it results in high economical losses for the productive sector.
The presence of the mite in avocado crops is easily recognizable by the damage
produced, as nearly circular necrotic regions of brownish color in the underside of
leaves, distributed mainly along the central vein and other main veins (view 1).
Manual delineation of leaves can be tedious and time consuming, specially when
a high number of leaves needs to be analyzed. In order to study the susceptibility
of various avocado crops to the O. perseae in the south region of Spain, we wanted
to quantify the mite feeding damage, using an image analysis technique to count
brown spots on leaves and calculate the percentage of damaged leaf area. Several
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methods have already been proposed for this task. Kerguelen et al.[1] compared
three methods for spot detection and obtained the best results with a simple
color thresholding and heuristic constant thresholding. This procedure is not
robust when different leaves have to be analyzed, or when spots of different
age are considered, as it was the case for the present study. Wijekoon et al.
[2] evaluate a method for quantification of fungal disease using Scion software.
The method is interactive, and several parameters must be adjusted for each
leave. Bakr [3] describes a software for leaf damage quantification, based on
color classification of image regions. We have tested the software on our own
leaves and the automatic segmentation gives very poor results (not reported
here).

In the present paper, a semi-automatic approach for determining the dam-
aged area caused by the Oligonychus perseae mite in avocado leaves is designed,
implemented and validated. This is achieved in three main steps: First avocado
leaves are digitized and segmented from the background using a simple Otsu
thresholding [4]. A preprocessing step is applied in order to standardize the leaf
color distributions and to enhance the image contrast. Then, images are seg-
mented using a two stage color pixel classification approach: the principal veins
are first extracted and the remaining pixels are then classified into damaged
area or healthy leaf. Finally, the resulting segmentation is improved using a
function which combines the degree of membership to the labeled class and the
homogeneity of the neighborhood region.

Fig. 1. Different damage levels of avocado leaves caused by Oligonychus perseae, from
high (left) to low (right) damage levels. Notice how the intermediate and low levels
present a very blurry regions in which, it is very difficult, even for a human observer,
to establish the presence of the disease.
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2 Materials and Methods

2.1 Image Acquisition

Thirteen leaves of avocado (Persea americana), of the Hass variety, damaged
by Oligonychus Perseae, were harvested from a plantation in the province of
Malaga, in Spain. Leaves were randomly chosen from different adult trees and
scanned using and Epson Stylus DX 8400 scanner, with a resolution of 400
dpi and saved in bitmap format. Necrotic areas were manually delineated using
Photoshop (Adobe Systems, San Jose, USA).

2.2 Image Preprocessing

The inherent variability of many factors, such as biological variability and ac-
quisition conditions, results in different image luminance and color distribution
in digitized leaves, which must be reduced for improving the pixel classification
performance. Two major problems are addressed at this stage: contrast enhance-
ment and color normalization between leaves. Contrast was enhanced apply-
ing a classical histogram equalization approach, whereas a color normalization
approach was based on the grey world normalization assumption [5,6], which
assumes that changes in the illuminating spectrum may be modeled by three
constant multiplicative factors applied to the red, green, and blue color compo-
nents. So, an image of unknown illumination Iu can be simply transformed to
a known luminance space Ik by multiplying pixel values with a diagonal matrix
Ik
rgb = MIu

rgb, whit M defined as 1.

M =

⎛
⎝
m11

m22
m33

⎞
⎠m11 =

µIk
r

µIu
r
,m22 =

µIk
g

µIu
g
,m33 =

µIk
b

µIu
b

(1)

In this work, the color distributions of all leaves were normalized to the color
distribution of one specific leaf, which was used for selecting the training points
in the classification step. Figure 2, shows one example of the normalization step
applied on a leaf section.

Fig. 2. Pre-processed image results. From left to right: original image, color distribution
normalized and contrast enhanced.
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2.3 Damaged Area Segmentation

Segmentation of the damaged area is carried out using an efficient pixel clas-
sification strategy. Given an input image I, the classification of a target pixel
I(x, y) is performed according to a color feature vector X describing it. In order
to reduce the time needed to perform a single pixel classification, the approach
presented herein is based on a classification process that find the set of bound-
aries that optimally separates a particular color-space representation into target
classes, labeling each color component as belonging to any class. The labeled
color space is used as a look-up-table (LUT) for deciding the class of each image
pixel. As the selection of a color space for pixel classification is application de-
pendent [7], we evaluated the classification performance of several color spaces
and classification algorithms in order to select the most suitable for our pixel-
based classification task. Four supervised classification techniques (KNN, Naive
Bayes, Support Vector Machine and Multi Layer Perceptron neural networks),
and four color spaces (RGB, normalized RGB, HSV and YCrCb) were assessed.

Classification models were created using a collection of the labeled pixels as
training data set, which were manually extracted by an expert from a represen-
tative leaf with different damage levels (the same which was used as reference
in the color normalization step). The training dataset was filtered for obtaining
unique instances. Finally, less than 1000 pixels by label were used for training
each classification model.

The main problem of the proposed strategy is that some colors corresponding
to different damage levels are strongly mixed up with colors corresponding to
leaf veins. Initially, we tried to create a learning model able to split the color
spaces in two classes: damaged area and healthy leaf, but its performance was
poor. We also trained some multi-class classification models, which tried to dis-
tinguish between damaged areas, veins and healthy leaf, but its performance
was also poor. So, a first supervised learning model was generated for detecting
the principal veins and a second one was used for classifying remaining pixels
as damaged area or leaf background. Finally, a correction factor that takes the
spatial relationship of the pixels into account was applied.

From the evaluated classification schemes, a SVM technique with a 3 degree
polynomial kernel and the CbCr color transformation presented the best perfor-
mance in the two classification stages. SVM are learning systems that project
the input vectors into a high dimensional feature space, using the hypothesis
space of linear functions, induced by a kernel function chosen a priori. In the
feature space, the learning algorithm produces an optimal separating hyper-
plane between two classes, maximizing a convex quadratic form, subjected to
linear constraints. The optimal hyperplane found with SVM corresponds to the
maximal distance to the closest training data and is represented as a linear
combination of training points called support vectors. In this work, a version of
SVM that uses a sequential minimal optimization algorithm was used [8]. The
classification model produces a decision class according to the distance from the
instance to the optimal hyperplane. On the other hand, the Y CrCb is a family of
color spaces commonly used to represent digital video. Luminance information
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is stored as a single component (Y), and chrominance corresponds to the two
color-difference components (Cb and Cr). We have used the YCbCr transfor-
mation specified in the ITU-R BT.601 standard for computer-display oriented
applications, but the luminance component was not considered.

Segmentation of main veins. The first stage in the segmentation approach
is to extract the main leaf veins. Approaches for leaf vein extraction have been
proposed previously [9,10,11,12,13]. These approaches are mainly based on the
assumption that both veins and remaining leaf tend to be uniform in color and
contrast [14]. Soille applied morphological filters to extract leaf veins [9]. Fu and
Chi [10] proposed a two stage vein extraction that performed a preliminar seg-
mentation based on the intensity histogram of the leaf image, which was then
enhanced by a pixel classification based on edge, contrast and texture properties
of the pixels. Similarly, a rough segmentation, based on the intensity histogram
was used for obtaining the veins of leaf by Li et al. [15], and an active con-
tour technique based on cellular neural network, was used to extract the veins
in the obtained rough regions of leaf pixels. Li et al. [11] applied independent
component analysis (ICA) to learn a set of linear basis functions that were used
as patterns for vein extraction in patches of grey level leaf images. These ap-
proaches fail in our problem because damaged areas are commonly located along
the veins and their color and contrast are strongly mixed. However, the color
pixel classification strategy proposed was able to correctly detect the majority
of main veins of the evaluated leaves.

Figure 3 displays the veins obtained when the images of Figure 1 were seg-
mented using the LUT corresponding to veins and leaf partition of the CrCb
color space.

Fig. 3. Vein extraction results of leaves from Figure 1
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Segmentation of damaged area. After eliminating the veins from the original
images, remaining pixels were classified using the LUT generated for partitioning
the color space between damaged area and healthy leaf. Figure 4 displays results
of the segmentation process applied on the digitized leaves shown in Figure 1.
Red color corresponds to the damaged area contour marked by the expert and
white regions correspond to damaged areas found by the approach.

Fig. 4. Segmentation detail of damaged area of the leaves in Figure 1

Segmentation refinement. The aim of this stage was to reclassify pixels in-
correctly classified, based on the use of contextual information, not taken into
account by the previous phases. Pixels are reclassified using the function defined
by equation 2.

f(p) = wLUT l(x) + wN lN(p) (2)

where l(x) stands for the label assigned to the color component x by the LUT
and lN(p) corresponds to the mean label value computed from a neighborhood N
around pixel p. wLUT and wN are weighting functions for the label assigned by
the LUT to the actual pixel and for the labels of a neighborhood N around the
pixel. wLUT represents a value of membership degree to the corresponding label,
given by the normalized distance of the color component to the SVM hyperplane,
whereas wN represents a value of color homogeneity in a neighborhood N that
is given by the difference of the color of the actual pixel with respect to N . After
applying this postprocessing, some small artifacts can still be present, which are
removed using a morphological opening.

2.4 Experimental Results

The proposed approach was applied to estimate the percentage of damaged area
in 13 avocado leaves with different levels of damage. Damaged areas were marked
by a botanist, expert in the analysis of avocado leaves. Segmentation perfor-
mance was evaluated by computing average accuracy, precision and recall of
damaged area segmented. Results are shown in table 1. As the measure com-
monly used by the botanists is the area of damaged leaf, the mean difference
between the percentage of damaged area computed from the manual and au-
tomatic segmentation images is also reported in the last row of the table. The
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Fig. 5. Segmentation of damaged area. Detail of segmentation errors caused by poor
contrast between damaged area and healthy leaf. Note that similar regions are assigned
to different labels.

Table 1. Average performance of proposed approach

Pixel-based classification Improved Segmentation

Accuracy 0.924 ± 0.022 0.926 ± 0.022

Precision 0.703 ± 0.157 0.679 ± 0.131

Recall 0.638 ± 0.189 0.799 ± 0.171

Estimation difference 1.2 ± 2.5 2.7 ± 2.8

results show that our approach is able to detects different levels of damage in
avocado leaves, produced by the Oligonychus perseae mite. The postprocessing
approach improves the sensitivity of the method, although it reduces the general
accuracy. Inaccuracies arose mainly due to early damage levels that are difficult
to estimate even visually as shown in Figure 5. It is worth noting that differences
in computed leaf damage are negligible when assigning a discrete damage level.

3 Conclusions

A simple semi-automatic approach for segmenting and quantifying damaged area
in avocado leaves was proposed. The approach is based on an initial pixel based
classification according to the chrominance feature from the Y CrCb color space,
which is improved by taking into account local context information and the
membership degree of the color value to a specific class (healthy leaf or damaged
area). Classification time is reduced through the construction of a lookup table
(LUT) in which the classes for the whole Y CrCb chrominance space are assigned
by a learning model in an off-line process. So, a minimal user intervention is
needed, to select a sample of pixels for training the color space classifier. The
proposed approach was tested on 13 leaves with different color distributions and
several degrees of damage and results are very promising. However, an evaluation
with a higher number of leaves is warranted.



684 G. Dı́az et al.

References

1. Kerguelen, V., Hoddle, M.S.: Measuring mite feeding damage on avocado leaves
with automated image analysis software. Florida Entomologist 82, 119–122 (1999)

2. Wijekoon, C., Goodwin, P., Hsiang, T.: Quantifying fungal infection of plant leaves
by digital image analysis using scion image software. Journal of Microbiological
Methods 74, 94–101 (2008)

3. Bakr, E.M.: A new software for measuring leaf area, and area damaged by tetrany-
chus urticae koch. Journal of Applied Entomology 129, 173–175 (2005)

4. Otsu, N.: A tlreshold selection method from gray-level histograms. IEEE Transac-
tions on Systems, Man And Cybernetics 9, 62–66 (1979)

5. Finlayson, G.D., Schiele, B., Crowley, J.L.: Comprehensive colour image normal-
ization. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406,
p. 475. Springer, Heidelberg (1998)

6. Tek, F., Dempster, A., Kale, I.: A colour normalization method for giemsa-stained
blood cell images. In: IEEE 14th Signal Processing and Communications Applica-
tions (2006)

7. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1, 67–82 (1997)

8. Platt, J.: Machines using sequential minimal optimization. In: Schoelkopf, B.,
Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learn-
ing. MIT Press, Cambridge (1998)

9. Soille, P.: Morphological image analysis applied to crop field mapping. Image and
Vision computing, 1025–1032 (2000)

10. Fu, H., Chi, Z.: A two-stage approach for leaf vein extraction. In: IEEE Interna-
tional conference on neural networks and signal processing (2003)

11. Li, Y., Chi, Z., Feng, D.D.: Leaf vein extraction using independent component
analysis. In: IEEE Conference on Systems, Man, and Cybernetics (2006)

12. Nam, Y., Hwang, E., Kim, D.: A similarity-based leaf image retrieval scheme: Join-
ing shape and venation features. Computer Vision and Image Understanding 110,
245–259 (2008)

13. Boese, B.L., Clinton, P.J., Dennis, D., Golden, R.C., Kim, B.: Digital image anal-
ysis of zostera marina leaf injury. Aquatic Botany 88, 87–90 (2008)

14. Clarke, J., Barman, S., Remagnino, P., Bailey, K., Kirkup, D., Mayo, S., Wilkin, P.:
Venation pattern analysis of leaf images. In: Bebis, G., Boyle, R., Parvin, B., Ko-
racin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara,
J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292,
pp. 427–436. Springer, Heidelberg (2006)

15. Li, Y., Zhu, Q., Cao, Y., Wang, C.: A leaf vein extraction method based on snakes
technique. In: International Conference on Neural Networks and Brain (2005)



E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 685–692, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Neurocontroller for Power Electronics-Based Devices 

M. Oliver Perez1, Juan M. Ramirez1, and H. Pavel Zuniga 2 

1 CINVESTAV- Guadalajara. Av. Científica 1145.  Zapopan, Jalisco, 45015. Mexico  
{operez,jramirez}@gdl.cinvestav.mx 

2 Universidad de Guadalajara. Centro Universitario de Ciencias Exactas e Ingeniería.  
Posgrado de Ingeniería Eléctrica. Guadalajara, Jal., Mexico  

pavel.zuniga@cucei.udg.mx 

Abstract. This paper presents the Static Synchronous Compensator’s (Stat-
Com) voltage regulation by a B-Spline neural network. The fact that the electric 
grid is a non-stationary system, with varying parameters and configurations, 
adaptive control schemes may be advisable. Thereby the control technique must 
guarantee its performance on the actual operating environment where the Stat-
Com is embedded. An artificial neural network (ANN) is trained to foresee the 
device’s behavior and to tune the corresponding controllers. Proportional-
Integral (PI) and B-Spline controllers are assembled for the StatCom’s control, 
where the tuning of parameters is based on the neural network model. Results 
of the lab prototype are exhibited under different conditions. 

Keywords: Artificial neural network,  B-Spline, StatCom, FACTS. 

1   Introduction 

Power systems are highly nonlinear, with time varying configurations and parameters 
[1-3]. Thus, PI controllers based on power system’s linearized model cannot guaran-
tee a satisfactory performance under broad operating conditions. Thus, in this paper 
the use of a control, adjustable under different circumstances, is suggested. 

StatCom requires an adaptive control law which takes into account the nonlinear 
nature of the plant and adapts to variations of the environment to regulate the bus 
voltage magnitude. The aim of this paper is the utilization of an adaptive B-Spline 
neural network controller. The fundamental structure of such device is based on a 
Voltage Source Converter (VSC) and a coupling transformer, which it is used as a 
link with the electric power system, Fig. 1. EST represents the StatCom’s complex bus 
voltage, and Ek the power system complex bus voltage [4-7]; all angles are measured 
with respect to the general reference. 

The model is represented as a voltage variable source EST. Its magnitude and phase 
angle can be adjusted with the purpose of regulating the bus voltage magnitude. The 
magnitude VST is conditioned by a maximum and a minimum limit, depending on the 
VSC’s capacitor rating.  

In this paper a B-Spline neurocontroller is utilized due to its ability to adapt its  
performance to different operating conditions. A PI controller is also utilized for  
comparison purposes. Tuning the prototype's controllers is a tedious task since  
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Additionally, through B-SNN it is possible to bound the input space by the basis 
functions’ definition. The most important feature of the B-Spline algorithm is the 
output's smoothness that is due to the shape of the basis functions. The bus voltage 
magnitude must attain its reference value through the B-Spline adaptive control 
scheme. That is, control must drive the StatCom’s modulation ratio m and the phase 
angle α to the desired value in order to regulate the injected voltage of the shunt con-
verter. 

The B-Spline neural network output can be expressed as [13], 

                                                (1)   

where wi and ai are the i th weight and the i th B-spline basis function output, respec-
tively; p is the number of weights. Let us define: 
 

,            

Thereby, eqn. (1) can be rewritten as: 
 y ൌ ∑ ܽݓ ൌ ୀଵݓ்ܽ                         (2) 
 
The last expression can be rewritten in terms of time as: 
 yሺݐሻ ൌ ்ܽሺݐሻݓሺݐ െ 1ሻ ൌ ்ܽ൫ݔሺݐሻ൯ݓሺݐ െ 1ሻ           (3) 
 
where a is a p-dimensional vector which contains the function basis outputs, w is the 
vector containing the weights, and x is the input vector. 

Learning in artificial neural networks (ANNs) is usually achieved by minimizing 
the network’s error, which is a measure of its performance, and is defined as the dif-
ference between the actual output vector of the network and the desired one.  

On-line learning of continuous functions, mostly via gradient based methods on a 
differentiable error measure is one of the most powerful and commonly used ap-
proaches to train large layered networks in general [13], and for non stationary tasks 
in particular. In this paper, the neurocontroller is trained on-line using the following 
error correction instantaneous learning rule [14], 
ݐሺݓ∆  െ 1ሻ ൌ ఊሺ௧ሻԡሺ௧ሻԡమమ ܽሺݐሻ                                    (4) 

 
where: ߛ is the learning rate and ݁௬ሺݐሻ is the instantaneous output error. 

The proposed neurocontroller consists fundamentally on establishing its structure 
(the definition of basis functions) and the value of the learning rate. Regarding the 
weights’ updating, (4) should be applied for each input-output pair in each sample 
time; the updating occurs if the error is different from zero. Hence, the B-SNN train-
ing process is carried out continuously on-line, while the weights’ value are updated 
using the feedback variables. The proposed controller is based on (4). Inside the 
Spline block the activation function is located; in this case an Spline function. 
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3   Test Results 

A lab StatCom prototype has been implemented in order to validate the proposition. The 
major elements of the scheme are the following, Fig. 3: (i) source voltage – 85 volts 
RMS, (ii) transmission line inductance – 3.1 mH, (iii) LC filter – Capacitors 5µF and 
inductors 3.1 mH, (iv) asynchronous motor – squirrel cage 1.5 HP. The Voltage Source 
Converter (VSC), which is the main component, has been controlled by a DSP 
TMS320F2812. This DSP possesses 6.67 ns instruction cycle time (150 MHZ), 16 
channel, 12-bit ADC with built-in dual sample and hold, an analog input from 0 to 3 V.  

 
Fig. 3. Circuit arrangement 

The synchronizing circuit utilized for the six IGBT VSC has been implemented in 
the DSP, collecting the data with a global Q of 11, which means that it reserves 21 bits 
for the data´s integer part and 11 bits for the fractional one. In this application the se-
lected sampling frequency is 3000 Hz, thus 50000 clock cycles available between suc-
cessive samples can be accomplished. In open loop, reactive power and DC voltage 
measurements are carried out. Feeding this set of measurements into the 40,60,2 scheme 
feed forward neural network, back propagation type, and training the created network 
by 800 epochs, a suitable model of the prototype is accomplished.   The proposed ANN 
which will simulate the prototype Statcom is a 40,60,2 scheme feed forward, BP type. It 
means that it will have a 40 neurons first layer, a middle layer of 60 layers of a sigmoid 
transfer function, and two neurons in the output layer. The ANN is trained with four 
vectors of 229 elements each, two vectors for the input and two vectors for the output. 

3.1   Proportional-Integral Controller 

Firstly, two PI controllers are tried: (a) one for the reactive power flow, and (b) one 
for the DC voltage, Fig. 3. Two different conditions are analyzed: 
 

(a) Case 1. The outputs’ reference values are: 100 Vars flowing outward the 
StatCom, and 97.92 DC volts at the inverter´s capacitors. 

(b) Case 2. The outputs’ reference values are: 114 Vars flowing outward the 
StatCom, and 97.00 DC volts at the inverter´s capacitors. 
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In this case, the same controller structure is employed for both loops. To tune the PI’s 
controller parameters is the first objective. Its structure is defined as follows, 
 

                                               (5) 

In such process an intensive use of the ANN previously trained is done. The following 
parameters produce under damped response without overshoots: Kim = 0.9; Kpm = 2.0; 
Kif = 3e-4; Kpf = 1.0e-3. Kim is the integral gain and Kip is the proportional gain for the 
magnitude controller. Kif and Kpf are the gains for the phase controller, respectively. 
The system is feeding the resistive load only, Fig. 3. Fig. 4 depicts the reactive power 
and DC voltage obtained by simulation.  The physical realization is displayed in Fig. 
5. At t = 19 s the induction motor is started and turned out immediately. At t = 29 s it 
is started again and after several cycles it is turned out. Notice that during this time 
output signals do not reach their reference value. Under this condition the amplitude 
and phase of the modulating signal reach their maximum. 

However, if the desired values and the initial state are modified, the PI controlled 
StatCom ´s output exhibits a different behavior, Fig. 6. In this simulation the desired 
values are 114 Vars delivered and 97.00 DC volts.  Now, the new initial state, Case 2, 
is such that the output voltage lags 1.8 degrees with respect to the grid´s voltage, by a 
modulation index of 90%.  
 

 

Fig. 4. Case 1. Simulated ANN response for Kim = 0.9; Kpm = 2.0; Kif = 3e-4; Kpf = 1.0e-3. 
From top to bottom: (a) reactive power and DC voltage, (b) phase, and (c) magnitude of the 
modulating signal. 

 

 
 

Fig. 5. Case 1. Prototype’s response (Var and DC voltage) for Kim = 0.9; Kpm = 2.0; Kif = 3e-
4; Kpf = 1.0e-3 
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Fig. 6. Case 2. Prototype’s response. PI behavior under a disturbance. 

Then, with different initial states the PI controllers are tested. Under Case 2, a fast 
change in the DC voltage due to the induction motor starting compels the system to 
oscillate, Fig. 6. Hence, the tuned PI parameters that exhibited a satisfactory perfor-
mance in Fig. 4 are not able to work well when the StatCom migrates to another oper-
ating point. 

3.2   B-Spline Controller 

The proposed B-Spline controller is now simulated with the StatCom´s ANN model. 
Originally, the desired values are as in the PI case (initial state): 100 Vars flowing 
outward the StatCom, and 97.92 DC volts at the inverter´s capacitors.  The StatCom´s 
initial state generates an output voltage lagged 0.4 degrees with respect of the grid´s 
voltage; the inverter´s output voltage presents a modulation index of 85%. Fig. 7 
shows that the references are reached with both loops based on B-Spline controllers. 
The slower loop is the DC voltage loop; it is handled through the learning factor Nf. 
In the present case Nf = 0.1. Both desired values are reached in 35 ms and the re-
sponse signal exhibits an overshoot. The responses with PIs are improved, Fig. 4. 

 

Fig. 7. Case 1. Simulated ANN B-Spline response for Wm=12636, Nm=40, Wf=-0.3621, 
Nf=0.1. From top to bottom: (a) reactive power and DC voltage, (b) phase, and (c) magnitude 
of the modulating signal. 
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Fig. 8. Case 2. Simulated ANN B-Spline response for Wm=12636, Nm=40, Wf=-0.3621, 
Nf=0.1. From top to bottom: (a) reactive power and DC voltage, (b) phase, and (c) magnitude 
of the modulating signal. 

 

Fig. 9. Case 2. Prototype’s B-Spline response (Vars and DC voltage) showing its adaptability 
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4   Conclusions  

The proposed neurocontroller represents a pertinent choice for on-line control due to 
it possesses learning ability and fast adaptability, robustness, simple control  

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
50

100

150
Reactive Power (Dotted red) - VDC (Solid blue)

V
ar

s 
or

 V
ol

ts
 D

C

Time

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
-0.3

-0.25

-0.2
Phase

P
i R

ad
ia

ns

Time

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
8

9

10
Modulating Signal

M
ag

ni
tu

de

Time

B-Spline control on both loops with 
disturbance

Desired Values: 114 Vars, 97 DC volts.

0

20

40

60

80

100

120

140

0

1.
68

3.
36

5.
04

6.
72 8.
4

10
.1

11
.8

13
.4

15
.1

16
.8

18
.5

20
.2

21
.8

23
.5

25
.2

26
.9

28
.6

30
.2

31
.9

33
.6

Time in seconds

V
ar

s 
an

d
 D

C
 v

o
lts

Reactive Power Flow DC Voltage



692 M.O. Perez, J.M. Ramirez, and H.P. Zuniga  

algorithm, and fast calculations. Unlike the PI control technique, the B-Spline NN 
control exhibits adaptive behavior since the weights can be adapted on-line respond-
ing to inputs and error values as they take place. These are desirable characteristics 
for practical hardware on power station platforms. Simulating the StatCom´s behavior 
with an ANN reduces the tuning time and offers a predictive view of the systems 
response. Lab results for different disturbances and operating conditions demonstrate 
the effectiveness and robustness of the NN control. 
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Abstract. This paper gives an overview of works done in our group on
3D and appearance modeling of objects, from images. The backbone of
our approach is to use what we consider as the principled optimization
criterion for this problem: to maximize photoconsistency between input
images and images rendered from the estimated surface geometry and
appearance. In initial works, we have derived a general solution for this,
showing how to write the gradient for this cost function (a non-trivial un-
dertaking). In subsequent works, we have applied this solution to various
scenarios: recovery of textured or uniform Lambertian or non-Lambertian
surfaces, under static or varying illumination and with static or varying
viewpoint. Our approach can be applied to these different cases, which
is possible since it naturally merges cues that are often considered sep-
arately: stereo information, shading, silhouettes. This merge naturally
happens as a result of the cost function used: when rendering estimated
geometry and appearance (given known lighting conditions), the result-
ing images automatically contain these cues and their comparison with
the input images thus implicitly uses these cues simultaneously.

1 Overview

Image-based 3D and appearance modeling is a vast area of investigation in com-
puter vision and related disciplines. A recent survey of multi-view stereo methods
is given in [6]. In this invited paper, we provide a brief overview of a set of works
done in our group, mainly by showing sample results. Technical details can be
found in the relevant cited publications.

3D and appearance modeling from images, like so many estimation problems,
is usually formulated, explicitly or implicitly, as a (non-linear) optimization prob-
lem1. One of the main questions is of course which criterion to optimize. We be-
lieve that the natural criterion is to maximize photoconsistency between input
images and images rendered from the estimated surface geometry and appear-
ance (to be precise, this criterion corresponds to the likelihood term of a Bayesian
problem formulation, which can be combined with suitable priors). To measure

1 There exist some exceptions in special cases. For example, in basic shape-from-
silhouettes, the 3D shape is directly defined by the input and no estimation is nec-
essary, just a computation to explicitly retrieve the shape.
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photoconsistency, one may use for example the sum of squared differences of
grey levels or the sum of (normalized) cross-correlation scores. This criterion is
simple to define but turns out to be hard to optimize rigorously. To optimize it
we process a gradient descent. When speaking about gradient descent, a central
question is how to compute the gradient of the criterion. Yezzi and Soatto have
shown how to do so, but only for convex objects [7]. In [3], we developed the
gradient for the general case. Importantly, it correctly takes into account how
surface parts become visible or invisible in input cameras, due to the surface
evolution driven by the gradient. Hence, using this gradient, silhouettes and ap-
parent contours are implicitly handled correctly since these are the places where
such visibility changes take place. Further, due to comparing input with rendered
images, color and shading effects are also naturally taken into account. Overall,
rigorously optimizing the photoconsistency between input and rendered images,
allows to naturally merge stereo, shading, and silhouette cues, within a single
framework and without requiring tuning parameters to modulate their relative
influence.

This framework was first developed for a continuous problem formulation [3]
(we used level sets for the surface parametrization). We then developed it for
the case of discrete surface representations, in particular triangular meshes [2]
which in practice allow to achieve a higher 3D surface resolution. Also, even
when using a continuous setup, in practice the surface representation is finally
discretized and the surface evolution requires to repeatedly discretize attributes.
It thus seems more natural to directly start with a discrete parametrization and
do all derivations based on it. In both cases, continuous and discrete, the surface
evolution can be carried out by gradient descent (one may also try less basic
methods, such as conjugate gradient, quasi-Newton methods etc.).

The developed framework for optimizing photoconsistency was then used to
develop a general purpose algorithm for modeling 3D surface and appearance
[8,9]. Here, we considered the case where lighting conditions are known (we
modeled this as a set of point or directional light sources, plus an ambient light-
ing) but may be different for each input image. The most general instance of
our algorithm estimates an object’s 3D surface and a spatially varying appear-
ance. For the latter, we use the standard Blinn-Phong reflectance model and
can in principle estimate one set of reflectance coefficients (albedo and specular
coefficients) per surface point, allowing to reconstruct non-Lambertian surfaces.
However, estimating specular coefficient for each point is obviously highly ill-
posed, so the most general experiment we carried out used a strong smoothness
prior over these coefficients.

This general algorithm can be run on more constrained examples, in principle
simply by leaving out the appropriate parts in the problem parametrization
and the computation of cost function, gradient, etc. Examples of some scenarios
are given in the following section. For example, one may model the surface
appearance by a spatially varying albedo plus uniform specular coefficients, by a
spatially varying albedo and no specular effects or simply by a uniform albedo.
In the case of constant lighting, the second case corresponds to multi-view stereo
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whereas the third case corresponds to (multi-view) shape-from-shading. Also, if
variable lighting conditions are considered but a static viewpoint, the algorithm
will perform photometric stereo, whereas in the general case of varying lighting
and viewpoint, one finds a combination of multi-view and photometric stereo.

2 Sample Scenarios and Results

As mentioned above, due to the generality of the proposed approach, it can be
applied to various types of image sets with different camera/light configurations.
Here, knowledge of illumination allows to factorize radiance into reflectance and
geometry. In practice, depending on the scenario, that knowledge may not be
required, e.g. for recovering shape and radiance of Lambertian surfaces with
static illumination. In other words, when images of Lambertian surfaces are taken
under static illumination, the proposed approach can be applied even without
lighting information, assuming that there is only an ambient illumination. In this
case, the approach works much like the conventional multi-view stereo methods
and estimates the shape and radiance of Lambertian surfaces. Figure 1 shows the
result for the dino image set [6], for which no lighting information is required.
The proposed method successfully recovers the shape as well as the radiance.

In the following, for synthetic data sets, the estimated shape is quantitatively
evaluated in terms of accuracy and completeness as in [6]. We used 95% for
accuracy and the 1.0mm error for completeness. For easy comprehension, the
size of a target object is normalized so that it is smaller than [100mm 100mm
100mm]. Here, beside the shape evaluation, we also evaluated the estimated
reflectance in the same manner. For each point on an estimated surface, we found
the nearest point on the true surface and compute the distance and reflectance
differences, and vice versa.

The proposed approach can also be applied to images taken under varying
illumination. Results using images of textureless/textured Lambertian surfaces
are shown in Figs. 2 to 5. Figure 2 shows the ground-truth shape of the “bimba”
image set (18 images) of a textureless object, and the estimation result. The
surface has uniform diffuse reflectance and input images were taken under dif-
ferent illuminations. In this case, the approach works as a multi-view photometric
stereo method and recovers the shape and the diffuse reflectance of each surface
point. Here, black points in the estimated model correspond to points that were
not visible from any camera and/or any light source.

Results for a more complex object are shown in Figs. 3 and 4. The images syn-
thesized using the estimation closely resemble input images while the shading and
the reflectance are successfully separated. Furthermore, it is possible to synthe-
size images under different lighting conditions, even from different viewpoints. The
proposed method also recovers concave parts well as shown in Fig. 5.

We also applied our approach to the images of textureless/textured non-
Lambertian surfaces showing specular reflection. Note that, unlike previous meth-
ods [1,4], we do not use any thresholding to filter out specular highlight pixels. The
result for the smoothed “bimba” data set is shown in Fig. 6. In this case, the surface



698 P. Sturm et al.

(a) input images (b) synthesized images (c) initial shape (d) estimated
shape

Fig. 1. Result for the “dino” image set (16 images) — Lambertian surface case (static
illumination and varying viewpoint)

(a) ground-truth model (b) initial shape

(c) estimated model (d) input image vs. synthesized image

Fig. 2. Result for the “bimba” image set (18 images) — textureless Lambertian
surface case (varying illumination and viewpoint). 95% accuracy (shape, ρdr, ρdg,
ρdb)=(2.16mm, 0.093, 0.093, 0.093), 1.0mm completeness (shape, ρdr, ρdg, ρdb) =
(82.63%, 0.104, 0.104, 0.104).



3D and Appearance Modeling from Images 699

(a) input image (b) ground-truth re-
flectance

(c) ground-truth
shading

(d) inital shape

(e) synthesized im-
age

(f) estimated re-
flectance

(g) estimated shad-
ing

Fig. 3. Result for the “dragon” image set (32 images) — textured Lambertian sur-
face case (static illumination and varying viewpoint). 95% accuracy (shape, ρdr, ρdg,
ρdb)=(1.28mm, 0.090, 0.073, 0.066), 1.0mm completeness (shape, ρdr, ρdg, ρdb) =
(97.11%, 0.064, 0.056, 0.052).

has uniform diffuse/specular reflectance and each image was taken under a differ-
ent illumination. Although there is high-frequency noise in the estimated shape,
the proposed method estimates the specular reflectance well. Note that most pre-
vious methods do not work for image sets taken under varying illumination and,
moreover, they have difficulties to deal with specular reflection even if the images
are taken under static illumination. For example, Fig. 7 shows a result obtained
by the method of [5] and our result for comparison. We ran the original code pro-
vided by the authors many times while changing parameters and used mutual in-
formation (MI) and cross correlation (CCL) as similarity measures to get the best
results under specular reflection. As shown in Fig. 7, the method of [5] fails to get
a good shape even when the shape is very simple, while our method estimates it
accurately. Also, with such images, given the large proportion of over-bright sur-
face parts, it seems intuitive that the strategy chosen by [1] and [4] (who consider
bright pixels as outliers) might return less accurate results, because it removes too
much information.

We also used real image sets of textured glossy objects, which were taken by
using fixed cameras/light sources, while rotating the objects as in [1,4] — in
this case, each image has a different illumination and observes specular reflec-
tions. The light position and color were measured using a white sphere placed
in the scene. Figure 8 shows one image among 59 input images, the initial shape
obtained using silhouettes, and the final result. Here, we simply assumed a single-
material surface (i.e. uniform specular reflectance, but varying albedo). Although
a sparse grid volume was used, the proposed method successfully estimated the
shape of the glossy object even under specular reflection, while estimating the
latter. Here, we can see that, although the estimated specular reflectance may
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(a) ground-truth ren-
dered with a different
lighting and from a new
viewpoint

(b) ground-truth re-
flectance

(c) ground-truth shading

(d) recon-
structed scene re-
lighted as in (a) and
viewed from the same
point of view as (a)

(e) estimated reflectance (f) estimated shading

Fig. 4. Synthesized result for different lighting conditions and viewed from a viewpoint
that is different from all input viewpoints. A comparison with the ground-truth is
possible because this is synthetic data.

(a) ground-truth (b) close-up view (c) close-up view of the
estimated result

Fig. 5. Close-up view of the concave part of the “dragon” model
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(a) ground-
truth model

(b) estimated
shape

(c) diffuse image (d) specular im-
age

(e) synthesized
image

Fig. 6. Result for the smoothed “bimba” image set (36 images) — textureless non-
Lambertian surface case (uniform specular reflectance, varying illumination and view-
point). 95% accuracy (shape, ρdr, ρdg, ρdb, ρs, αs)=(0.33mm, 0.047, 0.040, 0.032, 0.095,
8.248), 1.0mm completeness (shape, ρdr, ρdg, ρdb, ρs, αs) = (100%, 0.048, 0.041, 0.032,
0.095, 8.248).

(a) two input images

(b) results using [5] (MI and CCL) (c) our result

Fig. 7. Result comparison using the smoothed “bimba” image set (16 images) — tex-
tured non-Lambertian surface case (uniform specular reflectance, varying illumination
and viewpoint)
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(a) input image (b) initial shape (c) estimated
shape

(d) diffuse re-
flectance

(e) diffuse image (f) specular im-
age

(g) synthesized
image

Fig. 8. Result for the “saddog” image set (59 images) — textured non-Lambertian
surface case (uniform specular reflectance, varying illumination and viewpoint)

not be highly accurate because of the inaccuracy of lighting calibration, satura-
tion, and unmodeled photometric phenomena such as interreflections that often
occur on glossy surfaces, it really helps to recover the shape well.

Finally, we applied our approach to the most general case — images of tex-
tured non-Lambertian surfaces with spatially varying diffuse and specular re-
flectance and shininess, cf. Fig. 9. Input images were generated under static
illumination (with multiple light sources) while changing the viewpoint. Figure
9 shows one image among 36 input images, one ground-truth diffuse image, one
ground-truth specular image, ground-truth shading, and our results. We can see
that the proposed method yields plausible specular/diffuse images and shape.
However, there is high-frequency noise in the estimated shape. Moreover, the
error in reflectance estimation is rather larger compared to the previous cases
because of sparse specular reflection observation. This result shows that, reliably
estimating specular reflectance for all surface points is still difficult unless there
are enough observation of specular reflections for every surface point.
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(a) input
image

(b) ground-
truth dif-
fuse image

(c) ground-
truth specu-
lar image

(d) ground-
truth shad-
ing

(e) initial
shape

(f) syn-
thesized
image

(g) synthe-
sized diffuse
image

(h) syn-
thesized
specular
image

(i) esti-
mated
shading

Fig. 9. Result for the “amphora” image set (36 images) — textured non-Lambertian
surface case (spatially varying specular reflectance, static illumination, and varying
viewpoint). 95% accuracy (shape, ρdr, ρdg, ρdb, ρs, αs)=(0.59mm, 0.041, 0.047, 0.042,
0.226, 12.69), 1.0mm completeness (shape, ρdr, ρdg, ρdb, ρs, αs) = (89.73%, 0.042,
0.047, 0.042, 0.226, 12.65).

3 Conclusion

In this paper, we have given a coarse overview of our works on multi-view 3D
and appearance modeling. Contrary to previous works that consider specific sce-
narios, our approach can be applied indiscriminately to a number of classical
scenarios — it naturally fuses and exploits several important cues (silhouettes,
stereo, and shading) and allows to deal with most of the classical 3D recon-
struction scenarios such as stereo vision, (multi-view) photometric stereo, and
multi-view shape from shading. In addition, our method can deal with non-
Lambertian surfaces showing strong specular reflection, which is difficult even in
some other state of the art methods using complex similarity measures. Techni-
cal details are given in our previous publications. Also, although the proposed
approach can in principle deal with very general scenarios, especially the case of
estimating specular coefficients remains challenging in practice due to numerical
issues. A discussion of such practical aspects is provided in [9].
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Abstract. This paper presents a new optimal algorithm for locating a set of sen-
sors in 3D able to see the boundaries of a polyhedral environment. Our ap-
proach is iterative and is based on a lower bound on the sensors’ number and on 
a restriction of the original problem requiring each face to be observed in its en-
tirety by at least one sensor. The lower bound allows evaluating the quality of 
the solution obtained at each step, and halting the algorithm if the solution is 
satisfactory. The algorithm asymptotically converges to the optimal solution of 
the unrestricted problem if the faces are subdivided into smaller parts.  

Keywords: 3D sensor positioning, Art Gallery, lower bound. 

1   Introduction 

Sensor planning is an important research area in computer vision. It consists of auto-
matically computing sensor positions or trajectories given a task to perform, the sen-
sor features and a model of the environment. A recent survey [2] refers in particular to 
tasks as reconstruction and inspection. Several other tasks and techniques were con-
sidered in the more seasoned surveys [3] and [4]. 

Sensor panning problems require considering a number of constraints, first of all 
visibility. To this effect, the sensor is usually modeled as a point and referred to as a 
“viewpoint”. A feature of an object is said to be visible from the viewpoint if any seg-
ment joining a point of the feature and the viewpoint does not intersects the environ-
ment or the object itself (usually excluding boundary points). Assuming omni-
directional or rotating sensors, for tasks such as surveillance, the visibility constraint is 
modeled by the classic Art Gallery problem, which requires observing or “covering” the 
interior of a polyhedral environment with a minimum set of sensors. We call this the 
Interior Covering problem (IC). The problem tackled in this paper is similar, but not 
identical. It requires observing only the boundaries of P, faces for a polyhedral envi-
ronment, and it applies for instance in problems like inspection or image based render-
ing. We call this the Face Covering (FC) problem.  

FC and IC problems are NP-hard. However, “good” approximation algorithms are 
sorely needed. In our view, a “good” practical algorithm should not only be computation-
ally feasible, but also provide a set of sensors whose cardinality, on the average, is not far 
from optimum. In this paper, we present a new FC sensor positioning technique. The  
algorithm is incremental and converges toward the optimal solution. A key feature of the 
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algorithm is that it computes a lower bound, specific of the polyhedral environment consid-
ered, for the minimum number of sensors. It allows evaluating the quality of the solution 
obtained at each step, and halting the algorithm if the solution is satisfactory. The algorithm 
refines a starting approximate solution provided by an integer face covering algorithm, 
(IFC) where each face must be observed entirely by at least one sensor. A set of rules, 
aimed to reduce the computation, is provided for refining locally the current solution. 

Compared to the large amount of literature on the 2D case, relatively few articles 
on 3D sensor positioning have been published. Furthermore, to our knowledge, cur-
rently no method for automatic sensor planning in a 3D polyhedral environment, 
providing an evaluation of the coverage and information for improving it towards the 
optimum has been presented. Tarabanis presents in [6] an algorithm for computing the 
locus of viewpoints from which faces of polyhedral objects are seen in their entirety. 
These can be used solve the FC problems, but no indication where to locate a minimal 
number of sensor for seeing all the features of the object is provided. Rana [7]  
presents a 2D approach that can be applied to 3D as well, where two heuristics are 
presented for solving the boundary coverage problem. Again, non indication on opti-
mality of the solution is given. In [5] a graph representation is used to group faces that 
satisfy all constraints simultaneously and hence are suitable for viewing from a com-
mon viewpoint. The set covering problem is solved with a greedy algorithm. The only 
attempt to define a quality measure for the covering is given in [8], where such meas-
ure is used to compute the minimal number of 3D sensor able to cover a polyhedral 
environment. However, sensor position is restricted to lie on the tessellated bounda-
ries of a reduced area, the walking zone. To avoid the case of faces of the environ-
ment not covered entirely by one sensor, all "big faces" are initially split into smaller 
ones. However, no indications are given to when a face must be subdivided and no 
certainty of the fact that all sub-faces are visible from the same sensor can be given. 

2   Outline of the Algorithm 

The algorithm aims at finding an optimal boundary cover of an environment P that is 
assumed to consist of polyhedra (with or without holes). Both internal and external 
coverage of the environment are managed. We stress that our work is focused on the 
optimality of the solutions provided by the algorithm. The approach is incremental, and 
it starts from an initial solution which is refined step by step. The initial step is given by 
a useful reduction of the covering problem, the Integer Face Covering (IFC), where each 
face must be covered in its entirety by at least one sensor. This (restricted) problem has 
an optimal solution, provided by the Integer Face Covering Algorithm (IFCA). In order 
to develop an effective incremental algorithm, it is also necessary to have a technique 
for evaluating at each step the quality of the current approximate solution, and an algo-
rithm able to refine locally the solution, in order to reduce the computational burden and 
leading towards the optimum. A key component for the first step is the evaluation of a 
lower bound LB(P) on the number of sensors that is specific to the polyhedron P con-
sidered. Its value can be compared with the current solution and, if the result is not satis-
factory, this can be refined by dividing some of the faces of P into smaller areas and 
applying again IFCA. For this task, the INDIVA3D algorithm allows finding the faces of 
P that must not be split (that is, the “indivisible” faces) since they are entirely observed 
by at least one guard of all optimal solutions. 
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The outline of the incremental algorithm is as follows: 
• Step 1. Compute a lower bound LB(P), specific to the polyhedron P, for the car-

dinality of the minimum set of guards using the algorithm LBA3D.  
• Step 2. Compute an integer face cover of cardinality IFCC using the algorithm 

IFCA. 
• Step 3. Compare LB(P) and IFCC. If they are equal, or the relative maximum er-

ror (IFCC-LB(P))/LB(P) is less than a predefined threshold, STOP. Otherwise:  
• Step 4. Apply algorithm INDIVA3D for finding indivisible faces. If all faces are 

indivisible, STOP, since IFC is optimal. Otherwise, split the remaining faces and 
compute a new lower bound. 

• Compare the new lower bound and the current IFCC. If they are equal, STOP. 
Otherwise go to Step 2. 

For a practical implementation, the algorithm can be halted if several consecutive 
steps have not changed the cardinality of the current solution. Clearly, the algorithm 
converges toward an optimal solution in an undefined number of steps. In the follow-
ing paragraphs, we will detail the basic components of the algorithm. 

2.1   Integer Face Covering Algorithm (IFCA) 

Integer face covering (IFC) requires each face to be entirely covered by at least one 
guard. First, let us observe one fact. Let the Integer Visibility Region I(f) of a face f be 
the region of the viewing space whose points see entirely f. An IFC cover requires a 
sensor to be placed in the I(f) of every face of P. However, while a non empty I(f) 
exists for every convex face, this is not true in the case of concave faces. This can be 
seen from the example in Fig. 1(a), where, considering internal covering of P, I(f1) 
and I(f2) are empty. Therefore, in order to guarantee the IFC problem has a solution, 
we require that any concave face is initially split into convex parts, as in Fig. 1 (b). 

Given this initial constraint, a simple example showing the difference between FC 
and IFC is shown in Fig. 2, where three sensors are necessary for the integer covering 
of the faces of polyhedron P (a), while only two FC sensors are necessary (b). 

Regarding complexity, a detailed analysis is omitted for the sake of conciseness, 
but is similar to the one presented in [1]. The relevant point is that IFC is NP-
complete and finite algorithms are possible [9]. An algorithm of this kind, working for 
any polyhedral environment (external coverage of multiple polygons, internal cover-
age of polygons with or without holes) is described and implemented in [9]. Here we 
will present only the main lines of this algorithm, which are necessary for fully under-
standing its incremental extension. The steps of the IFC algorithm are the following: 

IFCA  
Step 1. Compute a partition Π of the viewing space into regions Zi such that: 
• The same set Fi=(fp, fq,…, ft) of faces is entirely visible from each point of Zi, ∀i 
• The regions Zi are maximal regions, that is Fi ⊄ Fj where Zj is any region bor-

dering Zi 
Step 2. Select the dominant regions and the essential regions. A region Zi is domi-

nant if there is no other region Zj such that Fi ⊂ Fj. An essential zone is a domi-
nant zone that covers a face not covered by any other dominant zone. 

Step 3. Select an optimal (or minimal) solution. A minimal solution consists of a 
set containing all the essential and some dominant regions Sj = (Zj1, Zj2,..., Zjk) 
such that it covers all faces with the minimum number of members. 
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Fig. 1. In the case of internal covering, I(f1) 
and I(f2) are empty (a); a convex decomposi-
tion of the two faces (b) 

Fig. 2. Three IFC sensors are required (a) while 
only two FC sensors are necessary (b) 

 

Fig. 3. An example of aspect of point g (a). The projection of the four occluding features 
(edges) of P on f (b). 

The main difference of the current approach with the algorithm in [9] is how Π is 
built. Here a two phase process is necessary. In the first phase, a more detailed parti-
tion Π’, whose regions are also used by LBA3D and INDIVA3D, is constructed. In the 
second phase, Π’ is refined to obtain Π. 

Before defining Π’, let us define the aspect A(g) of a point g:  
A(g) = ( (fh, nh), (fk, nk), … (fq, nq))  

where fh,  fk, … fq are the faces fully or partially visible from g, and nh, nk, … nq are 
the number of occlusions for each face. The number of occlusions is, briefly, the 
number of edges of P that are entirely or partially projected on f from g. The aspect 
defines if a face f is partially visible (nf ≠0), totally visible (nf =0) or not visible (f not 
in the aspect) from g. The word aspect has been used in agreement with the literature 
on aspect graphs. The interested reader is referred to the survey paper [10]. An exam-
ple of aspect is shown in Fig. 3.  

Partition Π’ is defined as the partition that divides the interior/exterior of P into re-
gions Z’i such that 

• All points of Z’i have the same aspect Ai  
• Z’i are maximum regions, i.e., Ai ≠ Aj for contiguous regions. 

The construction of Π’can be performed using a set of active patches, belonging to 
active surfaces. The active patches are the boundaries between points whose aspects 
are different. The active patches are a subset of four kinds of active surfaces related to 
a face f of P: 

• Type I: the plane supporting f 
• Type II: surfaces originating from a vertex of f and tangent to an edge of P (VE 

surfaces), or from an edge of f and tangent to a vertex of P (EV surfaces) 
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• Type III: EEE surfaces (ruled surfaces), tangent to an edge e of f and two other 
edges of P, or tangent to three edges of P and intersecting f 

• Type IV: planar surfaces tangent to two parallel edges of P and intersecting f 
According to the geometry of these surfaces, to each active surface can be associated 
one or more active patches, and to each patch a particular visual event.  A visual event 
is a rule for changing the aspect of an imaginary viewpoint crossing the active patch, 
and it is synthesized by a 3D cross operator having a positive and a negative direc-
tion. The positive visual event is the change of aspect of a point crossing the active 
patch along the positive direction; a similar definition holds for the negative visual 
event. Therefore, after constructing the partition Π’ using the active patches, the as-
pect of each region can be constructed with a visiting algorithm, starting from a re-
gion whose aspect has been computed. The complete catalogue of active surfaces and 
active patches is shown in Fig. 4. The changes in the aspect due to the different 3D 
cross operators are listed in Table 1. A further analysis of the active patches might be 
necessary since, crossing an active patch T, f can be partially or totally hidden by 
other parts of the polyhedron P not related to the feature originating T. A detailed 
analysis of the different cases will not be performed here, for the sake of brevity.  

 
Fig. 4. The catalogue of active surfaces related to a face f. a) type I and type II surfaces. b) and 
c) type III. d) type IV. For each surface, the active patches are highlighted, together with their 
associated cross operator. 

Table 1. Cross operators and corresponding positive and negative visual events 

3D Cross Operator Positive visual event Negative visual event 
ADD0(fi)  Add (fi,0) to aspect Delete (fi, 0) from aspect 
DEC1(fi)  ni = ni - 1 ni = ni + 1 

ADDINCk(fi) k=[1,2] if(fi in aspect)  ni = ni + k 
else  Add (fi, k) 

if(ni == k)  Delete (fi, k) 
else  ni = ni - k 

2.2   Lower Bound Algorithm (LBA3D) 

LBA3D computes a lower bound of the number of sensors, specific to P, for the unre-
stricted sensor positioning problem. Both LBA3D and INDIVA3D algorithms make use 
of the concept of weak and integer visibility regions of a face. They can be defined as 
follows: 
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• the Weak visibility region W(fi) of a face fi is the 3D region whose points see at 
least a point of fi; points seeing only boundaries of fi do not belong to W(fi) 

• the Integer visibility region I(fi) is the 3D region whose points see entirely fi 
An example of weak and integer visibility regions for a face f of a simple polyhedron 
can be seen in Fig. 5. 

 

Fig. 5. Integer and weak visibility regions of face f 

Both regions can be easily obtained as a byproduct of IFCA. In fact, given the as-
pect of each region of Π’, W(fi) and I(fi) are simply obtained by merging the regions 
whose aspect contains fi, in the former case, or where the number of occlusions of fi is 
zero, in the latter case. If there are p zones in the partition Π, and n faces in P, com-
puting the visibility regions for all faces is O(pn). 

Weak visibility regions allow us to determine a lower bound for the number of sen-
sors needed. It is easy to see that: 

Statement 1: The cardinality of the maximal subset of disjoint (not intersecting) weak 
visibility regions W(fi) of P is a lower bound LB(P) for the minimal number of sensors 

In fact, since each weak visibility region must contain at least one sensor, no ar-
rangement of face covering sensors can have fewer sensors than LB(P).  

Computing the lower bound requires solving the maximum independent set prob-
lem for a graph G where each node represents the weak visibility region of a face of P 
and each face of G connects nodes corresponding to intersecting visibility regions. 
The problem is equivalent to the maximum clique problem for the complement graph 
G’ (the graph obtained by joining those pairs of vertices that are not adjacent in G). It 
is well known that these are again NP-complete problems, but exact branch-and-
bound algorithms for these problems have been presented and extensively tested 
([11], [12], [13]), showing more than acceptable performances for graphs with  
hundreds of nodes. Then, computing LB(P) is computationally feasible for practical 
cases. 

2.3   INDIVisible Faces Algorithm (INDIVA3D) 

If optimal sets of sensors exist such that a face is entirely observed by at least one sensor 
of each set, then, in order to approach these optimal solutions, that face does not need to 
be split. Such a face is called indivisible. The rules for finding the indivisible faces of P 
are as follows: 

Rule1. If W(fi) = I(fi),  fi is indivisible. 
Rule2. If W(fi) ⊆ I(fj),  fj is indivisible. 
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Fig. 6. In this case, the optimum FC and IFC covers are equal 

Both rules follow from the fact that, for any solution, at least one sensor of any minimal 
set must be located in each weak visibility region. If the weak region is equal to the inte-
ger region of the face, rule 1, then for any solution the sensor placed in the weak region 
observes the face in its entirety. If the weak region is included in the integer region of 
another face, rule 2, then the sensor placed in the weak region observes the second region 
in its entirety. It follows that for every solution (and in particular for every optimal solu-
tion) these faces are observed in their entirety by at least one sensor and, therefore, they 
do not need to be divided. 

A simple example will show how to apply these rules, and that they are powerful tools 
for simplifying the problem. Let us consider the polyhedron shown in Fig. 6(a) with the 
subdivision of its concave faces. The integer and weak visibility regions of face f1 are 
coincident, and therefore for rule 1 the face is indivisible. The integer visibility region of f2 
is equal to the weak visibility region of f1, and therefore is indivisible for rule 2. It can be 
easily seen that all the faces of P are indivisible, and then the unrestricted minimal set of 
guards is that provided by IFCA. The same result could have been obtained by computing 
the IFC solution, whose cardinality is equal to the lower bound LB(P). 

Divisible faces must be partitioned, for instance, by splitting in two all the edges of 
the face, and connecting the central point of each edge with the face center.  

2.4   Examples 

A first example of how the algorithm works can be seen in Fig. 7. In (a) the polyhe-
dron P is shown. LB(P) is 2, and in (b) the two not-intersecting weak polygons of 
faces f1 and f2 are shown, together with the initial solution of IFCA, whose cardinality 
is three. Applying rules 1-2, face f3 is found to be the only divisible face and (c) 
shows its decomposition. Applying again IFCA, we obtain a solution with only two 
sensors (d), whose cardinality is equal to LB(P) and therefore is optimal. 

 

Fig. 7. Polyhedron P (a), W(f1) and W(f2), determining LB(P) = 2, and the initial IFC covering 
of cardinality three (b), subdivision of  f3 (c), the solution of the second iteration of IFCA and 
the regions where sensors can be located (d) 
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Fig. 8. Dividing faces of the initial polyhedron in (a) the lower bound can increase (b) 

 
Observe that the lower bound is evaluated at every iteration. In fact, it might in-

crease, and then improve, after splitting some faces of the polygon. An example can 
be seen in Fig. 8. In (a) the comb polyhedron is shown, together with the initial lower 
bound, whose value is 2, the non-intersecting weak regions of faces f1 and f2, and an 
initial IFCA solution, whose cardinality is three. Face f3 is found to be divisible, and 
is split. Now, consider face f3a drawn in bold in (b). Its weak polygon, also shown in 
the picture, does not intersect W(f1) and W(f2) and the value of the lower bound in-
creases to three. The new lower bound is equal to the cardinality of the previous IFCA 
solution that is, therefore, optimal. 

3   Conclusions 

This paper presents an incremental algorithm for positioning sensors in a 3D envi-
ronment that are capable of seeing in their entirety the external or internal boundaries 
of a polyhedral environment. The approach is iterative and it is based on a lower 
bound on the number of sensor that allows to evaluate the closeness to optimality of 
the solution and to define rules for trying to improve the current solution. This is, in 
our knowledge, the first work in literature that attempts to tackle this problem in 3D. 
Future work will be focused on the full implementation of the algorithm, which is a 
rather complex task, especially for the generation and intersection of the active 
patches, and to extend it to take into account several additional constraints besides the 
visibility one. 
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Abstract. In this paper we introduce a new measure for 3D shapes:
cubeness. The new measure ranges over (0, 1] and reaches 1 only when
the given shapes is a cube. The new measure is invariant with respect to
rotation, translation and scaling, and is also robust with respect to noise.

Keywords: 3D shape, compactness measure, image processing.

1 Introduction

Shape descriptors are a powerful tool for shape classification tasks in 2D and
3D. Many shape descriptors are already studied in the literature and used in
practice. Some of the best known ones in 2D are: elongation([10]), convexity([5]),
rectangularity([6]), rectilinearity([13]), sigmoidality([7]), circularity([12]), etc.
There are also some 3D shape descriptors like: compactness([1,2]), geometric
moments ([4]), Fourier Transforms ([11]), etc.

In this paper we define a new 3D shape descriptor which measures the sim-
ilarity of an object and a cube. We call this new measure “cubeness”. Notice
that the 3D measure Cd(S), presented in [2], is similar in some respect to the
measure introduced here: it is maximised by a cube – i.e. Cd(S) picks up the
highest possible value (which is 1) if and only if the measured shape is cube.
Such measure is defined as follows:

Cd(S) =
n(S)− A(S)/6
n− ( 3

√
n(S))2

(1)

where A(S) is the area of the enclosing surface, i.e. the sum of the area of the
voxels faces which form the surface of the shape, and n(S) is the number of
voxels in the shape.

Measure Cd(S) is a measure of discrete compactness of rigid solids composed
of a finite number of polyhedrons. When these polyhedrons are voxels, the most
compact shape according to Cd(S) is a cube and thus it was select as a comparable
measure to the measure introduced in this paper.

One possible application of the new cubeness measure introduced in this paper
can be as an additional feature for 3D search engines like the one presented in
[3]. Their search engine uses spherical harmonics to compute similarity measures
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used for the search. The cubeness measure presented in this paper could be used
as an additional similarity measure for such a search engine. Some experiments
on this point will be performed in the future.

This paper is organised as follows. The next section introduces the new cube-
ness measure and highlights several of its desirable properties. Section 3 gives
several examples which demonstrate the behaviour of the new measure. Section 4
contains some comments and conclusions.

2 Cubeness Measure

In this section we define the new cubeness measure. Throughout this paper we
will assume that all appearing shapes have non-empty interior, i.e. they have
a strictly positive volume. We will also assume that two shapes S1 and S2 to
be equal if the symmetric set difference (S1 \ S2) ∪ (S2 \ S1) has volume zero.
Such assumptions are necessary to keep the proofs mathematically rigorous, but
they are not of practical importance – e.g. under these assumptions the open
ball {(x, y, z) | x2 + y2 + z2 < 1} and closed one {(x, y, z) | x2 + y2 + z2 ≤ 1}
are the same shape which is totally acceptable from the view point of image
processing and computer vision applications, even that they differ for a spherical
surface {(x, y, z) | x2 + y2 + z2 = 1} (having the volume equal to zero). Also any
appearing shape will be considered that its centroid coincides with the origin
even if not explicitly stated. S(α, β) will denote the shape S rotated along the
X axis by an angle α and, along the Y axis by an angle β. We will use the
l∞-distance in our derivation; just a short remainder that l∞-distance between
points A = (a1, a2, a3) and B = (b1, b2, b3) is defined as:

l∞(A,B) = max{|a1 − b1|, |a2 − b2|, |a3 − b3|}. (2)

Trivially, the set of all points X = (x, y, z) whose l∞-distance from the origin
O = (0, 0, 0) is not bigger than r is a cube. Such a cube will be denoted by Q(r) :

Q(r) = {X = (x, y, z) | l∞(X,O) ≤ r} = {(x, y, z) | max{|x|, |y|, |z|} ≤ r}. (3)

To define the new cubeness measure, we start with the quantity:

min
α,β∈[0,2π]

∫∫∫

S(α,β)

max{|x|, |y|, |z|}dxdydz (4)

and show that such a quantity reaches its minimum value if and only if the shape
S is a cube. By exploiting this nice property we will come to a new cubeness
measure. First we prove the following theorem:

Theorem 1. Let S be a given shape whose centroid coincides with the origin,
and let S(α, β) denote the shape S rotated along the X axis by an angle α and
along the Y axis by an angle β. Then,
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∫∫∫
S

max{|x|, |y|, |z|}dxdydz

V olume(S)4/3 ≥ 3
8

(5)

∫∫∫
S

max{|x|, |y|, |z|}dxdydz

V olume(S)4/3 =
3
8

⇐⇒ S = Q
(
V olume(S)1/3

2

)
(6)

min
α,β∈[0,2π]

∫∫∫
S(α,β)

max{|x|, |y|, |z|}dxdydz

V olume(S)4/3 =
3
8

⇐⇒ S is a cube. (7)

Proof. Let S be a shape as in the statement of the theorem. Also, letQ, for short,
denote the cube Q(V olume(S)1/3

2 ), i.e. the cube is aligned with the coordinate axes
and the faces intersect the axes at points: (a/2, 0, 0), (−a/2, 0, 0), (0, a/2, 0),
(0,−a/2, 0), (0, 0, a/2) and (0, 0,−a/2) and a = V olume(S)1/3 (see Fig.1(a)).
Trivially, the volumes of S and Q are the same, and also:
(i) The volume of the set differences S \Q and Q\S are the same, because the

volumes of S and Q are the same;
(ii) The points from Q \ S are closer (with respect to l∞-distance) to the origin

than the points from S \Q. More formally: if (u, v, w) ∈ S \Q and (p, q, r) ∈
Q \ S, then max{|u|, |v|, |w|} > max{|p|, |q|, |r|} (see. Fig. 1 (b) and (c)).

(a) Q and S (b) Q \ S (c) S \ Q
Fig. 1. Shapes S and Q = Q

(
V olume(S)1/3/2

)
. Both shapes have the same volume.

Points in Q \ S are closer to the origin (using l∞-distance) than those in S \ Q.

Further (i) and (ii) give:∫∫∫

S\Q

max{|x|, |y|, |z|}dxdydz ≥
∫∫∫

Q\S

max{|x|, |y|, |z|}dxdydz. (8)

Now, we derive:∫∫∫

S

max{|x|, |y|, |z|}dxdydz = 8
∫∫∫

(x,y,z)∈S
x,y,z≥0

max{x, y, z}dxdydz

= 48
∫∫∫

(x,y,z)∈S
x≥y≥z≥0

xdxdydz = 48

a/2∫

0

x∫

0

y∫

0

xdxdydz =
3
8
· a4,

which proves (5) since a = V olume(S)1/3.
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The proof of (6) comes from the fact that equality (8) holds only when the
shapes S and Q are the same, i.e. when V olume(S \ Q) = V olume(Q \ S) = 0.

To prove (7) let α0 and β0 be the angles which minimise∫∫∫
S

max{|x|, |y|, |z|}dxdydz:

∫∫∫

S(α0,β0)

max{|x|, |y|, |z|}dxdydz = min
α,β∈[0,2π]

∫∫∫

S(α,β)

max{|x|, |y|, |z|}. (9)

Since V olume(S) = V olume(S(α, β)) = V olume(S(α0, β0)), then (see (6))
∫∫∫

S(α0,β0)
max{|x|, |y|, |z|}dxdydz

V olume(S(α0, β0))4/3 =
3
8

would imply that S(α0, β0) must be equal to Q – i.e., S must be a cube. �
Theorem 1 tells us that

∫∫∫
S(α,β)

max{|x|, |y|, |z|}dxdydz reaches its minimum value

of 3/8 only when S is a cube. Based on this, we give the following definition for
the cubeness measure.

Definition 1. The cubeness measure C(S) of a given shape S is defined as

C(S) =
3
8
· V olume(S)4/3

min
α,β∈[0,2π]

∫∫∫
S(α,β)

max{|x|, |y|, |z|}dxdydz . (10)

The following theorem summarizes the desirable properties of C(S).

Theorem 2. The cubeness measure C(S) has the following properties:

(a) C(S) ∈ (0, 1], for all 3D shapes S with non-empty interior;
(b) C(S) = 1 ⇐⇒ S is a cube;
(c) C(S) is invariant with respect to similarity transformations;

Proof. Items (a) and (b) follow directly from Theorem 1.
Item (c) follows from the fact that both min

α,β∈[0,2π]

∫∫∫
S(α,β)

max{|x|, |y|, |z|}dxdydz

and volume of S are rotation invariant, which makes C(S) rotation invariant.
C(S) is translation invariant by definition, since it is assumed that the centroid
of S coincides with the origin. Finally if S is scaled by a factor of r then easily

min
α,β∈[0,2π]

∫∫∫

r·S(α,β)

max{|x|, |y|, |z|}dxdydz

= r4 · min
α,β∈[0,2π]

∫∫∫

S(α,β)

max{|x|, |y|, |z|}dxdydz
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and
V olume(r · S) = r3 · V olume(S)

and, consequently,

C(r · S) =
3
8
· V olume(r · S)4/3

min
α∈[0,2π],β∈[0,2π]

∫∫∫
r·S(α,β)

max{|x|, |y|, |z|}dxdydz

=
3
8
· (r3 · V olume(S))4/3

r4 · min
α∈[0,2π],β∈[0,2π]

∫∫∫
S(α,β)

max{|x|, |y|, |z|}dxdydz = C(S)

which means that C(S) is scale invariant. �
The cubeness measure C(S) is very similar in spirit to the compactness measure
presented in [14]:

K(S) =
35/3

5(4π)2/3 ·
µ0,0,0(S)5/3

µ2,0,0(S) + µ0,2,0(S) + µ0,0,2(S)
.

however they differ in the distance measure used: K(S) uses euclidean distance
while C(S) uses l∞-distance. Therefore C(S) is indeed a form of compactness
maximized by a cube. Cd(S) is also a compactness measure maximized by a
cube, while a sphere is the most compact shape according to K(S).

3 Experiments Illustrating C(S) Measure

In this section we give several examples in order to illustrate the behaviour of
C(S). Figure 2 shows several geometric shapes ranked according to C(S) measure.
C(S) is given under each figure. The values in brackets corresponds to Cd(S).
Notice that Cd(S) measure also reaches it maximum value 1 for the cube. It is
in accordance with our expectation that shapes which are more “spread out”,
like (e), have lower C(S) measure. Another fact which is worth pointing out
is that the values obtained by C(S), for the shapes displayed, are in a wider
range [0.340 − 1.000] than values computed by Cd(S) which are in the range

(a) 1.000
(1.000)

(b) 0.970
(0.995)

(c) 0.812
(0.734)

(d) 0.795
(0.754)

(e) 0.340
(0.785)

Fig. 2. Different geometric shapes ordered according to their cubeness C(S). The values
Cd(S) are in brackets.
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[0.734− 1.000]. This indicates that C(S) assigns a more distinctive values than
SCd(S) measure, making their separation capacity bigger.

Figure 3 shows some examples of 3D shapes of different kinds of objects,
ordered according to their C(S) measure1. Results are in accordance with our
perception. E.g. shapes (f) and (g) are ranked very closely. This is understand-
able since they share some of the same features: elongated body with thin wings
spread out perpendicular to the main body; therefore it would be expected that
they are considered to have similar shapes; for the purpose of an image classifi-
cation task, these two shapes would be very likely grouped together, which could
be expected.

Figures (a), (b) and (c) are all human shapes in different positions and their
measured cubeness of (b) and (c)are close to each other, however and gets a
higher score because of the position of legs and arms.

Shape (h) gets a very low C(S) measure, due to the fact that, having a long
tail and neck, the dinosaur haves a very elongated shape, which greatly differs
from a cube. Compare it with the horse in (d): the horse has a much shorter
neck and tail, therefore we would expect the horse to have a higher cubeness
than the dinosaur, as it is the case. However the horse still has a long neck, and
long and thin legs, which make his cubeness measure relatively low.

The cubeness measure C(S) provides some classification power which may be
combined with other shape descriptors in order to correctly classify shapes. How-
ever cubeness values are not unique for any shape (with the exception of a perfect
cube which will always have C(S) = 1); similar shapes will produce similar values,
but other non-similar shapes could also produce similar values. Thus it is possi-
ble, for example, to have shapes with C(S) scores similar to (b) but which does
not look like (b). This is unavoidable and is also the reason why different shape
descriptors must be combined with to achieve better classification power.

(a) 0.693 (b) 0.631 (c) 0.614 (d) 0.176

(e) 0.167 (f) 0.137 (g) 0.132 (h) 0.099

Fig. 3. Different shapes ordered according to their cubeness C(S)

1 Some of the shapes are taken from the McGill database:
http://www.cim.mcgill.ca/ shape/benchMark/
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Figure 4 shows a cube with different levels of erosion. Values of C(S) decrease
as more and more pieces of the shape are removed. As the level of erosion in-
creases and the shape looks less like a cube, the produced C(S) values drop.
Small levels of erosion do not affect too much the produced values. Such a be-
haviour with respect to the erosion could also suggest the robustness of C(S)
with respect to noise. Such a robustness is expected because C(S) is “volume
based” measure – i.e. takes into account all points inside a shape.

(a) 0.969 (b) 0.853 (c) 0.717 (d) 0.557

Fig. 4. Measured cubeness C(S) of a cube with different levels of erosion

Figure 5 illustrates some advantages that the new measure C(S) has over
Cd(S). Each image displayed is composed of the same number of voxels (512)
but the voxels are in different mutual positions in each image. As it can be
seen Cd(S) decreases more rapidly, as the total surface area of all appearing
components increase. This is in accordance with (1). It is easy to conclude (see
(1)) that Cd(S) does not depend on the mutual position of such components,
but just of their surfaces. On the other side, the new measure C(S) takes into
account the mutual positions (see Definition 1 and 10). This is an advantage.
Indeed, Cd(S) = 0 holds for all shapes S where all voxels are separated, regardless
of the mutual distances between them. On the other hand, C(S) would produce
different non-zero values which vary depending on the mutual voxel positions.

(a) 1.000
(1.000)

(b) 0.884
(0.715)

(c) 0.800
(0.526)

(d) 0.722
(0.387)

(e) 0.606
(0.234)

(f) 0.552
(0.199)

(g) 0.473
(0.113)

(h) 0.436
(0.084)

(i) 0.319
(0.036)

(j) 0.205
(0.007)

Fig. 5. Same number of voxels spread over different volumes. The measured C(S) are
immediately below the shapes while Cb(S) values are in brackets.
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4 Conclusion

In this paper we introduce a 3D shape measure, cubeness, C(S) defined as:

C(S) =
3
8
· V olume(S)4/3

min
α,β∈[0,2π]

∫∫∫
S(α,β)

max{|x|, |y|, |z|}dxdydz

The new measure has several desirable properties: it ranges over (0, 1]; it gives
measured cubeness of 1 if and only if the given shape is a cube; and it is invariant
with respect to translation, rotation and scaling. Several experiments are given
to illustrate the behaviour of the new measure. The experimental results are in
accordance with theoretical considerations and with our perception. The measure
works in both the discrete and continuous space, contrary to Cd(S) (from [2])
which is only applicable to voxelized data.
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12. Žunić, J., Hirota, K.: Measuring shape circularity. In: Ruiz-Shulcloper, J.,
Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 94–101. Springer, Hei-
delberg (2008)
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Abstract. In this work the direct self-calibration of a camera from three
views of a unknown planar structure is proposed. Three views of a plane
are sufficient to determine the plane structure, the view’s positions and
orientations and the camera’s focal length. This is a non-linear optimiza-
tion problem that is solved using the heuristic Differential Evolution.
Once an initial structure is obtained, the bundle adjustment can be used
to incorporate more views and estimate other camera intrinsic param-
eters and possible lens distortion. This new self-calibration method is
tested with real data.

Keywords: Computer Vision, camera self-calibration, self-calibration
from planes, differential evolution.

1 Introduction

Self-calibration is defined in [1, Chap. 19] as “the computation of metric proper-
ties of the cameras and/or the scene from a set of uncalibrated images”. Camera
(self-)calibration is one of the most important problems in computer vision. Its
purpose is to obtain through a camera, an estimation of the parameters to trans-
form a point in the real world to a point in an image. Self-calibration avoids the
tedious process of calibrating cameras using special calibration objects. Using
self-calibration, a camera can be calibrated on-line, i.e. every time a zoom is
made. Therefore, a self-calibration technique must be used if camera’s zoom is
changed or auto-focus is active.

In the self-calibration process is assumed only image features correspondences
to be known, and also it is possible to obtain a three-dimensional reconstruction
up to an unknown similarity transformation (also called Euclidean reconstruc-
tion), but it is necessary to have some additional information about either the
cameras’ intrinsic parameters, the extrinsic parameters or the viewed object in
order to obtain the desired Euclidean reconstruction [2,3].

Calibration using planes is a very flexible task, because it is very easy to
produce high quality planar patterns (like a chessboard) easily made and printed
in a laser printer. For this purpose, the Zhang [4] or Sturm [5] techniques can be
used. For self-calibration with planes, no information about the planar pattern
is needed, and a technique using metric rectification is available [6], but this

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 724–731, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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technique needs at least four images to work. Other technique, with a different
approach but also solving a global optimization task, is presented in [7].

In this paper, a novel form to solve the plane based self-calibration problem,
using the heuristic Differential Evolution (DE) [8] is proposed. This new method
obtains an initial plane reconstructed from three different images of that plane.
DE is used to estimate the focal length and the three orientation angles and the
three camera positions of each view. This is a non-linear optimization problem
that is solved with DE by minimizing the reprojection error. To add more images
and to correct possible camera’s lens distortion, the standard bundle adjustment
can be used.

The paper is organized as follows: in Sec. 2 the problem of self-calibration from
planes is established. In Sec. 3 DE is briefly described. In Sec. 4 the experiment
and results are shown. A briefly discussion is in Sec. 5. And finally, conclusions
of this work are drawn in Sec. 6.

2 Self-calibration from Three Planes

Camera model: A point over an image is represented by p = [u, v, 1], a three-
dimensional point is represented by a vector P = [x, y, z, 1]. The relation between
the two points is the so called pinhole camera model which is:

λp = K[R|t]P, (1)

where λ is a scale factor, K a 3× 3 matrix of the camera’s intrinsic parameters,
R a 3× 3 rotation matrix and t a vector [t1, t2, t3]T. A rotation matrix depends
on only three parameters: three rotations around the main axes. The pinhole
camera model in (1) represents the projection transformation of a 3D scene, by
K, of a view obtained by rotating and translating the scene with respect to the
world coordinates.

In the case of planes, a three-dimensional point can be also represented by the
vector P = [x, y, 1], where the coordinate z is made equal to zero (without lost
of generality, the plane is supposed to be on the xy-plane). Thus, the relation
between the two points is:

λp = K[r1, r2, t]P, (2)

where r1 and r2 are the first two columns of matrix R in (1). In this work, K is
defined as:

K =

⎡
⎣
f 0 u0
0 f v0
0 0 1

⎤
⎦ , (3)

where f is the camera’s focal length and (u0, v0) are the principal point coordi-
nates. The principal point is the intersection point of the camera’s optical axis
with the image plane. The camera model in (3) assumes that pixels are squares
and their xy axes are perpendicular, a supposition that can be made in modern
cameras.
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2.1 The Proposed Method

As input, three different views of a unknown planar pattern are needed. It is
supposed that from these three images, points of correspondences have been
extracted (by a method that is not part of this discussion); these points mark
the position of a same characteristic (for example, corner points) viewed on the
three images.

Suppose also that we have one estimation of the focal length, f̂ , the principal
point, (û0, v̂0), and the orientation, (θ̂i

1, θ̂
i
2, θ̂

i
3), and position, (t̂i1, t̂

i
2, t̂

i
3), for each

of the three views, i = 1, 2, 3. Then, it is possible to calculate a model plane, this
is, a set of points P̂j using (2), where j is equal to the number of correspondence
points on the three initial images. From (2), points P̂j = [x̂j , ŷj , 1]T can be
calculated by removing the scale factor λ, thus for a point (u, v) over one image,
two equations as the following can be formed:

(um31 −m11)x+ (um32 −m12)y = m13 − um33

(vm31 −m21)x + (vm32 −m22)y = m23 − vm33

where mij are the elements of matrix M = K[r1, r2, t] (see Eq. (2)). Therefore,
six equations can be formed, and this overdetermined system is solved using
normal equations.

Here an important point: in calibration methods as [5,4] the plane model is
given, in the self-calibration method the plane model is assumed to be unknown.
Calibration methods are based on homographies and the self-calibration in [6]
is based on inter-image homographies. An homography is the transformation
mapping between two plains and it is represented by a 3×3 matrix. Homography
is invariance to the scale and therefore it has only eight degrees of freedom. The
proposed method here does not use homographies, therefore to impose scale
invariance, the reconstructed plane is centered at its centroid and normalized
arbitrarily to 0.01σ, where σ is the RMS standard deviation of all x and y
values of the reconstructed model plane points.

Once the model plane is obtained and normalized, the reprojection error can
be calculated as:

3∑
i=1

n∑
j=1

‖pij − p̂ij(f̂ , û0, v̂0, θ̂
j
1, θ̂

j
2, θ̂

j
3, t̂

j
1, t̂

j
2, t̂

j
3, P̂j)‖2 (4)

where pij is the given point j, 1 ≤ j ≤ n, on image i, 1 ≤ i ≤ 3, and p̂i is the
estimated point obtained from (2).

The described problem is solved with the evolutionary algorithm called Dif-
ferential Evolution (DE). As an evolutionary algorithm, DE works with a popu-
lation, or a set of individuals; this population evolve by mutating and selecting
the best individuals, and the process stops after a given number of iterations
or when other stop condition is reached. Each individual codes a possible solu-
tion for the problem, in this problem an individual is a vector of real values of
size 18, which store the parameters to estimate: f , (θi

1, θ
i
2, θ

i
3) and (ti1, t

i
2, t

i
3), for
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i = 1, 2, 3. The principal point (v0, u0), can not be estimated from three images,
therefore it is fixed in the image center coordinates.

To fix the orientation of the reconstructed plane, all three image orientations
are respect to θ1

1 = 0, thus this parameter is not part of an individual.
From two projections of a plane, a common rotation axis exists. The dihedral

angle can be fixed if a third projection of that plane is available. This is the reason
why it is necessary three images of a plane to obtain its reconstruction. This form
to obtain a reconstruction is a old procedure used in computer tomography [9].

3 Differential Evolution

The population of DE is composed by a set of individuals or vectors of real
numbers. All vectors are initialized with random numbers with an uniform dis-
tribution within the search bounds of each parameter.

There are several version of DE. Here the rand/1/bin version of DE is used
because it is robust and provides the best results for different kind of benchmarks
and real optimization problems [10].

Nowadays exits lot of literature about DE, reader can use [11] for a good
starting point about deeply DE details.

Algorithm 1. Differential evolution algorithm (rand/1/bin version)
Require: The search domain and the value s for the stop condition. The values for

population size, µ; maximum number of generations, M ; difference and recombi-
nation constants, F and R respectively.

Ensure: A solution of the minimization problem
1: initialize(X = {x1, . . . ,xµ})
2: evaluate(X)
3: k = 0
4: repeat
5: for j = 1 to µ do
6: Let r1, r2 and r3 be three random integers in [1, µ], such that r1 �= r2 �= r3

7: Let irand be a random integer in [1, n]
8: for i = 1 to n do

9: x′
i,j =

{
xi,r3 + F (xi,r1 − xi,r2) if U(0, 1) < R or i = irand

xi,j otherwise
10: x′

n+1,j = evaluate(x′
j)

11: if x′
n+1,j < xn+1,j then

12: xj = x′
j

13: min = xn+1,1, max = xn+1,1

14: for i = 2 to n do
15: if xn+1,i < min then
16: min = xn+1,i

17: if xn+1,i > max then
18: max = xn+1,i

19: k ← k + 1
20: until (max − min) < s or k > M
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The pseudocode of DE is shown in Algorithm 1. The core of DE is in the
loop on lines 8-12: a new individual is generated from three different individuals
chosen randomly; each value of the new vector (it represents a new individual)
is calculated from the first father, plus the difference of the other two fathers
multiplied by F , the difference constant; the new vector value is calculated if a
random real number (between zero and one) is less than R, the DE’s recombi-
nation constant. To prevent the case when the new individual is equal to the
first father, at least one vector’s component is forced to be calculated from their
fathers values, it is in line 9 of the pseudocode, when i = irand, and irand is a in-
teger random number between 1 and n. Then the new individual is evaluated, if
it is better than the father (in lines 11-12), then the child replaces its father. The
stop condition used here is: if the number of iterations is greater than 10,000,
or when the difference in the objective function values of the worst and best
individuals is less than 0.001. This stop condition is called diff criteria in [12],
and is the recommended for a global optimization task.

According to the test in CEC 2005 conference [13], DE is the second best
heuristic to solve real parameter optimization problems, when the number of
parameters is around 10. The best heuristic is a Evolution Strategy called G-
CMA-ES [14]. DE was chosen because it has a better execution time and it is
very easy to implement

4 Experiments and Results with Real Data

Three experiments are carry on public available dataset of Zhang [15]. It consist of
five images of a planar calibrationpattern of 256 corners, taken with a CCD camera
(resolution of 640 × 480). For each image, the corners positions found by Zhang
are available. This data set is rather challenging for plane-based self-calibration.
Indeed, there are few images (five), small rotations around optical axis, the plane
orientation does not vary much, and a significant lens distortion is present.

Fist experiment, is performed with Zhang’s images with lens distortion cor-
rected. The camera parameters given in Zhang’s paper [4] are f = 832.53,
(u0, v0) = (303.96, 206.59) and k1 = −0.288, k2 = 0.190 for the fist two terms of
lens radial distortion. With this information a new set of five corners positions,
but now without lens distortion, were generated (considering that the aspect
ratio is equal to 1.0).

The search bounds for DE are −90◦ ≤ θ1, θ2 ≤ 90◦, −180◦ ≤ θ3 ≤ 180◦,
−50 ≤ t1, t2 ≤ 50, 100 ≤ t3 ≤ 1000, 100 ≤ f ≤ 2000, (u0, v0) is fixed to (320, 240)
(the image center). Here the convention R = Rz(θ3)Ry(θ2)Rz(θ1) is used.

From the five sets of corners points, each one corresponding to one image,
there exists 10 combinations of three images. The mean and standard deviation
for f for each three images calculated with the proposed algorithm is shown in
Table 1. The shown statistics are for 40 executions. On each execution seven
runs of the algorithm is made and the median, according the reprojection error,
is taken. For this problem a population of 50 individuals, difference constant
equal to 0.7, and recombination constant of 0.9 are used.
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Table 1. Results for the first experiment
with real data. s.d. is standard deviation,
r.e. reprojection error. Numbers on first
column are three indexes corresponding to
each image.

Triplet f f s.d. r.e. r.e. s.d.
123 816.63 0.38 0.0623 7 × 10−6

124 836.94 9.90 0.0895 0.13
125 842.09 0.24 0.0262 9 × 10−6

134 820.86 0.34 0.0451 6 × 10−6

135 821.56 0.28 0.0491 7 × 10−6

145 847.04 1.00 0.0175 5 × 10−6

234 828.71 0.18 0.0681 1 × 10−5

235 829.78 0.24 0.0745 1 × 10−5

245 848.83 1.10 0.0173 1 × 10−5

345 833.40 0.45 0.0552 7 × 10−6

Total 832.58 11.06 0.0505 0.0478

Table 2. Results for the second exper-
iment. The third column is the value of
f obtained with the bundle adjustment
of all the five images.

Triplet Initial f Final f % error
123 816.57 828.03 -0.54
124 842.01 826.73 -0.70
125 842.14 826.96 -0.67
134 820.04 828.11 -0.53
135 821.68 828.69 -0.46
145 847.19 827.27 -0.63
234 828.31 827.18 -0.64
235 829.97 827.38 -0.62
245 848.38 827.80 -0.57
345 832.91 827.57 -0.60

The second experiments is using the five images. From every triplet of images
in Tab. 1, the other two images are added minimizing (4) for i = 4, 5 also with
DE. The orientation and position of these two new images are calculated fixing
both f and the reconstructed plane (P̂j in (4)). To solve this problem the same
conditions are used except that the number of individuals is set to 30. Now all the
parameters are refined using Bundle Adjustment: this is, (4) is minimized with
i = 1, 2, . . . , 5 with the Levenberg-Marquardt method provided by MINPACK
(lmdif1 function) as Zhang suggested in his paper [4]. the initial solution obtained
with DE is a local optimum. In order to obtain the global optimum, ti1 and ti2,
i = 1, 2, . . . , 5, with values less than 10.0 are set to 0.0 and the bundle adjustment
(five steps, or when RMS reprojection error is less than 0.075) is executed. The
result is shown in Table 2. The error in the estimation of the focal length is less
than 0.7 %. All the bias in error are negatives, and this could be due the skew was
made equal to 0.0 instead its real value in this experiment.

The third experiment performs the same calculations that the second experi-
ment but using the raw original data and starting with the principal point fixed
at the images center. In the bundle adjustment, the correction of the lens distor-
tion is added, and the principal point values are also refined. Results and errors
vs the values obtained by Zhang are shown in Tab. 3.

The camera focal length is estimated with an error less than 1.3% from the
results of the third experiment. But the principal point position has an error less
than 8%, and error is even more for the lens distortion parameters. According
to the simulation results in [6], the focal length is not affected by the principal
point position, but the orientation and positions of the involved plane views
are affected. Therefore, from this result, it can be seen that the principal point
position can not be estimated with accuracy if a reference plane model –which
is a calibration method– is not used.
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Table 3. Results of the third experiment. Initial values for the principal point are
(u0, v0) = (320, 240), and distortion parameters k1 = 0, k2 = 0. Final values were
obtained with all five images.

Triplet Initial Final values Percentage in error
value f f u0 v0 k1 k2 f u0 v0 k1 k2

123 894.96 843.21 294.07 208.58 -0.2145 0.2704 1.28 -3.25 0.96 -5.93 42.34
124 814.28 837.39 316.71 206.26 -0.2154 0.1865 0.58 4.19 -0.16 -5.51 -1.86
125 824.02 841.15 294.75 196.13 -0.1863 0.1926 1.04 -3.03 -5.07 -18.30 1.35
134 878.45 838.20 293.54 195.75 -0.2117 0.2671 0.68 -3.43 -5.25 -7.17 40.60
135 879.89 834.27 292.22 195.65 -0.2183 0.2620 0.21 -3.86 -5.29 -4.27 37.88
145 854.62 836.63 295.17 196.71 -0.2208 0.3021 0.49 -2.89 -4.78 -3.17 58.98
234 854.62 840.37 293.87 192.25 -0.2039 0.2410 0.94 -3.32 -6.94 -10.59 26.84
235 857.77 833.33 293.66 190.93 -0.2167 0.2559 0.10 -3.39 -7.58 -4.95 34.68
245 803.48 836.32 294.60 196.86 -0.2217 0.3003 0.46 -3.08 -4.71 -2.76 58.04
345 832.75 833.38 291.79 193.28 -0.2171 0.2546 0.10 -4.00 -6.45 -4.79 34.02

5 Discussion

The convergence of a heuristic is at most linear. Convergence of algorithms based
on derivatives is quadratic. Other heuristics could be used to solve non-linear
optimization problems, but their theoretical convergence limit is always linear.
This argumentation lead to the idea that an heuristic should not be used instead
a conventional numerical algorithm. In the methodology proposed in this work,
the heuristic differential evolution solves the difficult task of finding an initial
reconstructed plane, from three images; and then this reconstructed plane is
used to add more images, and perhaps, to correct the camera lens distortion.
For these last two tasks, conventional bundle adjustment was used.

From the result of the third experiment is not clear that the proposed method
can be used to correct the lens distortion. But the method can be applied on
images taken with a modern digital camera where distortion can be ignored [6].

The proposed method solves directly a non-linear optimization problem, and
its performance is good under noisy conditions (1-2 pixels) in points positions.

A run of the DE algorithm with the same conditions used in experiments (50
individuals, s = 0.001) takes approximately 18 sec 1.

6 Conclusions

A method for direct (without using derivatives) self-calibration of a camera from
three images of an unstructured plane was presented. This method uses directly
the pinhole camera model to estimate the positions, the orientation and the
camera parameters of the three views, and also obtains the reconstructed plane.
The reprojection error is minimized. This non-linear optimization problem was
solved using the heuristic Differential Evolution. Moreover, more images can

1 Time was measured in a 1.8 GHz PowerPC G5 Mac with Mac OSX and gcc compiler.
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be incorporated, using the reconstructed plane as a model plane. The whole
structure then is refined with a conventional bundle adjustment.

The solution with a heuristic has a cost: running time is high compared with
a conventional algorithm such as Levenberg-Marquardt, but the advantage is
that a starting solution, near to the optimal solution, is not necessary to solve
the non-linear problem.
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under grant 80965.
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Abstract. This paper deals with a comparison between the performance of graph
cuts and belief propagation stereo matching algorithms over long real-world and
synthetics sequences. The results following different preprocessing steps as well
as the running times are investigated. The usage of long stereo sequences allows
us to better understand the behavior of the algorithms and the preprocessing
methods, as well as to have a more realistic evaluation of the algorithms in the
context of a vision-based Driver Assistance System (DAS).

1 Introduction

Stereo algorithms aim to reconstruct 3D information out of (at least) a pair of 2D
images. To achieve this, corresponding pixels in the different views have to be matched
to estimate the disparity between them. There exist many approaches to solve this
matching problem, most of them too slow and/or inaccurate. In this paper we compare
a graph cut method – which produces in [1,8,13] very good results but is quite slow
– and belief propagation stereo which has proven in [5,13] to produce good results
in reasonable running time. Both algorithms apply global 2D optimization by using
information from potentially unbounded 2D neighborhoods for pixel matching, as
opposed to, for example, local techniques (e.g., correlation-based), or semi-global
scan-line optimization techniques (e.g., dynamic programming, semi-global matching).
Furthermore, we are interested in analyzing various preprocessing methods (as
suggested in [5,17]) in order to minimize common issues of real-world imaginary. We
are in particular interested in eliminating a negative influence of brightness artifacts,
which cause major issues for matching algorithms. This effect on stereo reconstruction
quality is often neglected when looking at indoor scenes, with good lighting and
cameras. As stated in [9], this kind of noise has a significant influence on the output
of stereo algorithms. Following [5], we use the simple Sobel edge detector in order
to improve the outcome of the algorithms. We also use residual images (i.e., images
resulting from subtracting a smoothed version from an original image) that have proved
to be of use for overcoming brightness issues, see [17]. The processing time of the
algorithms it is also investigated, as this is of importance for most applications, such as
vision-based driver assistance systems (DAS) and mobile robotics.

Performances of these two algorithms (BP and GC) have been compared in the
past, but only for engineered or synthetic images; see, for example, [15]. Our study
is focused on a comparison of the performance of both algorithms on long real-world
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image sequences; but we also investigate the performance of the algorithms over a
long synthetic sequence (for behavior with respect to some systematic changes in this
synthetic sequence, but not for ranking of methods; indoor or synthetic data do have
limited relevance for the actual ranking of methods for real-world DAS). Those long test
sequences allow us to better understand the behavior of the algorithms in general, and
in particular the effects of previously proposed preprocessing methods. To overcome
the lack of ground truth we use a sequence recorded with three calibrated cameras; thus
we are able to use prediction error analysis as a quality measure [14]; we use the same
approach to evaluate the performance of the algorithms on the chosen long synthetic
sequence.

This paper is structured as follows: Section 2 specifies the implementations used in
this paper of the graph cut and belief propagation algorithms; it also recalls prediction
error analysis and informs about the chosen preprocessing methods. Section 3 presents
and discusses the obtained results. Conclusions are stated in Section 4.

2 Approach for Evaluation

The experiments have been performed using a very recent graph cut implementation
from V. Kolmogorov and R. Zabih1 which can detect occlusions quite well;
and a modified coarse-to-fine belief propagation algorithm of Felzenszwalb and
Huttenlocher2 as implemented for [5], focusing on more reliable (and time-efficient)
matching, therefore using max-product, 4-adjacency, truncated quadratic cost function,
red-black speed-up, and coarse-to-fine processing. Both algorithms were implemented
under a C++ platform. For a detail discussion on belief propagation and graph cut
algorithms see [7] and [3], respectively.

The outline of our experiments is as follows. We evaluate both algorithms over
a synthetic and a real-world sequence, and compare results and computational time.
Furthermore, we use two different preprocessing methods in order to improve the
results. For the graph cut algorithm we also analyze the effect of different number of
iterations (between 1 and 3). The algorithms were tested on an Intel Core2 vPro at 3.0
GHz with 4 GB memory using Windows Vista as the operating system.

Data Set. The POV-ray synthetic sequence (100 stereo pairs) with available ground
truth is from Set 2 on [2], as introduced in [16]. The real-world sequence of 123 frames
(recorded with three calibrated cameras using the research vehicle of the .enpeda..
project, which is the ego-vehicle in our experiments) is from Set 5 on [2], as introduced
in [10], and it is a fairly representative example of a daylight (no rain) outdoor sequence,
containing reflections and large differences in brightness between subsequent stereo
pairs, or between the left and right image of the stereo pair. The use of long sequences
facilitates the recognition of circumstances that may affect the performance of an
algorithm, as well as it helps to understand the robustness of an algorithms with

1 See http://www.adastral.ucl.ac.uk/vladkolm/software/
match-v3.3.src.tar.gz

2 See http://people.cs.uchicago.edu/˜pff/bp for original sources.

http://www.adastral.ucl.ac.uk/vladkolm/software/match-v3.3.src.tar.gz
http://www.adastral.ucl.ac.uk/vladkolm/software/match-v3.3.src.tar.gz
http://people.cs.uchicago.edu/~pff/bp
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Fig. 1. Data sets. Synthetic sequence (upper row), form left to right: Ground truth disparity (dark
= far, light = close, white = occlusion), left and right views of frame 43. Real-world sequence
(lower row): from left to right, view of the left, center, and right cameras of frame 37.

respect to changes in circumstances (e.g., brightness differences, lighting artifacts, close
objects, night, or rain). See Figure 1 for examples of the used data sets.

Preprocessing Methods. A vision-based DAS has to deal with input data that are
recorded under uncontrolled environments. Among all the adverse conditions faced by
outdoor image grabbing, brightness differences between the images of a stereo pair
have a particularly negative influence on the output of the stereo algorithms [9]. In
order to over come this almost unavoidable issue, following [5], we preprocess our
sequences using a 3×3 Sobel edge operator (with a processing time of 0.06 s per stereo
pair) to create an edge sequence. In [12], the simple Sobel operator proved to be the
most effective edge-operator within a group of edge operators, tested for improving
correspondence analysis on real-world data.

In [17], the authors used residual images to remove the illumination differences
between correspondence images. We analyze whether there is an improvement in the
output of the belief propagation and graph cut stereo algorithms using residual images
as source data. Given an image I , we consider it as a composition I(p) = s(p) + r(p),
for pixel position p ∈ Ω (the image domain), where s = S(I) denotes the smooth
component and r = I−s the residual one. We use the straightforward iteration scheme
to obtain the residual component of the image I:

s(0) = I, s(n+1) = S(s(n)), r(n+1) = I − s(n+1), for n ≥ 0.

In our experiments we use a 3×3 mean filter to generate the smooth component and
n = 40 iterations (with a computational time of 0.07 s per stereo pair; see [17] for a
reasoning for selecting mean filtering and n = 40). We refer to the sequence formed
by residual images as residual sequence. See Figure 2 for a sample stereo pair of the
real-world residual sequence and the edge synthetic sequence.
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Fig. 2. Examples of the output of the preprocessing methods. Left: Residual stereo pair frame 37
of the real-world sequence. Right: Sobel edge stereo pair frame 43 of the synthetic sequence.

Evaluation approach. To objectively evaluate the performance of the algorithms over
the real-world sequence (with non-available ground truth), the output of the algorithms
is analyzed using the so-called prediction error [14]. This technique requires at least
three images of the same scene: two of them are used to calculate a disparity map,
while the third one is used for evaluation purposes. For consistency, the evaluation
of the synthetic sequence is also performed with the prediction error. The third or
virtual image used to evaluate the results is generated using the same pose of the
left-most camera of the three-camera set-up in our research vehicle (while recording
the real-world sequences) and the available ground truth.

We follow the method described in [10], where the (rectified) images recorded by
the center and right-most camera are used as the input data of the stereo algorithms.
The resultant disparity map and the center image are used to generate (by geometrical
means) a virtual image as it would be recorded by the left-most camera. This virtual
image is then compared with the actual left-most image in the following way: for each
frame t of the given trinocular sequence, let Ωt be the set of all pixels in the left image
Il, such that their source scene point is also visible in the center and right images. Let
(x, y) be the coordinates of a pixel in Ωt with intensity Il(x, y). The method above
assigns to the pixel with coordinates (x, y) in the virtual image Iv an intensity value
Iv(x, y) (defined by the intensity of a certain pixel in the center image). Thus, we are
able to compute the root mean squared (RMS) error between the virtual and the left
image as follows:

R(t) =
1
|Ωt|

(
∑

(x,y)∈Ωt

[Il(x, y)− Iv(x, y)]2)1/2

where |Ωt| denotes the cardinality of Ωt. A high RMS means there is more error.
The normalized cross correlation (NCC) is also used to compare left and virtual

image, applying the following:

N(t) =
1
|Ωt|

∑
(x,y)∈Ωt

[Il(x, y)− µr][Iv(x, y)− µv]
σrσr

µl and µv denote the means, and σl and σv the standard deviations of Il and Iv ,
respectively. A low NCC means there is more error.

Since we are dealing with a image sequence, the results can be graphed over time
(see Figure 5 for an example). To summaries the large dataset, we compute the mean
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and the zero mean standard deviation (ZMSD - the standard deviation assuming a mean
of zero) of the results in a sequence.

3 Results and Discussion

Synthetic Sequence. According to [1], GC only needs a few iterations to obtain
acceptable results. Thus we test the algorithm with only one or three iterations over
the three sequences. For all the sequences, differences in results for either one or three
iterations are almost imperceivable, visually and statistically. The RMS metric reports
a slight improvement using three iterations, and the NCC shows that the results are a
bit better using just one (see Table 1). The computational time, on average, was 135.3
s and 386.7 s for one and three iterations, respectively. The latter result discourages the
use of more than one iteration for this synthetic sequence.

Differences in GC results between the preprocessed sequences and the original ones
are not consistent either. On one hand, NCC reports that the best performance is with
the original sequence. On the other hand, the best RMS results are obtained with the
edge sequence. Visually, NCC seems to report more accurately the behavior of the
algorithm, as the results seems to suffer degradation with the preprocessed sequences
(see Figure 3).

BP shows a different behavior. With RMS, the best overall results were obtained with
the original sequence, while with NCC this sequence showed the worst performance.
Again, by visual inspection, NCC seems to reflect better the performance of the
algorithms, as the results get better (visually) using any of the discussed preprocessing
methods. The average computational time was 98.5 s (parameters used: ITER = 7,
LEVELS = 6, DISCK = 50, DATAK = 35, λ = 0.07).

Summarizing (see BP values in Table 1), the metrics show contradictory results
when using preprocessing methods. Visually, NCC seems to be the more appropriate
metric; following the NCC results, GC has a better performance than BP on the original
synthetic sequence, with one or three iterations; but, with preprocessing, BP produces
results are as good as GC. See Figure 3.

Real-world Sequence. With GC, all the sequences reported worse RMS results with
three iterations compared to one! NCC reports basically no change except for the edge
sequence, for which the results are slightly worse for three iterations (see Table 2).

Table 1. Summarizing NCC and RMS results for the synthetic sequence

Evaluation GC - 1 Iteration GC - 3 Iterations BP
Approach Sequence Mean ZMSD Mean ZMSD Mean ZMSD

NCC
Original 0.76 0.76 0.75 0.75 0.68 0.68
Residual 0.75 0.75 0.74 0.74 0.76 0.76
Sobel 0.73 0.73 0.72 0.72 0.73 0.73

RMS
Sobel 36.04 36.07 36.02 36.04 36.02 36.04
Residual 36.68 36.70 36.65 36.67 36.51 36.54
Original 36.82 36.84 36.66 36.68 35.86 35.88
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Table 2. Summarizing NCC and RMS results for the real world sequence

Evaluation GC - 1 Iteration GC - 3 Iterations BP
Approach Sequence Mean ZMSD Mean ZMSD Mean ZMSD

NCC
Residual 0.66 0.67 0.66 0.67 0.68 0.69
Sobel 0.66 0.67 0.65 0.65 0.65 0.66
Original 0.64 0.65 0.64 0.65 0.65 0.66

RMS
Residual 33.48 34.06 33.50 34.08 32.91 33.48
Sobel 34.03 34.62 34.19 34.78 33.00 33.58
Original 35.34 35.94 35.49 36.10 34.04 34.57

Fig. 3. Examples of the generated virtual view. Left to right: Original, edge map and residual
sequences. Upper row: GC with one iteration. Lower row: BP.

In contrast, the preprocessing methods have a positive influence on the outcome of
GC, the residual sequence having the best performance (no matter whether one or
three iterations, and for both metrics). The mean computational time was 178.64 s and
390.72s for one and three iterations, respectively, per stereo pair. This result discourages
the use of more than one iteration.

BP shows here a similar behavior as GC: the results improved with both
preprocessing methods (with respect to both metrics), the residual sequence having the
best results. The average NCC does not report any improvement with the edge sequence
(when comparing with the original sequence); however, visually, the improvement is
obvious when the difference in brightness is large between both images in an input
stereo. The parameters used with the real world sequence were as follows: LEVELS =
6, DISCK = 500, DATAK = 100, λ = 0.3, with an average computation time of
122.44 s per stereo pair of images.

Table 2 illustrates that BP outperforms GC in the overall results (as well as in
computational time) even when comparing the best GC result (one iteration over
the residual sequence) and the worst of BP (original sequence). Both algorithms
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Fig. 4. Examples of the generated virtual view. Left to right: Residual, edge map and original
sequences. Upper row: GC with 1 iteration. Lower row: BP.

Fig. 5. NCC evaluation for the real-world sequence. Comparison shown between the original and
the residual sequence. Left: GC with one iteration. Right: BP.

improve their results using preprocessed sequences, particularly, when the differences
in brightness between both images in a stereo input pair are large. Figure 4 shows the
calculated virtual views for frame #47 for the original (right) and the preprocessed
sequences (left and center); the improvement can be detected visually. It is also
interesting to note that there is a minimal (or no) improvement with the preprocessing
of the original sequence when differences in brightness are only minor, meaning, that
with fairly good balanced images, there would be no need of preprocessing.

Summary. The difference between the computational time between one and three
iterations of GC, and the almost null benefit (or even a degradation in the obtained)
results, discourages the use of more than one iteration, for both the real-world and
the synthetic sequences (and its respective modifications). The preprocessing methods
reported better results for both algorithms (except for GC when the synthetic sequence
was evaluated), the residual image method having the best performance, see Figure 5.
From Table 1, GC outperforms BP over the original synthetic sequence. However,
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BP had a better performance over the original real-world sequence, showing that it is
misleading to evaluate over synthetic sequences when ranking stereo algorithms. This
also tells us that more research needs to be done for studying the performance of stereo
algorithms different circumstances (night, rain, etc.). For example, in a more recent
comparison, GC has shown a better performance on sequences captured in the night, or
when objects appear close to the ego-vehicle.

Note that the metrics reported different rankings when evaluating the synthetic
sequence, NCC being the one that seems to confirm what can be concluded by visual
inspection. This behavior (inconsistency in metrics) was not expected in images that
have been recorded under perfect conditions. However, RMS is certainly a ‘very
accurate’ measure, ‘asking for to much’, and seems to be misleading in evaluations.

4 Conclusions

In this paper we compare the performance of a belief propagation stereo algorithm with
a graph cut stereo implementation, using two long sequences (real-world and synthetic)
and two different preprocessing methods. We also tested the influence of the number
of iterations for the GC algorithm. The different rankings obtained by the algorithms
on either the real-world or the synthetic sequence support the usage of a wide class
of data sets for testing the performance of the algorithms, to avoid some bias. The
preprocessing methods proved to be a good option when dealing with real world images,
as the results improved for both algorithms. For the synthetic sequence the metrics do
not show consistent results, and when some improvement was detected, then it was only
fairly minor. This is as expected, as there is no need to improve ‘perfect’ (good contrast
and grey value distribution) images. We also noticed that there is no need to use more
than one iteration with GC; if there was an improvement, it was almost imperceivable,
statistically and visually. On the other hand, the difference in computational time is
considerably large.

Future work may include the investigation of more metrics and preprocessing
methods, as well as the usage of data sets with other adverse conditions such as rain,
night time, and so forth.

References

1. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts.
IEEE Trans. Pattern Analysis Machine Intelligence 23, 1222–1239 (2001)

2. .enpeda.. image sequence analysis test site (EISATS),
http://www.mi.auckland.ac.nz/EISATS/

3. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Int. J.
Computer Vision 70, 41–54 (2006)

4. Guan, S., Klette, R.: Belief-propagation on edge images for stereo analysis of image
sequences. In: Sommer, G., Klette, R. (eds.) RobVis 2008. LNCS, vol. 4931, pp. 291–302.
Springer, Heidelberg (2008)

5. Guan, S., Klette, R., Woo, Y.W.: Belief propagation for stereo analysis of night-vision
sequences. In: Wada, T., Huang, F., Lin, S. (eds.) PSIVT 2009. LNCS, vol. 5414, pp.
932–943. Springer, Heidelberg (2009)

http://www.mi.auckland.ac.nz/EISATS/


740 S. Morales et al.

6. Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: Heyden,
A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 82–96.
Springer, Heidelberg (2002)

7. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE
Trans. Pattern Analysis Machine Intelligence 26, 65–81 (2004)

8. Kolmogorov, V., Zabih, R.: Graph cut algorithms for binocular stereo with occlusions. In:
Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer
Vision, pp. 423–438 (2006)

9. Morales, S., Vaudrey, T., Klette, R.: An in depth robustness evaluation of stereo algorithms
on long stereo sequences. In: Proc. IEEE Intelligent Vehicles Symp., pp. 347–352 (2009)

10. Morales, S., Klette, R.: A Third Eye for Performance Evaluation is Stereo Sequence
Analysis. In:Proc. CAIP (to appear, 2009)

11. Ohta, Y., Kanade, T.: Stereo by intra- and inter-scanline search using dynamic programming.
IEEE Trans. Pattern Analysis Machine Intelligence 7, 139–154 (1985)

12. Al-Sarraf, A., Vaudrey, T., Klette, R., Woo, Y.W.: An approach for evaluating robustness
of edge operators on real-world driving scenes. In: IEEE Conf. Proc. IVCNZ 2008, Digital
Object Identifier 10.1109/IVCNZ.2008.4762096 (2008)

13. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. Int. J. Computer Vision 47, 7–42 (2002)

14. Szeliski, R.: Prediction error as a quality metric for motion and stereo. In: Proc. Int. Conf.
Computer Vision, vol. 2, pp. 781–788 (1999)

15. Tappen, M., Freeman, W.: Comparison of graph cuts with belief propagation for stereo, using
identical MRF parameters. In: Proc.9th IEEE ICCV, vol. 2, pp. 900–906 (2003)

16. Vaudrey, T., Rabe, C., Klette, R., Milburn, J.: Differences between stereo and motion
behavior on synthetic and real-world stereo sequences. In: Proc. Int. Conf. Image Vision
Computing, New Zealand. IEEE Xplore, Los Alamitos (2008)

17. Vaudrey, T., Klette, R.: Residual images remove illumination artifacts for correspondence
algorithms!. In: Proc. Pattern Recognition - DAGM (to appear, 2009)



Combining Appearance and Range Based
Information for Multi-class Generic Object

Recognition

Doaa Hegazy and Joachim Denzler

Institute of Computer Science, Friedrich-Schiller-University in Jena,
Ernst-Abbe-Platz 2, 07743 Jena, Germany

doaa.hegazy@uni-jena.de, joachim.denzler@uni-jena.de

Abstract. The use of range images for generic object recognition is
not addressed frequently by the computer vision community. This paper
presents two main contributions. First, a new object category dataset
of 2D and range images of different object classes is presented. Second,
a new generic object recognition model from range and 2D images is
proposed. The model is able to use either appearance (2D) or range
based information or a combination of both of them for multi-class object
learning and recognition. The recognition performance of the proposed
recognition model is investigated experimentally using the new database
and promising results are obtained. Moreover, the best performance gain
by combining both appearance and range based information is 35% for
single classes while the average gain over classes is 12%.

1 Introduction

Generic object recognition (GOR) has been an important topic of the computer
vision research in recent years. Many different approaches have been developed
to give a solution to such difficult problem (e.g. [2, 7]). However, most of the
successful approaches developed up to date have concentrated on generic recog-
nition of objects from 2D images, and very little attention has been paid to
the use of 3D range data. Range images have the advantage of providing direct
cues of the shape of objects which is important for representing and recognizing
different visual object classes.

However, the absence of GOR work using range images is due to two main
reasons: 1) the non-availability of an object category dataset which provides
range data (images) of its member classes. The currently available object cate-
gory datasets which emerged as standards for the GOR community provide only
2D images of their object categories such as Caltech-6, Caltech 101 [1] and Graz
[7], 2) surface shape representation is very important in a recognition procedure
from range data in general. However, it is not clear which representation is more
suitable for learning shapes of visual object classes. Authors in [8] have devel-
oped an approach to recognize objects belonging to a particular shape class in
range images and presented a shape representation called symbolic surface sig-
nature. The dataset used for learning and classifying their model is a set of range
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images of objects made of clay. Many important differences exist between the
model proposed here and the one in [8]. Among these differences is that in our
approach, combination of appearance (2D) and range based information is used
for GOR recognition which is not the case in [8].

This paper addresses the use of range images for GOR and presents two main
contributions. First, a new object category dataset is constructed. The dataset
provides 2D (color) as well as 3D range images of its member classes, with dense
background clutter and occlusion. The availability of the two different image
types makes the dataset suitable for GOR from either 2D or range data or from
a combination of both data types. Moreover, it can be used for both 2D and
3D GOR as well. The second contribution is a new model for GOR with the
following advantages: 1) it recognizes generic object classes from range images
by exploiting shape cues of objects, 2) it is based on local representation of
range images by using interest regions detection and description. Therefore, the
model is able to recognize objects in range images despite background clutter
and occlusion, 3) performs multi-class learning and recognition of generic object
classes from range images, 4) the general framework of the recognition model
allows the use of 2D images as well for recognition using either texture or color
information or both of them and 5) the framework gives the ability to combine
both appearance (2D) and shape (range) cues for GOR of multiple classes.

The outline of the remainder of this paper is as follows. Section 2 is devoted
to describe the new object category dataset. The proposed generic object recog-
nition model is described in section 3. Experimental evaluations of the proposed
model as well as results obtained are presented in section 4. Conclusions are
finally drawn in section 5.

2 An Object Category Dataset

An object category dataset of 4220 2D/3D images (2D colored and range images)
of 35 objects was constructed using a 3D Time-of-Flight (TOF) PMD camera [4]
and a CCD camera. The objects are instances of five visual classes (categories):
cars, toys, cups, fruits and animals (see figure 1 (a)). For each object category,
seven individual instances were used. Due to the difficulty to record different
outdoor views of natural objects using the TOF camera, indoor views in an
office environment were captured. Artificial objects were used in replacement
of real instances of some visual classes (namely cars and animals) in building
the dataset. The instances of each object class were chosen with different sizes
and appearance to achieve large intra-class variabilities as much as possible (see
figure 1 (a)). Many images of the dataset contain multiple instances of the same
class or from different classes. Moreover, the images contain large viewpoint and
orientation variations, partial occlusion (e.g. by other objects) and truncation
(e.g. by the image boundaries) as well as background clutter (see figure 1 (c)).
The images of each individual object instance were acquired under eight different
viewing angles and four different heights. This is accomplished as follows: at
each height, each object instance was placed on a turn table which was rotated



Combining Appearance and Range Based Information for Multi-class GOR 743

(a)

(b) (c)

Fig. 1. (a) Example images of the five object classes of the new object category dataset.
(b) Example range range images (using TOF camera) and their corresponding color
images (using CCD camera). TOF cameras produce reflected images with respect to
images produced by CCD cameras. (c) Example images of the dataset with occlusion
and truncation.

through 360 degrees about the vertical axis and eight colored and range images
were acquired; one at every 45 degrees. The total number of images acquired
using each camera is 32 images for each object instance (4 heights × 8 angles).
The TOF camera delivers also an intensity image corresponding to each range
image. However, the delivered intensity image is of low resolution which affects
direct application of some image processing algorithms on them.

The dataset will be available for public use1 as we believe that the dissemi-
nation and use of this dataset will allow realistic comparative studies as well as
a source to test data for development for new techniques of GOR from range
images.

3 The Recognition Model

Figure 2 displays a semantic view of the general framework of the proposed GOR
model. As shown in the figure, the recognition model consists of three main steps,
which are described in this section.
1 http://www.inf-cv.uni-jena.de/index.php?id=dataset
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Fig. 2. The general framework of the proposed GOR model

3.1 Interest Points Detection

An interest point detector, namely the Hessian affine-invariant point detector
[6], is run on 2D images to detect a set of interest points. For the range im-
ages, the interest point detector is run on the intensity images corresponding to
range images delivered by the TOF camera. Afterwards, the 3D regions corre-
sponding to the detected points are extraced. However, the range data of a TOF
camera suffer from large amount of noise. In order to filter some of this noise
and smooth the range data, a preprocessing step by applying a median filter is
first performed. Furthermore, an initial histogram normalization is applied to
the TOF intensity images to enhance their low contrast before interest points
detection.

3.2 Local Description

Based on the type of the extracted region (2D or 3D), a local descriptor is
computed from it. A set of different local descriptors is used for both types of
data including grayscale, color and shape descriptors.

2D Descriptors. Two different types of descriptors are used: the SIFT descrip-
tors [5] and the opponent color angle descriptors [10].

3D (Range) Descriptors. Three shape-specific local feature histograms are
used. These features were presented and used in [3] for the task of free-form
specific 3D object recognition. The features are namely: pixel depth, surface
normals and curvature. The main advantages of these features are that they
are easy to calculate, robust to viewpoint changes and contain discriminative
information [3]. For the lack of available space, more information about the
features are found in [3].
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Fig. 3. Object class instances used to train and test the proposed model

3.3 Learning Model

Learning in our model is based on the Joint Boosting algorithm [9] which depends
on training multiple binary classifiers at the same time and sharing features
among them. The algorithm has the advantage that less training data is needed
since many classes can share similar features. Readers are invited to consult
[9] for details about the algorithm. In contrast to [9], in our model, combined
features are shared among the classes instead of sharing a single feature. This
is done through the weak learner used by our learning model (presented in [7])
which is different from the one used in [9].

4 Experimental Evaluations

The presented GOR model is evaluated experimentally to analyze its benefits
and limitations. The performance is measured in three cases. First, using only
appearance information for recognition. Second, using only 3D (range) infor-
mation. Finally, using a combination of both types of information. The model,
for each previously mentioned case, is trained in two ways: 1) independently,
2) jointly with feature sharing among classes. For all experiments, the number
of training iterations (number of weak hypotheses) is fixed to T = 150 and is
independent of the number of classes. In contrast to the learning model in [9],
we are not searching and comparing the learning effort for a certain error rate
but we report the ROC-equal-error rate for a certain learning effort, namely T
weak hypotheses. All experiments are performed using our new object category
dataset. We use five classes: cars, fruits, animals, toys and cups (see figure 3).
The number of training examples for each class is 100 examples which results in
a total of 500 training examples. For testing, 60 examples per class (images of
new instances) are used (a total of 300 examples).

Recognition using appearance information only: The aim of this set of ex-
periments is to measure the performance of the model using only appearance-based
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Table 1. Comparison of the ROC-equal-error rates of the appearance (2D) and range
based descriptors used separately and combined for learning and classifying the five
object classes (with independent learning)

Descriptors Cars Fruits Animals Toys Cups Avg. error
over classes

Appearance-Desp. 0.300 0.200 0.250 0.283 0.233 0.253
Range-Desp. 0.417 0.500 0.317 0.183 0.363 0.356
Appearance + range Comb. 0.370 0.167 0.200 0.183 0.183 0.221

Table 2. Confusion matrices of multi-class recognition (with independent learning)
results using appearance (2D) descriptors, range descriptors and the appearance-range
combination respectively. For the computation of the confusion matrix, the best classifi-
cation of an image over all classes is counted as the object category. Numbers represent
percentage (%) of test images (60 images per class) classified for each class. Columns
represent true classes.

Appearance Desp. Range Desp. App.+Range
Comb.

Class c1 c2 c3 c4 c5 c1 c2 c3 c4 c5 c1 c2 c3 c4 c5
Cars:c1 47 1 3 8 3 70 82 32 25 65 53 5 5 5 7
Fruits:c2 13 77 12 1 12 2 17 1 8 2 15 80 8 5 3
Animal:c3 15 2 33 1 5 18 1 37 5 18 3 0 32 0 7
Toys:c4 7 12 13 53 3 5 0 11 60 0 12 5 23 78 5
Cups:c5 18 8 38 27 77 5 0 10 2 15 17 10 32 12 78

information. A combination of the SIFT and color descriptors is used for learning
and recognition. Learning the five classes is performed independently. The recog-
nition performance (ROC-equal-error rates) using the test images is displayed in
table 1. It should be noted that in our learning model, the background class for
learning and classifying one object class (or a subset of classes) is a combination
of the other classes. Multi-class learning and classification in such a case is a
difficult task as the background class is very heterogeneous in appearance and
is much more likely to appear than the various object classes since most of the
image is background. This affects in turn the final recognition performance of
the model.

Recognition using range information only: A combination of the local
shape descriptors (range-based information) is used here alone for learning and
recognition. Table 1 displays the recognition performance. Generally, the recog-
nition performance using range-based information is lower than the performance
using the appearance-based information. This could be argued to the low res-
olution of the intensity images of the TOF camera, which are used for point
detection when range images are used for recognition. This low resolution of the
images (which are, additionally, full of background clutter) affects the detec-
tion performance of the point detector and influences, in turn, the classification
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Table 3. Comparison of the ROC-equal-error rates of the appearance (2D) and range
based descriptors used separately and combined for learning and classifying the five
object classes (with joint learning)

Descriptor Cars Fruits Animals Toys Cups Avg. error
over classes

Appearance-Desp. 0.267 0.250 0.220 0.350 0.317 0.280
Range-Desp. 0.400 0.550 0.440 0.260 0.350 0.400
Appearance + range Com. 0.383 0.300 0.280 0.217 0.250 0.306

performance. Moreover, the noisy nature of the TOF range images affects the
construction of a clear shape representation for each class which has an effect
on the recognition performance.

Recognition using a combination of appearance and range based in-
formation: To assess the performance of the model when using different types
of information (appearance and range), a combination of the appearance and
range based information is used for training and testing the recognition model.
Again, learning is performed independently. The recognition performance is
shown in table 1. The combination of the three different types of descriptors
improves the performance over almost all classes. The performance gain using
the appearance-range combination is 35% for the best single class (toys) and
12% over classes, which reveals the benefits of combining both different types of
information for recognition. Table 2 shows the confusion matrices of recognition
using appearance-based information, range-based information and appearance-
range combination respectively. The confusion using only range information is
high in comparison to the case of appearance information, while the confusion
is improved by using appearance-range combination.

Joint vs. Independent Learning: To assess the performance of joint learning,
the experiments are repeated with the classes being learnt jointly with feature
sharing. Table 3 displays the results of joint learning. It can be noted that the
joint learning (table 3) is not suitable for our recognition case as it does not
significantly achieve better performance than the independent learning (table
1). The recognition performance using idependent learning is better (achieves
lower error rates) in most of the cases than joint learning.

5 Conclusions

This paper has presented two contributions. First, a new object category dataset
has been constructed. The dataset has the advantage over existing datasets that
it provides both 2D and range data of its member classes and can be used for
both 2D and 3D generic object recognition (GOR). Second, a GOR model for
multi-classification of visual object classes from range images using shape in-
formation has been proposed. Also, the general framework of the model allows
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the use of appearance-based information extracted from 2D images for recog-
nition. Moreover, it is able to exploit a combination of both appearance-based
(extracted from 2D images) and shape-based (extracted from range images) in-
formation for recognition of multiple object classes. Experimental evaluation of
the model using the two different types of information has shown good perfor-
mance. However, combining the two different information types improves the
recognition performance.

References

[1] Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object cate-
gories. In: 2004 Conference on Computer Vision and Pattern Recognition Work-
shop, p. 178 (2004)

[2] Fergus, R., Perona, P., Zisserman, A.: Object Class Recognition by Unsupervised
Scale-Invariant Learning. In: IEEE Computer Society Conference on computer
vision and Pattern Recognition CVPR3, June 2003, vol. 2, pp. 264–271 (2003)

[3] Hetzel, G., Leibe, B., Levi, P., Schiele, B.: 3d object recognition from range images
using local feature histograms. In: IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR 2001), vol. 2, pp. 394–399 (2001)

[4] Lange, R.: 3D Time-of-Flight Distance Measurement with Custom Solid-State Im-
age Sensors in CMOS/CCD-Technology, PhD thesis, University of Siegen (2000)

[5] Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision 60, 91–110 (2004)

[6] Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Hey-
den, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350,
pp. 128–142. Springer, Heidelberg (2002)

[7] Opelt, A., Pinz, A.: Object localization with boosting and weak supervision for
generic object recognition. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.)
SCIA 2005. LNCS, vol. 3540, pp. 862–871. Springer, Heidelberg (2005)

[8] Ruiz-correa, S., Shapiro, L.G., Meil, M.: A new paradigm for recognizing 3-d
object shapes from range data. In: Proceedings of the IEEE Computer Society
International Conference on Computer Vision 2003, vol. 2, pp. 1126–1133 (2003)

[9] Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multi-
class and multiview object detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence 29(5), 854–869 (2007)

[10] van de Weijer, J., Schmid, C.: Coloring local feature extraction. In: Leonardis, A.,
Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 334–348. Springer,
Heidelberg (2006)



Dealing with Inaccurate Face Detection for
Automatic Gender Recognition with Partially

Occluded Faces�
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Abstract. Gender recognition problem has not been extensively stud-
ied in situations where the face cannot be accurately detected and it also
can be partially occluded. In this contribution, a comparison of several
characterisation methods of the face is presented and they are evaluated
in four different experiments that simulate the previous scenario. Two of
the characterisation techniques are based on histograms, LBP and local
contrast values, and the other one is a new kind of features, called Rank-
ing Labels, that provide spatial information. Experiments have proved
Ranking Labels description is the most reliable in inaccurate situations.

1 Introduction

Over the past decades, a great number of papers have been published in the face
analysis area. Most of them dealt with face recognition [1,2] and face detection
[3,4,5,6] problems. However, automatic gender classification has recently become
an important issue in this area. Gender recognition has applications in several
fields, such as, in demographic data collection, and it also could be an interesting
starting point for other face image processes.

According to recent papers [3,4], face detection tasks obtain quite impressive
results, although they do not reach 100% accuracy in all situations. Moreover,
faces could be occluded by pieces of cloth, such as, scarves or glasses. Conse-
quently, we will focus on the gender recognition problem when the face is not
accurately detected and only a partial view of the face is available.

In this paper, we compare several characterization techniques in order to find
out which one performs better with the previous restrictions. All these techniques
consider a set of N × N windows over each face image. A feature vector is
extracted from each individual window in order to characterize the face. The
techniques used are: a well-know method based on Local Binary Patterns (LBPs)
which have achieved good results in the face recognition task [2], a description
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based on Local Contrast Histograms (LCH) which can be used independently or
together with the LBP [7] and the features proposed by the authors that have
been specifically designed to keep not only the contrast information but also the
positional information of each pixel inside its window [8].

The rest of the paper is organized as follows: the face descriptions used are
introduced in Section 2; in Section 3, the experimental set-up is described in
detail; in Section 4, the results are shown and discussed. Finally, our conclusions
are given in Section 5.

2 Face Descriptions

This section presents all the face characterization methods used in the experi-
ments, including our features called Ranking Labels.

All the face descriptions use a window that scans the face image to obtain
the feature vectors that will characterize the corresponding face. Two of the
characterization methods considered are based on histograms computed over
the image window (LBP and LCH) while the other method assigns a label to
each pixel in the window in such a way that it keeps the information about the
position of the pixels inside it.

2.1 Local Binary Patterns

The LBP operator was originally defined to characterize textures. It uses a binary
number (or its equivalent in the decimal system) to characterize each pixel of the
image. In the most basic version, to obtain this number, a 3 × 3 neighborhood
around each pixel is considered. Then, all neighbors are given a value 1 if they
are brighter than the central pixel or value 0 otherwise. The numbers assigned to
each neighbor are read sequentially in the clockwise direction to form the binary
number which characterize the central pixel. The texture patch in a window is
described by the histogram of the LBP values of all the pixels inside it.

To deal with textures at different scales, the LBP was extended to use neigh-
borhoods of different radii. The local neighborhood is defined as a set of sampling
points spaced in a circle centered at the pixel to be labeled. A bilinear interpo-
lation is used when a sample point does not fall in the center of a pixel. In
the following, the notation LBPP,R will be used to refer to LBP that uses a
neighborhood with P sample points on a circle of radius R.

The LBP operator can be improved by using the so-called uniform LBP [9].
The uniform patterns have at most two one-to-zero or zero-to-one transitions
in the circular binary code. The amount of uniform LBP (LBPu), when a 8-
neighborhood is considered, is 58. However, a histogram of 59 bins is obtained
from each window, since the non-uniform patterns are accumulated into a single
bin. Although the number of patterns is significantly reduced from 256 to 58;
it was observed that the uniform patterns provide the majority of patterns,
sometimes over 90%, of texture [10].

The LBP operator gives more significance to some neighbors than to others,
which makes the representation sensitive to rotation. In order to obtain a LBP
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Fig. 1. Example of the extraction process of Ranking Labels

rotationally invariant [9], all possible binary numbers that can be obtained by
starting the sequence from all neighbors in turn are considered. Then the smallest
of the constructed numbers is chosen. In case the face is slightly inclined in the
image, the rotation invariant uniform LBP (LBPri,u) is supposed to provide a
more accurate description of the face. As the quantity of LBPri,u is 9 in this
case, a histogram of 10 bins describes each window.

2.2 Local Contrast Histograms

When computing the LBPs the information about the contrast in the window
is lost. Therefore, local contrast histograms (LCH) can be used as an alterna-
tive feature set or combined together with LBPs in order to complement their
characterization [7].

To compute the local contrast value of a pixel, a neighborhood is defined in
a similar way as for LBP. Then the average of the grey level values of those
neighbors that are brighter than the central pixel is subtracted from the average
of the grey level values of the darker ones. Finally, all the local contrast values
are accumulated in a histogram to obtain the LCHP,R. This notation means that
the neighborhood used has P sample points on a circle of radius R. In order to
have the same number of features as for the LBPs, when the neighborhood used
has 8 samples points and its radius is 1 the LCH has 10 bins, whereas if the
radius is 2 a 59-bin histogram is obtained.

2.3 Ranking Labels

In this description method a vector of ranking labels characterizes each window.
For a N×N window the values of the pixels within the window are substituted by
their ranking positions. In other words, the grey level of each pixel is replaced by
a numeric label that represents its position in the sorted list in ascending order
of all grey levels within the window. This provides a more robust feature vector
while keeping the positional information of each pixel inside the corresponding
window. This characterization process is shown in Fig. 1 (see [8] for more detail).
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3 Experimental Set-Up

3.1 General Methodology

The methodology designed uses the full-frontal face images from the FERET
database [11], excluding those images where the person wears glasses. The images
used have been divided in two set: training and test with 60% and 40% of the
images, respectively. It is worth noting that there are several images of the same
person, but all of them are assigned to the same set of images.

The methodology design is divided in the following steps:

1. The face is detected using the Viola and Jones algorithm [6] implemented in
the OpenCV [12] library. This algorithm is completely automatic since only
takes the image as input. The system does not correct the inclination that
the face might have.

2. The top half of the resulting image from step 1 (the area of the image where
the face was detected) is extracted and then equalized and resized to a pre-
established smaller size. The interpolation process required for the resizing
step uses a three-lobed Lanczos windowed sinc function [13] which keeps the
original image aspect ratio.

3. A set of windows of N×N pixels are defined to obtain a collection of vectors
that characterize the top half of the face.

4. Given a test image, the classification process consists of assigning to each
vector the class label (female or male) of its nearest neighbor in the training
set. The gender of a test face is obtained by one of these procedures: 1) by
majority voting of all the labels of the face’s vectors or 2) by concatenating
the vectors of all windows to build a longer vector to characterize the face,
so the faces’s class label will be the same as its vector’s.
The distance metrics used are the Euclidean metric and the Chi square
metric and all the experiments have been done using both of them in order
to compare which one performs better our task.

3.2 Description of the Classification Experiments

Four different experiments have been design to find out: 1) which is the face
description that provides more information to discriminate between genders?
and 2) which is the face description more suitable for situations where the face
is not accurately detected?

The details about the experiments are presented next:

Experiment 1. In this case the top half face is split into a set of windows
with no overlapping between them. This means that the pixels that belong to a
window are never considered in another one. From each of the non-overlapping
windows a feature vector is extracted. Then these vectors are concatenated to
make a longer one. Hence, the vector of a certain window will be always com-
pared with the vectors obtained from the windows that have the same position.
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Experiment 2. In order to extract more detailed features to describe the top
half face, overlapping windows are used in this case. Therefore, one pixel will
belong to several windows and its value will be used to obtain the descriptions
of all of them.

Although the size of the top half face images and the regions will be the same
as in the previous experiment, the quantity of vectors will be higher because
of the overlapping. Finally, all the vectors are also concatenated to make only
one longer vector and, therefore, the features of a certain window will be always
compared with the features obtained from the windows that have the same po-
sition in the training images.

Experiment 3. In this experiment the face is characterized by the same set of
vectors obtained in experiment 2 but the classification process is different. Given
a window of a test image, a set of neighboring windows will be considered in the
training images. The size of that neighborhood depends on the error tolerance
you may consider in the face detection process. The feature vector of the test
window will be compared with the vectors obtained for all windows considered
in the training images. The class label of the nearest neighbor is assigned to each
window of the test face. Then, the test face obtains the class label resulting from
the voting of all its windows. In our experiments the neighborhood considered
is the whole face, so no precision is prefixed in the detection process. However,
this approach leads to a high computational cost.

Due to the fact that each vector is individually classified and its nearest neigh-
bor is not restricted to those vectors obtained from the regions in the same posi-
tion, faces will not need to be accurately detected as in the previous experiments.

Experiment 4. This experiment presents a more realistic approach of the previ-
ous experiment. Now, the detection of the faces is artificially modified to simulate
an inaccurate detection. The only difference with experiment 3 is that, after the
automatic detection of the faces, a random displacement is applied to the area
containing the face. The displacement could be at most 10% of the width for the
horizontal movement and 10% of the height for the vertical one.

This experiment allows us to test the face descriptions and the classification
methods in a more unrestricted scenario. Consequently, it could provide more
reliable results about whether our system would be suitable for situations where
the face detection could not be accurate.

3.3 Development

A complete set of experiments (see Table 1) have been carried out to test the face
descriptions described in Sect. 2 and several combinations of them. Specifically,
the face descriptions implemented are the following:

– Uniform LBP with neighborhoods of 8 sample points and radii 1 (LBPu
8,1)

and 2 (LBPu
8,2).
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– The combination of the LBPu
8,1 + LBPu

8,2 which consists in concatenating
the vectors obtained with both descriptions.

– Local contrast histograms with neighborhoods of 8 sample points and radii
1 (LCH8,1) or 2 (LCH8,2).

– The combination of LCH8,1 + LCH8,2.
– The combination of LBP and LCH with the same number of sample points

and radius. The resulting face descriptions are: LBPu
8,1 + LCH8,1 and LBPu

8,2
+ LCH8,2.

– The combination of the two previous which results in LBPu
8,1 + LCH8,1 +

LBPu
8,2 + LCH8,2.

– Ranking labels description.

All the face descriptions based on LBPs, produced two experiments: one with the
sensitive to rotation version and the other one with the rotationally invariant
version. In case of sensitive to rotation descriptions the vectors produced are
composed of 10 features, while on the other case the vectors have 59 elements.
Ranking labels description produces 49 features vectors.

In all the experiments, the amount of images used was 2147. The top half
face images were reduced to a 45× 18 pixels image. The size of the window that
scans the images is 7× 7 in all cases.

4 Results and Discussion

The correct classification rates obtained for each experiment carried out are
shown in Table 1.

With regard to the distance metrics used, the Chi square succeeded in rec-
ognizing the genders with better rates than the Euclidean metric in 73% of the
cases.

Concerning the radius of the neighborhood used for the histogram based fea-
tures, radius 2 performs the recognition task better than radius 1 in 81% of
the cases. Nevertheless, the combination of the same face description using both
radii achieves higher rates, but using twice as many features.

As can be easily seen, the sensitive to rotation descriptions achieved better
results than the rotationally invariant ones when only the LBPs are used. How-
ever, the use of 59-bin histograms to describe the LCH provided worse results
in experiments 1 and 2. This could be explained by the higher dispersion of the
data which leads to a poorer characterization which also causes lower recognition
rates in most of the cases that combined LBP and LCH.

The results of experiments 1 and 2 show that the LCH is really useful to
discriminate between genders since recognition rates reached by the LCH are
very similar to those achieve using the LBP. LCH performs better when using
rotationally invariant descriptions, whereas the rates obtained using LBP are
slightly higher when the rotation dependent features were considered. As ex-
pected, when the LBP and the LCH with the radii 1 and 2 are used together
to describe the faces, the recognition rate goes up until 82.69% (experiment 1)
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Table 1. Recognition rates

Experiment 1 Experiment 2 Experiment 3 Experiment 4
RI no RI RI no RI RI no RI RI no RI

LBPu
8,1

χ2 70.88 76.61 74.27 78.48 61.66 71.75 61.08 61.08
Euclidean 68.30 76.02 73.33 76.37 61.08 70.57 61.08 61.08

LBPu
8,2

χ2 68.42 79.06 81.17 78.95 61.43 75.26 61.08 61.08
Euclidean 68.42 76.73 77.89 75.56 62.02 72.92 62.14 62.14

LBPu
8,1 + LBPu

8,2
χ2 73.92 80.47 78.13 80.23 62.84 78.55 62.49 62.49

Euclidean 72.51 78.25 77.43 77.31 62.49 76.32 62.14 62.14

LCH8,1
χ2 75.44 69.36 79.65 74.97 61.08 62.95 61.08 64.36

Euclidean 73.57 70.64 78.95 72.87 61.08 64.36 61.08 65.06

LCH8,2
χ2 77.89 71.81 79.77 75.79 61.08 63.42 61.08 63.19

Euclidean 74.27 72.05 76.96 74.50 61.08 63.42 61.08 64.13

LCH8,1 + LCH8,2
χ2 77.89 72.98 79.30 76.26 65.06 64.48 64.83 65.30

Euclidean 75.44 73.80 77.54 76.73 66.00 63.07 64.48 63.66

LBPu
8,1 + LCH8,1

χ2 75.79 79.53 80.23 81.17 66.47 79.95 64.83 79.01
Euclidean 77.19 77.43 79.65 77.89 67.87 75.15 65.77 73.51

LBPu
8,2 + LCH8,2

χ2 80.47 79.88 82.46 81.40 69.05 82.65 69.17 81.71
Euclidean 77.43 77.66 81.17 77.08 69.40 77.61 69.64 76.08

LBPu
8,1 + LCH8,1 + LBPu

8,2 + LCH8,2

χ2 82.69 81.64 82.81 80.82 74.44 85.11 71.16 83.59
Euclidean 80.70 79.88 81.40 77.19 71.28 78.55 70.81 78.55

Ranking Labels
χ2 78.95 80.12 88.54 89.12

Euclidean 78.60 79.30 88.54 89.94

and 82.81% (experiment 2) which are the best rates of these experiment. How-
ever, the ranking label description achieved the best results when individual
features were considered (not combinations of several features). To summarize,
experiments 1 and 2 have proved that all the face descriptions are quite good to
discriminate between genders. Not very important differences were obtained in
the classification rates. In general, the more number of features used to describe
the faces, the best classification rates obtained.

For experiments 3 and 4, the ranking labels description was the most suitable
since it reached the best recognition rates which were close to 90%. That is, the
correct classification rates were even better than for experiments 1 and 2. In our
opinion, this is due to the fact that experiments 1 and 2 considered that the faces
have always been perfectly located in the images. The error tolerance introduced
in the classification experiments 3 and 4 helped to improve the rates obtained
as they avoided the influence of the localization errors. However, this significant
improvement only happens for the ranking labels features. Features based on
individual histograms performed in these cases worse than for experiments 1
and 2. This is probably because the ranking label features keep the positional
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information of each pixel inside the corresponding window. Therefore, they keep
their discriminative power even when the features of a certain window are com-
pared against the features of another window which is located at a different spa-
tial position. However, histogram based features required this correspondence
between windows in the test and training images in order to keep their per-
formance. Combining all histogram-based features, the classification rates also
improved slightly, but using a very high number of features per window.

5 Conclusions

This paper has addressed the automatic gender classification problem in situa-
tions where the face was partially occluded and inaccurately detected.

The experiments have shown that LBPs and LCHs performed correctly when
the positional information is kept by the classification method. However, these
face descriptions are less reliable in situations with non-accurate face detections,
since there is an important spatial information loss.

The best characterization method in an inaccurate environment was the rank-
ing labels description which reached to almost a 90% of recognition rate due to
the fact that these features were designed to keep the information about the
position of the pixels in the different windows considered over the image.

Summing up, ranking labels are the most reliable characterization method as
it performs in a similar way in all experiments carried out. Although, LBPs and
LCHs performed correctly the gender recognition task, they were more depen-
dent on the accuracy of the face localization process.
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Abstract. This paper presents an approach to extract the rigid parts
of an observed articulated object. First, a spatio-temporal filtering in a
video selects interest points that correspond to rigid parts. This selection
is driven by the spatial relationships and the movement of the interest
points. Then, a graph pyramid is built, guided by the orientation changes
of the object parts in the scene. This leads to a decomposition of the scene
into its rigid parts. Each vertex in the top level of the pyramid represents
one rigid part in the scene.

1 Introduction

Tracking articulated objects and their rigid parts is an important and challenging
task in Computer Vision. There is a vast amount of work in this field as can
be seen in the surveys [1,2,3]. Possible applications are the analysis of human
motion for action recognition, motion based diagnosis and identification, motion
capture for 3D animation and human computer interfaces.

The first step in tracking articulated objects is the initialization. This step is
important, because it can strongly influence the success of the tracking method.
There are three possibilities for the initialization: (1) manually by the user, (2)
solving the task as a recognition problem with the help of a training set [4], and
(3) employing a segmentation method.

This paper presents an approach to segment the rigid parts of articulated
objects from a video (third category). It is related to the concept of video object
segmentation (VOS), where the task is to separate foreground from background
in an image sequence. VOS methods can be divided into two categories [5]:

(1) Two-frame motion/object segmentation: Altunbasak et al. present
in [6] a combination of pixel-based and region-based segmentation methods. Their
goal is to obtain the best possible segmentation results on a variety of image se-
quences. Castagno et al. [7] describe a system for interactive video segmentation.
An important key feature of the system is the distinction between two levels of
segmentation: (1) regions and (2) object segmentation. Chen et al. [8] propose an

� Partially supported by the Austrian Science Fund under grants P18716-N13 and
S9103-N13.

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 758–765, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Rigid Part Decomposition in a Graph Pyramid 759

approach to segment highly articulated objects by employing weak-prior random
forests. The random forests are used to derive the prior probabilities of the object
configuration for an input frame.

(2) Multi-frame spatio-temporal segmentation/tracking: Celasun et al. [5]
present VOS based on 2D meshes. Tekalp et al. [9] describe 2D mesh-based mod-
eling of video objects as a compact representation of motion and shape for in-
teractive video manipulation, compression, and indexing. Li et al. [10] propose
to use affine motion models to estimate the motion of homogeneous regions.

There is related work explicitly dealing with the segmentation of articulated
objects (e.g. Chen et al. [8]), but the result of these approaches is still only
a separation of foreground and background. To initialize tracking methods for
articulated object parts, it would be convenient to have a decomposition of the
articulated foreground object into its rigid parts (e.g. for the method in [11]).

In this paper, we achieve the decomposition of the rigid parts of an articulated
object. The scene is observed and analyzed over time. Depending on the spatial
relationships and movements in the scene the input for the grouping process is
selected. The grouping itself is done in a graph pyramid and is controlled by
the orientation variation resulting out of the articulated movement of the object
parts in the scene. This approach is a continuation of the work in [12].

The paper is organized as follows: Sec. 2 recalls graph pyramids. In Sec. 3 the
spatio-temporal filtering is explained and Sec. 4 describes how the rigid parts
are identify. Sec. 5 presents experiments and in Sec. 6 we give conclusions.

2 Irregular Graph Pyramids

A region adjacency graph (RAG), encodes the adjacency of regions in a parti-
tion. A vertex is associated to each region, vertices of neighboring regions are
connected by an edge. Classical RAGs do not contain any self-loops or paral-
lel edges. An extended region adjacency graph (eRAG) is a RAG that contains
the so-called pseudo edges, which are self-loops and parallel edges used to en-
code neighborhood relations to a cell completely enclosed by one or more other
cells [13]. The dual graph of an eRAG G is called boundary graph (BG) and is
denoted by Ḡ (G is said to be the primal graph of Ḡ). The edges of Ḡ represent
the boundaries of the regions encoded by G, and the vertices of Ḡ represent
points where boundary segments meet. G and Ḡ are planar graphs. There is a
one-to-one correspondence between the edges of G and the edges of Ḡ, which also
induces a one-to-one correspondence between the vertices of G and the 2D cells
(denoted by faces1) of Ḡ. The dual of Ḡ is again G. The following operations
are equivalent: edge contraction in G with edge removal in Ḡ, and edge removal
in G with edge contraction in Ḡ.

A (dual) irregular graph pyramid [13,14] is a stack of successively reduced
planar graphs P = {(G0, Ḡ0), . . . , (Gn, Ḡn)}. Each level (Gk, Ḡk), 0 < k ≤ n

1 Not to be confused with the vertices of the dual of a RAG (sometimes also denoted
by the term faces).
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Fig. 1. Left: triangulation and associated adjacency graph. Right: contraction of two
edges (thick) in a two level pyramid.

is obtained by first contracting edges in Gk−1 (removal in Ḡk−1), if their end
vertices have the same label (regions should be merged), and then removing
edges in Gk−1 (contraction in Ḡk−1) to simplify the structure. The contracted
and removed edges are said to be contracted or removed in (Gk−1, Ḡk−1). In
each Gk−1 and Ḡk−1, contracted edges form trees called contraction kernels. One
vertex of each contraction kernel is called a surviving vertex and is considered
to have been ‘survived’ to (Gk, Ḡk). The vertices of a contraction kernel in level
k − 1 form the reduction window W (v) of the respective surviving vertex v in
level k. The receptive field F (v) of v is the (connected) set of vertices from level
0 that have been ‘merged’ to v over levels 0 . . .k.

For the sake of simplicity, the rest of the paper will only use the adjacency
graph G, but for correctly encoding the topology, both G and Ḡ have to be
maintained. Figure 1 shows an example triangulation and pyramid.

3 Spatio-temporal Filtering

The aim of the spatio-temporal filtering is to define the input for the grouping
process. As mentioned in Sec. 1, the filtering is carried out by observing the scene
in sequence of frames. This observation is realized by tracking interest points.

The filtering focuses on the spatial relationships of the interest points over
time. A planar, triangulated graph G is used as representation for the filtering.
The vertices V of the graph are the interest points and the edges E, which encode
the spatial relationships, are inserted with a Delaunay triangulation [15].

As the aim is to find rigid parts of articulated objects, the task of the filtering
is to select interest points corresponding to rigid parts. To identify these points,
the changes of the edge lengths in the triangulated graph over time is considered.
A triangle is potentially rigid for the decomposition process if its edges lengths
do not vary remarkably in the observation period. In every frame of the video
sequence the edge lengths ||e|| can be calculated. To decide which triangles are
potentially rigid the edge length variation is determined.

Definition 1. The edge length variation of an edge is the difference between
the minimum and the maximum length of the edge in the observation period.

A triangle is labeled as potentially rigid if the edge length variations of all three
edges are beneath a certain threshold ε. This threshold is necessary, because
noise, discretization, and small imprecisions in the localization ability of the
tracker2 can affect the outputted positions of the interest points.
2 e.g. the detection vs. localization problem in edge detection.
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The result of the spatio-temporal filtering is a triangulation, where each trian-
gle is labeled potentially rigid or not rigid (see Sec. 5 Fig. 2(b)). The potentially
rigid triangles are then passed on as input to the grouping process (see Sec. 4).

4 Rigid Part Decomposition

The task of the rigid part decomposition is to split the potentially rigid triangles
from the spatio-temporal filtering into groups of triangles, each describing one
rigid part.

As this paper focuses on articulated objects, the triangles describe a locally
deformable object, which follows a globally articulated motion. Due to the local
deformation freedom the edge length variation of triangles belonging to a rigid
part and those connecting such parts might not differ to much. E.g. even though
the bones of a human perform an articulated motion, the flesh and skin are
elastic and thus a smooth and continuous deformation can be observed in the
triangles going from the lower arm to the upper arm and then to the torso.
Another aspect is that if the region around an articulation point is densely
sampled (tracked by many points), the edge length variation resulting out of a
rotation of e.g. 90 degrees is going to be insignificant. For all these reasons, the
edge length variation is not a sufficient property for the decomposition task.

The idea is to group triangles into rigid parts where all the triangles inside
a group have a similar orientation variation over the whole video, and the av-
erage orientation variation of the triangles in two neighboring groups differs.
This problem is similar to the single image segmentation problem, where the re-
sults should be regions with homogeneous color/texture (small internal contrast)
neighbored to regions that look very different (high external contrast).

Definition 2. The orientation variation over time is a 1D signal that en-
codes at each time step (frame of the input video) the accumulated orientation
change relative to the orientation at the beginning of the video.

E.g. turning around the axis once will give a value of 360◦ degrees, and turning
twice will give 720◦, not 0◦. The direction of rotation is encoded by the sign:
counter clockwise (CCW) is positive, and clockwise (CW) is negative, e.g if
turning 30◦ CCW, then 15◦ CCW, and then 28◦ CW, the computed variations
will be 30◦, 45◦ = 30◦+15◦, 17◦ = 45◦-28◦.

Definition 3. The orientation variation of a triangle is the 1D signal
obtained by taking the average of the 1D signals of the three edges of the triangle.

Using an irregular pyramid for the grouping task has the advantage that its
structure adapts to the data. Also, using a hierarchy reduces the complexity of
the grouping (global decisions become local ones), and the produced description
contains information that can be used to cope with complexity in a coarse-to-fine
tracking approach.

Alg. 1 creates a graph pyramid in which each top level vertex identifies a
detected rigid part. The receptive field of these vertices identifies the triangles
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Algorithm 1. BuildPyr(T ): Group triangles into rigid parts.
Input: potentially rigid triangles T (see Section 3)
1: G0 = (V0, E0)

/*V0 = T , and (v, w) ∈ E0 ⇐⇒ the corresponding triangles share an edge*/
2: k = 0
3: repeat
4: /*select edges to contract*/

K = ∅
∀v ∈ Gk do K ← K ∪ arg min(v,w)∈Gk

{X(v, w)}
5: /*filter edges based on internal/external difference*/

∀(v, w) ∈ K, if X(v, w) > I ′(v, w) then K ← K \ {(v, w)}
6: if K �= ∅ then break K into trees of radius 1
7: if K �= ∅ then Gk+1 ← contract edges K in Gk and simplify
8: k ← k + 1
9: until K = ∅

Output: Graph pyramid P = {G0, . . . , Gk−1}.

that the respective part consists of. In the base level, one vertex is associated
to each potentially rigid triangle. Two vertices are connected by an edge if the
respective triangles share a common edge. Edges to be contracted are selected
from the edges proposed by the Minimum Spanning Tree Alg. by Boruvka [16]
(Line 4). The external difference X(v, u) between two vertices is:

X(v, w) = max(|V (v) − V (w)|) (1)

where V (v), V (w) are the 1D signals associated to v respectively w. They encode
the average of the orientation variation of the triangles in the receptive fields.
For the vertices in the base level G0 they are the orientation variations of the
corresponding triangles. For a vertex in a higher level they can be computed as:

V (v) =

∑
u∈W (v) |F (u)| · V (u)∑

p∈W (v) |F (p)| (2)

where |F (v)| is the size of F (v) and can be propagated up in the pyramid. The
internal difference I(v) of a vertex at level k > 0 is:

I(v) = max(max{I(u)},max{X(pi, pj)}) (3)

where u ∈ W (v) and pi, pj ∈ W (v) s.t. pi, pj are connected by an edge. For the
vertices in the base level I(v) = 0. The value I ′(v, w) is defined as:

I ′(v, w) = min(I(v) +
β

|F (v)| , I(w) +
β

|F (w)| ) (4)

where β is a parameter of the method that allows regions to start forming in
the base level where I(v) = 0 for all vertices. For a discussion about β in the
context of image segmentation see [17,18].
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Line 6 of Alg. 1 keeps the contraction operations local (optimal for parallel
processing) and avoids contracting the whole graph in a single level. It excludes
edges from K to create trees of radius 1 for the current contraction. The excluded
edges will be selected again in the next level. In [19] three such methods, MIES,
MIS, and D3P (used in our experiments) are described. The described concept
is related to the image segmentation method in [17], with the difference that:

1. we do not start form a pixel image, but from a triangulation;
2. our features are not color values but 1D signals of orientation variation;
3. and most important, we do not assign the edge weights based on the weights

in the level below, but recompute them to reflect the difference between the
average variation of the triangles in the two neighboring regions.

The difference at 3. has the effect that a long chain of regions that differ by a
constant, small difference, will not be merged to create a single region.

5 Experiments

The moving foreground objects in the experiments are humans, but the pre-
sented approach is applicable to any arbitrary object. The Kanade-Lucas-Tomasi
tracker [20] is used to track corner points to supply the necessary observations.

Both video sequences show a person undergoing articulated motion in the
image plane. In Fig. 2 the result of the triangulation and the following spatio-
temporal filtering are visualized. Fig. 3 presents the decomposition results. The
result for sequence 1 is ideal, meaning that each rigid part and the background
are one vertex in the top level of the graph pyramid. For sequence 2 the right
lower arm is represented by two top vertices. Also, two additional regions, one
corresponding to a part of the hair, and one connecting the left upper arm with
the background have also been produced as rigid parts. The reason for this are

sequence 1

sequence 2

(a) (b)

Fig. 2. Triangulation (a) without (b) with labeling. White: potentially rigid, grey: not
rigid.
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sequence 1

sequence 2

(a) (b)

Fig. 3. (a) pixels belonging to a rigid part. (b) graphs for rigid parts of the foreground.

the difficulties mentioned at the beginning of Sec. 4 and the fact that the labeling
into potentially rigid and not rigid has to allow certain variation (see Sec. 3). The
torso is connected with the base of the chin in both sequences because during
tracking the features at the base of the chin slide when the head is tilted and
remain in the same position in the image, creating a potentially rigid triangle.

6 Conclusion

This paper presented a graph-based approach to decompose the rigid parts of
articulated objects. First a spatio-temporal filtering is performed, where the spa-
tial relationships of the interest points over time are analyzed and a triangulation
is produced, with triangles labeled as potentially rigid and not rigid. The poten-
tially rigid triangles are given as input to a grouping process that creates a graph
pyramid s.t. in the top level each vertex represents a rigid part in the scene. The
orientation variation of the input triangles controls the building process of the
pyramid and is used to compute the similarity between two groups of triangles.
The success of the presented approach depends on the quality and robustness of
the tracking results. The presented approach fails if there are remarkable per-
spective changes or scaling. This is one of the open issues we are planing to
deal with in the future. Additionally, we are going to find the articulation points
connecting the rigid parts of the foreground objects.
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Abstract. This work presents a new method for feature extraction of
iris images to improve the identification process. The valuable informa-
tion of the iris is intrinsically located in its natural texture, and pre-
serving and extracting the most relevant features is of paramount im-
portance. The technique consists in several steps from adquisition up to
the person identification. Our contribution consists in a multimodal al-
gorithm where a fragmentation of the normalized iris image is performed
and, afterwards, regional statistical descriptors with Self-Organizing-
Maps are extracted. By means of a biometric fusion of the resulting
descriptors, the features of the iris are compared and classified. The re-
sults with the iris data set obtained from the Bath University repository
show an excellent accuracy reaching up to 99.867%.

Keywords: Iris recognition, SOM, Voronoi polygons, regions descriptors.

1 Introduction

In recent years, the use of biometric systems, mainly for reasons of security,
has grown almost exponentially. The authentication of the person’s identity in
an univocal and automatic way is a requirement by nowadays standards, even
more due to large-scale applications that work with hundreds or thousands of
users. For these reasons, it is necessary to improve the algorithms to expand the
possible scenarios where these systems can be applied.

Biometric systems are commonly employed in verification mode, i.e., they
work verifying the identity of the user by fitting it with the identity previously
stored by any device used for accurate identification (card ID, password, etc.).
This functionality is indispensable by banks, hospitals, government institutions,
airports, to name a few possible applications. Moreover, it is also necessary to
consider scenarios where we have no a priori information about the subject.
Under this scene, the biometric system can work in identification mode, which
without any information, and only with an input, searches within the database
� This work was supported by the Fondecyt 1070220 and 1070268 research grants and
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and tries to fit that input with the most similar user. This way of working
is complicated when the system has more users, since it has to deal with the
problem of reducing intra-class variance and increase the inter-class variance.

In this paper we propose a new method for iris recognition, which works the
iris image as a multimodal system by fragmenting the image in two sectors.
With an unsupervised method we obtain regions descriptors for each fragment,
where this features preserves and compresses the iris texture information. Theses
features are used to classify the images as identification mode.

The structure of our work is the following: section 2 shows a state of art of iris
recognition; in section 3 we state our proposal of a new method, starting from
the pre-processing up to the classification process; section 4 shows the results of
the experiments, and section 5 gives some concluding remakrs about this work.

2 Related Works on Iris Recognition

John Daugman[1] proposed the first known algorithm for iris recognition. The
process basically consists in the following steps. First, the pre-processing stage
detects the edges of the pupil and iris to locate the position of the iris within the
image. This stage is known as pre-processing. Then the process continues with
the extraction of a pattern of the iris image by methods of feature extraction
and finally performs the classification process.

The literature focuses mainly on creating new methods for these 3 major
processes (pre-processing, feature extraction and classification). Daugman uses
an integrated operator differential, two dimensions Wavelets and matching using
XOR function for this processes respectively.

There are many other jobs that are based on Daugman’s job, but they used
different techniques, for example, in [8] they used independent component anal-
ysis (ICA) for feature extraction. In this paper the authors state that their
method creates a more compact iriscode[1] than the more classical approaches
and therefore the matching is faster. In addition, this process use only a portion
of the iris, as in [5], but these use Gabor Filters.

Since 2005 approximately, various learning algorithms have been employed
for this purpose, in [10] a proposal based on HSOM (a variant of SOM (Self-
Organizing Maps) to hold the Hamming distance) is presented to calculate the
adjustment of the patterns obtained in the process of feature extraction, in [9] an
algorithm based in LVQ (Learning Vector Quantization) is presented to classify
the patterns extracted previously through two dimensions Wavelets transform.

In recent years researchs oriented to biometric recognition have been focused
on constructing algorithms for multimodal systems. Multimodal systems are
those who work with multiple sources of information to make a decision, for
example, several samples of the fingerprint, both iris of a person, different al-
gorithms that work independently and deliver different outcomes, etc[6]. The
fusion process is highly considered because the how and where the fusion takes
place has a direct influence on the systems performance. Daugman notes the
importance of standardizing the process of fusion and some methods to make
the fusion at decision level, as AND and OR rule[4].
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Generally to work with more sources of information should improve the clas-
sification rates, which is shown in some studies as [11] y [12], where the first
involves iris and face and attacks the problem of score fusion as an optimization
problem, where the task is to find the threshold which minimizes the total error,
and the second which work with 3 traits: iris, face and palms, which performs
fusion at score level, through multiple SVMs in parallel, but this only works if
good classifiers are used and/or the information source is not noisy.

3 The Proposed Method

3.1 Localization

The location is primarily to recover the portion of the iris in the image. For
this purpose, we proceeded to find a preliminary center of the pupil (xp, yp) by
checking the vicinity of each pixel, which should have a low intensity and be
central to the image. After establishing the point (xp, yp), we proceed to find the
real center (xc, yc) through a square that circunscribe the pupil, detected by the
difference of intensity between the pupil and the iris.

After obtaining the center of the pupil, we proceed to detect the inner bound-
ary (border) of the iris and with it, the radius of the pupil rp.

Finally, we use the procedure described in [3], which creates a circle of radius
R (rp < R) concentric to the pupil that is used to clean the image. Thus, the
portion of the iris considered for the recognition is the area located in between
the pupil and the circle of radius R. Everything outside this circle is eliminated
by reseting the pixeles to 0.

3.2 Normalization

It is necessary to extract the texture information of the iris of the original image
once it is fully identified, so we can work with it more easily. We use the Polar
transform [5], which is based on Daugman’s work [1]. The difference lies mainly
in the sweep angle. In [5], the authors took a sweep angle of 90 for the left and
right section of the iris, not considering the upper and lower sections of the iris,
because of the possible occlusions produced by eyelashes.

Due to the characteristics of the images in the database[13], we modify the
polar transform proposed in [5], written in the following way:

J(x, y) = IE(x0 + r cos(θ), y0 + r sin(θ)) (1)

where:

r = rp + (x− 1)∆r ∀x ∈ N : x ≤ ri−rp

∆r

θ =

⎧
⎪⎨
⎪⎩

ang 1 + (y − 1)∆θ , if y ≤ ang bar
2∆θ

∀y ∈ N : y ≤ ang bar
∆θ

ang 2 + (y − 1)∆θ , if y > ang bar
2∆θ
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where (x0, y0) are the coordinates of the center of the pupil, rp and ri are the
values of the radius of the pupil and the iris, respectively, ∆r is the interval
of separation between pixels of the same radio (if ∆r = 1 means that there is
no separation), ∆θ is the interval of separation angle between radio and radio,
ang 1, ang 2 are starting angles to make sweeping and ang bar is the total angle
covered by the full sweep of the process. The result of this process can be seen
in Figure 1.

3.3 Enhancement of the Image

The normalized iris image has low contrast and could have a non-uniform bright-
ness due to the light of the moment when the image was obtained. This makes
the iris texture to be more uniform than it really is. This is why we performed an
improvement to the image by means of a histogram equalization, which makes
an expansion of the histogram of the image, ie, it makes it fill the full spectrum
of shades of gray, hence increasing the contrast in such a way that the texture
patterns are easily noted. Figure 1 shows the process.

3.4 Fragmentation of the Image

The process of fragmentation is applied to the normalized and enhanced image.
The idea is to divide this image into N smaller fragments of the same size, to
reduce the computational complexity of the process of feature extraction. The
figure 1 shows an example of fragmentation with N = 2. Note that each fragment
is considered as if they were different iris but of the same subject, which allows
us to perform fusion.

3.5 Construction of the Topological Graph

The iris texture is extremely rich in detail, and as mentioned above, the shape
and distribution of these items is unique in each iris. To rescue the pattern
obtained from the texture of the iris, we proceeded to construct a graph which
preserve the topology of the iris in the graph. This graph will be the template
for each iris image, which has the sufficient information to make a direct fit with
the images considered in-put, ie, carry out a direct fit between the topological
graph and image.

For the construction of the topological graph a neural network SOM was
used. Before handing the input to the network is performed a binarization of the
image using the Otsu method[7], which chooses a threshold that minimizes the
variation of the intra-class white and black pixels in the image.

With the application of the SOM to the binarized image, the most relevants
patterns are identified by the resulting graph. The training vectors of the network
SOM are the coordinates (xi, yi) of the black pixels of the image. The neurons of
the grid are positioned such that they describe the distribution of black pixels.
The figure 2 shows the process of feature extraction.
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Fig. 1. Pre-processing process

Fig. 2. Feature extraction process

3.6 Region Statistical Descriptors

Once the graph is constructed, the next step consists in obtaining the set of
regional statistical descriptors. For this purpose, each node in the topological
graph identify their areas of influence using Voronoi polygons.

Consider a finite number, n, of points in the Euclidean plane and assume that
2 ≤ n < ∞. The n points labeled by p1, p2, ..., pn with Cartesian coordinates
(x11, x12), (x21, x22), ..., (xn1, xn2). The n points are different in the sense that
pi �= pj to i �= j, i, j ∈ In = [1, 2, ..., n].

Let p be an arbitrary point in the Euclidean plane with coordinates (xp1, xp2).
Then the Euclidean distance between p and pi is given by d(p, pi) = ‖xp−xi‖ =√

(xp1 − xi1)2 + (xp2 − xi2)2. If pi is the point closest to p, then the relationship
‖xp − xi‖ ≤ ‖xp − xj‖ to i �= j, i, j ∈ In holds. In this case, p is assigned to pi.
So, mathematically we can define a Voronoi diagram as follows [2]:

Let P = [p1, p2, ..., pn] ⊂ R2, where 2 ≤ n < ∞ and xi �= xj to i �= j,
i, j ∈ In. Let the region given by: V (pi) = {x| ‖x − xi‖ ≤ ‖x − xj‖ for j �=
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i, j ∈ In} planar Voronoi polygon associated with pi, and the set given by:
V = {V (p1, V (p2), ..., V (pn))} planar Voronoi diagram generated by P . After
identifying the areas of influence of each node, we proceed to calculate statistical
descriptors of the regions.

The statistical descriptors calculated were the mean, variance and skewness.
The first 3 moments have a great descriptive power in terms of intensity dis-
tribution of pixels covered. In this way, for every region of influence the first 3
moments were calculated, normalized between 0 and 1 (only µ and σ) as follows:
µ = 1

255
1
n

∑n
i=1 xi, σ = 1

µ·2552
1
n

∑n
i=1(xi − x)2, and γ = E(x−µ)3

σ3 obtaining a
vector of features as follows: V = (µ1, σ1, γ1, ..., µ25, σ25, γ25).

3.7 Classification

For the classification process we use the vectorial similarity function that mea-
sures how similar are 2 images:

Fsim = |Vin −Vt| (2)

where Vin is the vector of characteristics of the input image and Vt is the
template vector previously stored in the database.

4 Experimental Results

For our experiments, the database employed was obtained from the University of
Bath repository[13].The data set consists of 1000 images of 25 different subjects
with 20 images for each eye. The images are in grayscale and an original size
of 1280 by 960 pixels. The computer where the experiments were conducted
was a Pentium 4 1.5 Ghz with 1 GB of RAM. The experiments were done in
Identifcation mode, that is, given an input image, it was classified according to
the closest class of the total database. This mode only generates one error rate,
unlike the Verification mode that generates 2 types of error: False Accept rate
(FAR) y False Reject Rate (FRR)[6].

Due to the difference in the patterns of the iris of the left and right eye of
each person, we considered each eye as a different class, so the total number of
classes that worked were 50. For each iris we got 2 fragments which we used to
get the score level fusion.

The experiments were performed with 5-fold cross validation. The fusion was
performed using a scoring rule that considers the following weights for each
fragment:

Scoret = 0.5 · scorefrag1 + 0.5 · scorefrag2 (3)

where Scoret is the total score for the classification.
Table 1 shows the accuracy rate , variance and time obtained in the identifica-

tion proceses for with fragmentation and without fragmentation. Three different
configuration of statistical descriptors were tested: the mean, the mean and the
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Table 1. Summary of experimental results

Without Fragmentation With Fragmentation

Descriptors Acc. [%] Var. [%] Time [ sec
match

] Acc.[%] Var.[%] Time[ sec
match

]
µ 99,655 0,066 0,095 99,867 0,026 0,077

µ and σ 99,517 0,104 0,113 99,203 0,102 0,083
µ, σ and γ 99,787 0,056 0,122 99,787 0,005 0,109

variance, and the mean, variance and skewness. The best outcome was obtained
for the mean reaching up to 99.867%.

While it is logical to expect that including more features will describe in a
better way the processed image, the addition can deteriorate the performance of
the classification because, probably they do not supply any distinctive informa-
tion for each class or combined with another occurrence of the classes overlap,
that is, does not increase the inter-class variance.

With respect to time, it clearly wins by getting 0.077 seconds by each com-
parison, which apparently is not significant when compared with the third con-
figuration’s 0.109 seconds, but if we think in large scale, i.e. thousands of users,
the improvement would be in the order of ten minutes.

The main goals of our proposed algorithm is twofold: first, it was to reduce the
dimension of the images of the iris and in this way to reduce the complexity for
the feature extraction process. The second was to have the opportunity to make
a single image fusion without having the original pattern splitted, and therefore,
work with only one part of the iris image.

5 Conclusions and Further Works

In this work, a new method for iris recognition were presented. This method
allows us to recover the topology of the iris through the neural network SOM,
technique which gives us important points within the iris image represented
by the neurons. Thanks to these points, we can identify areas of infuence of
each neuron using Voronoi polygons, and also characterize these polygons using
regions descriptors.

The techniques employed in our method describe very well the texture of the
iris, which is defined as a sub-structure and each of these are quantified according
to the distribution of intensities of the pixels.

The results of the experiments show that the fractionation of the image en-
hances the rate of accuracy, to almost 100 %. This tells us that it is not necessary
to have more sources of information, in order to improve the rate of accuracy
which involves more complex computational, but if each fragment separately
allows a good classification, together will surely improve overall performance[4].

Our future work will focus primarily on 2 tasks to develop: be calculated more
regions descriptors, such as a translations and rotations invariant moments, en-
tropy, etc., and all these will develop a feature selection process to know which
are the best descriptors in terms of it’s descriptive quality and computational
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complexity. As a second task, since we are interested in working in Identifica-
tion mode, perform clustering of users by the topological graph, well to address
environments to deal with so many users. For this work with more than one
database.
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Abstract. Feature extraction is a key issue in Content Based Image Retrieval 
(CBIR). In the past, a number of describing features have been proposed in lit-
erature for this goal. In this work a feature extraction and classification method-
ology for the retrieval of natural images is described. The proposal combines 
fixed and random extracted points for feature extraction. The describing  
features are the mean, the standard deviation and the homogeneity (form the  
co-occurrence) of a sub-image extracted from the three channels: H, S and I. A 
K-MEANS algorithm and a 1-NN classifier are used to build an indexed data-
base of 300 images. One of the advantages of the proposal is that we do not 
need to manually label the images for their retrieval. After performing our ex-
perimental results, we have observed that in average image retrieval using im-
ages not belonging to the training set is of 80.71% of accuracy. A comparison 
with two similar works is also presented. We show that our proposal performs 
better in both cases.  

1   Introduction 

Nowadays, due the availability of large storage spaces a huge number of images can 
be found in the Internet. With this huge distributed and heterogeneous image data-
base, people want to search and make use of the images there contained. A great chal-
lenge emerges: finding out accurate ways of searching images. Basically, images can 
be retrieved in two ways, firstly, text based and secondly, content-based or query by 
example based. Text-based retrieval approaches are very well-known and widely 
used. In this case users are provided with a text area to enter the key words (usually 
the image file name) on the basis of which image searching is done. It is widely used 
in Google web based image searching technique.  

The concept CBIR has a main drawback: The images in the database are manually 
annotated using key words. This is known to be a very time consuming process for 
any large database [1], [2]. Also retrieval depends on the human perception based text 
annotation.  
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To avoid the above mentioned problems, a second approach, Content-Based Image 
Retrieval (CBIR) has been proposed by researchers. The term CBIR seems to have 
originated in the earlier 90´s [1], [4], [5], [6], [10], [12], [14] and [15]).  

CBIR includes research on: Automatic Feature Extraction ([2], [3]), Automatic 
Feature Extraction with a Semantic Content ([4], [5], [6], [9], [10] and [11]) and data 
representation ([7]). CBIR techniques use low-level features such as texture, color and 
shape to represent images and retrieves images relevant to the query image from the 
image database. Among those low level image features, texture features has been 
shown very effective and subjective [15].  

In this paper we describe a CBIR based methodology. In the next section we de-
scribe each of the steps composing the proposed approach. 

2   Methodology 

In this section we describe each of the stages of the proposed methodology for the 
retrieval of natural images into a database. It involves two basic stages as follows: 

Training stage. This stage is divided into two main phases as shown in Fig. 1(a). 
During the first phase a set of 300 images in RGB format is first read. Each image is 
converted to HSI format. To each image, 300 pixels are uniformly selected at random 
(see Fig. 2(a)). Taking each of the 300 points as the center we open a squared window 
of size of 10×10 pixels around it.  

Figure 2(b) shows several examples. To each of the 300 windows the following 
features are extracted: the mean, the standard deviation [13] and the homogeneity 
obtained from the co-occurrence matrix [8]. This is done for the corresponding  
 

       

Fig. 1. (a) Flow Diagram for the training stage. (b) Flow diagram of the testing stage. 
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sub-image channel: hue (H), saturation (S) and brightness (I) of an image. The corre-
sponding describing vector for each window of the image has thus nine components, 
three for H channel, three for S channel and three for I channel. 

We take the resulting 90,000 describing vectors (300 for each of the 300 images) 
and a K-MEANS algorithm is applied to obtain how many of these 90,000 features 
are divided into six classes. For the 300 images chosen in this paper for training, Ta-
ble 1 shows how many vectors fall into class one, how many vectors fall into class 
two, and so on until class six. This gives somehow the probability that a given class 
belongs to the 300 images. 

 

Fig. 2. (a) For sub-image description 300 image pixels are automatically and uniformly selected 
at random. (b) For automatically image segmentation around each of the 300 pixels a square 
window of M×N is opened. In this figure only 20 points are shown as an example. 

Table 1. Distribution of the 90,000 features into the 6 chosen classes 

Class number Number of features per class 
1 14,647 
2 16,106 
3 7,104 
4 19,155 
5 11,848 
6 21,140 
 Total 90,000 

 
During the second phase, to the same set of 300 images an automatic partition is 

performed as shown in Fig. 3(a). As shown in this figure each image is divided into 
10×10 regions of 72×48 pixels per region. For each of these 100 sub-images we take 
a window of 10×10 pixels as shown in Fig. 3(b). To each of the resulting 100 win-
dows, again the same: mean, standard deviation and the homogeneity are computed in 
the three same channels. Each window is described again in the form of vector of nine 
components. As a result we have 30,000 vectors (100 for each of the 300 images). 

To create the indexed database of the 300 images used for training we proceed as 
follows. We take the 90,000 describing vectors obtained in the first phase of training 
and the 30,000 describing vectors obtained in the second phase of training and input 
them to a 1-NN classifier. As a result we obtain an indexed database containing the 
following information as shown in Fig. 4. 
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Fig. 3. (a) An image is uniformly divided into 100 sub-images to get 100 describing features. 
(b) For each sub-images, a window of 10×10 pixels is selected to compute the corresponding 
describing vector. 

C1 C2 C3 C4 C5 C6 → Name of Image 
40 16 23 20 1 0 → Image 1.jpg 

28 19 9 9 15 20 → Image k.jpg 
       

7 23 7 32 19 12 → Image 300.jpg  

Fig. 4. Form of the indexed database 

 

Fig. 5. Five different image classes have been manually chosen for image retrieval purposes 

Retrieval stage. This stage is divided into the phases shown in Fig. 1(b). As shown, a 
query image is presented to the system. To this image the same feature extraction 
phases used during training are applied. As a result we get 100 describing vectors, 
These 100 vectors are presented to already trained 1-NN classifier. As a result we just 
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get one indexing vector. This vector contains the probability that each one of the six 
classes C1, C2, C3, C4, C5 and C6 is contained in the query image. This vector is 
compared with the 300 vectors saved in the indexed database. To reduce the comput-
ing time and to get better retrieval results, we just take into account the two higher 
components of the six classes. As a distance we use the Euclidean distance. For re-
trieval purposes we have chosen five different kinds of images as show in Fig.  5. 
These five different types of images were manually selected. 

Note. For testing our proposal we have chosen 300 natural images of the Corel Image 
Database (720×480). These images were provided by J. Vogel [4], [5], [6] and [15]. 
The 300 images used for training were grouped into the 5 types of images as follows: 
54 mountains images, 54 lakes images, 54 coastal images, 54 forest images, 54 prai-
ries images, and 30 clouds images. 

 

Fig. 6. Images retrieved given a query image of a sunset 

3   Experimental Results 

In this section we present the experimental results that validate our proposal. For this 
we have selected from Internet 221 images. These images are different from those 
used for training. We presented each of these 221 images to the system and asked it to 
show us the most 10 similar images from the indexed database. Figure 6 shows a 
query example. From Fig. 6 we can see for example that the system retrieves correctly 
9 images and retrieves incorrectly 1 image (image 10). This gives a 90% of efficiency 
for this retrieval (full test can be shown in figures 7, 8 and 9). To test the efficiency of 
the proposal we have used the following two measures: 

retrieved images of no. Total

retrived imagesrelevant  of No.=P  (1)
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databasein   imagesrelevant  of no. Total

retrived imagesrelevant  of No.=R  (2)

The first measure represents the number of relevant images retrieved with respect to 
the total number of images asked to be retrieved. The second measure represents the 
relevant images retrieved with respect to the total number of images used for training 
for a given class.  

Fig. 7 shows the performance of our proposal against the method described in [14]. 
As we can appreciate our proposal performed a little better. 

 

Fig. 7. Performance of our proposal against the method described in [14]. We get a 79.05%, 
while in [14] they get a 77.71% of efficiency when using as a query the coastal image shown in 
Fig. 6. 

 

Fig. 8. Performance of our proposal against the method described in [15]. We get a 85.93%, 
while in [15] they get a 85.61% of efficiency when using as a query a red sunset image. 
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In Figures 8 and 9, we compare our proposal against the method reported in [15]. 
As can be seen the performance of our proposal is just a little better than the one re-
ported in [15]. 

 

Fig. 9. Performance of our proposal against the method described in [15]. We get a 77.16%, 
while in [15] they get a 74.17% of efficiency when using as a query the forest image. 

4   Conclusions 

In this paper we have described a methodology that allows to automatically retrieving 
natural images from a database. During learning the proposal takes as input a set of 
images divided into five classes: coasts, lake/rivers, mountains, forests and plains. It 
extracts from them describing features from sets of points randomly and automatically 
selected. A K-means classifier is used to form six different clusters from the describ-
ing features obtained from the randomly and automatically chosen points. A 1-NN 
classifier is used to build an indexed database from the combination of all the describ-
ing vectors. 

During retrieval the already trained 1-NN classifier is used to retrieve from the  
indexed database the most similar images given a query image. The experimental 
results show that our proposal performs better than two reported method in the litera-
ture. For this we have used the precision/recall measure. 

Nowadays we are testing the proposal with more images and with more types of 
image classes and with more cluster regions. Also we are trying to use interest point 
detectors to select the points from which the describing vectors are going to be com-
puted. We are also going to test with other describing features and other classifiers. 
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Abstract. The main result of this work is an approach for reconstruc-
ting the 3D shape and pose of tumors for applications in laparoscopy
from stereo endoscopic ultrasound images using Conformal Geometric
Algebra. We record simultaneously stereo endoscopic and ultrasonic ima-
ges and then the 3D pose of the ultrasound probe is calculated using
conformal geometric algebra. When the position in 3D of the ultrasound
probe is calculated, we compound multiple 2D ultrasound images into a
3D volume. To segment 2D ultrasound images we have used morpholo-
gical operators and compared its performance versus the obtained with
segmentation using level set methods.

1 Introduction

Endoscopy became an increasing part of daily work in many subspecialties of
medicine and the spectrum of applications and devices has grown exponentially
[1]. The use of a stereoendoscope (i.e. an endoscope with two cameras instead
of one) provides more information of the scenario, that is, two slightly diffe-
rent views of the same scene at the same time allows the calculation of the
spatial coordinates [2]. On the other hand, the ultrasound is found to be a
rapid, effective, radiation free, portable and safe imaging modality [3]. However,
the endoscopic images can not see beyond opaque or occluded structures. The
incorporation of ultrasound images into stereoendoscope operative procedures
generating more visibility in the occluded regions.

By superimposing Stereo Endoscopic Ultrasound (SEUS) images in the ope-
rative field (in the case of laparoscopic or robotic procedures), it would be possi-
ble integrate them into a 3D model. This 3D model can help surgeons to better
locate some structures such as tumors during the course of the operation. Vir-
tually all available methods use either a magnetic or optic tracking system (and
even a combination of both) to locate the tip of the US probe (USP) in 3D
space[4]. These systems are sometimes difficult to implement in intraoperative
scenarios, because the ferromagnetic properties of surgical instruments can affect
magnetic tracking systems [5].
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We extent a previously proposed method [4] which used just monocular en-
doscopic images to calculate the pose (i.e. the position and orientation) of the
USP. In this paper we use stereo endoscopic images and apply our approach in
laparoscopy.

2 System Setup

Our experimental setup is illustrated in Figure 1. The equipment setup is as fo-
llows: The endoneurosonography equipment (ENS) provides an ultrasound probe
(USP) that is connected to an ultrasound system Aloka. The USP is introduced
through a channel in the stereo endoscope (Fig. 1a) and is observed by the
endoscope.

The USP is flexible and is rotating around the longitudinal axis at about 60
rpm. It can also move back and forth and since the channel is wider than the
USP there is also a random movement around the channel. The US image is
orthogonal to the USP axis. We know that in small interval of time ∆t, the
USP is fixed, and the two endoscopic cameras undergo a movement, which is
equivalent to an inverse motion, that is, the endoscopic camera is fixed, and
ultrasound probe moves.

(a) (b)

Fig. 1. a) Experimental setup. b) Equipment, telescope and camera of the stereo en-
doscope.

3 Tracking the Ultrasound Probe

We have used multiple view geometry to process the stereo images; the Figure
2a shows a pair of rectificated stereo images and Fig. 2b is its depth map. The
cameras were calibrated using the method described in [6]. We track the USP
throughout the endoscopic camera images.

In order to track the USP we have used the particle filter and an auxiliary
method based on thresholding in the HSV-Space in order to improve the tracking
as follows:
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(a) (b)

Fig. 2. a) Pair of rectificated stereo images. b)its depth map.

3.1 The Particle Filter Tracker

We used the particle filter to found the USP in the endoscopic images in a similar
way to our previous paper [4], with addition of some heuristics. The resultant
process is:

– Throw 35 particles on each image and test the likelihood for each of them
with respect to a reference histogram. The likelihood is the distance between
the color histograms of the model and the current particle. The particle
which have the higher likelihood value will be the winner. Then we take
the orientation, position and scale from the particle winner as an estimation
of the USP in the endoscopic camera image. If the likelihood value of the
best particle is higher than a threshold value, we use this information to
update the reference model, that is the reference histogram. We have used
a threshold value of 0.17 to update the reference model.

– If the likelihood value of the best particle is lower than a threshold value, then
we set a flag to enable an additional tracking process in order to find the USP;
this additional process is explained in section 3.2. We enable the additional
tracking process when the likelihood value is less than 0.08, otherwise this
additional process is disabled.

– We select the 35 particles from a set of particles that we have built for
the possible positions, orientations and scales of the USP in the endoscopic
image. This set of particles is built off-line and is saved in a text file by
using only a chain code for each particle. We also save the size (scale) and
the orientation for each particle. In the beginning of the tracking process
we read the text file just one time and we store this information in a data
structure.

The threshold values and the number of particles (35) were experimentally ob-
tained. Figure 3a shows the model used to obtain the initial reference histogram.
Figure 3b shows a mask used to build the set of particles. We can see here four
points with different colors used as reference in the construction process of the
set of particles. The position of the four points is also saved in the text file
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afore-mentioned are used to identify the top of the particle in order to place
it correctly on the frame of the endoscopic camera. Figure 3c shows the used
camera frame. It is built just one time at beginning of the tracking process and
Figure 4 shows some particles taken from the set of particles. The results of
the tracking of the USP are show in Figure 6 we have an example of track-
ing of the ultrasound probe in the stereo endoscopic camera by using particle
filter.

3.2 Tracking Based on Thresholding in the HSV-Space

The tracking process is based on thresholding in the HSV-Space and it is used
as an auxiliary to find the USP in the endoscopic camera when the likelihood
value of the best particle is lower than a threshold value. This works as follows:

– Make a copy of the original image (to preserve it).
– Convert the original image from RGB to HSV-Space.
– Make a binary image by selecting an interval of values from the saturation

histogram. This interval should separate the USP from the rest of the image.
We have selected the interval [0, 50] where we observe the first peak of the
histogram.

(a) (b) (c)

Fig. 3. a)Model used to obtain the initial reference histogram. b) Model mask used to
build the set of particles. c) Camera frame, it is built just one time at the beginning
of the tracking process.

Fig. 4. Set of particles, some particles selected
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Build a new image called sectors, from the binary image and the Canny filter
as follows:

– If the pixel (x, y) has an edge (from Canny) and it is part of the mask (binary
image) then (x, y) will belong to sectors, see Fig. 5e.

– Apply the closing morphological operator to the image sectors in order to
fill small holes and to join broken edges. See Fig. 5f.

– Apply the chain code to calculate the smallest areas of the image sectors,
and eliminate them. see Fig. 5g.

– Get the initial, middle and final of the segmented USP (from the image
sectors) on the camera frame and use this information to throw nine particles
(replacing the nine particles with the lower likelihood values) in order to
improve the tracking process.

Figure 5a illustrates the saturation histogram for the endoscopic camera image
shown in Fig. 5b. Figure 5c shows its saturation image and Figure 5d is the
application of the Canny filter to the original image. This tracking method is
just used as a support method because it does not take into account temporal
information and because is also sensible to partial occlusions of the USP in the
endoscopic cameras images as well as background, illumination and contrast
variations.

Fig. 5. Tracking process in the HSV-Space

Fig. 6. Example of Tracking of the USP. The best particle is shown in red color.
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4 Ultrasound Image Processing

We have used two methods in order to process the ultrasound images; the first
one is based in morphological operators [4] and the second one is the level sets
method.

The level sets method uses an initial seed on the image. This seed evolves
with the time until a zero velocity is reached or the curve is collapsed (or a
maximum number of iterations is reached). To evolve the curve, the method
uses two lists called Lin and Lout [7]. We present the results of the processing
and a comparison between both methods. They work independently of the tumor
characteristics.

Figure 7 shows the results obtained by using morphological operators. Figure
7a is an original ultrasound image. In Figure 7b the central part of the image
is excluded, because it only contains noise and the ROI is selected. The binary
mask obtained for this method that will be applied to the original image is
showed in Figure 7c and Figure 7d shows the result of the segmentation.

Figure 8 shows the results obtained by using the level sets method. Figure
8a is an original ultrasound image. Figure 8c shows the ROI selected. Figure 8d
shows the initial seed applied to Figure 8c. Figure 8e shows the collapsed curve.
Figure 8f is the binary mask obtained from Figure 8e. This mask is applied to the
original image and so we have obtained the result of the segmentation (Figure
8b. Both figures were obtained from the Aloka ultrasound equipment by using a
box shaped rubber phantom.

4.1 Comparison between Both Methods

We have obtained a processing time of 0.005305 seconds for the morphological
operators method versus 0.009 seconds for the level sets method, that is 188 fps
versus 111 fps. We recommend both methods for in line implementation, because
they are fast and reliable.

Fig. 7. Isolating the tumor. a) Original US image to be segmented. b) The central part
of the image is excluded. c) ROI. d) Result of segmentation.
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Fig. 8. Segmentation using the level sets method

5 Calculating the 3D Pose of the Tumor

This work make use Conformal Geometric Algebra (CGA) to represent geometric
entities ( points, lines, planes, spheres, etc.) in a compact and powerful form [8].
The CGA preserves the Euclidean metric and adds two basis vectors: e+, e−
(where e+

2 = 1 and e−
2 = −1), which are used to define the point at the origin

e0 = 1
2 (e− − e+) and the point at the infinite e = e− + e+. The points in CGA

are related with the Euclidean space by: p = p + p2

2 e + e0. A sphere in dual
form is represented as the wedge of four conformal points that lies on sphere
s∗ = a ∧ b ∧ c ∧ d, its radius ρ and its center p in R3 can be obtained using:

ρ2 = s2

(s·e)2 , p = s
−(s·e) + 1

2ρ
2e. A plane in dual form is defined as a sphere, but the

last point is at the infinity: π∗ = a∧ b∧ c∧ e. A line in dual form is represented
as the wedge of two points and the infinity point: L∗ = a ∧ b ∧ e. A line can
also be calculated as the intersection of two planes: L = π1 ∧ π2. This equation
is used to calculate the 3D line that represents the ultrasound probe axis. To
achieve a translation by a distance d2 from a point p1 in the direction of a line
and to obtain p2 : T = exp

( 1
2d2L

)
, p2 = Tp1T̃ . The last equation is used to find

the position of the ultrasound sensor in order to put the segmented ultrasound
image in 3D space; where p1, p2 represent the begin and the end respectively of
the best particle on the stereo endoscopic images and d2 is the retroprojected
distance between them.

5.1 Results

Figure 9a shows a convex hull applied to a set of slices of tumor in the 3D space
and, Figure 9b shows the part of the phantom used and the tumor.

6 Conclusions

We have addressed the problem of obtaining 3D information from joint stereo en-
doscopic and ultrasound images obtained with SEUS equipment. We have used
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(a) (b)

Fig. 9. 3D Reconstruction from a set of slices of tumor

conformal geometric algebra to calculate the pose of the ultrasound sensor in
order to put the segmented tumor in the 3D space. To verify the segmentation
of the tumor in the ultrasound images, we have compared two different segmen-
tation methods and obtained good results at a reasonable speed for both. Some
preliminary results are presented.
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Abstract. In this paper, we propose a new formulation of the Differ-
ential Optical Flow Equation (DOFE) between two consecutive images
considering spatial and temporal information from both. The displace-
ment field is computed in a Markov Random Field (MRF) framework.
The solution is done by minimization of the Gibbs energy using a Direct
Descent Energy (DDE) algorithm. A hybrid multiresolution approach,
combining pyramidal decomposition and two-step multigrid techniques,
is used to estimate small and large displacements. A new pyramidal de-
composition method without warping process between pyramid levels
is introduced. The experiments carried out on benchmark dataset se-
quences show the effectiveness of the new optical flow formulation using
the proposed unwarped pyramid decomposition schema.

Keywords: Optical flow estimation, RMF minimization, Multiresolu-
tion technique.

1 Introduction

Motion estimation has always been a major activity in computer vision commu-
nity, with application in tracking, stereo matching, rigid and elastic motions, fluid
propagation... Since early 80’s, it has been well studied and many approaches
have been proposed. But it is still remaining challenging to this date. For details
on existing algorithms, you can refer to Barron’s et al. [4].

Differential Optical Flow Equation (DOFE), introduced by Horn & Schunck
[9], has proved to be very powerful in motion estimation. The DOFE is based
on the hypothesis of illumination constancy over a small period of time. At
the beginning, approaches were defined on a centered formulation of the DOFE
that needs at least three successive images ([9,4]). Other approaches studied the
case of only two successive frames and proposed a non-centered DOFE based
on the first image ([5]) or on the second one ([11,13]). Recently the work of
Alvarez et al. [1] imagines an intermediate image at the half way from the first
to the second image and uses a symmetrical formulation of DOFE based on two
images. However, this method needs many interpolation and warping steps that
can affect the quality of the estimation.
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The hypothesis of small displacement made to define DOFE is very restric-
tive. Most of movements do not respect this assumption over image domain.
To deal with it, multiresolution techniques are commonly used. The idea is to
estimate the displacement field in an incremental and iterative way for different
image resolution (coarse-to-fine). The different resolutions can be generated by
scale-space theory ([2]) that convolves Gaussian filter of different variances to
the image to extract coarse to fine information or by pyramidal decomposition of
original images into successive images of smaller resolution. Many decomposition
techniques were proposed as Gaussian pyramid [5,11,13] , steerable pyramid [15]
or wavelet decomposition [10]. But all these approaches, during the multiresolu-
tion process, warp the image by the coarse displacement field estimated at upper
pyramid level before computing the missing incremental displacement between
the warped and the other image. This step transforms and interpolates image
information. It is strongly correlated to the quality of coarse displacement field.

These last years, many works has been done on the search of the optimal solu-
tion of the displacement field. Due to the non-convexity of problem formulation,
multigrid technique is often used ([12]). It allows local minimization to not be
trapped in local minima. It has been shown that coupling multiresolution and
multigrid techniques for optical flow estimation can improve the accuracy of the
estimation ([8,7]).

In the present work, we propose a new non-centered formulation of the DOFE
that refers to the two image spatial information (TI DOFE). The DOFE is solved
by maximizing a posterior probability using a Direct Descent Energy (DDE)
algorithm through the minimization of an equivalent MRF-Gibbs energy. Making
a local spatial assumption, we define a multiresolution technique that does not
need to warp image between two pyramid levels. As the previous work in [7], the
multiresolution is combined with a two-step multigrid technique helping DDE to
converge to the optimal solution while improving significantly the computational
time.

The rest of the paper is organized as follows. Section 2 defines TI DOFE, for-
mulates the MRF framework and introduces the minimization method. In section
3, we detail the pyramidal multiresolution schema using warping or unwarping
steps and the combined multigrid technique. Results about three different se-
quences are illustrated and discussed in section 4. Section 5 concludes the paper.

2 Methodology

2.1 Two-Frame Optical Flow Equation

For a two-frame temporal image sequence, the optical flow equation (OFE) is
the 2D vector field of apparent displacement d(s) = (dx(s), dy(s)) that links
pixels s = (x, y) of the first image at time t with its correspondent position in
the second image at time t +∆t.

OFE definition is based on the assumption that the image illumination (I(s, t))
is constant over a small time interval ∆t:
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I(s + d(s), t+∆t)− I(s, t) ≈ 0 (1)

Making the hypothesis of a small displacement d(s) over a small time interval
∆t, the Differential Optical Flow Equation (DOFE) can be computed from a 1st

order Taylor expansion of I(s + d(s), t +∆t) around s :

I(s + d(s), t +∆t) = I(s, t+∆t) + d(s).∇I(s, t+∆t) + ϑ(d2(s)) (2)

If d(s) is small enough, ϑ(d2(s)) can be neglected. We have the following DOFE:

I(s, t+∆t)− I(s, t) + d(s).∇I(s, t+∆t) ≈ 0 (3)

With ∇I(s, t+∆t) = (∂I(x,y,t+∆t)
∂x , ∂I(x,y,t+∆t)

∂y ) spatial gradients at time t+∆t

(second image). We call this equation DOFE 2.
Doing 1st order Taylor expansion of I(s + d(s), t+∆t) around s and ∆t. For

d(s) and ∆t small enough, ϑ(d2(s), ∆t2) ≈ 0 and DOFE can be rewrite as:

∆t.It(s, t) + d(s).∇I(s, t) ≈ 0 (4)

With It(s, t) = ∂I(x,y,t)
∂t and ∇I(s, t) = (∂I(x,y,t)

∂x , ∂I(x,y,t)
∂y ) the temporal and

spatial gradients at time t (first image). Let call it DOFE 1.
The finite difference of the temporal gradient It(s, t) using the two-frame

image sequence is:

It(s, t) =
I(s, t +∆t)− I(s, t)

∆t
(5)

From eq.4 and eq.3, We obtain then a new non-centered DOFE that contains
spatial information from both images. We call it TI DOFE:

∆t.It(s, t) + d(s).
1
2

(∇I(s, t) +∇I(s, t +∆t)) ≈ 0 (6)

2.2 MRF Framework and Minimization

The displacement field d is considered as a random variable that maximizes
a joint probability. It is computed within a MRF framework via Maximum a
Posteriori estimation using a Bayesian decomposition of a Gibbs distribution.

P (d(s), I(s)) =
1
Z
e−E(d(s),I(s)) (7)

Where Z is the normalization constant and the total Gibbs energy E is
defined by:

E(d(s), I(s)) =
∑
s∈C1

Vd(d(s), I(s)) +
∑

s,s′∈C2

αp Vp(d(s),d(s′)) (8)

I(s) represents the observed data extracted from image intensities. C1 and C2
are respectively the single-site and pair-site cliques. αp is a weighting coefficient
that is used to play on the influence of the data term Vd compared to the prior
term Vp. Vp only depends of its 4-neighborhood (s′ neighbor of s).
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Data term is a quadratic function of DOFE 1 (eq.4), DOFE 2 (eq.3) or
TI DOFE (eq.6). Eq.9 represents the case of TI DOFE:

V d(d(s), I(s)) =
(
∆t.It(s, t) + d(s).

1
2

(∇I(s, t) +∇I(s, t +∆t))
)2

(9)

DOFE does not admit a unique solution. To solve the ill-posed problem, we add
a prior term (regularization) that reduces the configuration of possible solutions.
The prior term is defined as Tikhonov regularization [16]:

V p(d(s),d(s′)) = ||d(s)− d(s′)||2 (10)

The minimization of the energy is achieved by a Direct Descent Energy (DDE).
DDE consists to minimize E(d(s), I(s)) by successive iterations over all pixels.
A small incremental δd(s) random value is generated where d(s) ← d(s) +
δd(s). δd(s) is conserved only if E(d(s), I(s)) is decreased. This minimization
method converges to a local minimum of the energy. It is then dependent to
the initialization of displacement field. To cope with this problem, the weighting
coefficient αp(i) is logarithmic increasing over the iteration (i) from 0 to αp.
In this way, the estimated displacement field satisfies first the DOFE then it
is slowly becoming more constrained by the regularization term. Moreover, the
multigrid technique allows the DDE minimization to not be trapped into local
minima and to reach an optimal solution.

3 Combined Multiresolution - Multigrid

3.1 Pyramidal Decomposition

The multiresolution by pyramidal decomposition from coarse to fine resolution
has been proved to be numerically useful for optical flow estimation [14]. The
image resolution is iteratively reduced in a pyramid of K different successive
resolution levels from the original resolution using Gaussian filter [6]. We use a
Gaussian filter of variance σ = 1.

At each pyramid level k, the total displacement field dk = d̃
k+1

+ d′k where
d̃k+1 is the interpolated total displacement field computed at coarser resolution
(k+1) and d′k is the complementary displacement field at level k. d′k is small at
each pyramid level k. The 1st order Taylor expansion condition is then respected
for each level. The TI DOFE becomes:

∆t.It(s + d̃k+1, t) + d′k.
1
2

(
∇I(s + d̃k+1, t) +∇I(s + d̃k+1, t+∆t)

)
≈ 0 (11)

For better readability, we did not write the spatial dependency of the displace-
ment field (d̃k+1(s), d′k(s)). By similarity, DOFE 1 and DOFE 2 for multireso-
lution can easily be obtained in the same way.

To compute the observed data of the equation, common methods warp the
image (I) into a compensated intermediate image (Î) depending to the used
DOFE formulation : [5] warps the first frame to the second Î(s, t) = I(s+d̃k+1, t)
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or [8,13] warps the second to the first Î(s, t+∆t) = I(s+d̃k+1, t+∆t). The image
(I) is transformed by the displacement field d̃k+1, then the intensity distribution
is interpolated to a regular pixel grid s. Notes that s in Î(s, t) represents in fact
the old position s + d̃k+1 and s in Î(s, t+∆t) still represents the same s.

The multiresolution TI DOFE with warping (W MR) can be written as:

∆t.Ît(s, t) + d′k.
1
2

(
∇Î(s, t) +∇Î(s, t +∆t)

)
≈ 0 (12)

The spatial and temporal gradients are computed from the warped images. Their
precision depends to the quality of d̃k+1 estimation and to the efficiency of
warping technique. Ît(s, t) = I(s, t +∆t)− Î(s, t) = Î(s, t +∆t)− I(s, t).

In this paper, we proposed to suppress the warping step. We consider that the
spatial derivatives are locally invariant over a small time interval ∆t. It means
that the gradients of DOFE can be computed on both original images. No image
needs to be warped. Then we use the correct gradient quantity in respect to the
coarse interpolated displacement field d̃k+1(s) for each pixel s.

The multiresolution TI DOFE without warping (noW MR) take the following
form:

∆t.It(s + d̃k+1, t) + d′k.
1
2

(
∇I(s, t) +∇I(s + d̃k+1, t+∆t)

)
≈ 0 (13)

Where ∇I(s, t) = ∇I(s + d̃k+1, t) is the spatial gradient on the first image,
∇I(s + d̃k+1, t+∆t) is the spatial gradient on the second image at coordinates
s + d̃k+1, ∆t.It(s + d̃k+1, t) = I(s + d̃k+1, t + ∆t) − I(s, t) is the difference of
the intensity at coordinates s + d̃k+1 on the second image with the intensity at
s on the first one. We use a bilinear interpolation to compute the corresponding
value of ∇I(s + d̃k+1, t +∆t) and I(s + d̃k+1, t+∆t).

To resume, W MR warps image information then compute spatial and tem-
poral gradients. In noW MR, due to local invariant hypothesis on gradients,
gradients can be first computed on original images then only values in s + d̃k+1

are interpolated.
The prior term along the multiresolution scheme is still the Tikhonov regu-

larization of the total displacement field dk(s):

V p(dk(s),dk(s′)) = ||(d̃k+1(s) + d′k(s))− (d̃k+1(s′) + d′k(s′))||2 (14)

3.2 Multigrid Method

At each pyramid level k, we use a two-step multigrid method previously pro-
posed in [7]. The complementary displacement field d′k is decomposed into a
global component dg

′k (average over a mesh size) and a local component dl
′k

(local deviation from dg
′k for each pixel). dg

′k is very fast to compute and fur-
nishes a good approximation of the final displacement. It is used to initialize the
search of d′k = dg

′k + dl
′k at pixel level. Computational time is faster and the

minimization can reach a better solution closer to the optimal.
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4 Results

For all the illustrated results, we use the same parameter definitions to be able
to compare the DOFE formulations and multiresolution schema. We set a 4-level
pyramid decomposition for multiresolution and a grid size of 4× 4 pixels for the
multigrid method. The weighting coefficient αp is spatially constant and equal
to 100.

We evaluate the performance of our methods on the recent Middlebury optical
flow benchmark dataset [3]. We use, in this paper, the Average Angle Error
(AAE) [4,3] criteria to compare the efficiency of estimations:

AE = arccos

(
dc(s).de(s)

||dc(s)|| ||de(s)||

)
(15)

AE is the angle error between the correct displacement dc and the estimated
displacement de. The AAE is computed for three kinds of image area: all the
image domain without border (all), the motion discontinuities (disc) and tex-
tureless regions (untext). We pre-process the data by convolving each frame of
the sequence with a smoothing Gaussian filter (σ = 1).

We discuss the results of DOFE 1, DOFE 2 and TI DOFE using W MR or
noW MR on the dimetrodon sequence. Fig.1 shows the first input image, the
ground truth where displacement vectors are coded with the color map pro-
posed in [3] and the estimated displacement vector field computed using the
two-frame optical flow formulation (TI DOFE) with unwarping multiresolution
scheme (noW MR). The second line of Fig.1 illustrates the three masks used to
compute AAE for all image domain, motion discontinuity area and textureless
regions.

(a) first Image (b) Ground truth (c) TI DOFE with noW MR

(d) Mask all (e) Mask disc (f) Mask untext

Fig. 1. Dimetrodon: One of the three types of data illustrated in this paper. Ground
truth and estimated field (TI DOFE with noW MR) are represented by flow field color
coding map ([3]). Only white area is used to compute the AAE for the different masks.
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The estimated field is very similar to the ground truth field. Because it is
difficult to visualize the difference between the approaches, table 1 shows the
different AAE values for three kinds of sequences (Dimetrodon, Yosemite and
Venus) for the different DOFE formulation using warping and unwarping mul-
tiresolution. Performance of our methods is also compared to results shown in
[3] of few classic optical flow algorithms.

Table 1. AAE comparison of our methods with classic algorithms ([3]) for Dimetrodon,
Yosemite and Venus sequences. In bold: smallest AAE for classic algorithms, W MR
and noW MR. In red: smallest AAE over all methods.

AAE dimetrodon yosemite venus
all disc untext all disc untext all disc untext

Bruhn et al. 10.99 9.41 14.22 1.69 2.86 1.05 8.73 31.46 8.15
Black and Anandan 9.26 10.11 12.08 2.65 4.18 1.88 7.64 30.13 7.31

Pyramid LK 10.27 9.71 13.63 5.22 6.64 4.29 14.61 36.18 24.67
MediaPlayer TM 15.82 26.42 16.96 11.09 17.16 10.66 15.48 43.56 15.09

Zitnick et al. 30.10 34.27 31.58 18.50 28.00 9.41 11.42 31.46 11.12
W MR DOFE 1 5.20 8.62 6.17 3.21 4.88 1.33 8.56 34.85 8.21
W MR DOFE 2 5.43 8.72 6.19 3.49 4.75 2.01 9.57 35.17 9.02
W MR TI DOFE 5.00 8.43 5.89 3.17 4.81 1.35 8.32 34.81 7.90

noW MR DOFE 1 5.12 8.50 6.02 2.89 4.13 1.23 9.03 35.28 8.71
noW MR DOFE 2 4.99 8.09 5.80 2.93 4.15 1.12 8.72 34.37 8.72
noW MR TI DOFE 4.92 8.21 5.80 2.88 4.13 1.06 8.41 33.81 8.54

From the table, we can remark that our optical flow approach outperforms
algorithms as Pyramid LK, MediaPlayer TM and Zitnick and that it gets around
the same magnitude of AAE than Bruhn et al. and Black and Anandan. In bold
red are the smallest AAE over all methods for each sequence and each method
produces at least one of the best estimation.

The optical flow formulation using the two-frame spatial information
(TI DOFE) performs better than optical flow definitions based on only one
image information (DOFE 1, DOFE 2) independently to the used multireso-
lution schema. The new unwarping multiresolution method allows most of the
time a better estimation of the displacement field for all kind of optical flow
formulations.

However, we can notice that our methods have clearly stronger AAE for mo-
tion discontinuity areas. This is due to the MRF formulation of our energy terms
that are defined as quadratic functions.

Further results over the all Middlebury optical flow benchmark dataset, in-
cluding comparisons to other recent techniques are available at the website:
http://vision.middlebury.edu/flow/.

5 Conclusion

In this work, we propose a two-frame optical flow formulation using the spatial
information from the two images. A new unwarping multiresolution scheme is

http://vision.middlebury.edu/flow/
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defined that reduces the number of transformation and interpolation during the
pyramidal decreasing process to estimate the displacement field.

Results have shown that the combination of TI DOFE and noW MR methods
increases the performance of optical flow estimation. The estimation efficiency is
as good as state of the art algorithms. It is interesting in a future work to intro-
duce robust function in our MRF framework to be able to extract better motion
discontinuities and to define a better data and prior function that physically
correspond to the studied motion phenomenon.
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Abstract. Video texture is a new type of medium which can provide
a continuous, infinitely varying stream of video images from a recorded
video clip. It can be synthesized by rearranging the order of frames based
on the similarities between all pairs of frames. In this paper, we propose a
new method for generating video textures by implementing probabilistic
principal components analysis (PPCA) and Gaussian Process Dynamical
model (GPDM). Compared to the original video texture technique, video
texture synthesized by PPCA and GPDM has the following advantages:
it might generate new video frames that have never existed in the input
video clip before; the problem of “dead-end” is totally avoided; it could
also provide video textures that are more robust to noise.

Keywords: Video texture, computer graphics, computer vision, dimen-
sionality reduction, autoregressive process, Gaussian process, PPCA.

1 Introduction

Video textures, first introduced by Schödl et al. [1], is a new type of medium
between static image and dynamic video. It can create a continuous, infinitely
changing stream of images from a recorded video. Following the work of video
texture, Schödl et al. also extended this technique on video sprites [2] [3]. Re-
cently, a number of extensions and applications of video texture have emerged.
Dong et al. [4] proposed a novel method of generating video texture based on
wavelet coefficients which are computed from the decomposition of the pixel
values of neighboring frames. In the work of Fitzgibbon [5], video texture is syn-
thesized first by applying the principal components analysis (PCA) to obtain
the signatures of each frame, then autoregressive process (AR) is used to predict
new frames. In [6], Campbell et al. extended this approach to work with strongly
non-linear sequences.

Our work is inspired from [5], where the author has shown that video texture
may be created by implementing regression methods such as AR process which
allow the prediction of new video frames. Accordingly, new video textures are
obtained by appending synthesized frames. Gaussian process [7] [8] [9] is another
approach which can be exploited to solve regression problems. Via Gaussian
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process, we can define probability distributions over functions directly, and a
Gaussian process prior can be combined with a likelihood to acquire a posterior
over functions. In our work, we adopt an extension of Gaussian process namely
Gaussian process dynamical model (GPDM) [10] [11] which is a latent variable
model that can be applied for nonlinear time series analysis. GPDM extended the
Gaussian process latent variable model (GPLVM) [12] with a latent dynamical
model. In GPDM, it includes a low-dimensional space account for dynamics in
the time series data, as well as a mapping from the latent space to observation
space. Since video sequence is a time series data, in principle, GPDM is a suitable
method to synthesize new video textures. Fitzgibbon [5] has applied PCA as a
dimensionality reduction technique to obtain the frames signatures. However,
we have shown in a previous works [13] that probabilistic principal components
analysis (PPCA) [14] is more robust to noise and provide better results. Thus, our
video texture generation framework will be based on both PPCA and GPDMs.

The remainder of this paper is organized as follows. First we introduce Gaus-
sian processes regression in Section 2. Then GPDM for video texture is discussed
in Section 3. Section 4 is devoted to the experimental results. The conclusion
and future work are included in Section 5.

2 Gaussian Processes Regression

A Gaussian process is defined as a probability distribution over some functions
y(x), such that the set of values of y(x) evaluated at an arbitrary set of points
x1, ...,xN jointly have a Gaussian distribution. Here, we will illustrate how Gaus-
sian process can be applied on general regression problems. We consider a model
where the observed target values tn are corrupted with some random noise

tn = yn + εn (1)

where yn = y(xn) for input data x. εn is the random noise which has Gaussian
distribution with zero mean and β−1 variance. Since the noise is independent
for each data point, given the values of y = (y1, ...yN )T , the joint distribution
of target values t = (t1, ..., tN ) is an isotropic Gaussian

p(t|y) = N (t|y, β−1IN ) (2)

After obtaining the marginal distribution of t, the next job is to evaluate the con-
ditional distribution p(tN+1|t) where tN+1 is the next target value that we wish
to predict. In order to find p(tN+1|t), we first need to find the joint distribution
of p(tN+1) for t1, ..., tN+1

p(tN+1) = N (tN+1|0,CN+1) (3)

where CN+1 is an (N + 1)× (N + 1) covariance matrix. The covariance matrix
CN+1 needs to be partitioned as

CN+1 =
(

CN k
kT c

)
(4)
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where CN is the N×N covariance matrix of the training data, vector k represents
the N × 1 covariance matrix of training data and the predictive target tN+1,
and the scalar c denotes the variance of tN+1. As shown in [8], since the joint
distribution p(tN+1) is also a Gaussian distribution, we can obtain the mean
and covariance of the conditional distribution p(tN+1|t) as

m(xN+1) = kT C−1
N t (5)

σ2(xN+1) = c− kT C−1
N k (6)

These results represent the core idea of Gaussian process regression. More details
and discussion about Gaussian processes can be found in [7].

3 Gaussian Processes Dynamical Models

The Gaussian process dynamical model (GPDM) [11] is a latent variable model
with two nonlinear mappings. One mapping is from the latent space to the obser-
vation space and the other is the dynamical mapping in the latent space. Suppose
{y1, ...,yN} denotes the D-dimensional observation data set and yt represents
a particular observation output at the specific time t, yt ∈ RD. x1, ...,xN is a
data set in the latent space, xt represents the d-dimensional latent coordinate of
the observation data at time index t, xt ∈ Rd. The first-order Markov dynamics
and the latent space mapping are given by

xt = f(xt−1;A) + nx,t (7)

yt = g(xt;B) + ny,t (8)

here, the dynamical mapping function f is parameterized by A and latent space
mapping function g is is parameterized by B. nx,t and ny,t are zero-mean,
isotropic, white Gaussian noise processes. Two basis functions φi and ϕj are
used for f and g are given by

f(x;A) =
∑

i

aiφi(x) (9)

g(x;B) =
∑

j

bjϕi(x) (10)

where weights A ≡ [a1, a2, ...]T and B ≡ [b1, b2, ...]T . f and g are nonlinear
functions of x, but the dependencies of f and g on the parameters A and B
are linear. For the mapping from latent space to the observation space, after
marginalizing over g, the joint distribution of Y can be represented as

p(Y|X, β̄,W) =
|W|N√

(2π)ND|KY |D
exp(−1

2
tr(K−1

Y YW2YT )) (11)
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here, KY is the kernel matrix of the mapping g and β̄ are the hyperparameters of
the kernel. W represents the scale parameters which account for the overall scale
in each data dimension. The elements of KY are defined by a kernel function
(KY )ij ≡ kY (xi,xj). We choose the radial basis function (RBF) as the kernel
function for the latent mapping g

kY (x,x′) = β1 exp(−β2

2
‖x− x′‖2) + β−1

3 δx,x′ (12)

where the hyperparameter β1 represents the output scale of the kernel function,
β2 represents the inverse width of the RBF, and β3 gives the variance of the
isotropic noise term ny,t. The dynamic mapping for latent coordinate is simi-
lar to the latent space mapping. The joint probability density over the latent
coordinates can be represent as

p(X|ᾱ) =
p(x1)√

(2π)(N−1)d|KX |d
exp(−1

2
tr(K−1

X X2:NXT
2:N )) (13)

here, X2:N = [x2, ...xN ]T denotes the input data that except the first element.
KX is the kernel matrix build from [x1, ...xN−1]. In this dynamic mapping, the
form ”RBF + linear” is defined for the kernel function

kX(x,x′) = α1 exp(−α2

2
‖x− x′‖2) + α3x

Tx′ + α−1
4 δx,x′ (14)

In order to discourage overfitting, prior distributions are placed on hyperpa-
rameters ᾱ, β̄ and W.1 Then a generative model for time-series observations
can be obtained through a latent space mapping, a dynamic mapping and prior
distributions:

p(X,Y, ᾱ, β̄,W) = p(Y|X, β̄,W)p(X|ᾱ)p(W)p(ᾱ)p(β̄) (15)

This represents the general form of the GPDM. Details of how to evaluate the
parameters for GPDM can be found in [10].

4 Experimental Results

In our work, the goal is to apply GPDM to synthesize video textures. The per-
formance of our approach is evaluated by comparing our results with the video
textures generated by AR approach in [5]. In the AR approach for synthesizing
video textures, frame signatures are first calculated by adopting the dimension
reduction technique: principal components analysis (PCA), followed by the syn-
thesis of new video textures using AR process. In our case, in order to test our
approach under different scenarios, several input video clips are selected. First,

1 p(ᾱ) ∝ ∏
i α−1

i , p(β̄) ∝ ∏
i β−1

i and p(W) =
∏D

m=1
2

k
√

2π
exp(−w2

m
2k2 ), where wm are

the variances that contain the elements of W, and in practice, k is set to 103.
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the input video clip is decomposed into a sequence of frames. Each individ-
ual frame is an input vector x, with dimensionality D. The value of D is the
number of pixels contained in each frame. Second, these input vectors are mean-
subtracted and the latent coordinates are initialized with PPCA. Last, GPDM
is applied to synthesize new video frames which are then composed together to
generate a new video texture.

4.1 Generation of New Frames

As described above, new video frames are predicted using GPDM. In other words,
it is to predict the next video frame xN+1 conditioned on the previous frame xN .
The marginal distribution of the new frame p(xN+1) derived from the conditional
distribution p(xN+1|xN ) is also a Gaussian distribution

xN+1 ∼ N (µX(xN );σ2
X(xN )) (16)

We can solve this prediction problem by applying the similar ideas as in Gaussian
process regression. According to results in (5) and (6), the mean and covariance
can be calculated as

µX(x) = XT
2:NK−1

X kX(x) (17)

σ2
X(x) = kX(x,x)− kX(x)T K−1

X kX(x) (18)

In the above equations, kX(x) represents a vector that contains the covariance
kX(x,xi) in the i-th entry and xi denotes the i-th training vector. Then, the
next frame in the latent space is: xN+1 = µX(xN ). Therefore, the new video
frames can be generated by yN+1 = µY (xN+1).

New video textures are successfully generated from input video clips by apply-
ing PPCA and GPDM with 50 frames in each video texture. They can be played
without any visual discontinuity but with similar motions as the original one.
Moreover, all resulted frames have never appeared before in the input videos.
Fig.1∼ Fig.6 show the first three frames generated by PPCA and GPDM for
several input video clips ((a), (b) and (c) represent the first, second and third
frame, respectively).

(a) (b) (c)

Fig. 1. The first three synthesized frames for a movie of a man moving a pen
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(a) (b) (c)

Fig. 2. The first three synthesized frames for a movie a candle flame

(a) (b) (c)

Fig. 3. The first three synthesized frames for an animation of cartoon

(a) (b) (c)

Fig. 4. The first three synthesized frames for a movie of fountain

(a) (b) (c)

Fig. 5. The first three synthesized frames for a movie of flag

(a) (b) (c)

Fig. 6. The first three synthesized frames for a movie of waterfall
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4.2 Comparison of the Results

In this section, we compare the performance of synthesizing video textures by
GPDM and AR process. Via the AR process, although the result seems very
good, there is still one problem which is the occurrence of noise. For all results,
after a certain time, the noise will start to become visible and make the video
blur. However, through GPDM, it is more robust to noise compared to AR
process since it contains a latent space account for the dynamics in the input
data. As shown in Fig.7, the 20th, 25th and 30th frames generated by PCA
and AR process contain much more noise than the ones produced by PPCA
and GPDM at each corresponding frame number. Based on our experimental
results, we may conclude that video textures generated by PPCA and GPDM
can provide better results with more robustness to noise than AR approach. The
synthesized new video textures contain similar motions as the input video clips
and all frames in the new video textures are completely new.

(a) (b) (c)

(d) (e) (f)

Fig. 7. (a), (b) and (c) illustrate the 20th, 25th and 30th frames synthesized by PPCA
and GPDM; (d), (e) and (f) demonstrate the 20th, 25th and 30th frames generated by
PCA and AR process

5 Conclusion and Future Works

In this paper, we proposed a new approach for generating video textures us-
ing PPCA and GPDM. GPDM is a nonparametric model for learning high-
dimensional nonlinear dynamical data sets. We have tested PPCA and GPDM
on several movie clips, it can generate video textures containing frames that
never appeared before with similar motions as the original video. Compared
with PCA and AR process, PPCA and GPDM can produce better results with
more robustness to noise. Unfortunately, video textures synthesized by PPCA
and GPDM still have visual discontinuities for some highly structured and vari-
able motions (such as dancing and fighting). Thus, there might be some more
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potential improvements on generating video textures. Since GPDM is highly de-
pendent on the kernel functions, selection of a better function would be a key
factor for improving the predictive power. Besides this, We also would like to
modify the statistical model of the GPDM in order to acquire the ability of
modelling highly variable motion sequences in the future.
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Abstract. In this paper, we propose a fuzzy-feature based method for online up-
per body tracking using an IP PTZ camera. Because the camera uses a built-in
web server, camera control entails camera response time and network delays, and
thus, the frame rate is irregular and in general low (2-7 fps). It detects at every
frame, candidate targets by extracting motion, a sampling method, and appear-
ance. The target is detected among samples with a fuzzy classifier. Results show
that our system has a good target detection precision (> 85%), low track frag-
mentation, and the target is almost always localized within 1/6th of the image
diagonal from the image center.

1 Introduction

People detection and tracking are important capabilities for applications that desire to
achieve a natural human-machine interaction such as people identification. Here, we are
interested in human upper body tracking by an IP PTZ camera (a network-based camera
that pans, tilts and zooms). Upper body tracking determines the location of the upper
body in each image. An IP PTZ camera communicates and responds to command via
its integrated web server after some delays. Tracking with such camera involves some
difficulties which are: 1) irregular response time to control command, 2) low usable
frame rate (while the camera executes the motion command, the frames received are
useless), 3) irregular frame rate because of network delays (the time between two frames
is not necessarily constant), 4) changing field of view (FOV) resulting from panning,
tilting and zooming and 5) various scales of objects.

Much works on face and upper body tracking have been reported. Comaniciu et al.
[1] applied the mean-shift algorithm to an elliptical region which is modeled by his-
togram for face tracking. They also take advantage of the gradient perpendicular to the
border of the hypothesized face region and background subtraction. This method is not
designed to cope with large motion. The algorithm in Ido et al. [2] works by maximiz-
ing the PDF of the target’s bitmap, which is formulated by the color and location of
pixel at each frame. Severe occlusions are not handled and this algorithm is not very
fast. Roha et al. [3] proposed a contour-based object tracking method using optical flow.
It has been tested by selecting tracked object boundary edges in a video stream with a
changing background and a moving camera. The face region needs to be large and it
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is computationally expensive. In the work of Elder et al. [4] a stationary, preattentive,
low-resolution wide FOV camera, and a mobile, attentive, high-resolution narrow FOV
camera are used. They used skin detection, motion detection and foreground extraction
for face tracking. The advantage of this work is a wide FOV, but it relies on a commu-
nication feedback between two cameras. Funahasahi et al. [5] developed a hierarchical
tracking method using a stationary camera and a PTZ camera. The face needs to be
large enough to detect the irises. Then, detected irises are used as feature for face de-
tection. In the method of Bernardin et al. [6] the upper body histogram information,
KLT feature tracker, and active camera calibration are combined to track the person
for 3D localization application. In the algorithm of Li et al. [7] each observer should
be learned from different ranges of samples, with various subsets of features. Learn-
ing step is based on model complexity and increases computation time. The method
has limitations in distinguishing between different targets, and has model overupdating
problems. Kang et al. [8] uses a geometric transform-based mosaicing method for per-
son tracking by a PTZ camera. For each consecutive frame, it finds the good features for
the correspondence and then tries to shift the moved image. They are using a high cost
background modeling using a calibration scheme, which is not suitable for tracking by
internet-based PTZ cameras.

In our work, we want to cope with the problem of large motion detection, low us-
able frame rate, and tracking with various scale changes. In addition, the tracking algo-
rithm should handle the camera response time. The proposed method consists of target
modeling to represent the tracked object, target candidates detection (sampling), target
localization using a fuzzy classifier, target position prediction and camera control to
center the PTZ camera on the target. Results show that our system has a good target
detection precision (> 85%), low track fragmentation, and the target is almost always
localized within 1/6th of the image diagonal from the image center.

2 System Architecture and Methodology

The servo controlling and tracking system is modeled by a closed-loop control which
has a negative feedback as shown in Fig. 1. It consists of three main blocks : image
capture, upper body detection and camera control. Tracking is affected by two delays
which are the delay from image capture and the delay in the feedback loop from exe-
cuting camera motion commands. The delay from upper body detection is considered
negligible compared to the two other delays. The input of the system is the current pan

Fig. 1. The system architecture and servo control model. (θ0,φ0):initial pan-tilt angles,
(∆θ12,∆φ12) means (θ1-θ2,φ1-φ2).
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and tilt angles of the camera and the output will be the determined pan and tilt angles
by the fuzzy classifier. The delays imply the current position of the target cannot be
used for centering the camera. The algorithm in upper body detection has three steps:
1) target modeling to represent the tracked object, 2) target candidates detection (sam-
pling), and 3) target localization by scoring sample features. Target position prediction
and camera control utilize the upper body detection results. To compensate for motion
of the target during the delays, a position predictor block is added. Camera control is
used to put the image center of PTZ camera on the target. We have made the follow-
ing assumptions: 1) skin detection will be done over the yellow, white, light brown and
pink color skin types from number 1 to 26 on Von Luschans skin chromatic scale (al-
most 73% of all skin types in the world [9]), 2) persons walk at a normal pace or fast,
but do not run, 3) the target person can walk in any direction, but the face should be
always visible partially, 4) a wide FOV (approximately 48 ◦) is assumed and scenes are
not crowded (max 2-3 persons).

2.1 Upper Body Detection

Target modeling: A target is represented by an elliptical image region. It is modeled
by two features: 1) quantized HSV color histogram with 162 bins (i.e. 18× 3× 3) and
2) the mean of R, G and B color components of RGB color space of all the pixels inside
of the elliptical region. Initialization is done manually by selecting the top part of the
body (head and torso) of the person. We fit an ellipse inside the bounding box of the
selected region (Fig. 2 (a) and (e)). Ellipse fits better the shape of the head and torso.
Then the initial target M is modeled by the two discussed features.

Target candidates detection (sampling): For tracking, we sample with ellipse the
image around regions of interest, model them and filter them. There are two regions of
interest: 1) areas with motion, 2) the center of the image.

1. Motion-based samples: The first type of samples is detected using motion of the
target from the difference of two consecutive frames while the camera is not mov-
ing. The difference results are noisy and some morphological operations such as
erosion, dilation, image closing (by a circular structuring element of 3 pixels ra-
dius) and filtering (by a 3 × 3 median filter) are used to reduce noise. Whenever a
moving object in the scene has a color similar to the background or has an overlap
with its previous frame position, some parts of the moving object are not detected
as foreground regions. This results in detecting smaller regions that are fragments
of a larger one. Fragments are merged iteratively based on their proximity. The
small regions that are nearby, and whose contours are in intersection, are merged.
A motion-based sample is an ellipse which circumscribes an area with motion.

2. Fixed samples: According to our goal, the object should be always near the image
center. To have robust tracking even when there is no motion from the target, we
consider F additional fixed samples in the image which are generated by a uniform
function and located around the center (typically F = 16). Samples are in large
and small sizes. The largest sample is used for zooming or for object approaching
the camera. Its area is 1/3 of the image area. The small samples are used for a target
far from the camera and close to the center in different positions. The sizes of these
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Examples of tracking frames for Exp1 (a) to (d) and Exp8 (e) to (h). Exp1 (a) initial
model selection, (b) short-term occlusion, (c) after occlusion, (d) scale variation; Exp8 (e) initial
model selection, (f) short-term occlusion, (g) after occlusion, (h) scale variation.

elliptic samples are obtained experimentally according to the minimum face size,
which is in our algorithm 5x5 pixels from frontal and lateral views.

3. Blob filtering and modeling: Our targets of interest are persons, thus all samples
are filtered by a Bayesian skin classifier which has high true positive rate, simple
implementation and minimum cost [10]. All the skin regions that contain less than
40 skin pixels (less than the half of the minimum face size) or do not contain skin
regions are removed. The torso is assumed to be below the detected skin region and
two times longer than the height of detected skin region. Thus, the ellipse width is
the same as the skin region width, and its height is three times longer than the skin
region height.

Sample likelihood using a fuzzy classifier: To localize the target, features of each
sample Si are compared with the initial model M , and a score (ScoreSi) as a sample
liklihood is given to each Si using a fuzzy rule. The score is obtained by multiplying
four fuzzy membership functions which will be explained in the following.

ScoreSi = µEC .µEP .µEH .µH . (1)

The target is the sample with the highest score. We are using four membership func-
tions, each with fuzzy outputs between 0 and 1:

1. The membership function µEC is used for Euclidean distance of mean RGB of Si

(Rsi, Gsi, Bsi) with the mean RGB of M (Rm,Gm, Bm). It is defined as

µEC = 1−
√

(Rsi −Rm)2 + (Gsi −Gm)2 + (Bsi −Bm)2

255
√

3
. (2)
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2. The membership function µEP is utilized for Euclidean distance of Si centroid,
(xsi, ysi), from the image center,(xim, yim). Indeed normally, the person should
be near the image center. σ2 is equal to a quarter of the image area around the
image center. It is defined as

µEP = exp(− (
√

(xsi − xim)2 + (ysi − yim)2)2

2σ2 ). (3)

3. The membership function (µEH) is applied for Euclidean distance of normalized
quantized HSV color histogram of Si, Hsi, with the histogram of M , Hm, with n
histogram bins [11]. It is computed as

µEH = 1−
√∑

n(Hsi[n]−Hm[n])2

2
. (4)

4. Finally the membership function of µH is used for similarity of normalized quan-
tized HSV color histogram of Si with histogram of M with average of normalized
histograms of H̄si and H̄m respectively [12]. It is the normalized correlation coef-
ficient of two histograms and is defined as

µH =
1
2

+
∑

n((Hsi[n]− H̄si)(Hm[n]− H̄m))

2×
√∑

n (Hsi[n]− H̄si)2
√∑

n (Hm[n]− H̄m)2
. (5)

2.2 Target Position Prediction and Camera Control

As discussed in Section 2, a position predictor based on the two last motion vectors has
been designed to compensate for motion of the target during the delays. This motion
predictor will consider the angle between two consecutive motion vectors. If the angle
difference is smaller than 25 ◦, it is assumed the target is moving in the same direction.
Thus the system will put the camera center on the predicted position which is :

xP = xE + τ̄2 ×
∆x1 +∆x2

τ1
1 + τ2

1
. (6)

where ∆x1 and ∆x2 are the two target displacement vectors (i.e. target motion vector).
τ1
1 , τ2

1 are delay τ1 between two last captured images. xP is the predicted target coordi-
nate and xE is the extracted target coordinate from the fuzzy classifier. τ̄2 is the average
delay time τ2 obtained from previous camera movements. To follow the target, the PTZ
motors are commanded based on xP . Camera is controlled by computing the pan and
tilt angles from a workstation and sending HTTP POST request using the CGI scripts
of the camera [13].

3 Results and Discussion

We used one Sony IP PTZ camera (SNC-RZ50N) for our tests. For validation, we tested
the complete system in online experiments. The algorithm is implemented on an Intel
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Xeon(R) 5150 in C++ using OpenCV. The tracking algorithm has been tested over
events such as entering or leaving the FOV of the camera and occlusion with other peo-
ple in the scene. We recorded all the experiments to extract their ground-truth manually
for performance evaluation. In the general scenario of the experiments, a target actor
from the frontal view is selected for initial modeling. She starts to walk around in a
room. Two or three actors can walk at the same time in different directions, crossing
and occluding with the target. Fig. 2 shows the initial model selection and some frames
obtained during tracking. We have done ten experiments with the IP camera and experi-
ments are classified into two classes based on the image resolution as described in table
2. To evaluate our method, four metrics are used as explained in table 1.

Table 1. Evaluation metrics

Metric Description

P = TP
TP+F P

to calculate the target localization accuracy

dgc =
√

(xc−xg)2+(yc−yg)2

a
to evaluate the dynamic performance of the tracking system; It is the
spatial latency of the tracking system, as ideally, the target should be
at the image center.

dgp = TOUT
NF

to evaluate the error of tracking algorithm. Ideally, dgp should be
zero.

TF = TP
TP+F P

to indicate the lack of continuity of the tracking system for a single
target track [14]

TP : number of frames with target located correctly, FP :number of frames with target not lo-
cated correctly, a: radius of circle which circumscribes the image, (xg ,yg): ground-truth target
coordinate, (xc,yc): image center, (xp,yp): tracked object coordinate, TOUT : number of frames
with target out of FOV, NF : total number of frames.

Table 2 shows the results of the four metrics with the system frame rate for all exper-
iments. For dgc and dgp, we show the mean and variance of all experiments. For class
1, because of the lower system frame rate, the method has lost the target several times,
but eventually recovers. Because of dEP and camera control, the error on µdgc has ef-
fect on µdgp and vice versa. For class 2, the system frame rate is increased because of
smaller image size. Thus TF for class 2 is smaller than class 1. A faster system frame
rate improves the results of TF , µdgc , µdgp and P . The last two columns in Table 2
are the minimum and maximum length of target motion vector in number of pixels. Re-
sults show that our algorithm can handle and overcome large motion (i.e. high values of
max(∆x)) because of using a repetitive target detection scheme and motion prediction
technique that does not rely on spatial proximity. It will lose a target only if the tar-
get changes its motion direction suddenly and walks very fast in the opposite predicted
position (e.g. experiments with TF �= 0). By using a repetitive detection scheme and
combining it with a motion predictor, we can handle random motion between frames, as
long as the target position is well predicted, and its appearance does not change signifi-
cantly. The motion predictor is used to compensate the two delays τ1 and τ2 discussed
in Section 2, which may cause the target to exit the FOV.
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Table 2. Experimental results

P (%) TF (%) µdgc σ2
dgc

µdgp σ2
dgp

FR(fps) NF ∆xmin ∆xmax IS IMP

E1 97 2.3 0.1834 0.0296 0.0573 0.0047 3.02 563 10 246 L N

E2 96 1.5 0.1180 0.0170 0.0232 0.0009 2.98 472 1 194 L N

E3 88 1.8 0.2462 0.0341 0.0774 0.0043 2.75 524 3 306 L F

E4 92 2.1 0.1427 0.0209 0.0420 0.0018 2.64 602 2 562 L F

E5 70 1.7 0.3194 0.0618 0.0690 0.0044 3.1 578 12 391 L M

class 1 88 1.9 0.2019 0.0327 0.0538 0.0032 2.88 2739 1 562 L A

E6 94 0.7 0.1597 0.0354 0.0302 0.0019 6.18 908 1 242 S N

E7 100 0 0.1101 0.0156 0.0395 0.0022 6.22 964 0 184 S N

E8 100 0 0.0997 0.0127 0.0215 0.0012 6.87 889 2 152 S F

E9 93 0.4 0.1210 0.0368 0.0282 0.0026 6.69 952 0 154 S F

E10 90 0.2 0.3577 0.0341 0.0877 0.0032 6.97 994 2 255 S M

class 2 95 0.26 0.1696 0.0269 0.0414 0.0022 6.57 4707 0 255 S A

µdgc : mean of dgc, µdgp : mean of dgp, σ2
dgc

: variance of dgc, σ2
dgp

: variance of dgp, FR: System
frame rate and ∆xmin and ∆xmax: minimum and maximum motion vector length, IS: Image
Size, IMP: Initial model position from camera, N: Near, F: Far, M: Middle, L: 640 x 480, S: 320
x 240, A: All possible initial model positions from camera.

Generally, according to the mean of distances, the location of the target is near to the
ground-truth. The target is usually localized within 1/6th of the image diagonal from the
image center. With faster system frame rate the results of tracking have been improved
significantly. When localization fails, it is because of similarity or closeness of the color
histogram of the target with other blobs. The image resolution has effect on the system
frame rate and thus on tracking error. In all experiments, there are scale changes to
verify tracking against scaling. Our algorithm can overcome scaling variations even
in the image with minimum 5 × 5 face size (e.g. Fig.2(e) and (d)). It is because of
using normalized color histogram and average color features. These two features are
independent of the size of the target. Our method can also recover the tracking if it loses
the object ( e.g. experiments with TF �= 0), because of the repetitive detection scheme.
Of course, it is conditional to the object being in the FOV of the camera. Occlusions
are handled in the same way. However, when the object is occluded, another similar
object will be tracked (the most likely candidate blob) until the occlusion ends. This
could cause the real target to become out of the FOV of the camera. Fig. 2 shows an
example of short-term occlusion handling. The proposed method can handle it in this
case. In the reported experiments, occlusion did not cause difficulties. The duration of
the experiments is short because the goal the algorithm will be zooming on target face
and capturing it for identification purpose.

4 Conclusion

In this paper, an upper body tracking algorithm for IP PTZ camera in online application
is proposed. The proposed method consists of three main parts: image capture, upper
body detection and camera control. We use a fuzzy classifier because our system has
uncertainty and is nonlinear. Results show that our algorithm can handle and overcome
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large motion between two consecutive frames, because it is based on combination of
re-detecting the target and target position prediction at each frame. We will lose a target
if the person changes its motion direction suddenly and walks very fast in the opposite
predicted direction. We can recover the track if the target moves inside the FOV of the
camera again. The proposed method can handle indirectly the short-term occlusion at
the condition that the object stays in the FOV. We get better results with faster system
frame rate.

Future work of the method will be adding camera zooming and enhancing robustness
of the motion prediction to prevent the target being out of the camera FOV.
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Abstract. This paper presents a comparison of two classifiers that are used as a 
first step within a probabilistic object recognition and tracking framework 
called PIORT. This first step is a static recognition module that provides class 
probabilities for each pixel of the image from a set of local features. One of the 
implemented classifiers is a Bayesian method based on maximum likelihood 
and the other one is based on a neural network. The experimental results show 
that, on one hand, both classifiers (although they are very different approaches) 
yield a similar performance when they are integrated within the tracking 
framework. And on the other hand, our object recognition and tracking frame-
work obtains good results when compared to other published tracking methods 
in video sequences taken with a moving camera and including total and partial 
occlusions of the tracked object. 

Keywords: Object tracking, object recognition, occlusion, performance evaluation. 

1   Introduction 

The first important issue while dealing with object locating and tracking is to deter-
mine the type of object model to learn, which usually depends on the application 
environment. In our case, we want a mobile robot equipped with a camera to locate 
and track general objects (people, other robots, wastepaper bins…) in both indoor and 
outdoor environments. 

On one hand, a useful model should be relatively simple and easy to acquire from 
the result of image processing steps. For instance, the result of a color image segmen-
tation process, consisting of a set of regions or spots, characterized by simple features 
related to color, may be a good starting point to learn the model. Hence, we have 
decided to represent an object just as an unstructured set of pixels.  

On the other hand, we want the system to have the capacity of determining occlu-
sions and re-emergencies of tracked objects. Various approaches that analyze occlu-
sion situations have been proposed. The most common one is based on background 
subtraction [1]. Although this method is reliable, yet it only works with a fixed cam-
era and a known background, which is not our case. Other approaches are based on 
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examining the measurement error for each pixel [2, 3]. The pixels that their measure-
ment error exceeds a certain value are considered to be occluded. These methods are 
not very appropriate in outdoor scenarios, where the variability of the pixel values 
between adjacent frames may be high. Finally, contextual information is exploited in 
[4, 5], but in these approaches, there is a need of knowing a priori the surroundings of 
the mobile robot. 

This paper presents a comparison of two possible alternative classifiers to deal with 
the first step of a previously reported approach for integrated object recognition and 
tracking [6, 7]. These are a simple Bayesian method and a neural net based method, 
both providing posterior class probabilities for each pixel of the images. 

The rest of the paper is organized as follows. A summary of our probabilistic 
framework for object recognition and tracking is given in Section 2. The methods 
used for the static recognition module are described in Section 3. Experimental results 
are presented in Section 4. Finally, conclusions are drawn in Section 5. 

2   A Probabilistic Framework for Object Recognition and 
Tracking 

Let us assume that we have a sequence of 2D color images I t(x,y)  for t=1,…,L, and 
that there are a maximum of N objects of interest in the sequence of different types 
(associated with classes c=1,…,N), and that a special class c=N+1 is reserved for the 
background.  Hence, we would like to obtain N sequences of binary images  Tc

t(x,y),  
that mark the pixels belonging to each object in each image; these images are the 
desired output of the whole process and can also be regarded as the output of a track-
ing process for each object.  

In our PIORT (Probabilistic Integrated Object Recognition and Tracking) frame-
work [6, 7], we divide the system in three modules. The first one performs object 
recognition in the current frame (static recognition) and stores the results in the form 
of probability images (one probability image per class) Qc

t(x,y), that represent for 
each pixel the probabilities of belonging to each one of the objects of interest or to the 
background, according only to the information in the current frame (see Section 3). In 
the second module (dynamic recognition), the results of the first module are used to 
update a second set of probability images, pc

t(x,y), with a meaning similar to that of 
Qc

t(x,y) but now taking into account as well both the recognition and tracking results 
in the previous frames through a dynamic iterative rule. Finally, in the third module 
(tracking decision), tracking binary images Tc

t(x,y) are determined for each object 
from the current dynamic recognition probabilities, the previous tracking image of the 
same object and some other data, which contribute to provide a prediction of the ob-
ject’s apparent motion in terms of translation and scale changes. See [6] for a detailed 
description of the second and third modules and [7] for an extension of the tracking 
decision module. 

3   Static Recognition Module 

The static recognition module in our PIORT framework is based on the use of a clas-
sifier that is trained from examples and provides posterior class probabilities for each 
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pixel from a set of local features. The local features to be used may be chosen in 
many different ways. A possible approach consists of first segmenting the given input 
image I t(x,y) in homogeneous regions (or spots) and computing some features for 
each region that are afterwards shared by all its constituent pixels. Hence, the class 
probabilities Qc

t(x,y) are actually computed by the classifier once for each spot in the 
segmented image and then replicated for all the pixels in the spot. For instance, RGB 
colour averages can be extracted for each spot after colour segmentation and used as 
feature vector v(x,y) for a classifier. In the next two subsections we present two spe-
cific classifiers that have been implemented and tested within the PIORT framework 
using this type of information.  

3.1   A Simple Bayesian Method Based on Maximum Likelihood and 
Background Uniform Conditional Probability 

Let c be an identifier of a class (between 1 and N+1), let B denote the special class 
c=N+1 reserved for the background, let k be an identifier of an object (non-
background) class between 1 and N, and let v represent the value of a feature vector. 
Bayes theorem establishes that the posterior class probabilities can be computed as 
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Our simple Bayesian method for static recognition is based on imposing the two fol-
lowing assumptions: 

 

a) equal priors: all classes, including B, will have the same prior probability, i.e. 
P(B)=1/(N+1) and P(K)=1/(N+1) for all k between 1 and N. 

b) a uniform conditional probability for the background class, i.e. P(v|B)=1/M, 
where M is the number of values (bins) in which the feature vector v is  
discretized.   

 

Note that the former assumption is that of a maximum likelihood classifier, whereas 
the latter assumes no knowledge about the background. After imposing these condi-
tions, equation (1) turns into 
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and this gives the posterior class probabilities we assign to the static probability im-
ages, i.e. Qc

t(x,y) = P(c | v(x,y)) for each pixel (x,y) and time t.  
It only remains to set a suitable M constant and to estimate the class conditional 

probabilities P(v | k) for all k between 1 and N (object classes). To this end, class 
histograms Hk are set up using the labelled training data and updated on-line after-
wards using the tracking results in the test data.  

For constructing the histograms, let v(x,y) be the feature vector consisting of the 
original RGB values of a pixel (x,y) labelled as belonging to class k. We uniformly 
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discretize each of the R, G and B channels in 16 levels, so that M =16×16×16= 4096. 
Let b be the bin in which v(x,y) is mapped by this discretization. To reduce discretiza-
tion effects, a smoothing technique is applied when accumulating counts in the histo-
gram as follows:  
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                             (3) 

where the number of neighbors of b (using non-diagonal connectivity) varies from 3 
to 6, depending on the position of b in the RGB space. Hence, the total count Ck of the 
histogram is increased by ten (instead of one) each time a pixel is counted and the 
conditional probability is estimated as P(v | k) = Hk(b) / Ck  where b is the bin corre-
sponding to v. The above smoothing technique is also applied when updating the 
histogram from the tracking results; in that case the RGB value v(x,y) in the input 
image I t(x,y) of a pixel (x,y) is used to update the histogram Hk (and the associated 
count Ck) if and only if Tk

t(x,y)=1. 

3.2   A Neural Net Based Method 

In this method, a neural net classifier (a multilayer perceptron) is trained off-line from 
the labelled training data. The RGB colour averages extracted for each spot after 
colour segmentation are used as feature vector v(x,y) and supplied as input to the 
network in both training and test phases. To the contrary of the Bayesian method 
described previously, training data for the background class are also provided by 
selecting some representative background regions in the training image sequence, 
because the network needs to gather examples for all classes including the back-
ground. The network is not retrained on-line using the tracking results in the test 
phase (this is another difference with respect to the Bayesian method described). 

It’s well known that using a 1-of-c target coding scheme for the classes, the outputs 
of a network trained by minimizing a sum-of-squares error function approximate the 
posterior probabilities of class membership (here, Qc

t(x,y) ), conditioned on the input 
feature vector [8]. Anyway, to guarantee a proper sum to unity of the posterior prob-
abilities, the network outputs (which are always positive values between 0 and 1) are 
divided by their sum before assigning the posterior probabilities. 

4   Experimental Results 

We were interested in testing both PIORT approaches in video sequences taken with a 
moving camera and including object occlusions. To this end, we have used three test 
sequences with N=1 objects of interest to track, which are available at http://www-
iri.upc.es/people/ralqueza/S5.avi, S8.avi and S9.avi, respectively. The first sequence 
shows an office scene where a blue ball is moving on a table and is temporally oc-
cluded, while other blue objects appear in the scene. A similar but different sequence 
was used for training a neural network to discriminate between blue balls and typical 
sample regions in the background and for constructing the class histogram of the blue 
ball (available at http://www-iri.upc.es/people/ralqueza/bluetraining.avi). The second 
sequence is a long sequence taken on a street where the aim is to track a pedestrian 
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wearing a red jacket and which includes total and partial occlusions of the followed 
person. In this case, a short sequence of the scene taken with a moving camera located 
in a different position was used as training sequence (http://www-iri.upc.es/people/ 
ralqueza/redpedestrian_training.avi).  The third sequence, S9.avi, is even longer and 
shows an outdoor scene in which a guy riding a Segway robot and wearing an orange 
T-shirt is followed; the associated training sequence is at http://www-iri.upc.es/ 
people/ralqueza/T-shirt_training.avi. 

All images in the sequences were segmented independently using the EDISON im-
plementation of the mean-shift segmentation algorithm, code available at http:// 
www.caip.rutgers.edu/riul/research/code.html. The local features extracted for each 
spot of each image were the RGB colour averages of the pixels in that spot. For object 
learning, spots selected through ROI (region-of-interest) windows in the training 
sequence were collected to train a two-layer perceptron using backpropagation and to 
build the target class histogram. When using the neural net in the test phase, the class 
probabilities for all the spots in the test sequences were estimated from the net out-
puts. When using the histogram, the spot class probabilities were estimated according 
to equation (2). In both cases, the spot class probabilities were replicated for all the 
pixels in the same spot. For object tracking in the test sequences, ROI windows for 
the target object were only marked in the first image to initialise the tracking process.  

The results for the test sequences were stored in videos where each frame has a 
layout of 2 x 3 images with the following contents: the top left is the image seg-
mented by EDISON; the top middle is the image of probabilities given by the static 
recognition module for the current frame; the top right is the a priori prediction of the 
tracking image; the bottom left is the image of dynamic probabilities; the bottom right 
is the a posteriori binary tracking image (the final result for the frame); and the bot-
tom middle is an intermediate image labelled by the tracking module where yellow 
pixels correspond to pixels labelled as “certainly belonging to the object”, light blue 
pixels correspond to pixels initially labelled as “uncertain” but with a high dynamic 
probability, dark blue pixels correspond to pixels labelled as “uncertain” and with a 
low probability, dark grey pixels are pixels labelled as “certainly not belonging to the 
object” but with a high probability and the rest are black pixels with both a low prob-
ability and a “certainly not belonging to the object” label. The tracking results videos 
with this layout are attainable at http://www-iri.upc.es/people/ralqueza/S5_NN.mpg, 
S5_Bayes.mpg, S8_NN.mpg, S8_Bayes.mpg, S9_NN.mpg and S9_Bayes.mpg. 

For comparison purposes, tracking of the target objects in the test sequences was 
also carried out by applying the six following methods, which only need the ROI 
window mark in the first frame of the test sequence: Template Match by Correlation, 
which refers to normalized correlation template matching [9]; Basic Meanshift [10]; 
Histogram Ratio Shift [11]; Variance Ratio Feature Shift [12]; Peak Difference Fea-
ture Shift [12]; and Graph-Cut Based Tracker [13].   

From the tracking results of all the tested methods, two evaluation metrics were 
computed for each frame: the spatial overlap and the centroid distance [14]. The 
spatial overlap is defined as the overlapping level A(GTk,STk) between the ground 
truth GTk and the system track STk in a specific frame k: 
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and Dist(GTCk, STCk) refers to the Euclidean distance between the centroids of the 
ground truth (GTCk) and the system track (STCk) in frame k. Naturally, the larger the 
overlap and the smaller the distance, the better performance of the system track. 

Since the centroid distance can only be computed if both GTk and STk are non-null, 
a failure ratio was measured as the number of frames in which either GTk or STk was 
null (but not both) divided by the total number of frames. Finally, an accuracy meas-
ure was computed as the number of good matches divided by the total number of 
frames, where a good match is either a true negative or a true positive with a spatial 
overlap above a threshold of 0.243 (which is the overlap obtained between two circles 
of the same size when one of the centers is located in the border of the other circle). 

Tables 1, 2 and 3 present the results (mean ± std. deviation) of the two former 
evaluation measures together with the failure ratio and accuracy of each tracking 
method for the three tests (best values in bold). Our PIORT tracking methods worked 
fine in the three test sequences, obtaining the best values of the evaluation measures 
and outperforming clearly the rest of the methods compared.  

Table 1. Tracking performance results on blue ball test sequence (103 frames) 

Tracking method Spatial Overlap Centroid Distance Failure 
Ratio 

Accuracy 

1Template Match by Correlation  0.275 ± 0.481 74.65 ± 91.53 0.192 0.433 
2 Basic Meanshift 0.234 ± 0.523 78.40 ± 90.33 0.192 0.365 

3 Histogram Ratio Shift  0.155 ± 0.450 125.88 ± 111.80 0.433 0.298 

4 Variance Ratio Feature Shift  0.197 ± 0.375 96.72 ± 134.84 0.385 0.596 
5 Peak Difference Feature Shift 0.281 ± 0.566 103.60 ± 136.77 0.413 0.587 
6 Graph-Cut Based Tracker 0.007 ± 0.287 188.79 ± 118.13 0.750 0.212 

7 Our Tracker  PIORT-Neural Net 0.603 ± 0.400 12.53 ± 59.38 0.048 0.952 
8 Our Tracker  PIORT-Bayesian 0.586 ± 0.394 12.46 ± 59.40 0.048 0.952 

Table 2. Tracking performance results on pedestrian test sequence (215 frames) 

Tracking method Spatial Overlap Centroid Distance Failure 
Ratio 

Accuracy 

1Template Match by Correlation  0.441 ± 0.307 25.25 ± 61.10 0.066 0.772 
2 Basic Meanshift 0.241 ± 0.581 72.08 ± 64.33 0.066 0.336 

3 Histogram Ratio Shift  0.354 ± 0.237 13.49 ± 38.27 0.024 0.644 

4 Variance Ratio Feature Shift  0.453 ± 0.320 34.27 ± 81.13 0.118 0.820 
5 Peak Difference Feature Shift 0.503 ± 0.203 11.42 ± 45.11 0.033 0.953 
6 Graph-Cut Based Tracker 0.039 ± 0.323 194.7 ± 105.3 0.772 0.161 

7 Our Tracker  PIORT-Neural Net 0.790 ± 0.238 11.90 ± 50.87 0.043 0.957 
8 Our Tracker  PIORT-Bayesian 0.737 ± 0.244 11.15 ± 48.14 0.038 0.953 
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Table 3. Tracking performance results on guy-on-Segway test sequence (297 frames) 

Tracking method Spatial Overlap Centroid Distance Failure 
Ratio 

Accuracy 

1Template Match by Correlation  0.102 ± 0.526 130.3 ± 69.75 0.003 0.149 

2 Basic Meanshift 0.221 ± 0.126 41.30 ± 58.70 0.010 0.402 

3 Histogram Ratio Shift  0.527 ± 0.252 22.83 ± 58.43 0.054 0.861 

4 Variance Ratio Feature Shift  0.691 ± 0.249 27.69 ± 75.15 0.101 0.895 
5 Peak Difference Feature Shift 0.556 ± 0.207 29.19 ± 74.65 0.101 0.895 
6 Graph-Cut Based Tracker 0.136 ± 0.218 101.6 ± 112.7 0.365 0.193 

7 Our Tracker  PIORT-Neural Net 0.734 ± 0.156 3.40 ± 14.77 0.003 0.973 
8 Our Tracker  PIORT-Bayesian 0.743 ± 0.132 3.70 ± 14.61 0.003 0.980 

5   Conclusions and Future Work 

In this paper, we have compared two static recognition methods which are embedded 
in a probabilistic framework for object recognition and tracking in video sequences 
called PIORT. Both methods are based on the use of a classifier that is trained from 
examples and provides posterior class probabilities for each pixel from a set of local 
features. The first classifier is based on a maximum likelihood Bayesian method in 
which the conditional probabilities for object classes are obtained from the informa-
tion of the class histograms (for discretized RGB values) and a uniform conditional 
probability is assumed for the background. The second classifier is based on a neural 
net which is trained with the RGB colour averages extracted for each spot of the seg-
mented images. 

Even though the characteristics of these two classifiers are quite different, the rec-
ognition and tracking results of PIORT using both approaches were similar in the 
three test sequences, which means that the good ability of PIORT to track the objects 
is mostly due to a smart cooperation of the three inner modules and is not very de-
pendent on the specific method used for object recognition. In the experimental com-
parison with other reported methods for object tracking, PIORT obtained the best 
results and much better in most of the cases than those of the other methods. How-
ever, as observed in some frames of the test sequences, still there are cases where the 
behaviour of the tracking decision module of PIORT should be improved, particularly 
in the step of object re-emergence after occlusion and when other objects of similar 
appearance are next to the target. The upgrade of this tracking module will be subject 
of future research.  
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Abstract. High-definition 3D video is one of the features that the next genera-
tion of telecommunication systems is exploring. Real-time requirements limit 
the execution time of stereo-vision techniques to 40-60 milliseconds. Classical 
belief propagation algorithms (BP) generate high quality depth maps. However, 
the huge number of required memory accesses limits their applicability in real 
systems.  

This paper proposes a real-time (latency inferior to 40 millisenconds) high-
definition (1280x720) stereo matching algorithm using belief propagation. 
There are two main contributions. The first one is an improved BP algorithm 
with occlusion, potential errors and texture-less handling that outperforms clas-
sical multi-grid bipartite-graph BP while reducing the number of memory ac-
cesses. The second one is an adaptive message compression technique with low 
performance penalty that greatly reduces the memory traffic. The combination 
of these techniques outperforms classical BP by about 6.0% while reducing the 
memory traffic by more than 90%.    

Keywords: Stereo-vision, Belief propagation, High-Definition, Real-Time, 
FPGA. 

1   Introduction 

In current telecommunication systems, the participants normally do not have the feel-
ing of being physically together in one place. In order to improve the immersive face-
to-face experience, tele-presence systems are starting to include 3D video and depth 
estimation capabilities. A typical requirement for these systems [1] includes high 
definition (at least 1280x720 pixels), good immersive feeling (more than 80 disparity 
levels) and low latency (depth estimation in less than 40 milliseconds). 

Stereo matching using Belief Propagation (BP) is one of the most effective depth 
estimation techniques, covering the first positions in the Middlebury rankings. Most 
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of the work using BP is based on the global approach presented in [3], because it 
converges faster and reduces the memory requirements. However, the execution time 
of this algorithm in a CPU cannot satisfy real-time (RT) requirements with high-
definition (HD) images. Other works [4] are focused on local or semi-global methods. 
They reduce the execution time, but they normally lose performance. There are some 
BP algorithms that have been implemented in GPUs although they have limited per-
formance, working with low-resolution images and a small number of disparity levels 
[5][6]. Finally, several FPGA-based implementations of BP algorithms have been 
proposed. In [7], an approach that works with low-resolution images and 16 depth 
levels is proposed. In [2], a RT architecture is presented. However, they work with 
only 16 disparity levels and a phase-based depth estimation algorithm, which per-
forms worse than BP-based algorithms. A recent publication on FPGA [20] is also 
focused on implementing BP-based stereo matching on RT. However, our proposal 
outperforms [20] in three key aspects: first, it perform 1843.2 million disparity esti-
mations per second (obtained as “width*height*fps*Disparity_labels”), being three 
time faster than [20]. Secondly, their results are close to the BP-M algorithm, which 
shows poorer results than our proposal. Finally, our proposal can be implemented in a 
FPGA, while the one in [20] is an ASIC (very expensive and ad-hoc solution). 

With recent hardware advances, memory bandwidth has become a more perform-
ance-limiting factor than the total number of algorithm operations. To confront this 
problem, the image is split into several unconnected regions in [8]. The main draw-
back for RT applications is that the size of the regions is normally very small and this 
greatly reduces performance.  

Here, we present a stereo matching algorithm based on BP. It includes occlusion, 
potential error and texture-less region handling. Several techniques have been used in 
stereo matching for occlusion handling [9]. A simple method of detecting occlusion is 
the cross-checking technique [10]. Other occlusion-handling approaches generate 
better results [11] but they double the computational complexity. Some other tech-
niques have improved depth estimation in texture-less areas [12]. However, they work 
with low-resolution images, 48 disparity levels and they do not satisfy RT require-
ments. Other approaches try to reduce potential error [13], but they work with me-
dium-resolution images, 14.7fps and 40 disparity levels. 

In this paper, we propose a global approach based on a double serial BP. A re-
cently presented work [14] also uses a two-step depth estimation algorithm, although 
with a local approach. Moreover, it does not comply with RT and HD requirements. 
Some proposals [15] use several BP modules and show better performance than ours. 
However, the time they spend to obtain a small image disparity map is 250 times the 
time we use to obtain a HD disparity map. On the other hand, some proposals have 
concentrated on reducing the number of messages in the BP [16][17] or on compress-
ing the messages to reduce memory [18]. However, they are not able to meet HD, RT 
constraints and good results.  

The system described here presents a BP architecture that complies with actual 
tele-presence system requirements [1]. The proposal includes two main contributions: 

1. It splits the algorithm into two BPs that work serially. Between the two blocks, a 
new data-cost is calculated based on a pixel classification. This classification iden-
tifies occlusions, potential-error, texture-less and reliable pixels. This contribution 
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improves the single BP results while reducing the number of memory accesses for 
HD and RT systems (250 times faster than [15]).  

2. It defines an adaptive message compression technique to reduce memory traffic 
with little performance penalty. It provides better balance between performance, 
simplicity and implementation than [16][17][18] . Moreover, [18] shows some 
limitations: the message compression used in [18] is not lineal, which means it has 
to uncompress, operate and compress again. In contrast, our proposal operates 
with compressed messages. Moreover, as was pointed out in [20], in [18] they as-
sume data to be stored with floating point precision, but if the data precision is 8-
bit, only 30-50% compression rate can be achieved. Our proposal achieves more 
than 70%. 

The remainder of this paper is organized as follows. In Section 2, we comment the 
requirements of the tele-presence system. In Section 3, we discuss the double BP with 
occlusion, error and texture-less handling methods, as well as the compression tech-
nique used to meet the memory access requirements. Finally, we present the experi-
mental results and conclusions in Section 4 and 5. 

2   System Requirements 

The tele-presence system, which is developed in [1] must satisfy the following 
constrains: 

1. Real-time system with low latency: the depth-estimation processing time is limited 
to about 40 milliseconds. This requirement is essential to provide presence feeling.  

2. High resolution: the image size is 1280x720 pixels. At this resolution, the cameras 
have a maximum frame rate of 30 fps. 

3. Immersion feeling: in order to obtain a life-like 3D model, at least 80 disparity 
levels seems to be needed. Additionally, a high-quality depth-estimation algorithm 
(i.e. Belief Propagation) is necessary. 

4. Memory bandwidth of the hardware platform:  an actual high-performance plat-
form (for example, a commercial FPGA-based ASIC-prototyping board) has a 
limited maximum external-memory bandwidth (about 153 Gb/seg in the case of 
the paper reference platform [19]). 

As far as the authors know, there are no previous works that can satisfy all these  
requirements.  

3   Proposed System Architecture 

In order to use reference [3]’s algorithm in a real system, several parameters have to be 
defined. In this work we have assumed that the minimum number of iterations and 
levels needed to cover section 2 requirements is 7. The algorithm variables are quanti-
fied using 16 bits and the number of disparity levels is set to 80. The linear truncated 
model [3] was chosen for the messages as it presents a good balance between edge 
information and noise information. With these parameters the BP-based technique 
presented in [3] satisfies the quality constraint (point 3) in the previous section, despite 
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edge error, occlusions and texture-less region flaws. However, it cannot satisfy the RT 
and memory bandwidth restrictions (points 1 and 4). This algorithm will be referred to 
as classical BP.  

One the most restrictive parameters is the number of external memory accesses. 
The actual high-performance platform, which is used as the hardware reference model 
in this work [19], could support up to 6 DDR2-400 memories with 64 bits per mem-
ory data bus. The maximum number of memory accesses that a depth estimation algo-
rithm can perform in this platform is about 384 million. Two parameters have been 
taken into account to obtain this limit: the algorithm variables are quantified with 16 
bits and the estimation time is less than 40 milliseconds. However, if the classical BP 
algorithm is analyzed with the section 3 parameters, the total number of required 
memory accesses will be 2881 million. Thus, the system is far from being implement-
able in an actual high-performance platform and it would require a reduction in the 
number of accesses by almost 90%. 

In order to handle occlusions, potential-errors and texture-less regions that degrade 
the performance of the classical approach, the proposal is to split the BP algorithm 
into two separate BP blocks. Between them, a new module (Occlusion, Error and 
texture-less handling module, OE) classifies the pixels into four categories. Addition-
ally, this module will recalculate the values of the cost function taking into account 
the pixel category. Hereinafter, this algorithm will be denoted as Real-time High-
Definition Belief Propagation (RT-HD BP). It performs the following steps: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The aim of BP1 is to provide the OE module with enough information to classify 

the image pixels. A very important advantage of the proposed technique is that this 
classification can be obtained with a relatively low number of iterations. After the 
pixel classification has been obtained, the second BP (BP2) generates the final depth 
map with a reduced number of iterations. Moreover, it also saves memory traffic, 
performing message passing only on non-reliable pixels (about 20% of the pixels). 

It might seem that the complexity and memory bandwidth requirements of the pro-
posed technique could double the classical BP (there are 2 BP blocks, steps 2 and 6). 
However, the BP1 and BP2 blocks can be implemented in the same hardware module, 
as they have exactly the same architecture. Moreover, the total number of memory 
accesses is reduced with respect to classical BP. In table 1, the number of iterations 
for each level in RT-HD and classical BP are presented. In classical BP, the number 

1. Read left and right images and compute data-cost 
2. Iterative BP (BP1) over all the pixels 
3. Output: for each pixel, send to the output: 

a) Minimum disparity label of the left-image depth map. 
b) Third minimum disparity label of the left-image depth map. 
c) Minimum disparity label of the right-image depth map. 

4. Classify pixels into reliable, occlusion, error and texture-less (OE Module) 
5. Calculate new data-cost based on previous classification (OE Module) 
6. Iterative BP (BP2) only over non-reliable pixels 
7. Output: for each pixel, send to the output: 

• Minimum disparity label of the left depth map (final result). 
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of iterations is constant, but in RT-HD BP it changes with the level. Table 1 presents 
the total number of BP1 and BP2 iterations per level. 

Even though the number of iterations is higher in the first levels (6 to 3), the algo-
rithm reduces the iterations in the last level and this minimizes the total number of 
memory accesses: the classical BP algorithm needs 9.33x accesses while the RT-HD 
BD needs only 7.47x accesses (19.89% less memory traffic). The parameter ‘x’ is a 
function of the image size and disparity levels.  

Table 1. Relation between memory accesses and levels 

Level 0 1 2 3 4 5 6 
Classical BP iterations  7 7 7 7 7 7 7 
RT-HD BP iterations  5 7 7 14 14 14 14 

Memory accesses per iteration x x/4 x/16 x/64 x/264 x/1024 x/4096 
 
The reduction of the number of iterations in the most computationally expensive 

step is a consequence of two advantages of the proposal. First of all, BP1 makes use 
of an empirical observation: most of the pixels that converge to correct values will 
normally do it in a low number of iterations. Thus, the number of iterations of the 
BP1 block can be very little. Secondly, after the pixel classification, the pixel data 
cost depends of the pixel type and this improves BP2 convergence. Additionally, BP2 
only performs message passing over non-reliable pixels, reducing the number of itera-
tions.  Both contributions reduce the number of iterations and memory accesses but 
their computational impact is very limited.  

Occlusion, Edge Error and Texture–Less Area Handling 

In the RT-HD BP algorithm, the pixels are classified in 4 categories in the OE mod-
ule: occluded, potential error, texture-less and reliable pixels.  

The OE module generates the occlusion map using a cross-checking technique 
based on [10]. The module also detects low-textured areas by observing differences 
between the first ten minimum values on the fly. When the medium difference is 
bellow an experimental constant, the pixel is classify as texture-less.   

In BP, the disparity value for a given pixel is the label index that minimizes the 
sum of incoming messages and data-cost. When a pixel has converged in the BP algo-
rithm, the sum of the incoming belief messages (SoIM function) tends to have a linear 
“V” shape (Figure 1.a). This shape is centered on the label index (disparity value). It 
has been empirically observed that the pixels that converge will normally present a 
SoIM function with a well defined “V” shape during the first iterations of the last 
levels (0, 1) in the BP1 module, while the rest of the pixels normally present a non-
“V” shape or a SoIM function with several local minima (Figure 1.b). 

Based on this observation, the proposed algorithm includes a simple technique to 
identify the pixels that probably converge. It is based on the comparison between the 
disparity label of the first and the third minimum. If the SoIM function has a “V” 
shape, the first (1M in figure 1), second (2M) and third (3M) minimum disparity val-
ues will normally be consecutive values. However, if the shape is different, the third 
value will not normally be a consecutive value (Figure 1.b). This simple observation 
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normally produces good results with a very low computational effort. The pixel 
whose SoIM function has a “V” shape will be classified as a reliable pixel and the rest 
are classified as potential error pixels. As occluded and textured-less pixels have pre-
viously been identified, the pixels that are classified as reliable have a high probabil-
ity of having converged to the correct value.   

The OE module generates a two-bit per pixel map that classifies the pixels in four 
categories: reliable, edge-error, occlusion and texture-less pixels. 

New Data Cost 

This module uses the information provided by OE to calculate new data costs as: 

1. Reliable pixels: data cost defined as 0 for their minimum disparity label and a pre-
defined penalty, equal to the maximum truncated value, for the rest labels.  

2. Texture-less pixels: The data cost is 0 for all the disparity labels (unknown). This 
helps texture-less pixels to obtain correct disparity values. 

3. Error pixels: they keep their data cost. 
4. Occluded pixels: take the value of the first non-occluded pixel on their left.   

BP2 limits the message passing to non-reliable pixels, reducing the memory traffic. 
The total memory reduction is about 21%. This reduction is still far from the required 
90%. To reach this limit, a new improvement has been developed. 

 

 
 

Adaptive Message Compression 

The proposed compression method is based on the shape of the belief messages. In-
stead of storing only the envelope points, as in the EPG method in [18], the proposed 
technique stores all the points inside a region around the minimum disparity label. It 
has two main advantages with respect to [18]. Firstly, we do not need to uncompress 
the message prior to operate with it. Secondly, the compression rate drastically de-
creases when using EPG with limited precision. In contrast, we achieve more than 
70% even with fixed point variables.  

In our proposal, the number of stored points is a function of several parameters 
(adaptive approach): iteration, level and pixel type. This can reduce the compression 
factor, but increase the performance and reduce the quality penalty. This adaptive 
technique is applied only to the BP2 block reducing the memory traffic by about 70%. 
The proposed compression technique stores 3 parameters and a set of points per  
message (Figure 1c): 
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1. The offset (OF): first disparity label of the selected region. 
2. Number of disparity labels (NV) of the selected region. 
3. Information values: all the values of the selected region (from OF to OF+NV). 
4. Truncating value (TV): value assigned to all the disparity labels outside the NV. 

The pixels that converge will normally present a shape that is easily and efficiently 
compressed with the proposed techniques. This property, combined with the pixel 
classification that the OE generates, guarantees a good compression factor. 

4   Results 

In order to validate the proposed algorithms, several video sequences [21] have been 
evaluated with the classical and the RT-HD BP. In Fig 2, we show the disparity maps 
that are obtained with classical BP (a), the proposed RT-HD BP without compression 
(b) and the RT-HD BP with enough compression to meet the RT restrictions in sec-
tion 2 (c). Some occlusions have been mitigated, some errors corrected and some 
texture-less zones have been filled in (b,c).  

 

 

 
The RT-HD BP shows an improvement of more than 6% when compared to classi-

cal BP. At the same time, it satisfies section 2’s RT and HD requirements. The mem-
ory reduction of the RT-HD BP with compression is about 90%. To finish this results 
section, we provide Middlebury test results for our proposal in Figure 3 and Table 2, 
comparing the proposal with RT publications ranking Middlebury test. For conven-
ience, we maintain the names used in Middlebury test in Table 2. As can be derived 
from Table 2, our proposal is the only ranking in the test that is able to achieve true 
RT for HD images. The only one whose latency is close to RT (RealtimeBP) works 
with small images. Moreover, between all of the proposals focus on real time, there is 
only one whose position in the ranking is significantly better than our proposal 
(PlaneFitBP) but working at 1fps, which is not RT at all. 

 
 

 
 

 
 

Fig. 3. Middlebury ranking for our proposal 
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Fig. 2. Disparity maps: a)Classical BP b) and c)RT-HD BP without and with compression  
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Table 2. Proposals focus on real-time, in middlebury ranking, comparison 

Parameter Latency(msec) Image resolution Disp. Lev. Rank. 
Proposed RT-HD BP 40 1280x720 80 35.2 

RealTime GPU 183 640x480 48 35.2 
RTCensus -- -- -- 45.6 

Realtime BP 62.5* 320x240 16 30.5 
FastAggreg 600 450x675 60 32.7 
PlaneFit BP 1000* 512x384 48 12.8 

*Latency has been extrapolated from the fps data (18fps≈62.5millisecond and 1fps≈1000 milliseconds). 

5   Conclusions 

In this work we have presented a Real-Time High-Definition depth estimation algo-
rithm based on Belief Propagation. It estimates depth maps in less than 40 millisec-
onds for HD images (1280x720 pixels at 30fps) with 80 disparity values. The work 
exploits the proposed double BP topology and it handles occlusions, potential errors 
and texture-less regions to improve the overall performance by more than a 6% (com-
pared with classical BP) while it reduces the memory traffic by about 21%. Moreover, 
the adaptive message compression method allows the system to satisfy Section-2’s 
real-time and low execution latency requirements, reducing the number of memory 
accesses by more than a 70% with an almost negligible loss of performance (less than 
0.5%). The total memory traffic reduction is about 90% with a 6.0% performance 
improvement (compared with classical BP). 
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Abstract. This paper presents an improvement of a recurrent learning
system called LSTM-CSVM (introduced in [1]) for robot navigation ap-
plications, this approach is used to deal with some of the main issues
addressed in the research area: the problem of navigation on large do-
mains, partial observability, limited number of learning experiences and
slow learning of optimal policies. The advantages of this new version of
LSTM-CSVM system, are that it can find optimal paths through mazes
and it reduces the number of generations to evolve the system to find
the optimal navigation policy, therefore either the training time of the
system is reduced. This is done by adding an heuristic methodoly to find
the optimal path from start state to the goal state.can contain informa-
tion about the whole environment or just partial information about it.

Keywords: Robot navigation, LSTM-CSVM, optimal path, heuristic.

1 Introduction

This paper presents an improvement of the recurrent learning system LSTM-
CSVM [1] for robot navigation applications. The design of LSTM-CSVM sys-
tem is based on Evoke algorithm [evoke], both of them are constructed by two
cascaded modules: (1) a recurrent neural network Long-Short Term Memory
(LSTM) that receives the sequence of external inputs, and (2) a parametric func-
tion that maps the internal activations of the first module to a set of outputs. The
second module is different for these systems: Evoke algorithm uses a real Support
Vector Machine to produce precise final outputs, meanwhile LSTM-CSVM uses
a Clifford generalization of SVM algorithm known as Clifford Support Multivec-
tor Machine (CSVM) [3] to do the same job, but improving the real-computation
time. So, the main advantage of using CSVM approach as second module is that
real-SVM algorithm is transformed into a MIMO SVM without adding com-
plexity. This is done by embedding the optimization problem into a geometric
algebra framework, which allows us to represent the entries to the CSVM, the
optimization variables and the outputs as multivectors and, in this way we can
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represent multiple classes according to the dimension of the geometric algebra
in which we work.

In previous work [1] it is proved that LSTM-CSVM approach gets lower train-
ing and testing errors by showing different experiment results on applications
like time series and comparing them with the results obtained from algorithms
such as Evolino, Echo State Networks and LSTM. Furthermore, it is shown the
performance of LSTM-CSVM on tasks like robot navigation through a maze
using reinforcement learning and neuroevolution approaches to solve this tasks.

The results presented in this paper provide evidence about the improvement
of the performance of LSTM-CSVM for robot navigation, in particular for maze
navigation by adding an heuristic approach which allows us to find the lowest
cost path from the robots start state to the goal state. Other advantage of this
new version is that the number of generations to evolve the system is reduced,
therefore either the training time of the system is reduced.

2 Long Short Term Memory (LSTM)

Learning to extract and represent information from a long time ago has proven
difficult, both for model-based and for model-free approaches. The difficulty lies
in discovering the correlation between a piece of information and the moment
at which this information becomes relevant at a later time, given the distracting
observations and actions between them [4].

LSTM is a recurrent neural network architecture, originally designed for su-
pervised timeseries learning [5]. It is based on an analysis of the problems that
conventional recurrent neural networks and their corresponding learning algo-
rithms, e.g. Elman networks with standard one step backpropagation, Elman
networks with backpropagation through time (BPTT) and real-time recurrent
learning (RTRL), have when learning timeseries with long-term dependencies.
These problems boil down to the problem that errors propagated back in time
tend to either vanish or blow up (see [4]). LSTM’s solution to this problem is
to enforce constant error ow in a number of specialized units, called Constant
Error Carrousels (CECs). This turns out to correspond to the CECs having
linear activation functions which do not decay over time. In order to prevent
the CECs from filling up with useless information from the timeseries, access
to them is regulated using other specialized, multiplicative units, called input
gates. Like the CECs, the input gates receive input from the timeseries and the
other units in the network, and they learn to open and close access to the CECs
at appropriate moments. Access from the activations of the CECs to the output
units (and possibly other units) of the network is regulated using multiplicative
output gates. Similar to the input gates, the output gates learn when the time
is right to send the information stored in the CECs to the output side of the
network. The forget gates learn to reset the activation of the CECs (in a possibly
gradual way) when the information stored in the CECs is no longer useful. The
combination of a CEC with its associated input, output, and forget gate is called
a memory cell.



836 N. Arana-Daniel, C. López-Franco, and E. Bayro-Corrochano

3 Clifford Support Multivector Machine (CSVM)

For the case of the Clifford SVM for classification we represent the data set in
a certain Clifford Algebra [6] Gn where n = p + q + r, where any multivector
base squares to 0, 1 or -1 depending if they belong to p, q, or r multivector bases
respectively. We consider the general case of an input comprising D multivectors,
and one multivector output, i.e. each ith-vector has D multivector entries xi =
[xi1, xi2, ..., xiD]T , where xij ∈ Gn and D is its dimension. Thus the ith-vector
dimension is D×2n, then each data ith-vector xi ∈ GD

n . And each of ith-vectors
will be associated with one output of the 2n posibilities given by the multivector
output yi = yis + yiσ1

+ yiσ2
+ ... + yiI ∈ {±1 ± σ1 ± σ2 . . . ± I} where the

first subindex s stands for scalar part. The dual expression of the optimization
problem to solve by the CSVM1 is: ,

max aT 1− 1
2
aT Ha

subject to

0 ≤ (αs)j ≤ C, 0 ≤ (ασ1 )j ≤ C, ...,

0 ≤ (ασ1σ2)j ≤ C, ..., 0 ≤ (αI)j ≤ C

for j = 1, ..., l, (1)

where H represents the Gramm matrix and it is defined by the Clifford product
of the input vectors x in terms of the matrices of t-grade Ht = 〈x†x〉t, and a,
has the dimensions (l× 2n)× 1, l is the total number of training data, 2n is the
dimension of the geometric algebra and each entry for the vector is given by:

aT
s = [(αs)1(ys)1, (αs)2(ys)1, ..., (αs)l(ys)l]

aT
σ1

= [(ασ1)1(yσ1)1, (ασ1)1(yσ1)1, ..., (ασ1)l(yσ1)l]

..., (2)

aT
I = [(αI)1(yI)1, (αI)1(yI)1, ..., (αI)l(yI)l]

where (αs)j , (ασ1), ..., (ασ1σ2)j , ..., (αI)j ≤ are the Langrange multipliers.
The threshold b ∈ GD

n can be computed by using KKT conditions with the
Clifford support vectors as follows b = (bs + bσ1σ1 + ... + bσ1σ2σ1σ2 + ... + bII)
=
∑l

j=1 (yj − w†T xj)/l.
The decision function can be seen as sectors reserved for each involved class,

i.e. in the case of complex numbers (G1,0,0) or quaternions (G0,2,0) we can see
that the circle or the sphere are divide by means spherical vectors. Thus the
decision function can be envisaged as

y = csignm

[
f(x)

]
= csignm

[
w†T x + b

]
= csignm

[ l∑
j=1

(αj ◦ yj )(x†T
j x) + b

]
(3)

where csignm

[
f(x)

]
is the function for detecting the sign of f(x) and m stands

for the different values which indicate the state valency, e.g. bivalent, tetravalent
and the operation “◦” is defined as
1 The reader can get a detailed explanation about computations of CSVM in [3].
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(αj ◦ yj ) =< αj >0< yj >0 + < αj >1< yj >1 σ1 + ...+ < αj >2n< yj >2n I (4)

simply one consider as coefficients of the multivector basis the multiplications
between the coefficients of blades of same degree. The major advantage of our
approach is that we redefine the optimization vector variables as multivectors.
This allows us to utilize the components of the multivector output to represent
different classes. The amount of achieved class outputs is directly proportional to
the dimension of the involved geometric algebra. The key idea to solve multi-class
classification in the geometric algebra is to avoid that the multivector elements
of different grade get collapsed into a scalar, this can be done thanks to the
redefinition of the primal problem involving the Clifford product instead of the
inner product of the real approach.

For the nonlinear Clifford valued classification problems we require a Clifford
valued kernel K(x, y). In general we build a Clifford kernel K(xm, xj) by taking
the Clifford product between the conjugated of xm and xj as follows

K(xm, xj) = Φ(x†
m)Φ(xj), (5)

note that the kind of conjugation operation † of a multivector depends of the
signature of the involved geometric algebra Gp,q,r . The results of this paper were
obtained using the quaternion-valued Gabor kernel function as follows i = σ2σ3,
j = −σ3σ1, k = σ1σ2. The Gaussian window Gabor kernel function reads

K(xm, xn) = g(xm, xn)exp−iwT
0 (xm − xn) (6)

where g(xm, xn) = 1√
2πρ

exp
− ||xm − xn||2

2ρ2 and the variables w0 and xm − xn

stand for the frequency and space domains respectively. Unlike the Hartley trans-
form or the 2D complex Fourier this kernel function separates nicely the even
and odd components of the involved signal

4 LSTM-CSVM

LSTM-CSVM is an Evoke based system [2]: the underlying idea of these systems
is that it is needed two cascade modules: a robust module to process short and
long-time dependencies (LSTM) and an optimization module to produce precise
outputs (CSVM, Moore-Penrose pseudoinverse method, SVM respectively). The
LSTM module addresses the disadvantage of having relevant pieces of informa-
tion outside the history window and also avoids the problem of the “vanishing
error” presented by algorithms like Back-Propagation Through Time (BPTT)
or Real-Time-Recurrent Learning (RTRL)2. Meanwhile CSVM maps the inter-
nal activations of the fist module to a set of precise outputs, again, it is taken
advantage of the multivector output representation to implement a system with
less process units and therefore less computational complex.
2 The reader can get more information about BPTT and RTRL-vanishing error versus

LSTM-constant error flow in [5].
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LSTM-CSVM works as follows: a sequence of input vectors (u(0)...u(t)) is
given to the LSTM which in turn feeds the CSVM with the outputs of each of
its memory cells.

The CSVM aimed at finding the expected nonlinear mapping of training data.
The input and output equations are:

φ(t) = f(W, u(t),u(t-1),...,u(0),...,).

y(t) = b+
k∑

i=1

wiK(φ(t), φi(t)). (7)

where φ(t) = [ψ1, ψ2, ..., ψn]T ∈ Rn is the activation in time t of n units of the
LSTM, this serves as input to the CSVM, given the input vectors(u(0)...u(t))
and the weight matrix W . Since the LSTM is a recurrent net, the argument of
the function f(.) represents the history of the input vectors.

In the first phase of the training, data were propagated through the LSTM-mod-
ule of the system, it was training using reinforcement learning with advantage-λ
learning to produce a vector of activations φ(t). Once all k sequences have been
seen, the weights wij of the CSVM are computed using support vector regression/
classification from φ to the desired outputs di, with {φ, di} as training set.

In the second phase, a validation set is presented to the network, but now
the inputs are propagated through the LSTM and the newly computed output
connections to produce y(t). The error in the classification/prediction or the
residual error, possibly combined with the error on the training set, is then used
as the fitness measure to be minimized by evolution. By measuring error on the
validation set rather that just the training set, LSTM will receive better fitness
for being able to generalize. Those LSTM that are most fit are then selected for
reproduction where new candidate LSTM are created by exchanging elements
between chromosomes and possibly mutating them. New individuals replace the
worst old ones and the cycle repeats until a sufficiently good solution is found.
Those LSTM that are most fit are then selected for reproduction where new
candidate RNNs are created by exchanging elements between chromosomes and
possibly mutating them. New individuals replace the worst old ones and the
cycle repeats until a sufficiently good solution is found. We evolved the rows of
the LSTM’s weight matrix using the evolutionary algorithms known as Enforced
Sub-Populations (ESP) [7] algorithm. This approach differs with the standard
methods, because instead of evolving the complete set of the net parameters, it
allows to evolve subpopulations of the LSTM memory cells. For the mutation of
the chromosomes, the ESP uses Cauchy density function.

5 LSTM-CSVM with Cost Heuristic for Robot
Navigation through Mazes

We built an LSTM-CSVM system in order to deal with the path planning prob-
lem for one robot moving through a maze of obstacles to a goal. The recur-
rent neural system is used as the function approximator for a model-free, value
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function-based reinforcement learning algorithm. The state of the environment is
approximated by the current observation, (which is the input to the network) to-
gether with the recurrent activations in the network, which represent the agent’s
history. In this case, the recurrent activations in the specialized memory cells,
are supposed to learn to represent relevant information from long ago.

The number of input units of the system is stablished by the size of the
observation vector, which is four and represents if there is (1) or there is not (0)
an obstacle on a particular adjoining position (North, South, East or West). The
LSTM module has four memory cells and their activation output values feed one
CSVM module which give the final four outputs as a multivector, each element
of it represents one of the posible actions to take by the agent on the current
state.

We added to the reinforcement system LSTM-CSVM a heuristic approach:
on each step t of the learning, we compute a heuristic reinforcement signal h(t).
The heuristic reinforcement signal idea is to provide a comparative measure of
output action goodnes for each state. These computations are made by a module
that we called ”‘the critic”’ [8]. At each time t, the environment provides the
path-finder with the input pattern u(t) (environment observation), together with
the environmental reinforcement signal z(t). The input pattern is fed to both
the LSTM-CSVM and the critic. Nevertheless the LSTM-CSVM does not receive
directly the environmental reinforcement signal but the heuristic reinforcement
signal h(t) elaborated by the critic. The latter is that the LSTM-CSVM produces
instantaneously an output patter y(t) that is a multivector which represents the
action to execute by the agent. The environment receives this action y(t) and,
at time t + 1, sends to the LSTM-CSVM both an evaluation z(t + 1) of the
appropriateness of the action y(t) for the observation u(t) and a new stimulus
u(t+ 1).

5.1 The Critic

The goal of the critic is to transform the environmental reinforcement signal
into a more informative signal, namely the heuristic reinforcement signal. This
improvement is based on past experience of the path-finder when interacting
with the environment, as represented bye the reinforced baseline b:

h(t) = z(t)− b(t− 1) (8)

The critic receives the input pattern X(t) and predicts the reinforcement baseline
b(t) with which to compare the associated environment reinforcement signal z(t
+ 1). We use the technique called predicted comparison [9], it computes the
reinforcement baseline as a prediction based on the environmental reinforcement
received when the sameor similarinput patterns occurred. That is, the critic has
to predict the environmental reinforcement signal z(t+ 1) to be received by the
path-finder when the stimulus u(t) is present. In order to undertake this task, the
critic is built as a second network with a supervised learning algorithm to learn
to associate each stimulus with the corresponding environmental reinforcement
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Fig. 1. Left side maze images (1a to 7a) shows path results obtained with LSTM-CSVM
without heuristic. Right side shows optimal paths obtained with heuristic approach of
LSTM-CSVMv(1h to 7h).

signal. In particular, we have used the ”on-line” version of the backpropagation
algorithm with a momentum term. the finding path improves, the mapping from
stimuli to reinforcement changes.

5.2 Results

We evolved the recurrent LSTM-CSVM system during 30 generations using
a Cauchy noise parameter of α = 10−3. The first phase of the experiments
consisted of simulated mazes discretized on 5 by 5 pixels cells. The length of
each maze varies from 100 to 300 cells. Left side of figure 1 shows the paths
found with LSTM-CSVM approach (which was evolved during 60 generations
using a Cauchy noise parameter of α = 10−3) meanwhile right side shows the
shortest paths obtained with heuristic approach of LSTM-CSVM. It is impor-
tant to note that on results obtained with LSTM-CSVM approach the agent
seems to have learned a policy which tells the agent to take action go-north
every time it finds a two junction like shown on (Fig. 1-3a), 7a)). The policy
also tells the agent to take the action go-south on two junction like shown on
(Fig. 1-1a), 5a)). These choices of actions produce suboptimal paths.

Phase two of agent navigation through mazes was applied to real mobile robot
system, it comprises mobile-base robot, a stereoscopic camera and a laser sensor.
The task consisted to move the robot through a real 2D labyrinth. The labyrinths
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Fig. 2. Image sequence of a mobile robot following the shortest path finding by the
heuristic approach of LSTM-CSVM. Blue arrows show the reading order of the images.

used on this phase were much more shorter than the simulated on phase one.
The mazes were discretized on 10 by 10 pixels cells and the length of each maze
varied from 20 to 30 cells. The LSTM-CSVM with heuristic approach was evolved
during 15 generations and the one path found is shown on (Fig. 2). Note that
the mobile robot takes the shortest path to the final goal position.

6 Conclusion

In the robot path finding problem , the consequences of an action can emerge
later in time. Thus, actions must be selected based on both their short- and long-
term consequences. Neverthless many learning algorithms have limited long-term
memory. The approach presented in this paper overcomes this limitation thanks
to its LSTM module which is responsible to capture the short- and long-term
correlation between input data sequences meanwhile the CSVM module allows to
produce precise outputs. By adding the heuristic approach to the LSTM-CSVM
system we can be able to overcome the problem of time consuming of traditional
reinforcement learning in the initial learning phase, this heuristic methodology
also allows to find shortest paths as is shown in the results subsection and along
the numerous experiments that we had conducted.
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Discrete Integral Sliding Mode Control in Visual Object 
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Abstract. A Discrete Integral Sliding Mode algorithm is proposed to control a 
Stereo Vision System (SVS) and perform Visual Object Tracking. The kinema-
tical model of the structure is obtained using Geometric Algebra (GA). The  
localizing part was done in a real SVS in order to obtain the reference for orien-
tation vector and the application for a Pan Tilt Unit is presented. The algorithm 
presents a good and robust performance.  

Keywords: Integral Sliding Mode Control, Visual Tracking, Geometric Algebra. 

1   Introduction 

Consider a stereo vision system (SVS) that is mounted on a mechanical device which 
defines the system’s orientation related to a defined base frame. The global task can be 
divided in two parts: first the system must recognize the target in the scene and extract a 
vector that will characterize the object’s position; then the system must re-define its 
kinematical structure, so its orientation can be aligned with the target’s position. Using a 
stereo system provides the advantage of depth information, this is fundamental in tasks 
like grasping and manipulating objects, in addition to visual tracking. 

1.1   Target Localization 

Model-based algorithms use a pre-obtained model of the object, usually composed of 
lines. From this model, points of interest are projected on the image plane, and when 
the correspondences of these points are located and the image, the target is located as 
well [1]. Global Appearance-based methods segment a region from the image con-
taining the object. Among the algorithms used for feature detection are the Harris 
corner detector and SIFT [2]. Histogram-based methods use histograms obtained from 
the target and it is compared with a reference image in the scene. The histogram uses 
usually color [3] or spatial information. 

1.2   Kinematical Control 

Several algorithms have been used to control robotic devices such as the classic PID 
controller, Adaptive Control [4], Neural Control [5] and Sliding Mode Control (SMC) 
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[6]. Among these methods SMC is one of the most effective approaches due to its 
robustness to matched perturbations, model uncertainties, and it demands a low com-
putational cost. On the other hand, the Integral Sliding Mode Control (ISMC) [7] can 
guarantee the robustness of the closed-loop system throughout the entire response 
starting from the initial time instance, and permits to reduce the controller gains in 
comparison with standard SMC. However, due to a finite sampling rate, continuous-
time sliding mode control could be inappropriate for a discrete-time system. Hence, a 
re-work in the sliding-mode control (SMC) strategy for sampled-data systems was 
necessary [9]. The equivalent control is used in this work to design a chattering-free 
discrete ISM controller (DISMC) for a SVS, and a performance of this controller is 
demonstrated. 

2   Problem Formulation 

A general scheme for a SVS is presented  in Figure 1, where pT  is the target’s point, A  is 

the orientation vector for the SVS, bO  is the origin of the base frame and cO  is the origin 

of the camera frame conveniently attached to the last link of the kinematical device.  

 

Fig. 1. Stereo Vision System and target 

The kinematical model of this structure can be defined as [8]  

( )A f θ=
                                                       

(1) 

where [ ]1,...,
T

nθ θ θ=  is the angles vector of the system, n is the number of joints in 

the kinematical structure and the vector ( )f θ  is defined by the direct kinematics of 

the system. 

2.1   Kinematical Model with GA 

The kinematical model for a serial manipulator can be obtained using a Geometric 
Algebra approach [10], which has the advantage of being a simple procedure. In this 
work geometric algebra 3,0,0G  with the orthonormal base { }1 2 3, ,e e e is used.  
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First we need to define the rotor (geometric entity that defines rotations) for each 
joint of the system as 

1

2 i iL

iR e
θ−

=                                                            (2) 

where iL  is the axis of rotation for the thi  joint given by 

1 1,0L L=  and 1 1 ,0 1 1... ... for =2,..., .i i i iL R R L R R i n− −=  

Then, the actual orientation of the last link A  is obtained of the form  

1 0 1... ...n nA R R A R R= % %                                                      (3) 

where n  is the number of joints (degrees of freedom) of the system, 0A  the initial 

orientation ( 1 ... 0nθ θ= = = ) and iR%  is the reverse vector for thi  joint given by 
1

2 i iL

iR e
θ

=% . Differentiation of equation (2) yields 

AA J θ=& &                                                           (4) 

where AJ  is the Jacobian matrix. This equation defines the Differential Kinematics of 

the system. 

2.2   Discrete State-Space Model 

Defining the reference orientation dA  as the vector conformed by the target’s point 

and the origin of the camera frame, a control error variable can be obtained as fol-
lows: 

A de A A= −                                                       (5) 

Then, using (4) and (5), and adding a disturbance term ( )tγ , due to uncertainties in 

the model, we obtain: 

( )A A de J A tθ γ= − +& && .                                              (6) 

Assuming the terms dA&  and ( )tγ  are unknown, representing them in a perturbation 

vector ( , )d tθ  and considering θ&  as the control vector U , the equation (6) can be 

reformulated as 

( ),A Ae J U d tθ= −& .                                               (7) 

We assume that function ( ),d tθ  is smooth and bounded by known positive scalar 

function 

2( , ) ( , )d t tθ β θ< .                                               (8) 

Using Euler’s discretization, and defining the state-space variables as follows  

1,

2,

k k

k k

x

x A

θ=

=
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we can obtain the discrete state-space model for the system as 

1, 1 1,

2, 1 2, ,

k k k

k k A k k

x x Tu

x x TJ u
+

+

= +

= +
                                                  (9) 

where , ( )i k ix x kT=  for { }1,2i = , and T  is the sample time. Defining the output of 

the system as 2,k ky x=  and the discrete error variable for the system (9) as 

, ,A k k d ke y A= −                                                     (10) 

where ,d kA  is the discrete version of the reference vector, then the dynamics for the 

error system can be obtained using (9) and (10) as 

, 1 2, ,A k k A k k ke x TJ u d+ = + −                                          (11) 

with kd  as the discretization of perturbation vector.  

Now, the problem considered here is to design a Discrete Integral Sliding Mode 
Controller (DISMC) that ensures visual object tracking in despite of external distur-
bance kd . 

3   DISM Controller Design 

Consider the sliding function ks  as 

,k A k ks e z= +                                                    (12) 

where kz  is the integral variable which is given by the following equation 

1 ,k k A kz z TGe+ = −                                               (13) 

electing 0 0z e= −  to ensure sliding mode occurrence on the sliding manifold 0ks =  

from initial instance and G  is a design parameter. 
From (11) and (12), the projection motion of the system on the subspace ks  can be 

obtained of the form 

1 2, , 1k k A k k k ks x TJ u d z+ += + − +                                    (14) 

We define the control as 

,
2,

ˆ( )A k
k k k k k k

J
u x d z TGe Ke

T

+

= − − + − +                            (15) 

where ,A kJ +  is the pseudo-inverse of ,A kJ , ˆ
kd  is the estimation of perturbation term 

and K  is a constant which will be defined later. From (6) and (7) we know that kd  is 

the derivative of reference vector dA , so we can choose its estimation as 

, , 1
ˆ

k d k d kd A A −= −                                                (16) 

Then, the closed loop system (11),(14) and (15) becomes 
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1

1 ,

( )k k k k

k k A k

e TG K e z

s Ke

ϕ
ϕ

+

+

= − − +
= −

                                       (17) 

where ˆ
k k kd dϕ = − , and we can formulate a theorem as follows: 

Theorem 1. If the assumption (8) holds, the control law 

,
2,

ˆ( )A k
k k k k k k

J
u x d z TGe Ke

T

+

= − − + − +                             (18) 

is constructed, the inequality  

2
0

2
G

T
< <

−
                                                    (19) 

holds and 

( 1)K T G= −                                                     (20) 

then a solution of the error dynamics (11) converges asymptotically to a vicinity of 
zero, and this vicinity is bounded by 1k kϕ ϕ −− . 

The proof of the Theorem 1 can, unfortunately, not be included due to its length. 
Thus, the control objective is fulfilled and the SVS with the proposed discrete con-

troller performs tracking of the target. 

4   Application for a Pan-Tilt Unit 

The simulations results of this work were obtained applying the designed controller to 
a Pant-Tilt Unit (PTU). The base frame is defined by the unit vectors { }1 2 3, ,e e e .The 

angles vector is defined as [ ]1 2,
Tθ θ θ= . For simplicity is assumed that the orienta-

tion of the second link A  is identical to the orientation of the principal axis of right 
camera, so there is no need of Hand-Eye calibration. The kinematical model for the 
PTU was obtained as follows. The axes of rotation of the PTU are given by 1,0 3L e=  

and 2,0 1L e= , the actual orientation A  and the Jacobian matrix AJ  are calculated as 

1 2 2 1 1 2

1 2 1 2 1 2

2 2

and

0
A

y y y c y c

A c y J y y c c

c y

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

. 

where ( )sini iy θ=  and ( )cosi ic θ= , 1, 2i = .  

In order to obtain a real reference vector ,d kA , a color segmentation of a moving 

target in a SVS was developed. The SVS is composed of two Flea® cameras from 
Point Grey Research Inc. mounted on a metal bar as depicted in Figure 1. The seg-
mentation was based on HSV color space (Hue-Saturation-Value). First, a calibration 
process for the SVS is realized. Then, the HSV parameters from the target are ob-
tained and compared with the HSV values from the images, resulting in the segmenta-
tion of the target in the images. 
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Fig. 2. Color Segmentation (Right Camera) 

From segmentation the target is located with 2D coordinates for each image; then 
the 3D vector sV , defined from the center of the right camera to the target pT , is 

obtained. Figure 3 shows samples of the segmentation process (right column) and the 
corresponding locations in the image (left column) for the right camera. In total, 45 
pairs of images were captured with a sample time of 220milisecondsT = . The con-

trol parameter for DISMC algorithm is 0.5G = − .A parallel discrete PID algorithm, 

defined by the following equation 

1 , 1 2 1[ ( 2 ) ( )]i
k k A k p s k k k k d k k

s

K
u u J K t e e e e K e e

t
+

− − − −= − + − + + −
 

was applied in simulation and the control gains used were 

15, 0.5, 1.p i dK K K= = =  

The disturbance term kγ  and initial conditions used in both simulations were 

( )
( )

0.5

0.2+0.3sin

-3+0.2cos
k kT

kT

πγ
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 0

/ 2

/ 3

π
θ

π
⎡ ⎤= ⎢ ⎥
⎣ ⎦

, 

and the sample time 220 milliseconds.  

5   Simulation Results 

Figure 3 shows the three components of the orientation vector and their references for 
DISMC and PID algorithms, respectively. It can be appreciated that the goal of con-
trol is fulfilled in both controllers, since the objectives are accomplished. However, 
the convergence in DISCM is smoother than PID, and less oscillatory. The error vari-
ables converge to a vicinity of zero in less time (settling time) for DISMC than for  
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Fig. 3. Orientation Variables and References for DISMC (Left) and for PID controller (Right) 
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Fig. 4. Error variables in DISMC (Top Left). Error variables in PID controller (Top Right). 
Control signals in DISMC (Bottom Left). Control signals in PID controller (Bottom Right). 
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PID, this can be observed in Figure 4. Also, a lower overshoot and a better transient 
response are noted in DISMC simulation. The angular velocities (control signals) of 
the joints of the PTU are shown in Figure 4 as well. Note the lower magnitude of the 
control signals in DISMC and the absence of high frequency components due to the 
use of a continuous control instead sign function, in comparison with standard Sliding 
Mode Control. 

6   Conclusions 

A Discrete Integral Sliding Mode (DISM) controller was designed for Visual Object 
Tracking and a kinematic model for a PTU was obtained using rotors in Geometric 
Algebra 3,0,0G , which is a simpler method than using matrices. The proposed algo-

rithm demonstrates a satisfactory performance in output tracking problem, since it 
achieves a reduced steady state tracking error. A comparison with discrete PID con-
troller was made and DISMC showed a better performance in aspects like softness in 
control signals, lower magnitude in transient response, settling time and overshoot. 
The procedure for obtain the DISM controller is simple, and it can be applied to any 
kind of serial kinematical structure, moreover, the use of a continuous control law 
allows to ensure chattering-free SM motion. So, it can be concluded that ISMC is a 
good approach to solve the Visual Object Tracking problem. 
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Abstract. This paper describes a new approach for building 3D geo-
metric maps using a laser rangefinder, a stereo camera system and a
mathematical system the Conformal Geometric Algebra. The use of a
known visual landmarks in the map helps to carry out a good localiza-
tion of the robot. A machine learning technique is used for recognition of
objects in the environment. These landmarks are found using the Viola
and Jones algorithm and are represented with their position in the 3D
virtual map.

1 Introduction

Mobile robots are equipped with multiple input devices to sense the surrounding
environment. The laser rangefinder is widely used for this task due to its preci-
sion, and its wide capture range. In this paper we merged the data obtained by
the laser and the stereo camera system to build a 3D virtual map with the shapes
obtained by these devices. The 3D objects seen by the stereo camera system can
be modeled by geometric entities, which are easy to represent and to combine.
Some of these 3D objects can act as a landmarks for the robot navigation and
relocalization. Line segments are used to build a 3D map and they are the most
widely used features [1] [2].

Using the Conformal Geometric Algebra we can represent different geometric
shapes including the line segments (as a pair of points) and the data captured
by the stereo camera system (landmarks as labeled spheres). This framework
also allows us to formulate transformations (rotation, translation) using spinors
or versors.

2 Geometric Algebra

The Geometric algebra Gp,q,r is constructed over the vector space Vp,q,r, where
p,q,r denote the signature of the algebra; if p �= 0 and p = r = 0, the metric
is Euclidean; if only r = 0, the metric is pseudo Euclidean; if p �= 0, q �= 0,
r �= 0, the metric is degenerate. The dimension of Gn=p+q+r is 2n, and Gn is

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 851–858, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



852 M. Bernal-Marin and E. Bayro-Corrochano

constructed by the applications of the geometric product over the vector basis
ei. The geometric product between two vectors a,b is defined as

ab = a · b + a ∧ b

and the two parts; the inner product a · b is symmetric part, while the wedge
product (outer product) a ∧ b is the antisymmetric part.

In Gp,q,r the geometric product of two basis is defined as

eiej :=

⎧⎪⎪⎨
⎪⎪⎩

1 ∈ R for i = j ∈ {1, . . . , p}
−1 ∈ R for i = j ∈ {p+ 1, . . . , p+ q}
0 ∈ R for i = j ∈ {p+ q + 1, . . . , n}
eij = ei ∧ ej for i �= j.

this lead in a basis for Gn that contains elements of different grade called
blades (e.g. scalars, vectors, bivectors, trivectors, etc.): 1, {ei}, {ei ∧ ej}, {ei ∧
ej ∧ ek}, · · · , e1 ∧ e2 ∧ · · · ∧ en which is called basis blade; where the elements of
maximum grade is the pseudoscalar I = e1∧e2∧ . . .∧en. A linear combination of
basis blades, all of the same grade k, is called k-vector. The linear combination
of such k-vectors is called multivector, and multivectors witch certain character-
istics represent different geometric objects or entities (as points, lines, planes,
circles, spheres, etc.), depending on the GA where we are working (for example,
a point (a, b, c) is represented in G3,0,0 [the GA of the 3D-Euclidean space E3]
as x = ae1 + be2 + ce3, however a circle can not be defined in G3,0,0, but it is
possible to define it in G4,1,0 (CGA) as a 4-vector z = s1 ∧ s2 [the intersection
of two spheres in the same space]). Given a multivector M, if we are interested
in extracting only the blades of a given grade, we write < M >r where r is the
grade of the blades we want to extract (obtaining an homogeneous multivector
M’ or a r-vector).

The dual X∗ of a r -blade X is defined by X∗ = XI−1
n . It follow that the dual

of a r -blade is an (n− r)-blade.
The reverse of any multivector M is defined as

〈M̃〉i = (−1)
i(i−1)

2 〈M〉i, for M ∈ Gn, 0 ≤ i ≤ n. (1)

The reader should consult [3] to detailed explanation about CGA and its
applications.

2.1 Conformal Geometric Algebra

To work in Conformal Geometric Algebra (CGA) G4,1,0 means to embed the Eu-
clidean space in a higher dimensional space with two extra basis vectors which
have particular meaning; in this way we represent particular entities of the Eu-
clidean space with subspaces of the conformal space. The extra vectors we add
are e+ and e−, defined by the properties e+

2 = 1, e−2 = −1, e+ · e− = 0. With
this two vectors, we define the null vectors e0 = 1

2 (e− − e+) and e = e− + e+
interpreted as the origin and the point at infinity, respectively. From now on
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and in the rest of the paper, points in the 3D-Euclidean space are represented
in lowercase, while conformal points in underline letters; also the conformal en-
tities will be expressed in the Outer Product Null Space (OPNS) (noted with an
asterisk beside, also know as the dual of the entity), and no in the Inner Product
Null Space (IPNS) (without asterisk) unless it is specified explicitly. To go from
OPNS to IPNS we need to multiply the entity by the pseudoscalar.To map a
point x ∈ V3 to the Conformal space in G4,1 (using IPNS) we use

x = x +
1
2
x2e + e0 (2)

Applying the wedge operator ”∧” on points, we can express new entities in CGA.
All geometric entities from CGA are show in the table 1 for a quick reference.

The pseudoscalar in CGA G4,1,0 is defined as I = IEE, where IE = e1e2e3 is
the pseudoscalar from G3 and E = e+e− is the pseudoscalar from the Minkowski
plane.

In GA there exist specific operators to model rotations and translations called
rotors and translators respectively. In CGA such operator are called versor and
are defined by (3) being R the rotor, T the translator.

R = e−
1
2 lθ; T = e

et
2 , (3)

where the rotation axis l = l1e23+l2e31+l3e12 is a unit bivector which represents
a line (in IPNS) through the origin in CGA, θ is the rotation angle, t = t1e1 +
t2e2+t3e3 is the translation vector in V3. The equations (3) can also be expressed
as

R = cos

(
θ

2

)
− sen

(
θ

2

)
l; T = (1 +

et
2

) (4)

Table 1. Entities in CGA

Entity IPNS OPNS
Sphere s = p + 1

2
(p2 − ρ2)e + e0 s∗ = a ∧ b ∧ c ∧ d

Point x = x + 1
2
x2e + e0 x∗ = (−Ex − 1

2
x2e + e0)IE

Plane P = NIE − de P ∗ = e ∧ a ∧ b ∧ c
N = (a − b) ∧ (a − c)
d = (a ∧ b ∧ c)IE

Line L = P1 ∧ P2 L∗ = e ∧ a ∧ b
= rIE + eMIE

r = a − b
M = a ∧ b

Circle z = s1 ∧ s2 z∗ = a ∧ b ∧ c
sz = (e · z)z
ρz = z2

(e∧z)2

P-pair PP = s1 ∧ s2 ∧ s3 PP ∗ = a ∧ b
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due to the exponential properties. Such operator are applied to any entity of any
dimension by multiplying the entity by the operator from the left, and by the
reverse of the operator from the right, as show in (5).

x′ = σxσ̃ (5)

where x is any entities mentioned in table 1, and σ is a versor (rotor, translator
or motor mentioned below). Using (5) is easily to transform any entities from
CGA (points, point-pair, lines, circles, planes, spheres), not only points as is
usual in other algebras.

In CGA it is possible to use the rotors and translator to express general
rotation and screw motions in space. To model a screw motion, the entity has
to be translated during a general rotation with respect to the rotation axis.
The implementation consecutive of a translator and rotor can be written as the
product of them. Such operator is called motor and expressed as

M = TR (6)

The translator, rotor and motor (all of them versors) are elements from G+
4,1,

and they defines an algebra called motor algebra. This algebra greatly simplifies
the successive computation of rotations and translation, applying only the geo-
metric product in consecutive versors, giving the final result another versor of
this algebra, where all the transformations are together in one element.

Vector calculus is a coordinate dependent mathematical system and its cross
product can not be extended to higher dimensions. The representation of geo-
metric primitives is based in lengthy equations and for linear transformations
one uses matrix representation with redundant coefficients. In contrast confor-
mal geometric algebra a coordinate free system provides a fruitful description
language to represent primitives and constraints in any dimension and by us-
ing successive reflections with bivectors one builds versors to carry out linear
transformations avoiding redundant coefficients.

3 3D Map Building

Using an equipped mobile robot with a laser rangefinder sensor and stereo cam-
era system mounted on a pan-tilt head, each one with their own coordinate
system. We apply the method of hand-eye calibration [4] to get the center coor-
dinates of each devices related to a global robot coordinate system. Using the
perpendicular line to plane (x, y) as rotation axis and the angle of rotation of
the robot, and adding a third fixed coordinate to the robot’s movement in the
plane we can apply this values in (3) to make Tpos and Rpos that represent the
movement of the robot in the 3D environment.

Line segments from range points are extracted using recursive line splitting
method as show in [1] [2], this is a speedy and correctness algorithm that per-
forms divide-and-conquer algorithms [5]. For every endpoints of the line seg-
ments, we maps them to CGA to get the pair of points entity (see table 1) and
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store in a map. To translate the position of the entities we use the motor (6)
which is defined as the translation and rotation of the mobile robot.

To get the position of any entity extracted by the stereo camera system or
laser rangefinder in the 3D environment, we apply a specific transformation using
motors in CGA. Then place the entity in the 3D map.

4 Getting 3D Positions Based on Visual Landmarks

A landmark literally is a geographic feature used by explorers and others to find
their way back or move through an area. In the map building process a mobile
robot can use these landmarks to remember the place where it was before while it
explore its environment. Also the landmarks can be used to find robot position in
a previous building map facilitating the relocalization. As we are using a camera
stereo system, the 3D position of any object can be also calculated and it can be
represented in the 3D virtual environment. Using these objects as a landmarks,
the robot gets its relative position.

4.1 Machine Learning Phase

A natural or artificial landmark located in the actual environment helps to the
mobile robot to know its position on the map. Viola and Jones present a new
and radically faster approach to face detection based on the AdaBoost algorithm
from machine learning [6], and this approach can be used to detect our statics
landmarks. Once the landmarks have been selected and trained, the mobile robot
can use them to navigate in the environment performs the Viola an Jones algo-
rithm. If a landmark is found we get a sub-image IL from the left camera image.
This IL is the region of the image where the landmark was found (fig. 2).

When a landmark is identified in one image (left camera), we must be sure
that the landmark is in the other image as well (right camera of the stereo camera
system). To get the 3D position, the landmark must be detected in both images.
The landmark in the right image is also detected by Viola and Jones algorithm,
and identify its region by a sub-image IR (fig. 1).

Fig. 1. The flowchart of the landmark position estimation
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Fig. 2. Mobile robot founding landmarks while it is navigating its environment. On
the top see stereo view (on left image a sign landmark found in white rectangle) and
its representation in the 3D map.

4.2 Landmark Position Estimation

When we talk about the landmark position estimation, we are looking for the
3D location of these landmark in the environment and not for the pose (position
and orientation) of the object found. Figure 1 illustrates the flowchart of the
landmark position estimation.

Getting the landmark identified in both images, we proceed to calculate the
points of interest. To do this we use Canny edge detection operator on IL and a
correlation. A number of correlation-based algorithms attempt to find points of
interest on which to perform the correlation. In fact, the normalization embodied
into the Normalized Cross Correlation (NCC) and Zero Mean Normalized Cross
Correlation (ZNCC) allows for tolerating linear brightness variations. Further
more, thanks to the subtraction of the local mean, the ZNCC provides better
robustness than the NCC [7] since it tolerates uniform brightness variations as
well.

Correspondences of an image patch are searched for along the epipolar line
by calculating the ZNCC only in a given interval (dmin, . . . , dmax) of so-called
disparities [8] [9]. The term disparity denotes the Euclidean distance from one
point on the epipolar line to a given point in the other camera image [10]. A
small disparity represents a large distance to the camera, a large value a small
distance (parallax).

When all the points are matched in both images we proceed to calculate its 3D
position using the triangulation. Then we integrate this set of points to get its
center of gravity and place the center of a sphere on it. The radius of the sphere
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is calculated taking the highest number of points of the landmark. The sphere
is stored in the 3D virtual map using CGA and it is labeled as a landmark.

5 Experiments

The fig. 3 shows some signs as landmarks in a laboratory. A sign was trained
with Viola-Jones algorithm. The result is: where a sing is placed in the wall, it
is recognised by the robot, and place it at its 3D position in the environment
(fig. 4). The first and last image of figure 3 represent the same landmark, but
taken on different place of the laboratory.

Fig. 3. Signs as Landmarks in a laboratory

The figure 4 shows the map built with lines, the raw data of the laser (points),
and the landmarks found.

Fig. 4. 3D representation of the landmarks and the laser readings as lines and points
cloud
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6 Conclusions

In this paper the authors have shown the use of geometric entities in Conformal
Geometric Algebra (CGA) for modeling input data for a 3D virtual environ-
ment, in this way merging in a global coordinate system, the laser rangefinder
and stereo camera system (mounted over a pan-tilt unit). The machine learning
technique is used for the object’s recognition. The detected objects are used as
a landmarks witch greatly help in the interaction with the environment. The ex-
periments with a real robot validate our method. We believe that our approach
can be of great use for mobile robots or upper body humanoids installed on
mobile platforms.
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5. Nguyen, V., Gächter, S., Martinelli, A., Tomatis, N., Siegwart, R.: A comparison of
line extraction algorithms using 2d range data for indoor mobile robotics. Auton.
Robots 23(2), 97–111 (2007)

6. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, December 2001, pp. 511–518 (2001)

7. Di Stefano, L., Mattoccia, S., Tombari, F.: ZNCC-based template matching using
bounded partial correlation. Pattern Recogn. Lett. 26(14) (2005)

8. Faugeras, O., et al.: Real-time correlation-based stereo: algorithm, implementation
and applications. INRIA Technical Report no. 2013 (1993)

9. Azad, P., Gockel, T., Dillmann, R.: Computer Vision: Principles and Practice. Ed.
Elektor Electronics (2008)

10. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Ed. Cam-
bridge University Press, Cambridge (2004)



Compression and Key Feature Extraction for
Video Transmission

Esteban Tobias Bayro Kaiser1, Eduardo Correa-Arameda1,
and Eduardo Bayro-Corrochano2
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Abstract. This paper presents a gray scale image compression method
using the Wavelet Transform and key feature detection for mobile phone
video transmission. The major contribution of this work is to show the
application of the wavelet transform in image compression and to add
a new method to reduce redundant information in video transmission
which is key feature detection. An algorithm is designed in Matlab to
accomplish this task using a face to face video.

Keywords: Image processing, Compression, Wavelet transform, Key
feature extraction, Face to face video.

1 Introduction

In the transmission of multimedia whether it is data, video or images, band-
width and storage capacity are very important factors. Regardless of the con-
stant improvement of storage devices and increasing the bandwidth, compression
of information is still very necessary. There are several techniques for compress-
ing information. These differ mainly in the amount of information that can be
compressed and the amount of loss that is obtained when trying to restore them.

In this paper we will study the transmission of video between two people,
this may be between two computers or between two cell phones; this type of
transmission is known as face to face. The video that is used in this work consists
of gray-scale images whose main feature is the face of the person. The images
must be compressed or reduced in size to reduce the required bandwidth in the
transmission [1].

For image compression there are several techniques available. In this paper
the compression of the images is accomplished with the wavelet Transform.

In addition to analyse the image compression with the wavelet transform a
method will be studied which transmits only the image key features [2]. These
features are transmitted in sub-images. In a face to face transmission (for exam-
ple: between cell phones), the key features are the most notable, and these are:

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 859–866, 2009.
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eyes and lips movements, therefore a technique is developed to locate and extract
these features.

2 Compression of Images with the Wavelet Transform

Data compression refers to the process of reducing the volume of data needed
to represent a certain amount of information, in this case gray level images. The
compression is accomplished with the wavelet transform and Huffman coding.
Huffman coding is an entropy encoding algorithm used for lossless data com-
pression. The term coding refers to the use of a variable-length code table for
encoding a source symbol where the variable-length code table has been derived
in a particular way based on the estimated probability of occurrence for each
possible value of the source symbol.

3 Key Features Extraction

The key features extraction of an image can be useful for reducing the amount
of information in a video transmission. This information comes within a matrix,
so if the size can be reduced, then the image has a representation with less
information.

In a video each image compared with its previous suffers very little change,
this feature can be harnessed to just focus on the analysis and transmission of
these. When the video comes from a conversation between two people focusing
on the head with a single fund the major changes affecting the image are the
eye and lip movements.

If the eyes and lips extraction is success, then the full image can be represented
by a previous image and the extracted sub-image.

For a face to face video, the steps for key features extraction are:

- Eye position detection, Image alignment, Sub-images extraction and Diffe-
rence estimation between images.

3.1 Eye Position Detection

For eye position detection there are several steps that are listed below.

Key features Position
In order to find key features in the image, we binarize the gray scale image by
applying a Sobel filter and a thresholding to the edge image [3].

In Fig. 3.1 b) it can be observed that eyes and mouth are dominating features
in the image, thus there can be found a method to obtain the position of these
key features.

These positions can be found through horizontal and vertical projections,
analyzing the maximum and minimum of these functions. Then it is possible
to determine positions of certain features such as eyes, mouth, nose, upper and
lower head and side edges. Assuming I(x, y) be the intensity of a image, the
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Fig. 3.1. a) Gray scale image, b) Edge detection with a Sobel filter and a T =0.5804
thresholding

HI(y)

VI(y)

HI(y)

VI(y)
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Fig. 3.2. a) Points where the horizontal and vertical projected are analyzed. b) Geo-
metric relationship between eyes and mouth. c) Rotation angle.

equations are: HI(x) =
∑m

x=1 I(x, y) , V I(y) =
∑n

y=1 I(x, y), where the HI
corresponds to the horizontal and VI vertical projection (see Fig. 3.2 a)).

Geometric relationship between eyes and mouth
To obtain the position of the mouth, the geometric relationship between eyes
and mouth can be used. Knowing that the distance between the eyes is equal to
the distance from eye to mouth, it is possible to find the respective coordinates
with an isosceles triangle on the face (see Fig. 3.2 b)).

3.2 Image Alignment and Rotation Angle

The alignment can be accomplished by rotation. To determine the rotation angle
it is necessary to consider the following: If the goal is always to have the eyes
lined up in a horizontal line then it necessary to find the angle between the
horizontal and eyes, as shown in Fig. 3.2 c).

To find this angle requires the eyes coordinates, left eye represented by the
point (xleft, yleft) and the right eye by (xright, yright). The angle can be deter-
mined by α = tan−1( yright−yleft

xright−yleft
). It is worth mentioning that the image can be

rotated both directions.

3.3 Sub-image Extraction and Difference Estimation between
Images

Once the image has been aligned, the image can be divided into sub-matrices;
as it used the coordinates of the eyes and mouth, the adequate estimated size
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matrices will contain the entire feature. The centers of these sub-matrices are
the coordinates for each feature.

To estimate the difference between each image or sub-image there must be a
cost function, and the most appropriate is MAE (Mean Absolute Error).MAE =

1
MN

∑M
i=1

∑N
j=1 |I(i, j)− I ′(i, j)|, where I is an image and I

′
is its previous one.

The value delivered by MAE will be positive and real. To decide whether an
image changes significantly, it is necessary to calculate the MAE and then find
a value that can also be called thresholding, which will be called thresholding of
difference T. This value will be the decision point if the sub-image is transmitted
or not.

It’s important to note that this value of T difference is calculated by consi-
dering the visual effect of change that each image has with the previous one.
Then the following comparison must be done, if MAE is greater than the diffe-
rence of T, the image is sent, otherwise there is no need to send it because the
difference is very small and it is sufficient to represent the sub-image with its
predecessor.

4 Code Results in Matlab

This section shows the analysis results of the algorithms written with Matlab
software [4]. The algorithm can be divided into two parts: one considers its earlier
phase of pre-transmission, and post-transmission. Both are shown in Figs. 4.1
a) and b).

4.1 Pre-transmission Algorithm

The pre-transmission phase will be put under performance test, to do this, the
phase is divided into two parts that allow an individual analysis for each stage.
Different types of face images are used, with different characteristics and situa-
tions, which helps to determine the functionality and efficiency of the algorithm.

4.2.1 Algorithm for the Extraction of Important Features and Decision
Making

The Fig. 4.1 c) shows the algorithm to extract important features and decision-
making. In this stage, the image is aligned and focused, and the algorithm is
responsible for selecting those parts of the image that are relevant, such as
detecting the movements of eyes and lips.

In this case, it is considered image patterns in gray level and taken in front of a
single person. The background of these pictures should be simple and continuous,
that is, without a background objects that change shape. In addition the person
must be looking at the camera at all times.

For a better appreciation each block will be analyzed separately.

Image Analysis
The image size is 135 x 99 pixels.
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(a)

(b)

(c)

Fig. 4.1. Results of the 3D reconstruction process. a) Pre-transmission algorithm. b)
Post-transmission algorithm. c) Algorithm to extract important features and decision-
making. Figures a) and b) show that every part of algorithm consists of two major
sections, this is done in order to analyze the efficiency of the algorithm.

i) Edge detection. Figure 4.2 shows that the edges of the image are well
defined, which indicates that there is no objection to proceed to the next step:
the horizontal and vertical projections.
ii) Horizontal and vertical projections. In the horizontal projection of the
Fig. 4.3 a) the first 2 maximum are obtained, these indicate the sides of the
face. In the vertical projection of Fig. 4.3 b) the maximum value indicates the
central line of the eye.

- Maximum horizontal projection: 26 and 77. Maximum vertical projection:
42.

With these points it is possible to obtain two sub-images where each one contains
an eye. Then the same procedure is repeated.
iii) Sub-image Edge detection. Note: The left and right refer to as seen by
the observer.

In Figs. 4.4 a) and b) the eye is identified easily without other information
that could interfere with the projections, with this step any information that is
not of interest was removed to find the exact iris coordinates.
iv) Sub-image horizontal and vertical projections.

- Maximum horizontal projection from the left eye: 17 (see Fig. 4.5). Maximum
vertical projection from the left eye: 6.
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Fig. 4.2. Edge detection with thresholding T = 0.5608

Fig. 4.3. a) Horizontal projection, b) Vertical projection

Fig. 4.4. Sub-image edge detection. a) left eye, with thresholding T = 0.3980. b) right
eye, with thresholding T = 0.4784.

Fig. 4.5. a) Horizontal projection left eye and b) Vertical projection left eye
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- Maximum horizontal projection from the right eye: 4 (see Fig. 4.6). Maxi-
mum vertical projection from the right eye: 12.

After finding these points, the offset that was created to generate the sub-image
is added to obtain the iris location.

- Left eye position: (45, 43). Right eye position: (46, 64).

With these points and the geometric relationship between eyes and mouth, the
mouth position can be calculated. Various tests determined that the distance
from the center of the eye to the mouth is 1.2 D.

- Mouth position: (70, 52) (see Fig. 4.7).

The same procedure was carried out to various images and the algorithm was
right with the coordinates of the features, as shown in Fig. 4.8.

Fig. 4.6. a) Horizontal projection right eye. b) Vertical projection right eye.

Fig. 4.7. Eyes and mouth position

Fig. 4.8. Eyes and mouth positions
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5 Conclusions

One of the key factors that is analyzed in this work is to perform the transmission
of video images, considering the least amount of information possible from each
image, without significant loss of information, in an ideal channel. To achieve
the image compression from a video using the wavelet transform an algorithm
in Matlab was design resembling a JPEG200 compression [5]. The algorithm is
able to compress and decompress images with the least information loss.

The images that were used for this algorithm allowed only the first level of
compression, achieving a ratio of no more than 10:1 compression. The image
compression that was achieved by extracting sub-images was about 90:1, this
result shows that in the image compression key features extraction must be
considered.
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Abstract. In recent years audio-visual speech recognition has emerged
as an active field of research thanks to advances in pattern recognition,
signal processing and machine vision. Its ultimate goal is to allow human-
computer communication using voice, taking into account the visual in-
formation contained in the audio-visual speech signal. This document
presents a command’s automatic recognition system using audio-visual
information. The system is expected to control the laparoscopic robot da
Vinci. The audio signal is treated using the Mel Frequency Cepstral Co-
efficients parametrization method. Besides, features based on the points
that define the mouth’s outer contour according to the MPEG-4 stan-
dard are used in order to extract the visual speech information.

Keywords: Speech recognition, MPEG-4, manipulator.

1 Introduction

The da Vinci system is a laparoscopic surgery system which consists of a control
console, a stretcher, four robotical arms and a high performance vision system.
The control console can be located at the side of the surgery table or even
at an adjacent room, enabling the surgeon to use the system without carrying
a face mask. While the surgeon observes 3D images through a stereo vision
system, both camera and instruments are controlled by joysticks, and the surgeon
switches between them with pedals. When driving the camera, the surgeon loses
the instruments control, and sometimes it is necessary to reposition them. In
order to avoid this situation, the development of an alternative interface for
commanding camera movements is desired.

There are several approaches for commanding an endoscope holder robot pro-
posed in literature. Some of them assist the surgeon in endoscope location by
� This work was partially supported by the ECOS Franco-Colombian program (ECOS-

Nord/COLCIENCIAS/ICFES/ICETEX), the Bonpland scholarship program, and
the CNRS.
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using joysticks [1], [2], pedals [3], voice commands [3], [4], etc.. Others use visual
or force feedback and geometrical constraints in order to track tool’s location
during the intervention [5].

Automatic speech recognition systems (ASR) is an active research field,
mainly because noise in the audio signal propose an unresolved challenge to
the recognition systems. Carelessness of the speaker, variation in the frequency
and duration of the words, grammar subjects, are other factors that also impose
some difficulties when performing the voice command recognition [6], [7], [8].

ASRs proposed in [4] and [9] have a high recognition rate and showed that
using voice commands is a admissible approach for controlling the laparoscope
holder robot. Nevertheless, those results are unsustainable in noisy environments.
In those cases, human beings tends to use also visual information in order to
filter speech through lip reading. In fact, it has been considered that to observe
the speaker is equivalent to a 15 dB gain in the signal to noise ratio [7], [8].

In our previus work [9], two different approaches for solving the laparoscope
command problem were presented. The first one was a Gesture Based Command
System, which used a set of mouth movements in order to identify the gesture
commands using a state machine. The second one was an only Audio Command
System, which used 10 english words in order to fit a state machine.

Audio-visual speech recognition (AVSR) has arisen as an alternative when
noise or distortion affect the speech [6]. The selection of acoustic features has
been studied widely, and the current efforts are concentrated in the extraction of
the visual features and the selection of the audio-visual integration model [10],
[11], [12]. With the aim of recognizing a little set of commands to handle the
three degrees of freedom of the da Vinci’s laparoscope holder, an audio-visual
speech recognition system is proposed in this work.

This paper is organized as follows. Section 2 presents the visual features used
and the visual feature extraction algorithms. Section 3 describes the model used
in the AVSR system. Section 4 shows the experimental tests and results of the
system. Conclusions of this work are presented in Section 5.

2 Visual Features

The visual features used in speech recognition can be divided in high level, low
level and combined features. Model parameters which define the lip contours
are used as high level or shape features [6], [11]. The low level features, or
appearance features, are obtained as a result of transformations at pixels level
of the mouth region [13], [14] and finally, the combined features mix the shape
and the appearance of the mouth concatenating the features or using statistical
models [15]. Generally, the visual features vector captures dynamic information
including the first and second time derivatives. In addition, because the sampling
frequency of the audio is higher that the one of the video, the visual features
must be interpolated [15].

The MPEG-4 standard has arisen due to the necessity to standardize the vir-
tual objects of real and synthetic video. It includes video codification, geometric
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compression and audio-video synchronization. This standard presents a complex
set of Face Definition Parameters (FDPs) which are used for face standardiza-
tion, and another set which allows the animation of synthetic face models called
Face Animation Parameters (FAPs). FAPs serve to describe face movements
(model deformations) with respect to the neutral state face model.

The MPEG-4 standard defines 68 FAPs divided in 10 groups, where groups
2 and 8 are used in speech recognition. They describe the movements of inner
and outer lip contour, respectively. For visual speech synthesis, Group 1 is used.
It defines 14 clearly distinguishables visemes. A viseme is the visual reference
pattern of a phoneme, and it can represent to more than one phoneme.

The FAPs are mesured in specific units called FAPUs (Face Animation Pa-
rameter Units) [16]. Figure 1 shows the standardized anthropometric measures.
The five FAPU represent the distance between the eyes (ES0), the diameter of
the iris (IRISD0), the separation between the eyes and the nose (ENS0), the sep-
aration between the mouth and the nose (MNS0), and the mouth width (MW0).

In order to extract the high level visual features of the speech, it is necessary
to do precise mouth tracking in the video sequences. Lip tracking is still an
open subject in artificial vision due to shape, color and texture complexity,
and also because of unexpected changes in illumination [17]. This topic has
been successfully treated for lateral face views using controlled background and
wearing lipstick, but not with frontal views and without lip markers.

For this work an assisted lip tracking algorithm based on appearance and
morphologic restrictions defined in the MPEG-4 standard was designed and im-
plemented. The algorithm assumes that all video frames show frontal face views
and that speakers do not uses lip markers. Since psychological studies suggest
that the most influent visual feature in lip reading is the outer lip contour, only
FAPs from Group 8 were tracked (Figure 2). Moreover, in [11] the authors show
that using the Group 2, which describes the inner lip contour, does not increase
significantly the performance of the automatic recognition speech system, and

Fig. 1. Groups 2 and 8 of FAPs and the FAPUs measured in a neutral face model
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the algorithms are significantly more expensive than those used in outer lip
contour tracking.

For calculating the FAPs both magnitude and direction of movement must
be preserved, and therefore, they are codified using signed distance functions.
Those displacements are standardized using mouth width as normalization fac-
tor, which is the FAPU (MW0) for Groups 2 and 8.

Another feature used in this work is mouth roundness. Roundness is found
using the Equation 1, in which A corresponds to the area within the outer
contour, and d represents the greatest diameter of the mouth region and is
equivalent to the mouth width.

R =
4A
πd2 (1)

The area is calculated in polar form according to Equation 2, where ri represents
the distance from each one of the 10 points to the mouth center, and ∆Θi rep-
resents the separation angle in between each pair of neighboring points counter
clockwise, as shown in Figure 2.

A =
10∑

i=1

r2i∆Θi (2)

Fig. 2. Outer lip contour defined by the group 8 of the MPEG-4 standard

3 Model Selection

The most popular methods on Automatic Speech Recognition Systems (ASRs)
are those based on Hidden Markov Models (HMMs). The HMMs are statisti-
cal models whose output is a sequence of symbols. The HMMs deal with the
audio sequence as a piecewise statical signal [18], and proved to be more accu-
rate than templates or neural networks at speech recognition [19]. According to
recognition task, systems can be classified in the following types: isolated word
recognition, where words are separated by pauses; keyword recognition, in which
system recognizes certain words in continuous speech; and finally, connected or
continuous speech recognition, where the input signal is decoded in a sequence
of words, having acknowledged that words are not separated by pauses [20].
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HMMs can use either phonemes or words as basic units. There is not direct
way to define the number of states for each model, but it has been assumed that
using phonemes, three active states is enough [21]. When the models represent
words, the model architecture must be assumed in advance. Several configura-
tions must be tested for each word because the system performance strongly
depends on the number of states and the probability function of each state.

Figure 3 shows the block diagram of the audio-visual speech recognition sys-
tem used in our experiments. In this work we used the isolated word recognition
approach and words as basic units; we varied the number of states from 3 to 20
active states and used one, two an three probability function of each state. We
did not get better results than those obtained using 20 states and one Gaussian
per state. We also used the early integration model [10], where the set of the
combined visual features from the lip tracking and the audio features is used as
the system input.

Fig. 3. Block diagram of the AVSR system used in this work

4 Tests and Results

Acquired video data used in this work complies with NTSC standard, whose
sampling frequency is of 29.97 frames per second (30 Hertz approximately).
Data was recorded in a not controlled enviroment, simulating a realistic situation.
There was presence of normal acustic noise sources as computers or other devices.
Besides, in the images there was presence of shadows and the light was not
controlled. Audio features were extracted using 20 ms windows with overlaps
of 50 % between them, which corresponds to 100 Hertz frequency. In order to
achieve audio-video synchronization, video features were interpolated from 30
Hertz to 300 Hertz and then subsampled to 100 Hertz.

Principal Components Analysis (PCA) of the FAPs was performed in order
to reduce the number of visual features for the audio visual speech recognition
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system. At the end, only the first three components of the PCA were used,
along with the roundness of the region of the mouth, in the visual feature set.
In order to include dynamic information, the first two time derivatives of the
visual features were also fed to the system.

The system was trained to recognize six spanish words as commands:
“izquierda”, “derecha”, “arriba”, “abajo”, “adelante” and “atrás”. Words’ time
fetures are shown in Table 1. Video sequences were acquired from 18 people who
all were born in Colombia - 5 women and 13 men.

Table 1. Commands used in the experimets

Derecha Izquierda Adelante Atrás Arriba Abajo
mean (seconds) 0.95 1.05 1.11 0.96 0.90 0.96
standard deviation (seconds) 0.19 0.19 0.24 0.18 0.25 0.27

70% of the data was used to train the system, while the remaining 30% was
used for testing. In Table 2 test Word Rate Recognition (WRR) is shown, for the
cases in which audio, visual and audio-visual features were taken into account.
The best performance was obtained with audio features.

Table 2. Word Rate Recognition using 10 and 20 states

audio 97.70 98.85
video 31.03 5.63
audio + video 90.54 97.30

In order to measure the system roboustness against noise, the audio signal was
contaminatedwith white Gaussiannoise. The tests weremade to match SNR levels
between 20 dB and 0 dB. In Figure 4 it can be seen that the performance of audio
only system falls abruptly when the noise is as low as 1:100. Also, performance of
the audio-visual system was showed superior for all the SNR levels.

Fig. 4. Audio only and audio-visual WRR vs several SNR levels
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5 Conclusion

In this paper we present a speech recognition system for solving the laparoscope
command problem. We used audio only, visual only and audio-visual features.
Visual features related to mouth shape proved not to be sufficient for solving the
recognition task by themselves, but helped when acoustic noise is present in the
audio-visual signal. Audio-visual performances exhibited higher errors than the
voice based approach when no noise was added, but outperformed in all other
cases.

The ASR system based in HMMs using words as basic units in isolated word
recognition scheme, which uses both the MFCC as acoustic features and high
level visual features based on the standard MPEG-4, presented a WRR near to
100% for recognizing the six spanish words selected as commands. Therefore,
the system is reliable for solving the laparoscope holder command task.

Acknowledgments. The authors thank the CHU de Lyon and Doctor Olivier
Jegaden for making it possible to access the DaVinci command console.
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Abstract. This paper addresses the main difficulty in adopting Viola-
Jones-type object detection systems: their training time. Large training
times are the result of having to repeatedly evaluate thousands of Haar-
like features (HFs) in a database of object and clutter class images.
The proposed object detector is fast to train mainly because of three
reasons. Firstly, classifiers that exploit a clutter (non-object) model are
used to build the object detector and, hence, they do not need to eval-
uate clutter images during training. Secondly, the redundant HFs are
heuristically pre-eliminated from the feature pool to obtain a small set
of independent features. Thirdly, classifiers that have fewer parameters
to be optimized are used to build the object detector. As a result, they
are faster to train than their traditional counterparts. Apart from faster
training, an additional advantage of the proposed detector is that its
output is invariant to global illumination changes. Our results indicate
that if the object class does not exhibit substantial intra-class variation,
then the proposed method can be used to build accurate and real-time
object detectors whose training time is in the order of seconds. The quick
training and testing speed of the proposed system makes it ideal for use
in content-based image retrieval applications.

1 Introduction

Although object detectors based on Haar-like features (HFs) [6] achieve high
accuracy rates in real-time [13], training them is a time-consuming task. This is
because thousands of weak classifiers based on HFs need to be trained using a
database of object and clutter (non-object) images. VJ reported training time
in the order of weeks using 180, 000 features on a 466 MHz AlphaStation XP900
[13]. Reduced training time of about 2 days using approximately 20, 000 features
can be achieved using the implementation in the OpenCV library [1] on a 3 GHz
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processor. Though at first glance, it may seem that two days of training time is
affordable, the total algorithmic development time generally exceeds this time
frame. Many trials may be required to optimize the performance of the detector,
which could prolong the effective development time to months. As McCane and
Novins [5] point out, long training times make testing new algorithms or verifying
past results extremely difficult.

Several possible approaches have been proposed to reduce the high training
time. For instance, Wu et al. [14] who achieved a reduction in training time of ap-
proximately two orders of magnitude by pre-training weak classifiers before the
iterative classifier selection procedure. Stojmenovic [12] proposed to reduce the
training time by pre-eliminating HFs from the original training set. They elim-
inate HFs which produce error greater than a pre-determined threshold value.
On a database of images containing back-view of Honda Accord cars, they could
eliminate 97% of the original features, thereby achieving a potential speed in-
crease of up to two orders of magnitude. However, it is not clear what percentage
of HFs can be removed on more challenging images like those of human frontal
faces. Pham et al. [7] proposed decreasing the training time by pre-computing
the global statistics of face and non-face images. They reported a training time
of 5 hours and 30 minutes while achieving high accuracy.

In this work, we propose a novel algorithm that reduces the training time to
the order of seconds in a conventional desktop computer with a 3 GHz processor.
The high training speed is due to the following three reasons. Firstly, a clutter
model is used instead of using clutter class images. This results in a substantial
reduction of training time because approximately 107 clutter image regions are
used for training by traditional training methods. The weak classifiers used in the
prosed approach, as will be seen in Section 2.1, implicitly incorporate the clutter
model and therefore, the model need not be trained. Secondly, we heuristically
pre-eliminate HFs in the feature pool to obtain a set of features that make
independent measurements on clutter. Using lesser HFs during training also
contributes to the faster training speed. Further, the weak classifiers used in our
procedure have fewer parameters to be optimized and therefore, are faster to
train.

2 Haar-Like Features and Weak Classifiers

Haar-like features (HFs), shown in Fig. 1, are an over-complete set of two-
dimensional Haar functions, which can be used to encode local appearance of

-1-1
-1-1

-1-1
-1-1

21
1 1

-1-1

(b)(a) (c)

Fig. 1. Typical two-, three- and four-rectangle Haar-like features. The numbers shown
on the rectangles refer to the weights assigned to each of them.
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Fig. 2. Three histograms of feature values obtained by evaluating face and clutter
class images on HFs are shown. To the left of the histograms, the HFs that were used
for evaluation have been super-imposed on a typical training image. As Huang and
Mumford [3] observed, the distribution of feature values from clutter images tends to
a Laplacian distribution centered at zero.

objects [6]. The feature value f of a Haar-like feature which has k rectangles
is obtained as in (1). The quantity µ(i) is the mean intensity of the pixels in
image x enclosed by the ith rectangle and w(i) is the weight assigned to the
ith rectangle. The weights assigned to the rectangles of a HF are set to default
numbers satisfying (2). Weak classifiers that label an image x as object (+1)
or clutter (-1) can be expressed as in (3). The quantity θ ∈ � is a threshold
value, and p ∈ {1,−1} can be used to invert the inequality relationship. Train-
ing such a weak classifier involves setting appropriate values to its threshold and
polarity coefficients (θ∗, p∗) such that the overall error is minimized. Formally,

[θ∗, p∗] = arg min
[θ,p]

no+nc∑
i=0

ε(i). If a training image is correctly classified, then its

error is z(i), else it is 0. The term z(i) is the weight assigned to the training
image x(i). The quantities no and nc are the number of object and clutter class
training images, respectively. Training the weak classifiers as in (3) can be in-
tuitively understood from Fig. 2. For each HF shown in Fig. 2, histograms of
the feature value, f , have been obtained from object (human frontal face) and
clutter training images. During training, θ is set to the value of f that best
separates object and clutter examples.

f =
k∑

i=1

w(i) · µ(i) (1)
k∑

i=1

w(i) = 0 (2)

h(x) =

{
+1, f(θ,p) > 0
−1, otherwise

(3)
f(θ,p) = (f − θ) · p (4)
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2.1 A Clutter Model

When a HF is evaluated on a clutter image, the expectation value of the output
can be expressed as in (5).

E(f) = E

(
k∑

i=1

w(i)µ(i)

)
=

k∑
i=1

w(i)E
(
µ(i)

)
(5)

The clutter class, being generic, may contain any image with any appearance
pattern. Effectively, every pixel of a generic clutter image is a random variable
which can take any value between the minimum and the maximum permitted
pixel values in an image representation (Nmin and Nmax) with equal probability.
For example, in gray-level images, Nmin = 0 and Nmax = 255. Therefore, the
expected value of mean of pixel values within any rectangular region, E(µ) =
0.5(Nmax +Nmin). Rewriting (5) using (2), we get (6).

E(f) = 0.5(Nmax +Nmin)
k∑

i=1

w(i) = 0 (6)

Therefore, the probability that the feature value of a HF on a clutter image
to be greater than (or lesser than) 0 is 0.5. Mathematically, P(f · p > 0|x(i) ∈
Clutter) = 0.5. Using the terminology introduced in (4),

P(f(0,p) > 0|x(i) ∈ Clutter) = 0.5 (7)

The clutter model in (7) can be observed from the clutter histograms shown in
Fig. 2. Note that the clutter histograms are all symmetric and centered at f = 0.

2.2 Proposed Weak Classifier

The proposed weak classifier utilizes the clutter model in (7) by setting its thresh-
old θ = 0 so that it labels 50% of the clutter correctly. Since θ is already set,
training the proposed weak classifier only involves setting an appropriate value
to the polarity term (p∗) such that the training error is minimized as shown in
(9). As θ need not be optimized, the training speed of the weak classifiers is
much higher than the traditional ones as in (3).

h(x) =

{
+1, f(0,p) > 0
−1, otherwise

(8) p∗ = arg min
p∈{1,−1}

no∑
i=0

ε(i) (9)

The object detectors are built by arranging weak classifiers as in (8) according
to the rejection cascade architecture [2]. This architecture has been preferred for
building object detectors as it is conducive for fast scanning of an image [13]. A
rejection cascade, as illustrated in Fig. 3, consists of multiple nodes connected
in series. Each node is a binary classifier that classifies an input sub-region
as object or clutter. Each node consists of multiple weak classifiers which are
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>>
AdaBoost

1 2 3 N Face

> Clutter

> >

Image
sub-region

Fig. 3. A cascaded classifier consists of multiple nodes arranged in a degenerated de-
cision tree fashion. An input image is scanned at different scales and positions for the
presence of a face. If an image sub-region is classified as a face by all the sub-regions
of the face, then it is labeled a face.

selected iteratively using the AdaBoost procedure [10]. The weighted decision of
all the weak classifiers in a node is output as the decision of the node.

2.3 Pre-eliminating Redundant HFs

As mentioned before, HFs are an over-complete set of features, therefore, they
are redundant. Conventional object detectors avoid selecting redundant features
in different nodes by training each node with bootstrapped set of clutter im-
ages [13]. In other words, features selected for different nodes are suitable for
classifying different subsets of clutter images. In our case, since clutter images
are not used, the over-complete set of HFs need to be pruned heuristically after
each node is built so that neither the previously selected features nor similar
ones are selected again. Similarity between two HFs is measured by the amount
of overlap between its rectangles. For example, the HFs illustrated in Fig. 2(left)
and Fig. 2(middle) do not overlap at all, therefore, they are considered to make
independent measurements on a clutter image. On the contrary, the HFs illus-
trated in Fig. 2(middle) and Fig. 2(right) have more than 50% overlap, and
therefore they are considered to make redundant measurements. To build the
proposed object detector, we generated a feature pool with 7, 200 HFs in which
no HF in the feature pool has more than 50% overlap with the rest of the
features.

3 Experimental Setup and Results

The proposed weak classifiers described above were trained for two very different
object detection problems: detection of human frontal faces in photographs and
detection of the human heart in short-axis cardiac Magnetic Resonance Images
(MRI). For this purpose, two object databases (face and heart) were used.
The face database was composed of 5000 images. The faces in this database
exhibit an out-of-plane rotation of up to ±10 ◦ and various expressions. The
heart database consisted of 493 short-axis MR heart images. In comparison to
the images in the face database, the images in the heart database exhibit less
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Table 1. Comparison of training time

Method Number of
features in
the feature
pool

Number of
classifiers
trained

Number of
object
images used

CPU
speed
(GHz)

Training
time

Proposed (Face)* 7, 800 3, 200 5, 000 3.0 96s
VJ [13] 40, 000 4, 297 9, 500 0.4 weeks
LZZBZS [4] n/a 6, 000 2, 546 0.7 weeks
WBMR [14] 40, 000 3, 870 5, 000 2.8 13h20m
PC [7] 295, 920 3, 502 5, 000 2.8 5h30m

Proposed (Heart)* 7, 800 1, 000 493 3.0 30s
VJ (Heart)* 180, 000 300 493 3.0 22h
* Results from our implementation.

Table 2. True positive rate in simulated test datasets

Method DS1a DS2b DS3c DS4d DS5e DS6f DS7g DS8h

Proposed (Face)* † 88.0 87.4 86.5 88.0 88.0 88.0 88.0 84.7
VJ (Face)* 90.3 90.3 90.3 87.4 86.2 87.0 83.9 80.2
VJ (Face)* † 90.3 85.1 72.5 87.4 78.7 84.0 81.2 60.5

Proposed (Heart)* † 97.3 97.3 94.6 97.3 97.3 97.3 96.7 93.8
VJ (Heart)* 98.7 98.7 98.7 90.3 85.2 96.8 93.0 76.3
VJ (Heart)* † 98.7 81.2 63.2 90.3 20.3 69.6 35.2 0.0
* Results from our implementation. † Results without variance normalization.
a DS1: Original test images. b DS2: Intensity values are globally divided by 2.
c DS3: Intensity values are globally divided by 3. d DS4: Histogram equalized images.
e DS5: Gamma corrected image (γ = 0.8). f DS6: Gamma corrected image (γ = 0.9).
g DS7: Gamma corrected image (γ = 1.1). h DS8: Gamma corrected image (γ = 1.2).

intra-class appearance variation. The face detectors were tested on MIT+CMU
frontal face database [9]. The heart detectors were tested on a set of 293 images.
The speed of training of the face and heart detectors, in comparison to other
methods, is tabulated in Table 1.

We tested the accuracy of the object detectors by transforming the test im-
ages artificially to simulate global illumination changes. On each of the trans-
formed database, the accuracy of the VJ-type detector and the proposed method
were measured and the results are tabulated in Table 2. We observed that, in
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Table 3. Comparison of accuracy of the face and heart detectors

Method
Face Heart

FD a TPR b FD a TPR b

Proposed 912* 88.0* 2* 97.3*

VJ [13] 95 90.8 2* 98.7*

LZZBZS [4] 90 92.5 n/a n/a
WBMR [14] 85 92.5 n/a n/a
PC [7] 100 90.0 n/a n/a

RBK [9]� 95 89.2 n/a n/a
SK [11]� 65 94.5 n/a n/a
RYA [8]� 78 94.8 n/a n/a

a FD: Number of false detections. b TPR: True positive rate.
* Results from our implementation. � Methods not based on HFs.

contrast to VJ detector, the proposed detector performed consistently to all the
monotonic image transformations applied to the test images. This is because,
the detector uses weak classifiers that make decision based on the sign of the
feature value of a HF, and not based on the magnitude of the feature value of
the HF. In theory, the accuracy of the proposed detector should not change if
any monotonic transformations are applied to images. However, we see that the
accuracy decreases in DS3 and DS8. This is because, two image patches (with
different original intensities) might end up have the same average intensities af-
ter image transformation, and therefore, not satisfy (3) because of saturation
of intensity values (as in the case of DS8) or because of rounding errors in the
division process (as in the case of DS3). The results of the VJ-type detector with
and without variance normalization are also tabulated in Table 2. The proposed
detector does not require variance normalization procedure as the sign of the
feature value of any HF is not affected by the variance normalization process.
Thus, the computation of the integral image square and the computation of
standard deviation of each image sub-region can be avoided during the detec-
tion process, which adds to the speed of detection. The time required to process
all the images in the test set by the face and the heart detectors were 41s and
12s. This includes the time to read the image, computation of integral image(s),
the scanning, and the clustering process to merge multiple detections. Our im-
plementation of VJ procedure (with variance normalization) took 62s and 14s,
respectively. The testing times were measured on a 3 GHz CPU.

The number of false detection by the the face and the heart detectors, along
with the state-of-the-art methods, is listed in Table 3. The face detector achieved
a false positive rate of 9.2× 10−5 (912 false detections), which is approximately
10 times worse than the state-of-the-art detectors. However, the number of false
detections by the heart detector was only 2, which represented a false positive
rate of 3.3× 10−6.
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4 Conclusions

In this paper, we have presented a novel training procedure for object detec-
tion systems and compared its performance, both during training and testing
phases, with the state-of-the-art techniques. The advantages of adopting pro-
posed technique include fast training in the order of seconds, global illumination
invariance and real-time detection speed. The disadvantage of this method is
that it produces more false positives with respect to the state-of-the-art.

The quick training and testing speed of the proposed technique makes it ideal
for content based image retrieval systems - where a user makes a query (an
image patch), and asks the system to automatically find similar patches in a
huge database of images. The existing methods, by the virtue of being slow to
train, cannot be used in such scenarios.
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Abstract. This paper focus on one of the major problems in model-
based object tracking, the problem of how to dynamically update the
model to adapt changes in the structure and appearance of the target
object. We adopt Irregular Graph Pyramids to hierarchically represent
the topological structure of a rigid moving object with multiresolution,
making it possible to add new details observed from an approaching
object by expanding the pyramid.

Keywords: irregular graph pyramid; adaptive representation; object
structure; tracking model.

1 Introduction

One of the major problems for model-based object tracking is: how to dynam-
ically update the model to accommodate the object appearance and structure
changes due to the changes in the surrounding conditions against which the
tracked object is observed [1].

By reviewing the previous works for model updating, a method for adjusting
features while tracking is presented by Collins and Liu [2]. Their hypothesis
is that best discriminating features between object and background are also
best for tracking the object. This method uses the immediate previous frame
as the training frame and the current as the test frame for the foreground and
background classification. In [3] the template is first updated with the image at
the current template location. To eliminate drift, this updated template is then
aligned with the first template to give the final update.

However, these methods update their models by getting new information of
the target object from resampled input image frames, with a fixed resolution.

The properties of the Irregular Graph Pyramid and its applications in image
processing motivated us to use the advantages of its topological/structural hier-
archy features in tracking. With its hierarchical feature, we are able to represent
the moving object in multi resolution, and incrementally update it by adding
new details from the approaching target object.
� Supported by the Austrian Science Fund under grant P18716-N13.
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Each level of the pyramid is represented by a graph which embeds the topolog-
ical structure of the object at certain resolution. Such graphs are built of vertices
and spatial edges. In the vertex; attributes like size, color and position of the
corresponding pixels (region) can be stored. The spatial edges are used to spec-
ify the spatial relationships (adjacency, border) between the vertex (regions).
Tracking methods using structural information often employ graphs to describe
the object structure. Locally, features describe the object details; globally, the
relations between features encode the object structure.

By exploiting the spatial and temporal structure of the scene [4], Artner and
Lopez improve the performance of object tracking in video sequences. They
present a structural tracking approach which is robust to different types of oc-
clusions, as the structural information is able to differ objects by their different
structural types.

Gomila and Meyer [5] represent as a region adjacency graph each image of a
video sequence. For object tracking a graph matching is performed, in which the
intrinsic complexity of graph matching is greatly reduced by coupling it with
segmentation.

Less work has been done for tracking with graph pyramid. [6] presents a
method of tracking objects through occlusions using graph pyramid. They apply
graph matching to find the matching between the vertices in current image frame
with the ones in previous image frames. Instead of doing the graph matching
which is known as computationally expensive, we propose a top - down pyramid
reconstruction approach to avoid graph matching.

Major contributions of this paper are 1) Our model hierarchically represents
a moving object with multi resolution; 2) For an approaching object, we encode
the new details by expanding the pyramid structure; 3) Compared to other
pyramid tracking methods, we use a top - down pyramid reconstruction approach
instead of bottom-up recomputing the graph pyramid for each frame. In such
way, computational costs would be reduced.

Organization of paper. In section 2 we recall the concept of Irregular Graph
Pyramid (IGP). In section 3 we describe the process of tracking with IGP. Section
4 describes a concept of Adatpive Zoom in for tracking the approaching object.
Section 5 finalizes with conclusion and open questions.

2 Recall of Irregular Graph Pyramid

An irregular pyramid combines graph structures with hierarchies. Each level is
a graph describing the image with various resolutions by contracting the graph
from the level below. Specifically, contraction is a process to take the attributes of
all children as input and then compute the parent’s attribute as output, removes
the edges from input graph while simultaneously merging together the vertices
it used to connect [7].

For this paper we are considering combinatorial maps. A combinatorial map
is a topological model which allows to represent subdivided objects as planar
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graphs. A 2D combinatorial map is defined by a triplet M = (D,σ, α) where D
is a finite set of darts, σ is a permutation on D and α is an involution on D
without fixed point [8]. For each dart, σ gives the next dart by turning around
the vertex v in the positive orientation (clockwise); For each dart, α gives the
other dart of the same edge e. There are always two darts corresponding to a
same edge, α allows to retrieve edge e, and σ allows to retrieve the vertex v.

Taking a simplified image of a cup as example, we build the base graph as the
input image, where each vertex represent a pixel in the input image. Then use
the contraction methods to build the irregular pyramid. Such approach would
lead to a pyramidal structures like the following figure:

Fig. 1. Irregular Graph Pyramid

Level 0: The base level of the pyramid consists in a geometric description of
the underlying image (here a simplified image of a cup).

Level 1: The second level of the pyramid, simpler boundaries are abstracted
from base level (like the handle and the logo of the cup).

Level 2: Adjacent parts of the cup are grouped in order to represent compound
abstract objects.

In irregular pyramids, during the building process of pyramid, the adaptive
contraction of the structure preserves its topological structure.

3 Tracking with Irregular Graph Pyramid

In this paper we only consider tracking linear object movement. Translation,
scaling and rotation are the basic types of linear object movement. In this section,
we describe how to track the translation movement using graph pyramid. In
the following section, we focus on tracking the scaling movement (approaching
object). Rotation is not covered by this paper. However, in our other works, we
present the concept of topological completion to reconstruct the closed surface
of a 3D object for tracking a rotating 3D object.
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For initialization, a pyramid is bottom-up built for the target object from a
video frame. The target object is represented at different levels of resolution using
a graph for each level. We build the base graph as the input image, where each
vertex represent a pixel. We save the coordinates of pixels in the attributes of
the vertices in base graph. And discriminability can be computed locally similar
to Lowe’s SIFT descriptor [?].

In the contraction process, the vertices with most discriminative feature sur-
vive. The coordinates of the surviving vertices are preserved in the attributes
of the parents. For the non surviving vertices, coordinates are saved in the con-
tracted edges for the purpose of later pyramid reconstruction.

In such way, the pyramid apex encodes the most discriminative feature of
the target object as well the coordinate of the most discriminative feature. For
instance, for a cup with yellow logo on the surface, the apex encodes the yellow
logo and the coordinates of the logo.

For a rigid object, the structure of the pyramid is invariant to any geometric
transformation. By estimating the location of the logo (which is abstracted as
the apex), we are able to locate the whole pyramid. All the vertices can be
accessed efficiently from the apex by following the parent - children path. The
construction of the pyramid is a bottom - up process while the reconstruction
from the apex is a top - down process. In such way we can reconstruct the whole
pyramid by only locating the apex point.

An example of the tracking process is shown Fig. 2. At frame i the object
is detected and its pyramid is initially built. The apex encodes the most dis-
criminative feature of the object (the yellow logo). In the next frames i+ n the
object moves, we detect the location of the yellow logo by motion estimation
method. Once the apex coordinate (coordinate of yellow logo) is known, we can
reconstruct the pyramid until we retrieve all the vertices and their coordinates

Fig. 2. Tracking with Irregular Graph Pyramid
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of base graph. As the base graph of pyramid present the image of the target
object, the target object at frame i+ n is tracked.

4 Adaptive Zoom - In

Model-based object tracking intend to keep a clear and detailed description of
the object by gathering its latest descriptors available, these descriptors describe
elementary characteristics of the object such as the color, the shape, the texture,
among others. In order to do this, the model must be able to adapt the object
changes. If an object changes its details for a given reason then the model must
have such a robust adaptive system that keeps a clear identification and location
of this tracking object.

Every frame is different, so new relevant pieces of information or features
from the object may appear due to different reasons such as appearance or pose
changes. We are treating the current frame as the latest source of information,
containing the ultimate object descriptors. This new information may include
changes in its internal or structural descriptors. Traditional model based repre-
sentations are reliable and robust in scenes where the object is consistent, no
expansion of details, no considerable illumination changes. In this section we
present a case and the proposed solution using an adaptive zoom - in; if the
object gets closer to the camera, the distance camera-object changes and we
will obtain a bigger picture (higher resolution) of the object and more detailed
descriptors will appear.

From the irregular graph pyramid perspective, this new image can be seen as
a proportional projection of the original base graph which includes more detailed
descriptors. The pyramid will expand one level below the current base graph,
this new base graph encodes both structures due to a higher resolution of the
object. And the problem is to find the vertical connection between the new base
graph and the existing upper part of the pyramid.

Let G = (V,E) be the graph at the base of the original pyramid and G̃ =(
Ṽ , Ẽ

)
the new base graph.

Fig. 3. Pyramid base projection to a lower level



890 L.A. Mateos, D. Shao, and W.G. Kropatsch

Other than in most parameter optimization tasks, both the vertices of the
lower level G̃ and the next upper level G are know as well as the reduction
function. The only unknown is the contraction kernel K such that G = G̃/K.
G̃ =

(
Ṽ , Ẽ

)
corresponds to the image grid with higher resolution, which is

considered as a 4-connected graph. For each vertex v ∈ Ṽ , a set of allowed
candidate parents are computed by finding the closer correspondences. Then, a
new parent is chosen from the set of allowed candidate parents. The vertex is
relinked to the new parent and the graph structure and attributes of vertices are
updated accordingly. This procedure is repeated until a stable configuration is
reached. The new parent pnew is chosen for each vertex v such that the difference
between g (ṽ) and g (pnew) is minimized. The rules which determine the selection
of a new parent for a vertex can be formulated as an energy minimization problem
relinking [9]. An energy

E =
∑

v∈Ṽ

n(v) [g(v)− g(p(v))] (1)

can be defined. Here, n(v) denotes the area of the receptive field of v, g(v) de-
notes its gray level or local feature value and p(v) denotes the parent assignment.
As pointed out by Nacken [9], this relinking algorithm may destroy the connec-
tivity of the receptive fields. Improve our method with Nacken’s modification is
one of our future directions.

By graph relinking, we put higher resolution image frame as new base graph,
then define contraction kernel that produce the old base. Instead of bottom-up
rebuilding pyramid by applying contraction kernel, we use the graph at the base
of the original pyramid as fixed upper level graph, and try to define the expansion
kernel. In such way, the original pyramid structure remains unchanged, we only
attach a lower level base graph into this pyramid.

Assumption. Considering the speed of the moving object, we assume the ap-
proaching speed is not too fast. The current size of the target object can not
exceed twice as the one in previous image frame, which means the maximum
scaling factor can not exceed 2. Otherwise there might be a gap between the
new base graph and the old base graph so that we have to insert extra levels to
bridge the new base graph with the old base graph.

5 Conclusions

This paper presents a novel concept of using irregular graph pyramid to repre-
sent a moving object in multi resolution. This concept can be applied into many
tracking applications. In this paper, we focus on how to track approaching object
(scaling movement) by expanding the irregular graph pyramid. Considering the
computational costs, we propose a top-down pyramid reconstruction approach,
instead of bottom - up rebuilding pyramid for the target object in each image
frame. Our future work will concentrate on how to extend this tracking frame-
work to track other object movement such as reflection, shear and non linear
movement.
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Abstract. Many tasks can be described by sequences of actions that
normally exhibit some form of structure and that can be represented
by a grammar. This paper introduces FOSeq, an algorithm that learns
grammars from sequences of actions. The sequences are given as low-level
traces of readings from sensors that are transformed into a relational
representation. Given a transformed sequence, FOSeq identifies frequent
sub-sequences of n-items, or n-grams, to generate new grammar rules
until no more frequent n-grams can be found. From m sequences of the
same task, FOSeq generates m grammars and performs a generalization
process over the best grammar to cover most of the sequences. The gram-
mars induced by FOSeq can be used to perform a particular task and
to classify new sequences. FOSeq was tested on robot navigation tasks
and on gesture recognition with competitive performance against other
approaches based on Hidden Markov Models.

1 Introduction

Sequences are used to describe different problems in many fields, such as natural
language processing, music, DNA, and gesture recognition, among others. The
analysis of such sequences often involves exploiting the information provided
by the implicit structure of the sequences that can sometimes be represented
by a grammar. Learning grammars from sequences offers several advantages.
Suppose that you have a set of sequences of actions performed by a robot to move
between two designated places avoiding obstacles. If we could infer a grammar
from such sequences, we could use it to recognize when a robot moves between
two places and also to generate a sequence of actions to perform such task.
Another advantage is that a grammar normally includes sub-concepts that can
include other sub-concepts or primitive actions, which can be used to solve other
related sub-tasks.

Grammars can be represented by different formalisms, the most commonly
used is context-free grammars (CFGs). In this paper, we use Definite Clause
Grammars (DCGs), a generalization of CFGs that use a relational representa-
tion. This is important as it allows us to apply the learned grammar to different
instantiations of a more general problem.

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 892–900, 2009.
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We focus on learning grammars from sequences of actions that can be used as
programs to execute a task and as classifiers. The training sequences are provided
by the user, the main idea is to show the system what to do instead of how to
do it (e.g., steering the robot avoiding obstacles or moving a hand), simplifying
the programming effort. The set of traces consists of low-level sensor readings
that are transformed into a high level representation. The transformed sequences
are given to an algorithm (FOSeq) that induces grammars that can be used to
reproduce the original human-guided traces and to identify new sequences.

The approach was applied in two domains: (i) robot navigation and (ii) ges-
ture recognition. We tested the learned navigation grammars in a robotics sce-
nario with both simulated and real environments and show that the robot is
able to accomplish several navigation tasks. The gesture recognition was tested
using a public database of gestures, showing that the classification accuracy is
competitive with other common approaches with the advantage of learning an
understandable representation.

This paper is organized as follows. Section 2 reviews related work. Section 3
describes the grammar learning algorithm. Section 4 presents the navigation task
while Section 5 describes the gesture recognition experiment. Conclusions and
future research directions are given in Section 6.

2 Related Work

Grammar induction has been commonly studied in the context of Natural Lan-
guage Processing. Most of the approaches use grammars as parsers and focus
on specific problems and are rarely used to solve other related problems. Other
researchers have tried to induce grammars using a relational representation.
EMILE [1] and ABL [2] are algorithms based on first order logic that learn the
grammatical structure of a language from sentences. Both algorithms focus on
language and it is not easy to extend them to other applications. GIFT [3] is
an algorithm that learns logic programs but it requires an initial rule set given
by an expert. In contrast, FOSeq learns relational grammars from sequences of
actions, where the grammars are logic programs that can reproduce the task de-
scribed by the sequences. A grammar induction technique closely related to our
work is SEQUITUR [4], an algorithm that infers a hierarchical structure from a
sequence of discrete symbols. However, SEQUITUR handles only constant sym-
bols, is based on bi-grams (sets of two consecutive symbols), and consequently,
the learned rules can only have pairs of literals in their bodies, and it does
not generalize rules. FOSeq employs a relational approach, is not restricted to
bi-grams and is able to generalize.

Learning from sequences has been used in robotics to learn skills. In [5] a robot
has to learn movements (e.g., aerobic-style movement) showed by a teacher. To
encode the movements, and subsequently be able to recognize them, they used
Hidden Markov Models (HMM). However, this representation is not easy to
interpret and does not capture the hierarchical structure of the sequences. In
our approach, hierarchical skills can be learned from sequences of basic skills.
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Another domain that has been used to learn from sequences is gesture recog-
nition, which is an important skill for human–computer interaction. Hidden
Markov Models and neural networks are standard techniques for gesture recog-
nition. However, most of the approaches have emphasized on improving learning
and recognition performance without considering the understandability of the
representation [6].

3 Learning Grammars with FOSeq

The general algorithm can be stated as follows: from a set of sequences, (i) learn
a grammar for each sequence, (ii) parse all the sequences with each induced
grammar, evaluate how well each grammar parses all the traces, and (iii) apply a
generalization process to the best grammar trying to cover most of the sequences.

1: Grammar induction. Given a trace of predicates the algorithm looks for
n-grams (e.g., sub-sequences of n-items, in our case n-predicates) that appear at
least twice in the sequence. As in Apriori [7], the candidate n-grams are incre-
mentally searched by their length. The search starts with n = 2 and ends when
there are no more repeated n-grams for n ≥ 2. The n-gram with the highest
frequency of each iteration is selected, generating a new grammar rule and re-
placing in the sequence, all occurrences of the n-gram with a new non-terminal
symbol. If there is more than one n-gram with the same highest-frequency, the
longest n-gram is selected. If there are several candidates of the same length, the
algorithm randomly selects one of them. Repeated items are removed because
items represent actions that are executed continuously while specific conditions
hold. Therefore, the action will be repeated while its conditions are satisfied even
if it appears only once.

Example. Let us illustrate the grammar induction process with the following
sequence of constants: S → a b c b c b c b a b c d b e b c. FOSeq looks for
n-grams with frequency ≥ 2 as candidates to build a rule. In the first iteration
there is only one candidate: {b c} with five appearances in the sequence. This
n-gram becomes the body of the new rule R1→b c. The n-gram is replaced by
the non-terminal R1 in sequence S, generating S1 and removing repeated items.
In the second iteration FOSeq finds three candidates: {R1 b}, {a R1} and {a R1
b} with two repetitions each. FOSeq selects the longest item: {a R1 b} and a
new rule is added: R2→a R1 b. Sequence S2 does not have repeated items and
the process ends. Figure 1 shows the learned grammar where R1 and R2 can be
seen as sub-concepts in the sequence.

When the items of the sequence are first–order predicates the learned grammar
is a definite clause grammar (DCG). DCGs are an extension of context free
grammars that are expressed and executed in Prolog. In this paper we have
sequences of predicates that are state-action pairs with the following format:
pred1(State1,action1), pred2(State2,action1), pred1(State3,action2), . . .

For repeated predicates a new predicate is created, where State is the first
state of the first predicate and Action is the action of the last predicate. For
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S2 → R2 d b e R1
R1 → b c
R2 → a R1 b

R2   d   b   e   R1

b  ca  R1  b

b  c

Fig. 1. Induced grammar for sequence S. S2 is the compressed sequence after the
induction process. The grammar describes the hierarchical structure of the sequence.

instance, suppose that the following pair of predicates is repeated several times
in the sequence: . . ., pred1(Statej,Action1), pred2(Statek,Action2), . . ., then the
following new predicate is created:
newpred(State1,Action2) ← pred1(State1,Action1), pred2(State2,Action2) .

2: Grammar evaluation. A grammar is created for each sequence. Every
learned grammar is used to parse all the sequences in the set of traces pro-
vided by the user and the best evaluated grammar is selected. The measure of
how well the grammar parses is calculated using the following function:

eval(gi) =
m∑

i=1

ci

ci + fi

where gi is the grammar being evaluated from a set of m sequences, ci and fi

are the number of items that the grammar is able or unable to parse respectively
and i is the index of the sequence being evaluated. When a grammar is not able
to parse a symbol, it is skipped. FOSeq selects the grammar that best parses the
set of sequences.

3: Generalization. The key idea of the generalization process is to obtain a new
grammar that improves the covering of the best grammar. It is performed using
pairs of grammars. For example, if the best grammar describes the trajectory
of a mobile robot when its goal is to the right, we would expect that another
sequence provides information about how to reach a goal to the left of the robot.
The generalization process generates a clause that covers both cases calculating
the lgg (least general generalization [8]) of both clauses. The process can be
summarized as follows:

1. Select the best grammar gbest

2. Select the grammar gother that provides the largest number of different in-
stantiations of predicates.

3. Compute the lgg between grammar rules of gbest and gother with different
instantiations of predicates and replace the grammar rule from gbest by the
resulting generalized rule.

4. If the new grammar rule improves the original coverage, it is accepted, oth-
erwise it is discarded.

5. The process continues until a coverage threshold is reached, gbest rules cover
all the rules in the other grammars or there is no longer improvement with
the generalization process.
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Table 1. lgg example

c1 c2 lgg(c1,c2)
pred(State,action2) ← pred(State,action3) ← pred(State,Action) ←

cond1(State,action1), cond1(State,action1), cond1(State,action1),
cond2(State,action2). cond2(State,action3). cond2(State,Action).

The generalization process is used to produce a more general grammar applicable
to different traces of the problem. Table 1 shows the lgg of clauses c1 and c2 where
the constants action2 and action3 are replaced by the variable Action.

4 Learning Navigation Tasks

When a mobile robot navigates through an office/house environment it describes
a trajectory that can be represented by sequences of actions. Our approach
is based on a teleo-reactive framework where learned DCGs represent Teleo-
Reactive Programs (TRPs) [9]. TRPs are sets of reactive rules that sense the
environment continuously and apply an action whose continuous execution even-
tually satisfies a goal condition. The following basic navigation TRPs are learned
in [10]: wander, orient, leave-a-trap and follow-a-mobile-object.

Learning to go to a target point. Given a sequence consisting of wander
and orient FOSeq is used to learn a grammar that can go between two places
using such skills and possibly inducing intermediate concepts. The user steered
the mobile robot with a joystick to reach different goals producing 8 traces.
FOSeq learned 8 grammars, one for each trace. After being evaluated, the best
induced grammar covered 99.29% of the traces. Table 2 shows the generalized
rules learned from the trace of 8 sequences. Predicate names were given by the
user. Each rule describes a sub-task along the navigation trajectory. For example,
R1 describes the “turning-to-goal” behavior and R2 describes the “direct-to-
goal” behavior when the robot does not need to turn because the goal is in its
same direction and it wanders to reach the goal. Table 3 shows other hierarchical
TRPs learned using other basic skills: wander, orient, follow and leave-trap.

Navigation experiments. The experiments were carried out in simulation and
with a service ActivMedia robot equipped with a sonar ring and a Laser SICK
LMS200 using the Player/Stage software [11]. The goal of the experiments is to
show that the learned TRPs can control the robot in completely unknown and
dynamic environments. We evaluate the performance of the learned TRPs in
10 different scenarios, with different obstacles’ sizes and shapes, and with static
and dynamic obstacles. The TRPs were evaluated by the percentage of tasks
successfully completed, and the number of operator interventions (e.g., if the
robot enters a loop). The robot’s initial position and the goal point (when appli-
cable) were randomly generated. In each experiment two operator interventions
were allowed, otherwise, the experiment failed. Table 3 summarizes the results
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Table 2. Goto TRP rules

(R1) turning-to-goal(State1,go-fwd) → orient(State1,Action), wander(State2,go-fwd)
(R2) direct-to-goal(State1,Action) → orient(State1,equal), wander(State2,Action)
(R3) cannot-orient(State1,Action) → orient(State1,none),wander(State2,Action)
(R4) ramble(State,Action) → wander(State,Action)

Table 3. Accuracy: Hierarchical TRPs

TRP #seq. Tasks Int. Acc1 Acc2
wander + orient (goto) 8 30 2 93.33 86.67
wander + orient + leave-trap 12 30 1 96.67 93.33
follow + wander 10 40 2 95 90
follow + wander + leave-trap 14 40 0 100 100

in simulation. It is shown the number of tasks to test each TRP, the operator
interventions and the accuracy with (Acc1) and without interventions (Acc2).

The learned TRPs were integrated as the navigation module of a PeopleBot
service robot [12]. The given tasks were: (i) following a human under user com-
mands, (ii) navigating to several places in the environment. Each place has a
previously defined name (e.g., kitchen, sofa), (iii) finding one of a set of different
objects in a house, and (iv) delivering messages and/or objects between different
people. The first three tasks are part of the RoboCup@Home challenge. Naviga-
tion and follow videos can be seen at: http://www.youtube.com/user/anon9899

5 Dynamic Gesture Recognition

Interacting with gestures is a natural human ability that can improve the human-
computer communication. In this section it is described how to learn grammars
from sequences of dynamic gestures and use them to classify new sequences.

FOSeq transforms low-level information from sensors into a relational rep-
resentation. We have sequences of state-value pairs, where a value can be an
action or a boolean variable, as described below. We used a database1 of 7308
samples from 9 dynamic gestures taken from 10 men and 5 women. Figure 2(a)
shows the initial and final position for each gesture. The whole set can be seen
in Figures 2(b)-(j). Gestures were executed with the right arm and they were
obtained using the monocular visual system described in [6].

Each sequence is a vector with sets of seven attributes describing the executed
gesture. An example of a sequence is: (+ + −− T F F),(+ + − + T F F), . . . where
the first three attributes of each vector describe motion and the rest describe
posture. Motion features are ∆area, ∆x and ∆y, representing changes in hand
area and changes in hand position of the XY-axis of the image respectively.
These features take one of three possible values: {+,−,0} indicating increment,

1 Database available at http://sourceforge.net/projects/visualgestures/
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. Gesture set: (a) initial and final position, (b) attention, (c) come, (d) left, (e)
right, (f) stop, (g) turn-right, (h) turn-left, (i) waving, (j) pointing

decrement or no change, according to the area and position of the hand in a
previous image. Posture features are: form, above, right and torso, and describe
hand appearance and spatial relations between the hand and face/torso. Hand
appearance is described by form. Possible values for this feature are {+,−,0}:
(+) if the hand is vertical, (−) if the hand has horizontal position, and (0) if
the hand is tilted to the right or left over the XY plane. Features right and
torso indicate if the hand is to the right of the head and over the torso. Based
on this information, sequences are transformed into a first-order representation
by replacing their attributes with a meaningful fact (e.g., hmove(State, right),
vmove(State, up),size(State,inc), shape(State, vertical), . . .).

We focused on the recognition between gestures produced by one person fol-
lowing the experimentation setting described in [6]: (i) from 50 sequences of each
gesture, randomly select 20 sequences to learn the grammars and build training
sets of 2 and 10 sequences, (ii) learn a grammar for each gesture, (iii) test the
grammars with the remaining 30 sequences, (iv) repeat 10 times.

The overall accuracy obtained by FOSeq and the HMM approach in [6] is
as follows: both training sub-sets FOSeq performs similar to HMMs: with 2
training sequences, FOSeq got 95.17%, whereas HMMs 94.85%. With 10 train-
ing sequences, FOSeq got 97.34%, and HMMs 97.56%. These results are very
promising as HMM is the leading technique in this application. Table 4 shows
the confusion matrix that expresses the proportion of true classified instances
for 10 training sequences. The best classified gestures are: left, right, turn-right
and waving (100%) whereas pointing is the worst classified gesture (85.17%).
Misclassification are concentrated between pointing and come.

Learned grammars for pointing and come have 5 common rules whereas right
and left grammars do not have any. For instance, an identical grammar rule
for pointing/come is: R1 → above face(State,false) over torso(State,true) ex-
plaining that the hand is not near the face but it is over the torso. This type
of similarities and the identification of common sub–gestures is not possible to
obtain with other approaches. Learning relational grammars for gesture recog-
nition produces an explicit representation of rules and is able to identify and
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Table 4. Confusion matrix for 10 sequences. Classes: 1) attention, 2) come, 3) left, 4)
pointing, 5) right, 6) stop, 7) turn-left, 8) turn-right, 9) waving

1 2 3 4 5 6 7 8 9
1 99.33 0.67 300
2 97.24 2.76 290
3 100 290
4 13.10 1.72 85.17 290
5 100 300
6 1.03 97.59 1.38 290
7 2.07 96.55 1.38 290
8 100 290
9 100 290

301 320 295 255 306 283 280 292 298 2630

generate rules for sub-gestures. It also helps to find similarities between different
gestures and has a competitive performance against HMMs.

6 Conclusions and Future Work

In this work we have introduced an algorithm called FOSeq, that takes sequences
of states and actions and induces a grammar able to parse and reproduce the se-
quences. FOSeq learns a grammar for each sequence, followed by a generalization
process between the best evaluated grammar and other grammars to produce a
generalized grammar covering most of the sequences. Once a grammar is learned
it is transformed into a TRP in order to execute particular actions and achieve
a goal. FOSeq was able to learn a navigation grammar from sequences given by
the user and used the corresponding TRP to guide the robot in several naviga-
tion tasks in dynamic and unknown environments. FOSeq was also used to learn
grammars from gesture sequences with very competitive results when compared
with a recent state-of-the-art system. As part of our future work, we are work-
ing on learning more TRPs to solve other robotic tasks, we plan to extend the
experiments with gestures to obtain a general grammar for a gesture performed
by more than one person, and we are interested in reproducing gestures with a
manipulator.

The authors thank the reviewers for their useful comments. This research was
sponsored by CONACYT under grant 203873 .
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Abstract. In this article an autonomous visual perception framework
for humanoids is presented. This model-based framework exploits the
available knowledge and the context acquired during global localization
in order to overcome the limitations of pure data-driven approaches.
The reasoning for perception and the properceptive1 components are
the key elements to solve complex visual assertion queries with a pro-
ficient performance. Experimental evaluation with the humanoid robot
ARMAR-IIIa is presented.

Keywords: Model-Based Vision, Object Recognition, Humanoids.

1 Introduction

The emerging research field of humanoid robots for human daily environment
is an exciting multidisciplinary challenge. In order to properly and effectively
interact and operate within those environments it is indispensable to equip the
humanoid robots with autonomous perception capabilities.

Recently, considerable results in this field have been achieved (see [1],[2])
and several humanoid robots exposed various knowledge-driven capabilities and
skills. However, those approaches mainly concentrate on knowledge processing
for graspable objects with fixed object-centered attention zones, e.g. kettle tip
while pouring tea or water faucet while washing a cup.

These approaches assume a fixed pose of the robot in its environment in order
to perceive and manipulate objects and environmental elements within a kitchen.
In addition, the very narrow field of view with no objects in the background
constrains their applicability in real daily scenarios.

These perception limitations can be overcome through an enhanced exploita-
tion of the available model and knowledge information by including a reasoning
sublayer within the visual perception system. There exist works on humanoids
reasoning for task planning and situation interpretation, see [3], [4]. However,
they focus on atomic operations and discrete transitions between states of the
1 Capturing the world through internal means, e.g. models and knowledge mechanisms.

It is the counterpart of perception which captures the world through external means,
sensory stimuli.

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 901–909, 2009.
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modeled world for behavior generation and verification. This high-level reasoning
is not the focus of the present work, but the inclusion of the essential reason-
ing mechanism while perception takes place in order to robustly recognize and
interpret complex patterns, i.e. distinguish and track environmental objects in
presence of cluttered backgrounds, grasping occlusions and different poses of
both, the humanoid and the environmental objects.

The processing of low-level sensor data and higher-level knowledge model for
segmentation, rejection and recognition constitutes the reasoning for visual per-
ception. It bridges the gap between the image processing and object recognition
components through a cognitive perception framework [5].

In order to make this reasoning mechanism tractable and its implementation
plausible it is necessary to profit from both the model-to-vision coupling resulting
from the model-based approach and the vision-to-model association acquired
during the global localization by means of our previous work, see [6], [7].

The focus herein is placed on rigid elements of the environment which could
be transformed through rigid-parametric transformations, e.g. furniture, kitchen
appliances, etc.

In the following sections the visual perception framework is introduced along
experimental results of the demonstration application scenario where these con-
cepts were implemented and evaluated providing remarkable real-time results
which pure data driven algorithms would hardly provide.

2 Visual Perception Framework

The visual perception framework extracts valuable information from the real
world through stereo color images and kinematic configuration of the humanoids
active vision head. The adequate representation, unified and efficient storage,
automatic recall and task-driven processing of this information take place within
different layers (so called states of cognition) of the framework.

Latter cognition states are categorically organized according to [5] as sensing,
attention, reasoning, recognition, planning, coordination and learning. In this
manner three principal cycles arise, namely perception-cycle, coordination-cycle
and learning-cycle, see Fig.1.

Memory; World Model and Ego Spaces. The formal representation of real
objects within the application domain and the relationships between them con-
stitutes the long term memory, i.e. the world-model. In our approach appro-
priate description has been done by simultaneously separating the geometric
composition from the pose and encapsulating the attributes which correspond
to the configuration of the instances, e.g. name, identifier, type, size, parametric
transformation, etc. This structure, along the implemented mechanism for graph
pruning and inexact matching lay down the spatial query solver used in Sec.4.

On the other hand, the mental imagery (see Sec.3.1) and the acquired percepts
are contained within an ego centered space which corresponds to the short term
memory.
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Fig. 1. The perception framework, including states of cognition and principal cycles

3 Visual Sensing and Planning

Sensing. The noise tolerant vision-to-model coupling arise from the full con-
figuration of the active vision system including the internal joint configuration,
external position and orientation of the cameras centers as well as all required
mechanisms to obtain euclidean metric from stereo images, see [8], [9].

Planning. It involves three fundamental aspects;
First, once the visual target-node has been established, it provides a frame and

the definition of a subspace Ψ where the robot has to be located, therewith the
target-node can be robustly recognized, see Fig.2-a,b. Note that this subspace
Ψ is not a single pose as in [3] and [4], but a wide range of reachable poses
allowing more flexible applicability and more robustness through wider tolerance
for uncertainties in the navigation and self-localization.

Subsequently, the visual-planner uses the restricted subspace and target node
frame to generate a transformation from the current pose to a set of valid poses.
These poses are used as input of the navigation layer [10] to be unfolded and
executed.

Finally, once the robot has reached the desired position, the visual-planner
uses the description of the node to predict parametric transformations and ap-
pearance properties, namely, how the image content should look like, and how
the spatial distribution of environmental elements is related to the current pose.
Note that this is not a set of stored image-node associations (as in the appear-
ance graph) but a novel generative-extractive continuous approach implemented
by the following properception mechanism.

3.1 Mental Imagery

The properception skills prediction and cue extraction allow the humanoid to
capture the world through internal means by synergistically exploiting both, the
world-model (full scene-graph) and the hybrid virtual cameras, see Fig.3. These
virtual devices use the plenary stereoscopic calibration of the real stereo rig in
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Fig. 2. a) Example of restriction subspace Ψ where the target node can be robustly
recognized, top view of the kitchen. b) Ψ side view. c) Geometric elements involved
during the spatial reasoning for perception.

Fig. 3. The properceptive mental imagery for trajectory prediction. Note that the blue
lines in the left and right image planes of the hybrid virtual cameras show the ideal
trajectory of the interest point (door handle end-point) during the door opening. This
predicted subspace reduce region of interest and helps to reject complex outliers, see
example in Fig.4.

order to set the projection volume and matrix within the virtual visualization,
a common practice in the augmented reality [11] for overlay image composition.
However, this hybrid virtual stereo rig is used to predict and analyze the image
content within the world-model, including the previously described parametric
transformations, extraction of position and orientations cues either for static or
dynamic configurations.
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4 Visual Reasoning for Recognition

The reasoning process for perception is decomposed in two domains; the visual
domain (2D reasoning) which concerns with the image content and the spatial
domain (3D reasoning), which manages the geometric content.

Visual Domain. The pose estimation of a partial occluded door handle, when
the robot has already grasped it, turns out to be difficult because of many per-
turbation factors. No size rejection criteria may be assumed, because the robot
hand is partially occluding the handle surface and the hand slides during task
execution, producing variation of the apparent size. No assumption about the
background of the handle could be made, because when the door is partially
open and the perspective view overlaps handles from lower doors similar chro-
matic distribution appear. In addition, the glittering of the metal surfaces on
both, the robots hand and doors handle, produce very confusing phenomena,
when using standard segmentation techniques [12].

In this context, we propose an environment dependent but very robust and
fast technique (15-20 ms) to simultaneously segment the regions and erode the
borders, producing non-connected regions which suits our desired preprocessing-
filtering phase. First, the raw RGB -color image Irgb(x, y) ∈ �3 is split per
channel and used to compute the power image Iφ, see Fig.4

Iφ(x, y, n) = [Ir(x, y) · Ig(x, y) · Ib(x, y)]n , where n and Iφ(x, y, n) ∈ �.

After linear normalization and adaptive thresholding, a binary image IB(x, y)
is produced, which is used to extract the blobs Bk and build feature vectors
for rejection purposes. The feature vector F (Bk) is formed by the blobs area
ω(Bk), the energy density δ(Bk), and the elongation descriptor, i.e. the ratio of
the eigen values Eσi(Bk) of the energy covariance matrix2 expressed by

F (Bk) := [δ(Bk), ω(Bk), Eσ1(Bk)/Eσ2 (Bk)].

This characterization enables a powerful rejection of blobs when verifying the
right-left cross matching by only allowing candidates in pairs (Bk, Bm) where
the criterion is fulfilled, i.e. the orientation of their axis shows a discrepancy less
than arccos(Kmin) radians, i.e.

K(Bk, Bm) := ‖Eσ1(Bk) · Eσ1(Bm)‖ > Kmin.

The interest point Ip in both images is selected as the furthest pixel along the
blobs main axis in opposed direction of the vector ΓR, i.e. unitary vector from
the door center to the center of the line segment where the rotation axis is
located, see Fig.2-c. This vector is obtained from the mental imagery as stated
in Sec.3.1-c. Moreover, the projected edges of a door within the kitchen aid the
segmentation phase to extract the door pose and improves the overall precision
by avoiding to consider edges pixels close to the handle.
2 From the power image by selecting masked blobs ω(Bk) in the binary image IB(x, y).
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a) b)

Fig. 4. a) Input image Irgb. Note that the book (particularly the white paper side)
in the background shows not only similar color distribution, but almost the same
size of the door handle. b) The power image Iφ. Based only on the pure data-driven
classification it will be hardly possible to reject the presence of a handle within the
location of the book.

The key factor of this model-to-vision coupling relies on the fact that very
general information is applied, i.e. from the projected lines and blobs employing
mental imagery, only their direction is used (e.g. noise-tolerant criterion Kmin)
and not the position itself, which differs from the real one, due to the discretiza-
tion, quantization, noise and uncertainties.

Spatial Domain. One of the most interesting features of our approach is the
usage of the vision-to-model coupling to deal with limited visibility.

In order to provide the required information from the global planner or coor-
dinator module it is necessary to estimate the interest point Ip, and the normal
vector Np of the grasping element, see Fig.2-c, e.g. the door handle. Because
of the size of both, the door and the 3D field of view (3DFOV, see Fig.2-a,b),
it can be easily corroborated that the minimal distance, where the robot must
be located for the complete door to be contained inside the robots 3DFOV, lies
outside of the reachable space, therefore common triangulation techniques may
not be used. In this situation, the module reasoning for perception switches from
pure data driven algorithm to the following recognition method which only re-
quires three partially visible edges of the door and uses the context (robot pose)
and model to assert the orientation of the door’s normal vector and the door’s
angle of aperture.

First, a 2D-line Υi on an image and the center of its capturing camera Lc or
Rc define a 3D-space plane Φ(i,j), see Fig.2-c. Hence, two such planes Φ(L,L) and
Φ(µ(ΥL,ΥR),R), resulting from the matching µ(ΥL, ΥR) of two lines in the left and
right images in a stereo system define an intersection subspace, i.e. a 3D-line

Λi = Φ(L,L) ∧ Φ(µ(ΥL,ΥR),R).
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These 3D-lines Λi are subject to noise and calibration artifacts. Thus, they
are not suitable to compute 3D intersections. However, their direction is robust
enough.

Next, the left image 2D points H(L,i) resulting from the intersection of 2D-
lines Υi are matched against those in the right image H(R,j) producing 3D points
X(R,j) by means of triangulation in a minimal-square fashion.

Finally, it is possible to acquire corners of the door and directions of the lines
connecting them, even when only partial edges are visible. Herein, the direction
of the vector ΓR is the long-term memory cue used to select the 3D line edge
direction DAxis and its point PAxis.

5 Experimental Evaluation

In order to demonstrate the advantages of the presented framework for visual
perception and to verify our methods, we accomplished the task of door opening
in a regular kitchen with the humanoid robot ARMAR-IIIa [10], see Fig.5.

In this scenario, the estimation of the normal vector Np, and therewith the
minimization of the external forces on the hand, because the door changes its
orientation during manipulation. In our previous approach [13] the results using
only one sensory channel (force-torque sensor) are acceptable but not satisfac-
tory, because the estimation of the task frame depends on the accuracy of the
robot kinematics.

In this experimental evaulation the framework estimates the interest point
and normal vector of the door, therewith the task frame. During task execution
this frame is estimated by the before mentioned methods and the impedance
control is balancing the external forces and torques at the hand, caused by
vision artifacts. Robustness and reliability of the handle tracker are the key to
reduce the force stress in the robots wrist as it can easily be seen in Fig.6.

Combining stereo vision and force control provides the advantage of real-time
task frame estimation by vision, which avoids the errors of the robots kinematics
and adjustment of actions by the force control.

Fig. 5. Experimental evaluation of the perception framework
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Fig. 6. Left; Cartesian position of the handle midpoint. Smooth movement in the
three cartesian dimensions, until iteration 144 when the handle is completely occluded.
Right; Total stress forces at the task frame. The red plot represents the force in the
pulling direction using only force-torque sensor and previous kinematic configuration.
The blue plot is the result when applying a vision-based estimation of the task frame
in a sensor fusion fashion.

6 Conclusions

The world-model and the available context acquired during self-localization will
not only make it possible to solve, otherwise hardly possible, complex visual
assertion queries, but it will also dispatch them with a proficient performance.
This is possible through the introduced perception framework which implements
the basic reasoning skills by extracting simple but compelling geometrical cues
from the properception component and then applying them as filters for the
classification of percepts, tracking and optimization of the region of interest (in
terms of size and speed) and handling of incomplete visual information, see Fig.5.
The coupling of model-to-vision by means of the properceptive cues generated by
the mental imagery along with the visual and spatial reasoning mechanism for
perception are the main novel contributions of the framework. A more general
formulation, exploitation and exploration of these ideas are the main axis of our
current work.

Acknowledgments

The work described in this article was partially conducted within the German
Humanoid Research project SFB588 funded by the German Research Founda-
tion (DFG: Deutsche Forschungsgemeinschaft) and the EU Cognitive Systems
projects GRASP (FP7-215821) and PACO-PLUS (FP6-027657) funded by the
European Commission.



On Environmental Model-Based Visual Perception for Humanoids 909

References

1. Okada, K., Kojima, M., Sagawa, Y., Ichino, T., Sato, K., Inaba, M.: Vision based
behavior verification system of humanoid robot for daily environment tasks. In:
IEEE-RAS Int. Conference on Humanoid Robots (2006)

2. Okada, K., Kojima, M., Tokutsu, S., Maki, T., Mori, Y., Inaba, M.: Multi-cue
3D object recognition in knowledge-based vision-guided humanoid robot system.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems 2007
(2007)

3. Okada, K., Tokutsu, S., Ogura, T., Kojima, M., Mori, Y., Maki, T., Inaba, M.: Sce-
nario controller for daily assistive humanoid using visual verification, task planning
and situation reasoning. Intelligent Autonomous Systems 10 (2008) ISBN 978-1-
58603-887-8

4. Okada, K., Kojima, M., Tokutsu, S., Mori, Y., Maki, T., Inaba, M.: Task guided
attention control and visual verification in tea serving by the daily assistive hu-
manoid HRP2JSK. In: IROS 2008. IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (2008)

5. Patnaik, S.: Robot Cognition and Navigation: An Experiment with Mobile Robots.
Springer, Heidelberg (2007)

6. Gonzalez-Aguirre, D., Asfour, T., Bayro-Corrochano, E., Dillmann, R.: Model-
based visual self-localization using geometry and graphs. In: 19th International
Conference on Pattern Recognition. ICPR 2008 (2008)

7. Gonzalez-Aguirre, D., Asfour, T., Bayro-Corrochano, E., Dillmann, R.: Improving
Model-Based Visual Self-Localization using Gaussian Spheres. In: 3rd International
Conference on Applications of Geometric Algebras in Computer Science and En-
gineering. AGACSE 2008 (2008)

8. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-
bridge University Press, San Francisco (2004)

9. The Integrating Vision Toolkit (IVT), http://ivt.sourceforge.net/
10. Asfour, T., Regenstein, K., Azad, P., Schroder, J., Bierbaum, A., Vahrenkamp, N.,

Dillmann, R.: ARMAR-III: An Integrated Humanoid Platform for Sensory-Motor
Control. In: IEEE-RAS Int. Conference on Humanoid Robots (2006)

11. Gordon, G., Billinghurst, M., Bell, M., Woodfill, J., Kowalik, B., Erendi, A., Tilan-
der, J.: The use of dense stereo range data in augmented reality. In: Proceedings of
International Symposium on Mixed and Augmented Reality, 2002. ISMAR 2002,
pp. 14–23 (2002)

12. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space anal-
ysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–
619 (2002)

13. Prats, M., Wieland, S., Asfour, T., del Pobil, A.P., Dillmann, R.: Compliant inter-
action in household environments by the Armar-III humanoid robot. In: IEEE-RAS
Int. Conference on Humanoid Robots (2008)

http://ivt.sourceforge.net/


Dexterous Cooperative Manipulation with
Redundant Robot Arms

David Navarro-Alarcon, Vicente Parra-Vega,
Silvionel Vite-Medecigo, and Ernesto Olguin-Diaz
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Abstract. A novel model-based force-position control scheme for co-
operative manipulation tasks with redundant arms is proposed in this
paper. Employing an orthogonal decomposition of the object contact me-
chanics, independent pose and force trajectory tracking can be achieved.
In this way, a high precision cooperative scheme is enforced since the pro-
jection of the object velocity into the contact normal direction converges
to zero, improving the system cooperativeness. Simulation results are
presented for a humanoid torso to visualize its closed-loop performance.

1 Introduction

Multi-arm cooperative schemes have been a topic of special interest for the last
20 years. This comes from the fact that multiple arms working in a given task
can improve the execution dexterity, increase the pay load capability, provide
higher manipulation flexibility, among other advantages [1]. Moreover, multi-
arm cooperative schemes can be employed to model certain robot manipulation
tasks such the robotic hand wherein each finger is modeled as an arm, and the
humanoid robot manipulation where two anthropomorphic arms manipulate an
object. Notice that these manipulation tasks involve physical interaction among
the cooperators, consequently, contact forces arise when manipulating an object.
Then, in order to provide a stable physical interaction, the object position tra-
jectory and the exerted contact force must be simultaneously controlled among
the participants. It must be remarked that these two problems are not fully de-
coupled as the case of fixed holonomic constraints [2]. Therefore, in cooperative
schemes the object is now allowed to move in the same direction as the exerted
contact force.

On the other hand, when redundant robot arms, like the humanoid anthropo-
morphic arms, are employed for cooperative tasks the benefits and possibilities
are increased even more. This as a result of the multiple kinematic configurations
available for a given end-effector pose (position+orientation). Even more, with
the use of redundancy a cooperative system can avoid collisions with obstacles
while manipulating the object, reconfigure itself in order to optimize the power
consumption while exerting a given contact force, or just to optimize a mean-
ingful cost function. In this sense, redundancy can help to improve the dexterity
of the robotic system.
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The main contribution of this paper is the enforced stability in the Lyapunov
sense of the normal velocity-position error manifold, presented here as coopera-
tiveness error. Therefore, the stable execution of independent force and position
tracking is guaranteed in the normal direction at the contact point. This con-
trol scheme is useful for humanoid cooperative manipulation, where is required
a stable physical interaction among arms. To present this result, Section 2 in-
troduces the nature of the dynamical problem of cooperative manipulation with
redundant arms, and the proposed parametrization of the open-loop error dy-
namics. Section 3 describes the design procedure for the passivity-based control
law. Simulation results with a humanoid robot with two redundant arms are
presented in Section 4, with final discussions in Section 5.

2 Mathematical Modeling

2.1 Robot Kinematics

Consider a robotic system composed of two redundant arms with similar kine-
matic structure. The joint position coordinate for each redundant arm is given
by q1, q2 ∈ �n. In this work, we will assume that both redundant arms have the
same number of degrees of freedom (DoF). Then, the forward and differential
kinematics equations of each arm are given by

Xi = f(qi), Ẋi = Ji(qi)q̇i (1)

with Xi ∈ �m as the end-effector pose and Ji(qi) = ∂fi(qi)
∂qi

∈ �m×n as the
Jacobian matrix, for i = 1, 2. Since both arms are redundant there is not unique
solution for the inverse kinematics problem because n > m, consequently the
non-square Jacobian matrix can not be inverted. This apparent complexity turns
into an attribute if we encode two different tasks within a single joint velocity
desired vector q̇di ∈ �n1. The former is the usual tracking task of the end-effector
while the latter may be a reference to reconfigure the kinematic chain [3]:

q̇di = q̇Pi + q̇Ki (2)

Then the challenge is to design q̇Pi and q̇Ki to encode the end-effector desired
velocity Ẋdi and the kinematic reconfiguration to satisfy a given cost function,
respectively 2. A common approach is to use the Jacobian right pseudo-inverse
J+

i (qi) = JT
i (qi)

[
Ji(qi)JT

i (qi)
]−1 ∈ �n×m and its orthogonal projection ma-

trix I − J+
i (qi)Ji(qi) ∈ �n×n to span the Jacobian kernel. Then, we define

q̇Pi = J+
i (qi)Ẋdi and q̇Ki = [I − J+

i (qi)Ji(qi)]
∂Ωi(qi)

∂qi
, where Ωi(qi) ∈ � is a cost

function to be locally optimized. The desired joint position can be computed by
integrating the desired velocity qdi =

∫ t

t0
q̇di dt + qi(t0).

1 Along this work, subindex d and r are used to denote the desired and reference
values of a given variable, respectively.

2 Notice that these vectors satisfy the following q̇T
Piq̇Ki = 0, i.e. they are orthogonal.

Therefore, q̇i → q̇di implies the achievement of both q̇Pi and q̇Ki.
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2.2 Holonomic Cooperation

In order to independently control the object motion and the interaction forces,
a meaningful mathematical description of the mobile holonomic constraint (ob-
ject) must be synthesized. To this end, consider the following expression of the
holonomic constraint ϕ(X1, X2) ∈ � imposed by the object over the cooperative
system

ϕ(X1, X2) = ϕ1(X1) + ϕ2(X2) = 0 (3)

Notice that (3) means that the robotic system is in contact with a rigid object.
Then, both arms must satisfy (3) when performing the trajectory. It is clear that
the independent forward kinematics of each arm X1 and X2 can be arranged
such that the scalar equation representing the holonomic constraint satisfies
ϕ1(X1) + ϕ2(X2) = 0, where ϕ1(X1) ∈ � and ϕ2(X2) ∈ � are scalar functions
of each arm, dependant only in the corresponding end-effector’s pose.

Our controller is based on the orthogonal decomposition of the contact me-
chanics between the object and the arms [2]. To this end, consider the following
definition of the normal subspace span horizontal vector Jϕi(qi) ∈ �1×n:

Jϕi(qi) =
∇ϕi(Xi)
‖∇ϕi(Xi)‖

Ji(qi) (4)

where ∇ϕi(Xi) = ∂ϕi(Xi)
∂Xi

∈ �1×m stands for the gradient of ϕi(Xi). The term
∇ϕi(Xi)

‖∇ϕi(Xi)‖ is a unit operational vector which points out at the contact normal
direction. Consider the following definition of the orthogonal projection matrix
Qϕi(qi) ∈ �n×n which spans the tangent subspace at the contact point:

Qϕi(qi) = I − J+
ϕi(qi)Jϕi(qi) (5)

where I ∈ �n×n is an identity matrix and J+
ϕi(qi) = JT

ϕi(qi)
[
Jϕi(qi)JT

ϕi(qi)
]−1 =

JT
ϕi(qi)

‖Jϕi(qi)‖2 ∈ �n denotes the right pseudo-inverse of Jϕi(qi) which always exists

Fig. 1. (a) The vector Jϕi(qi) and the matrix Qϕi(qi) span the normal and tangent
subspaces at the contact point, respectively. (b) Conceptual representation of the end-
effector constrained velocity ẊNi, which points onto the normal direction given by the
unit vector ∇ϕi(Xi)

‖∇ϕi(Xi)‖ .
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since Jϕi(qi)JT
ϕi(qi) = ‖Jϕi(qi)‖2 �= 0, ∀qi ∈ �n. It is evident that Qϕi(qi) +

J+
ϕi(qi)Jϕi(qi) = I, this way the normal and tangent projections of q̇i are:

q̇i = Qϕi(qi)q̇i + J+
ϕi(qi)ẊNi (6)

where the scalar ẊNi = Jϕiq̇i = ∇ϕi(Xi)
‖∇ϕi(Xi)‖Ẋi ∈ � stands for the constrained

velocity [4] which is the normal component of the total operational velocity Ẋi

(see Fig. 1b). Notice that both arms satisfy ẊN1 + ẊN2 = 0 when manipulating
the object. This result can be easily proved by taking the time derivative of (3)
as follows d

dtϕ(X1, X2) = ∇ϕ1(X1)Ẋ1 +∇ϕ2(X2)Ẋ2 = 0 → ẊN1 + ẊN2 = 0.

2.3 Cooperativeness Error

It can be said that the cooperative arms form a closed kinematic chain which
exhibits a passive joint (i.e. a non actuated joint) at the contact point. Then,
a certain degree of coordination must be enforced to ensure the object manipu-
lation while exerting a given contact force, both at the same normal direction,
exactly at the two both passive joints. Notice that the traditional hybrid force-
position control [5] for holonomic constraints independently controls the force
and position errors by projecting them into a normal and tangent subspace,
respectively. However, this is valid only when the constraint is fixed not when
the constraint is moving, such as an object being manipulated, because of the
principle of virtual work. Therefore, in this paper we introduce the notion of
cooperativeness error Sxi = ẊNi − ẊNri ∈ � that arises as a velocity-position
error manifold mapped into the normal direction and whose convergence denotes
the control of the normal trajectories. The constrained velocity reference value
can be computed by:

ẊNri =
∇ϕi(Xi)
‖∇ϕi(Xi)‖

[Ẋdi − (Xi −Xdi)] (7)

where Xdi, Ẋdi ∈ �m are the desired end-effector trajectory. The cooperativeness
error Sxi also give us an indirect measure of the undesirable pushing-pulling
effects among the robot arms, thus, the convergence of Sxi will enforce a stable
robot physical interaction.

2.4 Robot Constrained Dynamics

Consider a rigid and fully actuated robotic torso composed of two redundant
arms3 manipulating a rigid object. The dynamic equation is given then by the
canonical Euler-Lagrange formulation as follows:

H1(q1)q̈1 + [C1(q1, q̇1) +B1] q̇1 + g1(q1) = τ1 + JT
ϕ1(q1)λ (8)

H2(q2)q̈2 + [C2(q2, q̇2) +B2] q̇2 + g2(q2) = τ2 + JT
ϕ2(q2)λ (9)

3 It is assumed that no dynamic/kinematic coupling exists among both arms, i.e., each
arm is represented by an independent dynamic model. Coupling will arise through
the interaction forces.
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where for the i-th arm, Hi(qi) ∈ Rn×n denotes the inertia matrix, Ci(qi, q̇i) ∈
�n×n denotes the Coriolis matrix, Bi ∈ �n×n is the damping matrix, gi(qi) ∈ �n

represents the gravity loads, and τi ∈ �n stands for the joint input torques. The
scalar λ ∈ � represents the magnitude of the operational force vector Fi ∈
�m exerted from the manipulated object to robot arm. Physically, the product
JT

ϕi(qi)λ = JT
i (qi)

∇ϕT
i (Xi)

‖∇ϕi(Xi)‖λ stands for the joint torque distribution onto the
arm from the manipulated object exerted force. Notice that λ is related with Fi

as follows Fi = ∇ϕT
i (Xi)

‖∇ϕi(Xi)‖λ.
Now, the left hand side of (8)-(9) can be linearly parameterized in terms of a

joint nominal reference4 q̇ri ∈ �n as follows [6]:

Hi(qi)q̈ri + [Ci(qi, q̇i) +Bi]q̇ri + gi(qi) = YriΘi (10)

where the regressor Yri = Yri(qi, q̇i, q̇ri, q̈ri) ∈ �n×p is composed of nonlinear
functions and Θi ∈ �p is the vector of p constant parameters. This way, the
robot dynamic model (8)-(9) can be expressed as an open-loop error dynamics
in terms of a new error coordinate Si = q̇i − q̇ri. This open-loop error dynamics
is useful to design the control law, because it is through the convergence of Si

that the end-effector force and position tasks can be simultaneously achieved.
To this end, by adding and subtracting YriΘi to (8)-(9) we obtain

Hi(qi)Ṡi + [Ci(qi, q̇i) +Bi]Si = τi + JT
ϕi(qi)λi − YriΘi (11)

3 Controller Design

3.1 Joint Nominal Reference

According to (6), q̇i can be decomposed as q̇i = Qϕi(qi)q̇i + J+
ϕi(qi)ẊNi [4], [7].

The open-loop error coordinate is given by Si = [Qϕi(qi)q̇i + J+
ϕi(qi)ẊNi]− q̇ri.

Since q̇ri is a velocity-defined variable, it is reasonable to design this reference
similarly to q̇i to build all tracking errors, in order to preserve closed-loop pas-
sivity. Then, consider the following definition of the joint nominal reference:

q̇ri = Qϕi(qi)(q̇di − αi∆qi) + J+
ϕi(qi)(Ṡf + βiSf − ẊNj �=i) (12)

where ∆qi = qi−qdi ∈ �n is the joint position error and Sf = ∆λ+
∫ t

t0
∆λ dt ∈ �

denotes the force error manifold, for ∆λ = λ−λd ∈ � as the contact force error.
Feedback gains αi ∈ �n×n and βi ∈ � are a positive diagonal matrix and a
positive scalar, respectively. Following the same formulation as for Si we can say
that the force error manifold is given by Sf = λ−λr, where λr = λd−

∫ t

t0
∆λ dt ∈

� is the force nominal reference and λd ∈ � is the desired contact force profile.
Finally, the closed-loop error coordinate is given by:

Si = Qϕi(qi)(∆q̇i + αi∆qi)− J+
ϕi(qi)(Ṡf + βiSf ) (13)

4 Which in fact, maps the equilibrium manifold, as it becomes clear later
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The term ẊNj �=i in (12) is used to compensate in closed-loop the constrained
velocity. This way, (13) is composed of two orthogonal subspaces spanned by
Qϕi(qi) and Jϕi(qi). Thus, the convergence of Si implies the independent con-
vergence of position errors ∆q̇i +αi∆qi and force errors Ṡf +βiSf . On the other
hand, since ∆q̇i + αi∆qi is mapped onto the tangent subspace, its convergence
can only prove position tracking along the tangent direction. Therefore, the fol-
lowing control law must include proper variables to ensure tracking in the normal
direction, i.e., to control of the cooperativeness error Sxi.

3.2 Control Law

Consider the following model-based control law for the robot arm i:

τi = −KiSi − JT
ϕi(qi)(λr + Ṡxi + γiSxi) + YriΘi (14)

where Ki = KT
i > 0 ∈ �n×n and γi > 0 ∈ � are positive feedback gains. Now,

if we substitute (14) into (11), we get the following closed-loop dynamics:

Hi(qi)Ṡi + [Ci(qi, q̇i) + K̄i]Si + JT
ϕi(qi)(Ṡxi + γiSxi − Sf ) = τ∗i (15)

where K̄i = Bi +Ki and τ∗i = 0 is a fictitious torque input.

Theorem. [Stable Cooperative Manipulation with Redundant Arms]
Consider the robotic system (8)-(9) composed by two constrained redundant
arms under the same control law (14) for each arm. The closed-loop robotic
system satisfies passivity between the fictitious input torques τ∗1 , τ

∗
2 and the

velocity-defined variables S1, S2. Moreover, for each redundant arm, asymptotic
convergence for the end-effector force ∆λ, for the joint position ∆qi and for co-
operativeness Sxi tracking errors are achieved. Additionally, a local minimum of
a cost function Ωi(qi) is reached by the dynamic reconfiguration of each redun-
dant arm.

Proof. Through the following passivity analysis: P =
∑2

i=1 S
T
i τ

∗
i = V̇ + Pdiss,

a candidate Lyapunov function V is found for the closed-loop robotic system as
follows:

2∑
i=1

ST
i τ

∗
i =

2∑
i=1

d
dt

1
2
[ST

i Hi(qi)Si + S2
f + S2

xi] +
2∑

i=1

[ST
i K̄iSi + βiS

2
f + γiS

2
xi]

where V =
∑2

i=1
1
2 [ST

i Hi(qi)Si+S2
f +S2

xi] ≥ 0 qualifies as a candidate Lyapunov
function. Since τ∗i = 0, thus V̇ = −

∑2
i=1(S

T
i K̄iSi + βiS

2
f + γiS

2
xi) ≤ 0, proving

stability. Then the positive definite feedback gains Ki, βi and γi can be employed
to modify the transient performance of the system. It is clear that V (t) ≤ V (t0);
also, notice that Si, Sf , Sxi ∈ L∞ and Si, Sf , Sxi ∈ L2, ⇒ Si, Sf , Sxi ∈ L2∩L∞,
and by invoking the Direct Lyapunov Theorem we have that Si, Sf and Sxi

converge asymptotically into the equilibrium point, that is Si, Sf , Sxi → 0 as
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t → ∞. Notice the explicit convergence of Sxi, this stands as the paper major
contribution. Finally, to prove the local optimization of Ωi(qi), consider the
following: The scalar cost function Ωi(qi) has a local minimum at point q∗i , if
there is a vicinity around q∗i defined by positive scalar εi > 0 such that for all
points qi in this vicinity that satisfy ‖qi − q∗i ‖ < εi, the increment of Ωi(qi)
has the same sign. If Ωi(qi) − Ωi(q∗i ) ≥ 0, then Ωi(q∗i ) is a local minimum.
Considering the definition of q̇Ki = [I − J+

i (qi)Ji(qi)]
∂Ωi(qi)

∂qi
, it is evident that

q̇Ki moves in the direction on which Ωi(qi) decreases, then q̇Ki vanishes at q∗i ,
thus Ωi(qi) is locally optimized. QED

4 Simulation Study

Settings. In order to validate the algorithm, a simulation study was carried out
using the full dynamic model of a robot-torso, based on the DLR Justin c©, with
two identical 7 DoF arms manipulating a rigid object.

Manipulating the object. We want to cooperatively move an object along
the x-axis, assuming that both arms are already in contact with the object.
The desired object pose trajectory is given by: Xd = [xd, yd, zd, φd, θd, ψd] =
[0.1 sin(t),−0.1, 0.05, 0, 0, 0], where xd, yd, zd (m) are the cartesian coordinates
and φd, θd, ψd (rad/seg) the euler angles. Simultaneously, the object must be
hold with the following exerted force profile λd = 100 + 20 tanh(0.1t) N.

Redundancy task. Since the desired force profile is increasing with time,
the robot kinematic chain is reconfigured in order to protect the weaker wrist
joints. This way, redundancy is exploited to overcome the robot joints physical
limitations.

Results. On Figure 2 it can be seen that due to the increase in the force profile
(arrow size), each redundant arm is dynamically reconfigured in order to satisfy
the force requirements. As a consequence of the reconfiguration, the exerted
contact force is mainly achieved by the shoulder joints.

Fig. 2. Kinematic reconfiguration along the object trajectory
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5 Conclusions

As the major contribution, our paper proves closed-loop stability in the Lya-
punov sense of the cooperativeness error Sxi. This result is useful to guaran-
tee simultaneous force-position trajectory tracking of the manipulated object
in the constrained (normal) direction, despite the exerted interaction forces.
The passivity-based computed-torque like controller has been derived with strict
closed-loop stability proofs. Therefore, the extension to other passivity motivated
control schemes such as adaptive control, sliding-modes control, cartesian control
is straightforward. Notice that since redundancy only reconfigures the kinematic
structure without changing the end-effector pose, then it has not direct impli-
cation with the convergence of Sxi. Therefore, redundancy is here employed to
enhance the manipulation capabilities of the system, such as avoiding obstacles,
protecting weaker joints, avoiding joint limits, among others.
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Abstract. In many applications it is necessary to describe some exper-
imental data with one or more geometric models. A naive approach to
find multiple models consists on the sequential application of a robust
regression estimator, such as RANSAC [2], and removing inliers each
time that a model instance was detected. The quality of the final result
in the sequential approach depends strongly on the order on which the
models were. The MuSAC method proposed in this paper discovers sev-
eral models at the same time, based on the consensus of each model. To
reduce bad correspondences between data points and geometric models,
this paper also introduces a novel distance for laser range sensors. We use
the MuSAC algorithm to find models from 2D range images on cluttered
environments with promising results.

1 Introduction

In many applications it is necessary to describe some experimental data with
multiple models. A common application in robotics and vision consists on finding
models from images. For example, in man–made environments it is useful to
discover a set of planes from a set of 3D laser scans. Several approaches to find
multiple models have been reported in literature, Franck Dufrenois and Denis
Hamad [1] divide those approaches into:

– Methods that assume the existence of a dominant structure or model in the
data set. These methods successively apply a robust regression estimator.
Each time that a model instance is detected, its inliers (data points repre-
sented by the model) are removed from the original data.

– Methods that consider the presence of several structures. These methods si-
multaneously extract multiple models from a single data set. Learning strate-
gies range from region growing (or region merging) [3,4,7,6] to probabilistic
methods such as Expectation–Maximization [8], or Markov Chain Monte
Carlo Methods [5].

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 918–925, 2009.
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This paper introduces a simple algorithm to find multiple models from laser
scans based on the well known Random Sample Consensus paradigm (RANSAC)
[2]. Two similar approaches to the one presented in this paper are MultiRANSAC
algorithm proposed by Zuliani and others and Sequential RANSAC (see [11] for
more information on both approaches).

MultiRANSAC uses a binary cost function; consequently, it defines the set of
data inliers L for a given model θ; that is, L(θ) = {zi | d(zi, θ) < t}, where d(·, ·)
is a distance function, and t is a given threshold. To find W models (W is a pre-
defined number), the MultiRANSAC algorithm fuses the W random hypotheses
generated at the i–th iteration with the best W models available at the moment
to get a new set of W models. Every set of hypotheses {θ1, . . . , θW } generated
in the MultiRANSAC approach has the property that their corresponding sets
of data inliers are pairwise disjoint, ∀i �= j L(θi) ∩ L(θj) = {}.

The MuSAC algorithm proposed in this paper has some differences with the
MultiRANSAC Algorithm: it does not need to know a priori the number of
models, and it can allow those models to have a small amount of common data
between them. As a side–effect contribution, a new distance measure is defined.
The new distance takes into account how a typical laser range sensor takes
measurements from the environment. The rest of the paper is organized as fol-
lows. Section 2 reviews the RANSAC method. Section 3 analyzes the Sequential
RANSAC approach. Section 4 introduces a new metric used in our approach,
called Directional Distance. Section 5 introduces the MuSAC algorithm. Section
6 shows some results of applying the proposed algorithm to solve the problem of
obtaining multiple planar models from 2D range images. Finally, the conclusions
can be found in Section 7.

2 The Random Sample Consensus Approach

The Random Sample Consensus Approach is very popular for fitting a single
model to experimental data. In their seminal paper, Fischler and Bolles[2] de-
scribe that the RANSAC procedure is opposite to that of conventional smoothing
techniques: rather than using as much of the data as possible to obtain an initial
solution and then attempting to eliminate the invalid data points, RANSAC uses
as the minimum initial data set as feasible and enlarges this set with consistent
data, when possible.

The RANSAC strategy has been adopted by many researchers because it is
simple and can manage a significant percentage of gross errors (outliers). The
smallest number of data points required to uniquely define a given type of model
is known as the minimal set (two points define a line, three points define a
plane, etc). When using RANSAC, minimal sets are selected randomly; each set
produces a hypothesis for the best model. These models are then measured by
statistical criteria using all data.

Many efforts have been done to improve the performance of the RANSAC
algorithm (replacing the cost function that defines inliers is a usual one). The
RANSAC Algorithm optimizes the number of inliers, MSAC (M–Estimator Sam-
ple Consensus) [9] incorporates an M–Estimator. M-estimators reduce the effect
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of outliers by replacing the binary cost function by a symmetric, positive-definite
function with a unique minimum at zero. Several functions such as Huber,
Cauchy, Tuckey have been proposed. MLeSaC (Maximum Likelihood Sampling
Consensus) [10] evaluates the likelihood of the hypothesis, using a Gaussian
distribution for inliers and a uniform distribution for outliers.

3 Sequential RANSAC

A naive approach to find multiple models consists of sequentially applying a ro-
bust regression estimator, such as RANSAC, and removing inliers each time that
a model instance is detected. Figure 1 illustrates the Sequential RANSAC ap-
proach. In the first stage (Figure 1(a)), a dominant line is found. After removing
the points represented by the first line, it searches for a second line (Figure 1(b)).
This process is iterated until the best model does not fulfill a given requirement
(usually when the number of points are less than a given threshold). This strat-
egy has some drawbacks: the number of tries is usually large to guarantee that
the dominant model can be found on each stage; and, some data points can be
misclassified.

(a) (b)

Fig. 1. Using the Sequential RANSAC approach to find multiple lines

4 Directional Distance

The orthogonal distance d⊥ is the preferred metric used to extract geometric
models. To increment the rate of points correctly classified, a new metric is
proposed. The directional distance d↗ from the data point zi to the hypothetical
model θj is defined as

d↗(zi, θj) = d(zi, θj ∧ ri) (1)

where d(·, ·), is the Euclidean distance between two points; θj ∧ ri, is the inter-
section point between the model θj and the measurement ray ri associated to zi

(assuming the sensor is at the origin of the reference system).
Suppose we want to evaluate the consensus of the line θj as shown in Figure 2.

In this case, the observed point zi (represented by the filled circle) does not corre-
spond to points predicted by θj . The intersection point predicted by θj (denoted
by θj∧ri) is represented by the empty circle. d↗ is the distance between the point



A Simple Sample Consensus Algorithm to Find Multiple Models 921

sensor

d⊥

zi θj ∧ ri

d↗

line θj

λ0

ρi

Fig. 2. Comparing the d⊥ distance and the d↗ distance

Zi and the point θj∧ri. Although d⊥ is the best metric for many fitting problems,
d↗ is better than d⊥ because it considers the measurement process of laser range
sensors. The directional distance represents the real error given the ray ri on which
zi was measured.

4.1 Point to Line Distance in 2D

A laser range finder takes measurements from the environment by emitting a
ray in a given direction α. A ray with direction α represents the set of points
(x1, x2) given by

x1 = λ cosα; x2 = λ sinα; λ ≥ 0 (2)

where λ, is the distance from the point (x1, x2) to the origin. Let Ax1+Bx2+C =
0 be the equation of a line (a simple model θ) with parameters [A,B,C], and
zi = (ρi, αi) a measured point in polar coordinates. Replacing Equation 2 into
the line equation, and solving for the particular value λ0

λ0 =
−C

B sinαi +A cosαi
(3)

If λ0 ≥ 0 then the intersection point exists and it defines the distance of the
intersection point θ ∧ ri to the origin. Finally, d↗ is simply given by

d↗(zi, θj) = |λ0 − ρi|. (4)

4.2 Point to Plane Distance in 3D

Analogously to the 2D case, A 3D ray in its parametric form is

x1 = λ sinα cosβ, x2 = λ sinα sinβ, x3 = λ cosα, λ ≥ 0 (5)
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where λ is the distance of the point (x1, x2, x3) to the origin. The 3D plane
equation is A′x1+B′x2+C′x3+D′ = 0. Let zi = (ρi, αi, βi) be a point measured
at angles αi, βi then

λ0 =
−D′

A′ sinαi cosβi +B′ sinαi cosβi + C′ cosαi
.

and the point to plane distance is

d↗(zi, θj) = |λ0 − ρi|. (6)

5 The MuSAC Algorithm

The MuSAC Algorithm (Algorithm 1) iterates two phases: hypotheses gener-
ation, and selection. The hypotheses generation phase consists of discovering
models from the data, and to quantify the relations between the models. The
selection stage keeps the best models to the next iteration.

Algorithm 1. MuSAC(Z, the point set; m, a given number of models to be
discovered at each iteration; τ , the minimum acceptable consensus)
1: n ← 0, Θ = {}
2: repeat
3: for all i ∈ {n + 1, . . . , m} do � Hypotheses generation
4: Θ ← Θ ∪ {θi}, where θi is a random model from Z
5: end for
6: ∀i, j ∈ {1, . . . , m} cij ←∑

z∈Z I(z, θi)I(z, θj)
7: Θ� ← {} � Selection
8: repeat
9: Select θb ∈ Θ such that ∀i ∈ {1, . . . , m} cbb ≥ cii

10: if cbb ≥ τ then
11: Θ� ← Θ� ∪ {θb}
12: for all i ∈ {1, . . . , m}, i �= b do
13: if 2cib > cii then
14: ∀j ∈ {1, . . . , m} cij ← 0
15: else
16: ∀j ∈ {1, . . . , m} cij ← cij − cbj

17: end if
18: end for
19: end if
20: ∀i ∈ {1, . . . m} cbi ← 0
21: until ∀i ∈ {1, . . . m} cii < τ
22: Θ ← Θ�, n ←| Θ� |
23: until convergence
24: return Θ

Lines 3 through 5 of Algorithm 1 generate a predefined number of hypotheses
m. Because the probability that two points belong to the same model is higher
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when the points are very close to each other, a local strategy is implemented to
draw a minimal set of data points: the first point is drawn from the data points
without restrictions, and following points are restricted to be in the hypersphere
of radius rm with center in the first point.

To discover hypotheses that correspond to the same object in the environ-
ment, the algorithm creates a fully connected graph, where the nodes represent
models and the weight of each edge is a statistical measure of the common inliers
between the nodes. The graph is represented by Matrix C = [cij ]m×m, where the
element cii represents the consensus (number of inliers) of the model θi and the
non–diagonal element cij is a statistical measure of the common inliers between
the models θi and θj , given Z. A large value of cij indicates a strong relationship
between the models θi and θj ; that is, a high plausibility that the models repre-
sent the same object in the environment. Analogously, a small value indicates a
low plausibility that θi and θj represent the same object. Matrix C is calculated
at line 6 of Algorithm 1, where the function I(z, θi) is defined as

I(z, θi) =

{
1, if d↗(z, θi) ≤ t
0, otherwise;

here, t is a predefined threshold.
The selection step is performed in lines 7–21. The model with larger consensus

θb is selected at line 9. If the consensus of θb is greater than a predefined threshold
τ , then the consensus of other models is reduced. When 2cib > cii (line 13) the
algorithm considers that models θb and θi represent the same object in the
environment. Then model θi is marked as invalid at line 14. Each model is
stored in the set Θ� (line 11) and the set of these models are the base for the
next iteration (line 22).

6 Experimental Results

We compare MuSAC with sequential RANSAC and MultiRANSAC algorithms
by using the simulated environment shown in Figure 3(a). We generate 1000 ran-
dom robot poses. A 360o range scan was taken from each pose, each measurement
was corrupted with gaussian noise to each measurement. We use τ = 1.96 std.
dev. τ = 10 points, rm = 1m for all methods; m = 50 lines for MuSAC and
W = 20 lines for MultiRANSAC.

To figure out the performance of algorithms we use Sg y Sb defined as

Sg =
1
n

n∑
v=1

gi

li
, Sb =

1
n

n∑
i=1

bi
li

where: n, is the number of laser scans; li, is the number of lines that generate
the i–th scan; gi, is the number of lines correctly detected, and bi is the number
of lines incorrectly detected. Sg is the average ratio of correctly detected models;
while Sb is the average ratio of spurious models detected.
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(a) Simulated Environment
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Fig. 3. a. Simulated environment. b. Lines extracted from a 2D laser scan in real
environment. The dotted rectangle shows two parallel lines correctly discovered, the
longer line is a wall while the other one is a door.

Table 1. Results using the simulated environment of Figure 3(a)

d⊥ d↗

Algorithm time (msec) Sg Sb time (msec) Sg Sb

Sequential RANSAC 7989 0.510 3.440 967 0.956 1.653
MultiRANSAC 6434 0.704 0.186 988 0.773 0.123

MuSAC 3941 0.894 0.601 551 0.907 0.208

Experimental results are shown in Table 1. Sequential RANSAC is the worst
because Sb is too high. MuSAC gets a higher value for Sg compared with Mul-
tiRANSAC. On the other hand, MultiRANSAC gets a better value for Sb. The
average total time used by MuSAC is good enough for real time applications. It
is important to note that, the directional distance d↗ gets better results than
d⊥ in all cases.

For the real test, 2D Laser scans were taken from our laboratory with a laser
SICK LMS-200. One challenge for every algorithm is to correctly detect geomet-
ric models when they are very close to each other. Figure 3(b) shows a typical
result. The dotted rectangle shows that two parallel but different lines were cor-
rectly found. Some lines from small objects, such as those marked with ellipses in
figure 3(b), were not discovered due to the minimum consensus restriction (τ).

7 Conclusions

The MuSAC algorithm introduced in this paper is faster than MultiRANSAC
and it is a good option to extract geometric models from laser scans in real
time. The MuSAC algorithm generates a predefined number of random hypothe-
ses from the laser scan and then decides which hypotheses represent the same
object in the environment based on their consensus. This paper also introduces
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the directional distance, this simple metric is helpful for rotational laser sensors
because it considers the relationship between the measurement ray and the de-
tected surface. In the near future we want to test our method for other geometric
models (such as circles, spheres, etc).
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Abstract. In this paper, a novel unsupervised approach based on Pulse-
Coupled Neural Networks (PCNNs) for image change detection is dis-
cussed. PCNNs are based on the implementation of the mechanisms
underlying the visual cortex of small mammals and with respect to more
traditional neural networks architectures own interesting advantages. In
particular, they are unsupervised and context sensitive. The performance
of the algorithm has been evaluated on very high spatial resolution Quick-
Bird and WorldView-1 images. Qualitative and more quantitative results
are discussed.

Keywords: Change detection, Pulse Coupled Neural Networks, Urban
Environment.

1 Introduction

World population growth affects the environment through the swelling of the
population in urban areas and by increasing the total consumption of natural
resources. Monitoring these changes timely and accurately might be crucial for
the implementation of effective decision-making processes. In this context, the
contribution of satellite and airborne sensors might be significant for updat-
ing land-cover and land-use maps. Indeed, the recent commercial availability of
very high spatial resolution visible and near-infrared satellite data has opened
a wide range of new opportunities for the use of Earth-observing satellite data.
In particular, new systems such as the latest WorldView-1, characterized by
the highest spatial resolution, now provide additional data along with very high
spatial resolution platforms, such as QuickBird or IKONOS, which have already
been operating for a few years.

If on one side this makes available a large amount of information, on the
other side, the need of completely automatic techniques able to manage big
data archives is becoming extremely urgent. In fact, supervised methods risk to
become unsuitable when dealing with such large amounts of data. This is even
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more compelling if applications dedicated to the monitoring of urban sprawl
are considered. In these cases, the big potential provided by very high spatial
resolution images has to be exploited for analyzing large areas, which would be
unfeasible if completely automatic procedures are not taken into account.

Most of the research carried out so far focused on medium or high spatial
resolution images, whereas only few studies have addressed the problem of fully
automatic change detection for very high spatial resolution images. In this case,
several issues have to be specifically considered. The crucial ones include possible
misregistrations, shadow, and other seasonal and meteorological effects which
add up and combine to reduce the attainable accuracy in the change detection
results.

In this paper, a novel neural network approach for the detection of changes
in multi-temporal very high spatial resolution images is proposed. Pulse-coupled
neural networks are a relatively new technique based on the implementation
of the mechanisms underlying the visual cortex of small mammals. The visual
cortex is the part of the brain that receives information from the eye. The waves
generated by each iteration of the algorithm create specific signatures of the
scene which are successively compared for the generation of the change map.
The proposed method is completely automated since analyzes the correlation
between the time signals associated to the original images. This means that no
pre-processing, except for image registration, is required. Furthermore, PCNNs
may be implemented to exploit at the same time both contextual and spectral
information which make them suitable for processing any kind of sub-meter
resolution images.

This paper is organized as follows. Section 2 recalls the PCNN model. The
application of the algorithm is described in Section 3. Final conclusions follow
in Section 4.

2 Pulse Coupled Neural Networks

Pulse Coupled Neural Networks entered the field of image processing in the
nineties, following the publication of a new neuron model introduced by Eckhorn
et al. [1]. Interesting results have been already shown by several authors in
the application of this model in image segmentation, classification and thinning
[2][3], including, in few cases, the use of satellite data [4][5]. Hereafter, the main
concepts underlying the behavior of PCNNs are briefly recalled. For a more
comprehensive introduction to image processing using PCNN refer to [6].

2.1 The Pulse Coupled Model

A PCNN is a neural network algorithm that, when applied to image processing,
yields a series of binary pulsed signals, each associated to one pixel or to a cluster
of pixels. It belongs to the class of unsupervised artificial neural networks in the
sense that it does not need to be trained. The network consists of nodes with spik-
ing behavior interacting each other within a pre-defined grid. The architecture
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Fig. 1. Schematic representation of a PCNN neuron

of the network is rather simpler than most other neural implementations: there
are no multiple layers that pass information to each other. PCNNs only have
one layer of neurons, which receives input directly from the original image, and
form the resulting pulse image.

The PCNN neuron has three compartments. The feeding compartment re-
ceives both an external and a local stimulus, whereas the linking compartment
only receives the local stimulus. The third compartment is represented by an ac-
tive threshold value. When the internal activity becomes larger than the thresh-
old the neuron fires and the threshold sharply increases. Afterwards, it begins to
decay until once again the internal activity becomes larger. Such a process gives
rise to the pulsing nature of the PCNN.

The schematic representation of a PCNN is shown in Figure 1 while, more
formally, the system can be defined by the following expressions:

Fij [n] = e−αF · Fij [n− 1] + Sij + VF

∑
kl

MijklYkl[n− 1] (1)

Lij[n] = e−αL · Lij [n− 1] + VL

∑
kl

WijklYkl[n− 1] (2)

where Sij is the input to the neuron (ij) belonging to a 2D grid of neurons, Fij the
value of its feeding compartment and Lij is the corresponding value of the linking
compartment. Each of these neurons communicates with neighbouring neurons
(kl) through the weights given by M and W respectively. M and W traditionally
follow very symmetric patterns and most of the weights are zero. Y indicates
the output of a neuron from a previous iteration [n− 1]. All compartments have
a memory of the previous state, which decays in time by the exponent term.
The constant VF and VL are normalizing constants. The state of the feeding and
linking compartments are combined to create the internal state of the neuron, U .
The combination is controlled by the linking strength, β. The internal activity
is given by:

Uij [n] = Fij [n]
{
1 + β Lij [n]

}
(3)

The internal state of the neuron is compared to a dynamic threshold, Θ, to
produce the output, Y , by:
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Yij [n] =
{

1 if Uij [n] > Θij [n]
0 otherwise (4)

The threshold compartment is described as:

Θij [n] = e−αΘ ·Θij [n− 1] + VΘYij [n] (5)

where VΘ is a large constant generally more than one order of magnitude greater
than the average value of U .

The algorithm consists of iteratively computing Equation 1 through Equation
5 until the user decides to stop. Each neuron that has any stimulus will fire at
the initial iteration, creating a large threshold value. Then, only after several
iterations the threshold will be small enough to allow the neuron to fire again.
This process is the beginning of the autowaves nature of PCNNs. Basically, when
a neuron (or group of neurons) fires, an autowave emanates from that perimeter
of the group. Autowaves are defined as normal propagating waves that do not
reflect or refract. In other words, when two waves collide they do not pass through
each other.

PCNNs have several parameters that may be tuned to considerably modify the
outputs. The linking strength, β, together with the two weight matrices, scales
the feeding and linking inputs, while the three potentials, V , scale the internal
signals. The time constants and the offset parameter of the firing threshold can
be exploited to modify the conversions between pulses and magnitudes. The
dimension of the convolution kernel directly affects the speed of the autowaves.
The dimension of the kernel allows the neurons to communicate with neurons
farther away and thus allows the autowave to advance farther in each iteration.
The pulse behavior of a single neuron is directly affected by the values of αΘ

and VΘ. The first affects the decay of the threshold value, while the latter affects
the height of the threshold increase after the neuron pulses [6].

For each unit, i.e. for each pixel of an image, the PCNNs provide an output
value. The time signal G[n], computed by:

G[n] =
1
N

∑
ij

Yij [n] (6)

is generally exploited to convert the pulse images to a single vector of informa-
tion. In this way, it is possible to have a global measure of the number of pixels
that fire at epoch [n] in a sub-image containing N pixels. The signal associated
to G[n] was shown to have properties of invariance to changes in rotation, scale,
shift, or skew of an object within the scene [6].

2.2 Application of PCNN to Toy Examples

PCNNs have been applied to two toy examples to illustrate the internal activity
of the model. Figure 2 shows the first 49 iterations of the algorithm with two
images of 150 by 150 pixels. The original inputs (n = 1) contain objects with
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(a) (b)

Fig. 2. Iterations of the PCNN algorithm applied to toy examples of 150 by 150 pixels.
As the iterations progress (n > 1), the autowaves emanate from the original pulse
regions and the shapes of the objects evolve through the epochs due to the pulsing
nature of PCNNs.

various shapes, including “T”, squares and circles. As the iterations progress
(n > 1), the autowaves emanate from the original pulse regions and the shapes
of the objects evolve through the epochs due to the pulsing nature of PCNNs.

In Figure 3a and Figure 3b are illustrated the progression of the states of a
single neuron and trend of G (Equations 1–6) for the toy examples in Figure
2a and Figure 2b, respectively. As shown, the internal activity U rises until
it becomes larger than the threshold Θ and the neuron fires (Y = 1). Then,
the threshold significantly increases and it takes several iterations before the
threshold decays enough to allow the neuron to fire again. Moreover, F , L and
U maintain values within individual ranges. It is important to note that the
threshold Θ reflects the pulsing nature of the single neuron, while G gives a
global measure of the number of pixels that fired at epoch [n].
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Fig. 3. Progression of the states of a single neuron (in this example, the central pixel)
and trend of G for the toy example in Figure 2a and Figure 2b, respectively

3 Change Detection with Pulse-Coupled Neural
Networks

The development of fully automatic change detection procedures for very high
spatial resolution images is not a trivial task as several issues have to be consid-
ered. As discussed in the previous sections, the crucial difficulties include possible
different viewing angles, mis-registrations, shadow and other seasonal and me-
teorological effects which add up and combine to reduce the attainable accuracy
in the change detection results. However this challenge has to be faced to fully
exploit the big potential offered by the ever-increasing amount of information
made available by ongoing and future satellite missions.

PCNNs can be used to individuate, in a fully automatic manner, the areas of
an image where a significant change occurred. In particular, the time signal G[n],
computed by Equation 6 was shown to have properties of invariance to changes
in rotation, scale, shift, or skew of an object within the scene. This last feature
makes PCNNs a suitable approach for change detection in very high resolution
imagery, where the view angle of the sensor may play an important role.
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In particular, the waves generated by the time signal in each iteration of the
algorithm create specific signatures of the scene which are successively compared
for the generation of the change map. This can be obtained by measuring the
similarity between the time signals associated to the former image and the one
associated to the latter. A rather simple and effective way to do this is to use a
correlation function operating between the outputs of the PCNNs.

The performance of the algorithm was evaluated on different panchromatic
satellite sensors, such as QuickBird and WorldView-1. Qualitative and more
quantitative results are reported in the rest of this paper.

3.1 The Time Signal G[n] in the Multi-spectral Case

To investigate the time signal G[n] on satellite data, two images (2825 × 2917
pixels) acquired by QuickBird on May 29, 2002 and March 13, 2003 over the
Tor Vergata University campus (Rome, Italy) have been exploited. Specifically,
multi-spectral images (about 2.4m resolution) have been used to have a better
comprehension of the PCNN pulsing phase when applied to different bands. In
this case, N = 16× 16 pixels.

Four different conditions shown with false colors in Figure 4 have been consid-
ered. In Figure 4a and Figure 4b: (UL) big changes, (UR) change in vegetation
cover, (DL) small changes and (DR) no-changes. The first area, big changes,
represents the construction of a new commercial building. As shown in Figure
5a, from the very first epochs the pulsing activity of the two images is relatively
different, especially if the waveform is concerned. The change in vegetation cover
is illustrated in Figure 5b. During the first few epochs, waveform and time de-
pendence of the two signals appear to be similar. For successive epochs, this
correlation decreases, especially due to the well known behavior of near infrared
band. The time signal for small changes, i.e. when the changed pixels represent a
fraction of sub-image considered, is shown in Figure 5c. During the first epochs,
waveforms show slight differences, while the time correlation seems to get lost
faster than the previous example. Finally, for the no-changes case shown in Fig-
ure 5d, it is possible to note that during the initial epochs both the waveform
and the time dependence of the two signals appear to be highly correlated.

Different values can be obtained considering different epoch intervals. This is
concisely expressed in Figure 5, where some correlation values obtained consid-
ering specific epochs are reported. In particular, it seems not useful to use a high
number of epochs since it is not possible to completely distinguish different land
changes. On the other hand, the information derived only from the first oscilla-
tion (epochs 5-11) appears to be valuable since it allows the discrimination of
various land changes.

From this analysis, it seems that PCNNs, once processing an image pair, might
be capable to automatically catch those portions where changes occurred. In such
a context, an approach based on hot spot detection rather than on changed-
pixel detection may be more appropriate given the size of the targets (generally
buildings) and the huge volume of data archives that it may be necessary to



936 F. Pacifici and W.J. Emery

(a) (b)

Fig. 4. Multi-spectral QuickBird images (a) 2002 and (b) 2003 shown with false colors:
(UL) big changes, (UR) change in vegetation cover, (DL) small changes and (DR)
no-changes

(a) (b)

(c) (d)

Fig. 5. The pulsing activity of the two images for the four cases considered in Figure
4. UL case is reported in (a), UR in (b), DL in (c) and DR in (d). Continuous lines
represent the 2002 image, while dotted lines correspond to the 2003 image. Red = red
channel. Green = green channel, Blue = blue channel, Black = near infrared channel.



Pulse Coupled Neural Networks for Automatic Urban Change Detection 937

analyze in next future. However, the implementation of a pixel based approach
with PCNNs is straightforward, using a window sliding one pixel at the time.

The accuracy of PCNNs in change detection has been evaluated more quanti-
tatively applying PCNNs to the QuickBird imagery of the Tor Vergata Univer-
sity. The panchromatic images have been considered in order to design a single
PCNN working with higher resolution (0.6m) rather than 4 different ones pro-
cessing lower resolution (2.4m) images. The two panchromatic images are shown
in Figure 6a and Figure 6b. Few changes occurred in the area during the analyzed
time window, the main ones correspond to the construction of new commercial
and residential areas. A complete ground reference of changes is reported in
Figure 6c. Note that the ground reference included also houses that were al-
ready partially built in 2002.

The size of the PCNN was of 100x100 neurons. For the reasons explained
previously, it was preferred only to look for the hot spots where a change could be
rather probable. To operate in this way, the PCNN output values were averaged
over of the 10, 000 neurons belonging to 100x100 boxes. An overlap between
adjacent patches of 50 pixels (half patch) was considered. Increasing the overlap
would have meant to have more spatial resolution out at the price of an increase
of the computational burden. Considering this study was aimed at detecting
objects of at least some decades of pixels (such as buildings), an overlapping
size of 50 pixels was assumed to be a reasonable compromise. The computed
mean correlation value was then used to discriminate between changed and not
changed area.

The PCNN result is shown in Figure 6d, while in Figure 6e, for sake of com-
parison, the image difference result is reported. More in detail, in this latter
case, an average value was computed for each box of the difference image and a
threshold value was selected to discriminate between changed and not changed
areas. In particular, the threshold value was chosen to maximize the number of
true positives, keeping reasonably low the number of false positives.

What should be firstly noted is that, at least in this application, the PCNN
algorithm did not provide any intermediate outputs, with the correlation values
alternatively very close to 0 or 1. This avoided to search for optimum thresholds
to be applied for the final binary response. The accuracy is satisfactory, as 49 out
of the 54 objects appearing on the ground reference were detected with no false-
alarms. The missed objects are basically structures that were already present
in the 2002 image (e.g. foundations or the first few floors of a building), but
not completed yet. On the other side, the result given by the image difference
technique, although a suitable threshold value was selected, is rather imprecise,
presenting a remarkable number of false alarms.

The image shown in Figure 6f has been obtained by a multi-scale procedure.
This consists in a new PCNN elaboration, this time on pixel basis, of one of
the hot spots generated with the first elaboration. In particular the change area
corresponding to the box indicated by the “∗” in Figure 6d. It can be noted that
the output reported in Figure 6f is more uniformly distributed within the range
between 0 and 1. Its value has been multiplied with the panchromatic image
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Panchromatic image of the Tor Vergata University in (a) 2002 and (b) 2003
and (c) the relative ground reference. Change detection result obtained by: (d) the
PCNN elaboration and (e) the standard image difference procedure. In (f) is shown
the PCNN pixel-based analysis carried out over one of the previously detected changed
areas indicated with “∗” in (d).
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(a) (b)

(c) (d)

Fig. 7. QuickBird image with ground reference in red (a) and WorldView-1 image (b)
of Atlanta. In (c), the change map provided by PCNN and (d) details of the detected
hot spots, including a false alarm.

taken in 2003 to have a result which better exploits the very high resolution
property of the original image.

3.2 Automatic Change Detection in Data Archives

The study area includes the suburbs of Atlanta, Georgia (U. S. A.). The images
were acquired by QuickBird in February 26, 2007 and by WorldView-1 in October
21, 2007 for an approximately extension in area of 25km2 (10,000x10,000 pixels).
The size of this test case represents an operative scenario where PCNNs give
evidence of their potentialities in detecting automatically hot spot areas in data
archives. The two images are shown in Figure 7a and Figure 7b, respectively.
The ground reference of changes is highlighted in Figure 7a and Figure 7c in red.
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(a) (b)

(c) (d)

Fig. 8. QuickBird image with ground reference in red (a) and WorldView-1 image (b)
of Washington D. C. In (c), the change map provided by PCNN and (d) details of the
detected hot spots, including a false alarm.

Note that the ground reference included also houses that were already partially
built during the first acquisition. Many changes occurred although the small
time window, mainly corresponding to the construction of new commercial and
residential buildings.

As shown in Figure 7c, PCNN confirmed to have good capabilities in the
automatic detection of the hot spots corresponding to areas which underwent
changes, in this case caused from the construction of new structures. For this
test case, where the images have comparable viewing angles, PCNNs did not
provide any intermediate outputs, with the correlation values alternatively very
close to 0 or 1. This avoided to search for optimum thresholds to be applied for
the final binary response.

The accuracy is satisfactory, as 30 out of the 34 objects appearing on the
ground reference were detected with 6 false alarms, mainly due to presence of
leaves on the trees in the WorlView-1 image. The missed objects are basically
structures that were already present in the first acquisition (e.g. foundations
or the first few floors of a building) but not completed yet, or small isolated
houses. Details of the detected hot spots (including a false alarm) are shown in
Figure 7d.
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Fig. 9. Frequency of correlation values for the Washington D. C. case. It can be noted
that false alarms are characterized by correlation values in the range (0.00; 0.12), while
the correlation value of the detected hot spot is more than two times higher, i.e. 0.27.

3.3 Automatic Change Detection in Severe Viewing Conditions

The study area includes the area of Washington D. C. (U. S. A.). The images were
acquired by QuickBird in September 23, 2007 and by WorldView-1 in December
18, 2007 for an approximately extension in area of 9km2 (7,000x5,000 pixels).
In this case, the images have been acquired with very different view angles to
investigate the performance of PCNNs in this particularly condition. The images
are shown in Figure 8a and Figure 8b, respectively. Only one change occurred
in the area due the small time window, corresponding to the demolition of a
building (highlighted in red in Figure 8a and Figure 8c).

As shown in Figure 8c, PCNN detected correctly the only hot spot of change.
Differently from the previous case, where values were close to 0 or 1, non-changed
areas show correlation values slightly bigger than 0. This may be expected due
to the very different view angles of the imagery used. For example, the same
building is viewed from different directions, occluding different portions of the
scene, such as roads or other buildings. However, PCNNs appear to be robust
enough to this problem as shown in the plot of Figure 9. Here, on the y-axis, the
number of pixels associated to the same measured correlation value is reported.
It can be noted that false alarms are characterized by correlation values in the
range (0.00; 0.12), while the correlation value of the detected hot spot is more
than two times higher, i.e. 0.27. Therefore, in this extreme case, the search for
an optimum threshold appear to be straightforward. Details of the detected hot
spot and an example false alarm are shown in Figure 8d, respectively.

4 Conclusions

The potential of a novel automatic change detection technique based on PC-
NNs was investigated. This new neural network model is unsupervised, context
sensitive, invariant to an object scale, shift or rotation. Therefore, PCNNs own
rather interesting properties for the automatic processing of satellite images.
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The approach aiming at discovering changed subareas in the image (the hot
spots) rather than analyzing the single pixel was here preferred. This might be
more convenient when large data sets have to be examined, as it should be
the case in the very next years when new satellite missions will be providing
additional data along with the ones already available.

The application of PCNNs to sub-meter resolution images of urban areas
produced promising results. For the Atalanta area, 30 out of the 34 objects
appearing on the ground reference were detected with 6 false alarms, mainly
due to presence of leaves on the trees in the WorlView-1 image. The goal of
the Washington D. C. scene was to demonstrate the robustness of PCNNs when
applied to images acquired with very different view angles. Also in this case,
the results were satisfactory since false alarms showed less significant correlation
values with respect to real changes.
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Abstract. The concept of probabilistic Latent Semantic Analysis
(pLSA) has gained much interest as a tool for feature transformation
in image categorization and scene recognition scenarios. However, a ma-
jor issue of this technique is overfitting. Therefore, we propose to use an
ensemble of pLSA models which are trained using random fractions of
the training data. We analyze empirically the influence of the degree of
randomization and the size of the ensemble on the overall classification
performance of a scene recognition task. A thoughtful evaluation shows
the benefits of this approach compared to a single pLSA model.

1 Introduction

Building robust feature representations is an important step of many approaches
to object recognition. Feature transformation techniques, such as principal com-
ponent analysis (PCA) or linear discriminant analysis (LDA) offer the possibility
to reduce the dimension of an initial feature space using a transformation esti-
mated from all training examples. The main benefit is a compact representation,
which exploits that feature vectors in high-dimensional spaces often lie on a lower
dimensional manifold.

Within the typical bag-of-features (BoF) approach to image categorization,
the reduction of feature vectors using probabilistic Latent Semantic Analysis
(pLSA) showed to be beneficial for the overall classification performance [1,2].
The pLSA approach [3] originates from a text categorization scenario, in which
a document is represented as an orderless collection of words. With pLSA the
representation can be reduced to a collection of latent topics which generate all
words of a document. It is natural to transfer this idea to an image categorization
scenario and describe an image as a collection or bag of visual words [2]. An
estimated distribution of visual word occurrences can be compressed into an
image specific distribution of topics. As argued by [4], the pLSA approach has
severe overfitting issues. This is due to the number of parameters, which increases
with the number of training examples.

In this work, we describe a technique which prevents overfitting by build-
ing an ensemble of randomized subspaces and which significantly increase the
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robustness and discriminative power of pLSA reduced features. The basic con-
cept is similar to the random subspace methods of Ho [5] and Rodriguez et
al. [6]. Instead of generating an ensemble of classifiers, our approach builds an
ensemble of pLSA models which are used for feature transformation. This idea
is related to multiple pLSA models used in Brants et al. [7]. Their approach
exploits the diversity of generated models due to different random initializa-
tions of the EM algorithm which is used to estimate a model. In contrast to
that, we generate multiple diverse feature transformations by utilizing the basic
idea of Bagging [8] and train each model using a random fraction of the whole
data.

Our method can directly be used for the application of scene recognition as
described in Bosch et al. [2]. The goal is to categorize an image into a set of
predefined scene types, such as mountain, coast, street and forest. Due to the
high intraclass variation and low interclass distance, visual words tend to form
groups of equal semantic meaning, which can be estimated using pLSA.

The remainder of this paper is structured as follows: The pLSA model and
its connections to other approaches are described in Sect. 2. Section 3 presents
and discusses our method of generating pLSA-models using a randomization
technique. Experimental results within a scene recognition scenario are evaluated
in Sect. 4 and show the benefits of our approach. A summary of our findings
conclude the paper.

2 Probabilistic Latent Semantic Analysis

A standard approach to image categorization is the bag-of-features (BoF) idea. It
is based on the orderless collection of local features extracted from an image and
a quantization of these features into V visual words wj , which build up a visual
vocabulary. Images {di}i can be represented as a set of histograms {cji}i which
counts how often a visual word wj is the best description of a local feature in a
specific image di [2]. Therefore this raw global feature vector associated with an
image has as many entries as elements in the visual vocabulary. Especially in the
context of scene recognition, it has been shown that the dimensionality reduction
of BoF histograms using probabilistic Latent Semantic Analysis (pLSA) leads
to performance benefits.

wd z

D
Wi

Fig. 1. The asymmetric model of probabilistic Latent Semantic Analysis (pLSA) in
plate notation: (observable) visual words w are generated from latent topics z which
are specific for each image d (Wi number of visual words, D number of images).
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2.1 pLSA Model

The pLSA model, as shown in Fig. 1, models word and image (document) co-
occurrences cji using the joint probability p(wj , di) of a word wj and an image
di in the following way:

p(wj , di) = p(di)
Z∑

k=1

p(wj | zk) p(zk | di). (1)

For the sake of brevity, we use the same notation principles as in the original work
[3], which abbreviates the eventW = wj with wj and skips the formal definition
of the random variables W ,Z and D. Equation (1) illustrates that the pLSA
model introduces a latent topic variable Z and describes all training images as a
collection of underlying topics zk. Note that this model is unsupervised and does
not use image labels. By modeling all involved distributions as multinomial, it is
possible to directly apply the EM principle to estimate them using visual word
counts cji [3]. Additionally, we can rewrite (1) in matrix notation using H =
[p(wj , di)]j,i, T = [p(zk | di)]k,i, M = [p(wj | zk)]j,k and the diagonal matrix
D = [p(di)]ii, which yields:

H = M ·T ·D . (2)

This suggests a strong relationship to non-negative matrix factorization (NMF)
as introduced by Lee and Seung [9]. In fact, it was highlighted by [10], that NMF

of observed values Hji = cji

(∑
j′i′ cj′i′

)−1
with Kullback-Leibler divergence is

equivalent to the pLSA formulation which leads to an instance of the EM prin-
ciple. In the subsequent sections, we will refer to the matrix M of topic-specific
word probabilities as pLSA model, because it represents the image independent
knowledge estimated from the training data.

2.2 pLSA as a Feature Transformation Technique

In [2], the pLSA technique is used as a feature transformation technique, similar
to the typical application of PCA. The whole model can be seen as a trans-
formation of BoF histograms hi = [Hji]j into a new compact Z-dimensional
description of each image as a vector of topic probabilities ti = [p(zk|di)]k.

Given an image with an unnormalized BoF histogram h that is not part
of the training set, a suitable feature vector t has to be found. With a single
image, the model equation (2) reduces to h = Mt and the estimation of t can
be done by applying the same EM algorithm used for model estimation but
without reestimation of the pLSA model (matrix) M. This idea is known as
fold-in technique [3] and equivalent to the following NMF-optimization problem:

t(M,h) = argmin
t′

KL(h̃,Mt′) w.r.t. to
∑

k

t′k = 1 , (3)

using the normalized BoF histogram h̃ =
(∑

j hj

)−1
h and the Kullback-Leibler

divergence KL(·, ·).
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3 Randomized pLSA

As pointed out by Blei et al. [4], the estimation of the pLSA model leads to
overfitting problems. This can be seen by considering the number of parameters
involved which grows linearly with the number of training examples. A solution
would be to use Latent Dirichlet Allocation [4] which demands sophisticated
optimization techniques. In contrast to that, we propose to use an ensemble
build by a randomization technique to solve this issue. As opposed to [7], which
exploits the diversity of pLSA models resulting from random initializations of
the EM-algorithm, we use a randomized selection of training examples, similar
to the idea of Random Forests [8] and Random Subspaces [5].

Let {Ml}M
l=1 be an ensemble of pLSA models Ml = M(T l) estimated using

a random fraction T l of the training data T . We do not select training exam-
ples (h, y) ∈ RV ×{1, . . . , Ω} of a classification task with Ω classes individually.
Instead we propose to select a random fraction of classes Cl ⊂ {1, . . . , Ω} with
|Cl| = N and use all training examples T l =

⋃
yi∈Cl{hi} of each selected class .

This allows estimating topics which are shared only among a subset of all classes.
Each pLSA model Ml is used to transform BoF histograms hi into topic distri-
butions t(Ml,hi). For training examples in T l, we use the topic distributions
resulting from the pLSA model estimation. All other training examples and each
test example are transformed using the “fold-in” technique defined by (3).

One commonly used technique to combine feature transformation models is
simply averaging outputs [5] of classifiers trained for each feature set individually.
This technique does not allow the classifier to learn dependencies between dif-
ferent models. Therefore we use a concatenation of all calculated feature vectors
t(Ml,hi) as a final feature t(hi):

t(hi)T =
(
t(M1,hi)T , . . . , t(MM ,hi)T

)
. (4)

These final feature vectors are of size M ·Z and can be used to train an arbitrary
classifier. In our experiments, we use an one-vs.-one SVM classifier with a radial
basis function kernel.

We have to estimate M pLSA models with the EM algorithm, thus we need
roughly M times the computation time of a single model fit. To be exact, we use
a fraction of the training data for each model estimation and have to perform the
EM algorithm with the “fold-in” technique for each remaining training example:

timerandomized-plsa =
M∑
l=1

(
|T l|
|T | timesingle-model +

(
|T | − |T l|

)
timefold-in

)
. (5)

Therefore we pay for the advantage of reduced overfitting with a higher compu-
tational cost.

4 Experiments

We experimentally evaluated our approach to illustrate the benefits of random-
ized ensembles of pLSA models. In the following, we empirically validate the
following hypotheses:
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Coast Forest Highway Inside city

Mountain Open country Street Tall building

Fig. 2. Example images of each class of the dataset of [11] which we use for evaluation

1. Randomized pLSA ensembles lead to a performance gain in comparision to
single pLSA and the usual BoF method, which is most prevalent with a large
set of training examples. (Sect. 4.2)

2. With an increasing size M of the ensemble, the recognition rate increases
and levels out after a specific size. (Sect. 4.3)

3. The optimal selection of the parameter N (size of the random subset of
classes) depends on the size of the training set. (Sect. 4.2)

Additionally, in contrast to other researchers [2], we found that the single pLSA
method, in general, does not result in significantly better performance compared
to the standard BoF method. A discussion and detailed results of our experi-
ments can be found in Sect. 4.2.

4.1 Experimental Setup

The analysis of the benefits and involved parameters of our method is done using
the performance evaluation within a scene recognition scenario. To evaluate our
randomized pLSA technique, we use the image dataset of Oliva and Torralba [11],
which is a publicly available set of images for evaluating scene recognition ap-
proaches [2]. It consists of images from eight different classes which are shown
exemplarily in Fig. 2.

All color images are preprocessed as described in [2]. The performance of
the overall classification system is measured using unbiased average recognition
rates. In contrast to previous work [2], we use Monte Carlo analysis by performing
ten independent training and test runs with a randomly chosen training set.
This provides us with a statistical meaningful estimate and allows to compare
three different approaches: (1) standard BoF without pLSA using normalized
histograms (BoF-SVM), (2) a single pLSA model (pLSA) and (3) an ensemble
with a varying number of pLSA models (r-pLSA). For the BoF approach directly
using BoF histograms h as feature vectors, we applied thresholding using mutual
information (MI) [12] resulting in a performance gain of 5% for this case.
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In all experiments, the number of topics Z is set to 25 and a vocabulary
of 1500 visual words is created using the method described in Sect. 4.1. The
influence of these parameters was analyzed in previous work [2] and the values
showed to be optimal for the dataset of [11].

Feature Extraction. As a local feature representation, we use the Oppo-
nentSIFT method proposed in [13]. The task of scene recognition requires the
use of information from all parts of the image. Therefore, local descriptors are
calculated on a regular grid rather than on interest points only.

The method of [12], which utilizes a random forest as a clustering mecha-
nism, is used to construct the codebook. It trains a random forest classifier
using all local features and corresponding image labels. The leafs of the forest
can then be interpreted as individual clusters or visual words. This codebook
generation procedure showed superior results compared to standard k-means
within all experiments. It also allows us to create large codebooks in a few
minutes on a standard personal computer. Note that due to the ensemble of
trees, this approach results in multiple visual words for a single local feature.
This is not directly modeled by the graphical model underlying pLSA as can
be seen in Fig. 1. Nevertheless we can still apply pLSA on the resulting BoF
histograms.

4.2 Results and Evaluation

For a different number of training examples (for each class), Figures 3(a) - 3(c)
show a comparision of our approach using randomized pLSA ensembles with a
standard BoF approach and the utilization of a single pLSA model [2], which is
equivalent to randomized pLSA with N = 8 and M = 1. The classification rates
of our approach are displayed for different values of N . To display the results of
the multiple training and test runs, we use box plots [14].

At first it can be seen that for nearly all settings (except for 10 training ex-
amples and N = 4), our randomized pLSA method reaches a higher recognition
rate than the usual BoF approach and the method using a single pLSA model
[2]. These performance benefits are most prevalent with a large number of train-
ing examples. Another surprising fact is that the method proposed by [2] is not
significantly better than the simple BoF method. This might be due to our use of
MI-thresholding for raw BoF histograms. Another reason could be the analysis
using fixed training and test sets in the comparision performed by [2], which
does not lead to significant results. With a glance at the box plots for different
values of N , we can see that it is hard to determine an optimal parameter value.
However a value of N = 5 seems to be a reasonable choice.

Note that the absolute recognition performance of 81− 82% for 150 examples
is lower than the best values obtained by [2], which are 87.8% on a test set and
91.1% on a validation set. This is mainly due to different local features and the
incorporation of spatial information, which we do not investigate in this paper.
However, our idea of randomized pLSA ensembles could be well adopted to use
spatial pyramids as proposed in [2].



Randomized Probabilistic Latent Semantic Analysis for Scene Recognition 951

61

62

63

64

65

66

67

68

69

70

A
vg

. R
ec

og
ni

tio
n 

R
at

e

BoF
−S

VM
pL

SA

r−
pL

SA (N
=4

)

r−
pL

SA (N
=5

)

r−
pL

SA (N
=6

)

r−
pL

SA (N
=7

)
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(c) 150 training examples per class
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Fig. 3. Evaluation using average recognition rate of the whole classification task: (a-c)
Comparision of a usual BoF approach (BoF-SVM), pLSA reduced features and our
approach utilizing a randomized ensemble of multiple pLSA models (r-pLSA) using
training examples from N = 4, 5, 6, 7 random classes. The median of the values is
shown by the central mark, top and bottom of the box are the 0.25 and 0.75 percentiles,
the whiskers extend to the maximum and minimum values disregarding outliers, and
outliers are plotted individually by small crosses [14]. 3(d) classification performance
of r-pLSA with a varying size of the ensemble for a fixed training and test set.

4.3 Influence of the Ensemble Size

As can be seen from Fig. 3(d), increasing the number M of pLSA models yields
a better overall performance. As expected this leads to convergence after a spe-
cific size of the ensemble. A similar effect of the ensemble size can be observed
when using Random Forests [8]. Because of the ability of the SVM classifier to
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build maximum margin hypotheses, the effect of overfitting due to an increasing
number of features, and thus to an increasing VC dimension, does not occur.

5 Conclusion and Further Work

We showed that utilizing a randomization principle, an ensemble of pLSA models
can be build, which offers a feature transformation technique that is not prone
to overfitting compared to a single pLSA model. In a scene recognition scenario,
this technique leads to a better recognition performance in comparision with
a single model or a standard bag-of-features approach. Our experiments also
showed that the recognition performance increases with more pLSA models and
levels out. An interesting possibility for future research would be to study en-
sembles of models estimated with Latent Dirichlet Allocation, which is a more
sophisticated method for topic discovery and a well-known Bayesian method [4].
Finally, experiments should be performed using other datasets with more classes
and analyzing the trade-off between a better recognition rate and a higher com-
putational cost.
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Université du Québec en Outaouais,
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Abstract. In this paper, we propose an effective approach for track-
ing distribution of objects. The approach uses a competition between a
tracked objet and background distributions using active contours. Only
the segmentation of the object in the first frame is required for initial-
ization. The object contour is tracked by assigning pixels in a way that
maximizes the likelihood of the object versus the background. We imple-
ment the approach using an EM-like algorithm which evolves the object
contour exactly to its boundaries and adapts the distribution parameters
of the object and the background to data.

1 Introduction

Object tracking using deformable models is a very important research field in
computer vision and image processing, and it has a variety of applications, such
as video surveillance, video indexing and retrieval, robotics, etc. Recently, several
approaches tackled this problem using foreground (object) distribution matching
[1,3,4,6,7]. Those approaches track an object in each frame of the video by trying
to find the region in the frame whose interior generates a sample distribution
over a relevant variable (target object model) which has the best match with
the reference model distribution. Such an approach has the advantage that no
motion model needs to be fitted for the tracked objects. However, it has two
major limitations. First, the tracking becomes very sensitive to both initial curve
positions and model distribution, which may converge the object contour to
incorrect local optima [4,7]. Second, the appearance of an object may slightly
vary over time (e.g. due to illumination changes or viewing geometry); therefore,
the basic assumption of the approach -similarity between the reference and target
object appearance- will no longer be valid [1].

To illustrate the aforementioned limitations, Fig. (1) shows two examples
where tracking using foreground matching fails. In the first example (first row),
the initial curve used to track the object (the shaded disc surrounded by the

� We thank the Université du Québec en Outaouais for the Start up grant.
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(a) (b) (c)

Fig. 1. Example where foreground matching-based tracking fails. The target object is
the shaded disc surrounded by a ring in the first row, and the small shaded rectangle
in the second row. In each row, (a) represent the reference object model. The dashed
curve in (b) and (c) represent the initial and final position of the curve, respectively.

ring) is inside the object. Since the sample distribution at each point of the curve
exceeds the reference model distribution, the curve would shrink and ultimately
disappear. In the second example (second row), the shading of the object (the
rectangle inside) is altered because of an illumination change. Consequently, the
curve did not capture the whole object.

Int this paper, we propose a flexible model for object tracking based on varia-
tional curve evolution. The foreground matching for tracking is augmented with
background matching (or object-background mismatching) force, which avoids
undesirable local optima and augments the tracking accuracy. In addition, the
proposed model allows to adapt the distribution of each tracked object and the
background to appearance changes using an EM-like approach. We show the
effectiveness of the proposed model on tracking examples using real-world video
sequences.

This paper is organized as follows: Section (2) presents the proposed model for
object tracking. Section (3) presents some experiments that validate the model.
Finally, we end with a conclusion and some future work perspectives.

2 The Proposed Model

Let Ω ⊂ Z+ × Z+ be the domain of the image and Ro be the area of the object
to be tracked through an image sequence. We suppose the sequence is composed
of the frames I� where 0 ≤ # <∞. The image data D can be real-valued, such as
image intensity, or vector-valued, such as color or texture features. In our case,
we use a feature vector I(x) = (u1(x), ..., ud(x)) that combines color and texture
characteristics, where x represents the pixel coordinates (x, y).

To represent the distribution of high-dimensional image data, the histogram
is not the optimal choice since the data are generally very sparse. Therefore, we
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choose a parametric representation. Let M� (resp. M̄�) and M�+1 (resp. M̄�+1)
be two parametric mixture models that characterize the object (resp. the back-
ground) in two consecutive frames I� and I�+1. We denote by Θ� (resp. Θ̄�) and
Θ�+1 (resp. Θ̄�+1) the mixture parameters of the object (resp. the background)
in those frames, respectively. The mixture parameters are estimated initially in
the frame I0 using the maximum likelihood estimation, which is obtained by
minimizing the following functions:

Θ0 = argminΘ

(
E(Θ) = −log

(
L(Ro,Θ)

))
(1)

and:

Θ̄0 = argminΘ̄

(
E(Θ̄) = −log

(
L(R̄o, Θ̄)

))
(2)

where R̄o designates the complement of the object to the background, and
L(Ro,Θ) and L(R̄o, Θ̄) are given by:

L(Ro,Θ) =
∏

x∈Ro

(
K∑

k=1

πkp(I(x)|θk)

)
(3)

L(R̄o, Θ̄) =
∏

x∈R̄o

⎛
⎝

K̄∑
h=1

π̄hp(I(x)|θ̄h)

⎞
⎠ . (4)

where (θk, πk)k=1,...,K and (θ̄h, π̄h)h=1,...,K̄ designate the parameters of the ob-
ject and the background mixture models, respectively.

We suppose that the object contour is initialized manually in the first frame of
the sequence. Given the position, the distribution and the contour of the object
in the frame I�, we aim to track the object boundaries in the frame I�+1 based
on curve evolution. In what follows, we denote the evolved object contour by γ.
To maximize between frames foreground and background matching, we propose
to minimize the following energy functional:

J(γ,Θ�+1, Θ̄�+1) =
{[

E(γ,Θ�+1)− E(Θ�)
]
+
[
E(γ, Θ̄�+1)− E(Θ̄�)

]}
(5)

where the energies E are those defined in Eqs. (1) and (2). Using the same
manipulation that we used in [1], we can demonstrate that, by using Jensen
inequality [5], functional (5) leads to the following inequalities:

E(γ,Θ�+1) ≤ E(Θ�) +
∫∫

R′
o

Q1(x,Θ�+1)dx (6)

E(γ, Θ̄�+1) ≤ E(Θ̄�) +
∫∫

R̄′
o

Q2(x, Θ̄�+1)dx (7)
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where R′
o designates the region delimited by the evolved curve γ in the frame

I�+1, and R̄′
o designates its complement in the same frame. The terms

Q1(x,Θ�+1) and Q2(x, Θ̄�+1) are given by:

Q1(x,Θ�+1) = −
K∑

k=1

p(θk|I(x))log
(
π′

kp(I(x)|θ′k)
πkp(I(x)|θk)

)
(8)

Q2(x, Θ̄�+1) = −
K̄∑

h=1

p(θ̄h|I(x))log
(
π̄′

hp(I(x)|θ̄′h)
π̄hp(I(x)|θ̄h)

)
(9)

where (θk, πk) and (θ′k, π
′
k), k = 1, ...,K, (resp. (θ̄h, π̄h) and (θ̄′h, π̄

′
h), h = 1, ..., K̄)

are the object (resp. background) mixture parameters in the frames I� and I�+1,
respectively. Given that the energies E(γ,Θ�+1) and E(γ, Θ̄�+1) are lower-
bounded, respectively, by (Θ�) and E(Θ̄�), and upper-bounded according to
Eqs. (6) and (7), then minimizing them amounts to minimize the integrals in
the right hand sides of Eqs. (6) and (7).

In the final step of the proposed model, we couple the region with boundary
information of the image to allow for good alignment of the curve γ with strong
discontinuities of the image. To this end, we minimize the following term:

Jb(γ) =
∮ L(γ)

0
ϕ (P(s)) ds (10)

where s denotes the arc-length parameter and L(γ) is the length of the curve γ.
Finally, ϕ designates a strictly decreasing function of the boundary plausibility
P(s), which is given by ϕ(P(s)) = 1

1+P(s) . The boundary plausibility is calcu-
lated using the method proposed in [2]. Minimizing (10) aligns the contour γ
with high discontinuities of color and texture features in the image while keeping
the curve smooth during its evolution.

The minimization of the coupled energy functional according to γ, Θ�+1 and
Θ̄�+1 is achieved using Euler-Lagrange Equations, which are resolved using the
steepest descent method. To allow for automatic topology changes for the object
contour, due to occlusions for example, we propose to use the level set formalism
[9]. In this formalism, the evolved curve γ is embedded as a zero level set of a
distance function Φ : R × R → R. Then, γ = {x/Φ(x) = 0}, where we use the
fact that Φ(x) < 0 if x is inside the curve γ and Φ(x) > 0 if x is outside the
curve. The final motion equation of the zero level set is given as follows:

∂Φ(x, t)
∂t

=

{
α

[
ϕ(Φ)κ +∇ϕ(Φ) · ∇Φ

]

+ β

[ K∑
k=1

p(θk|I(x))log
(
π′

kp(I(x)|θ′k)
πkp(I(x)|θk)

)

+
K̄∑

h=1

p(θ̄h|I(x))log
(
π̄′

hp(I(x)|θ̄′h)
π̄hp(I(x)|θ̄h)

)]}
‖∇Φ‖ (11)
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In the above equation, κ stands for the curvature of the zero level set function.
The constants α and β are used to control the contribution of the boundary and
region information.

Finally, the minimization of the coupled energy functionals (5) and (10) allows
for the mixture models of the object and the background to be adapted to data.
For this goal, we assume mixtures of multivariate Gaussian distributions for
both the object and the background models. Therefore, the minimization of the
coupled functional according to mixture parameters is performed in an EM-like
algorithm, which leads to the following updating equations:

µ′
k =

∫∫
R′

o
tkI(x)dx∫∫

R′
o
tkdx

(12)

Σ′
k =

∫∫
R′

o
tk [(I(x)− µ′

k)] [(I(x)− µ′
k]T dx∫∫

R′
o
tkdx

(13)

π′
k =

∫∫
R′

o
tkdx∫∫

R′
o
dx

(14)

µ̄′
h =

∫∫
R̄′

o
thI(x)dx∫∫

R̄′
o
thdx

(15)

Σ̄′
h =

∫∫
R̄′

o
th [(I(x)− µ̄′

h)] [(I(x)− µ̄′
h]T dx∫∫

R̄′
o
thdx

(16)

π̄′
h =

∫∫
R̄′

o
thdx∫∫

R̄′
o
dx

(17)

where tk = p(θk|I(x)) = πkp(I(x)|θk)∑
K
j=1 πjp(I(x)|θj)

and th = p(θ̄h|I(x)) = π̄hp(I(x)|θ̄h)∑ K̄
l=1 π̄lp(I(x)|θ̄l)

.

The final algorithm for tracking is summarized as follows:

Algorithm:
1- Initialize the object in the first frame I0.
2- For each new frame I�+1 (0 ≤ # <∞):

While (the object contour has not converged) do
{

Evolve the object contour using Eq. (11).
Update the object and background mixture
parameters using Eqs. (12) to (17).

} End while.

The convergence of the level sets is detected when:

Max(Φ(x,t)=0)

(
|Φ(x, t+ 1)− Φ(x, t)|

)
< ξ (18)

where ξ is a predefined threshold. The above criterion means that contour con-
vergence is reached when the maximum change in the zero level set between two
successive iterations, t and t+ 1 using Eq. (11), is below the threshold ξ.
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3 Experiments

In our experiments, we compared the proposed model with the approach in
[7] which uses foreground matching and active contours for tracking. In the
conducted tests, we used videos from the Wallflower database. We used the
texture features that we developed in [2] which are combined with color features
to build the vector I(x). Finally, we set experimentally the parameters α and β
to 0.5 and ξ to 0.5 in Eq. (18).

In the example shown in Fig. (2), the target object is the walking person. The
video contains 1744 frames and the tracking was performed from frame 1509 to
1935. However, since the object is not completely visible in the first frame, only
the visible part is used to calculate the reference model (see the first frame).
Since foreground matching tracks only the part corresponding to the reference
foreground model, a part of the object was missed. That is, the contour did not
adapt to the new distribution of the object. Our model cured this problem thanks
to the background matching force that acted simultaneously with foreground
matching to align the contour with the real object boundaries. Fig. (3) shows
a tracking example where the target object undergoes an illumination change.
The video contains 1744 frames and the tracking was performed from frame
1398 to 1498. The graphs in the same figure show the color scatter distribution
of the frames. We can observe the change in the appearance of the frames due to
illumination change. The model in [7] failed to find the correct object boundaries.
Our model improved the accuracy of tracking where the major part of the object
was correctly located in most of the frames.

To measure quantitatively the accuracy of tracking, we hand-segmented the
objects in the shown examples, which we consider as ground truth, and we
compared the tracking results using the following criterion [8]:

E� =

∣∣(G�
o −R�

o

)
∪
(
R�

o −G�
o

)∣∣
|G�

o|+ |R�
o|

(19)

Fig. 2. Example of tracking using foreground matching (first row) and the proposed
model (second row). In each of these rows, we show, from left to right, frames 1509,
1510, 1514, 1518 and 1521.
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Fig. 3. Example of tracking under illumination change, using foreground matching
(first row) and the proposed model (second row). We show in each row, from left to
right, frames 1398, 1400, 1404, 1407 and 1488. The last row shows the RGB color
distribution of the frames.

Fig. 4. Quantitative evaluation of the proposed approach. The graphs on the left and
the right show, respectively, values of the error E	 for the first and second examples.

where “−” stands for the set difference operator and |·| designates the cardinality
of a set. R�

o and G�
o designate the tracking result and the ground truth in frame

I�, respectively. Basically, the error E� gives the percentage of misclassified pixels
by the tracking. In another words, it measures the deviation of the zero level
set from the real boundaries of the tracked object. Fig. (4) shows the values
of E for the above examples with respect to each of the tested methods. We
can see clearly, for both examples, that using background matching improves
substantially the tracking accuracy.

Finally, we should put a comment on the computation time of our algorithm.
We implemented the tracking module using C++ and our tests were run on a
Pentium IV 2.4 GH. Currently, our algorithm is able to process two frames per
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second. Further optimization is in perspective to enhance the rapidity of our
approach.

4 Conclusion

We proposed a new model for object tracking by combining foreground and
background matching using active contours. The model allows for efficient ob-
ject tracking under cluttered backgrounds and appearance changes. Our exper-
iments demonstrated these capabilities and enhanced performance compared to
foreground matching-based tracking. In the future, we aim to make our approach
faster and apply it to specific object tracking (ex. faces, pedestrians, etc.).
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Abstract. In this paper we present the results of a system for processing mi-
croarray images which includes the gridding and spot detection steps. The main
goal of this work is to develop automatic methods to process microarray images
including confidence measures on the results. The gridding step is based on the
method proposed in [1] and improves it by the automatic determination of the
grid parameters, and a more precise orientation detection. For spot detection the
algorithm uses the Number of False Alarms methodology [2] which can be used
to finely adjust the spot position and provides a confidence measure on the detec-
tion. We test the results obtained by our method with simulated images against
existing microarray software.

1 Introduction

Microarray technology allows comparative experiments on gene expression. Each array
consists on thousands of regularly placed spots which contain control and test samples.
The samples are labeled with two different green (Cy3) and red (Cy5) fluorescent dyes.
After the biological reaction takes place the digital image is obtained using a microarray
scanner. The intensity of each pixel indicates the hybridization of the control and test
samples. Once the image has been acquired, it is processed to extract features at each
spot. After that, statistical processing is used to reveal the gene expression levels.

The analysis of microarray images involves the detection of the features that will
later be used to infer the results on the experiment. The statistics that will be gathered
for inference will be calculated from the pixel values of the detected spots. Therefore
the correct detection of spots is crucial for data extraction.

The processing of microarray images can be divided into three steps: grid detection,
spot detection and data extraction [4]. In the first step a template of the grid must be
adjusted to the acquired image. In this step it is also useful to automatically learn some
parameters of the grid, like spacing between spots, angles, etc. The result of this step
provides candidate centers for each spot. Based on this information the detection of
each spot is refined. Finally, in the last step, information from each spot is extracted for
later analysis.

Although at first glance these problems may seem simple, microarrays may contain
noise and distortions that deteriorate the results of these steps: small dots/speckles which
can be confused with spots, artifacts contaminating the spot, missing spots (blanks),
donut shaped spots and also entire columns (or rows) can be very dim, among others.

In order to assist the technician in the process of microarray analysis we need auto-
matic and semiautomatic methods which provide a confidence measure on the detection

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 962–969, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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results. In order to reach that goal we use results from the Computational Gestalt Theory
(see Section 2.2) which gives a confidence measure that can be used by the user.

As mentioned earlier, we based part of the grid detection in [1], but it has some dif-
ferences. First, the minimum and maximum radii of a typical spot are estimated auto-
matically. Second, the angles which represent the orientation of the grid are found by in-
terpolation, giving better accuracy without being too computationally expensive. Third,
we don’t use a regular grid model nor MRF to refine spot center coordinates. However,
our gridding method allows having different distances between rows and columns of
spots and the spot center coordinates are refined by the segmentation algorithm. We
also obtain the grid coordinates with subpixel accuracy. As for the segmentation, we
added a method for spot detection which includes confidence estimation on the detec-
tion (see Section 2.2).

2 Proposed Method

2.1 Gridding

The gridding step consists in finding the approximate spot center coordinates. This in-
formation will be used later in the segmentation step. Usually, a microarray is composed
of several grids arranged in matrix form in the image. The subgrids follow the same lay-
out of spot rows and columns. Since the layout parameters are known beforehand here
we concentrate on the extraction of spots on subgrids. The proposed algorithm has only
two parameters: the number of rows and columns of the grid, sr and sc respectively. In
Fig.5 we show the GUI of the developed software.

Radius estimation. In this step we estimate the mean spot radius using a heuristic
procedure. For now on if the image is bi-channel, the average intensity image I is used
(see Fig. 1). First we apply histogram equalization and stretching to I (see Fig. 1(b)).
Next, we compute k different thresholds so that ti = i

k · (Ih − Il) + Il with i = 1 . . .k.
Where Ih and Il correspond to the maximum and minimum of I . Now for every iteration
i, we apply the threshold ti to the image obtaining Ut. We show in Fig. 1(c) for a
threshold ti with i = k/2. For every Ut we apply the following algorithm:
1: Remove isolated pixels and fill holes in U , store the result in R.
2: Remove all regions of R which area is less than π ∗ (Rmin)2.
3: Label remaining regions of R.
4: if there is more than one region left then

(a) (b) (c) (d) (e)

Fig. 1. (a) Input grid image. (b) Grid image followed by histogram equalization and stretching.
(c) Thresholded grid image. (d) Regions passing constraints. (e) Final binary image.
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5: Discard regions based on compactness1 (0.75 < c < 1.25) and eccentricity2 (0 < e <
0.5).

6: Generate a binary image B from all remaining regions.
7: Perform bitwise OR with I, so that: I = I |B
8: end if

After the k iterations the result is a binary image which contains most spots (see Fig.
1(e)). Finally we take all regions and calculate their median area ā and estimate the

radius as r̂ =
√

ā
π . The parameter k is the threshold granularity, we use k = 10.

Rmin is used for filtering out artifacts and a value of 2 pixels seemed satisfactory in our
experiments.

Angle estimation. The first step in the gridding process is to identify the angles α and
β that determine the orientation of the grid columns (sc) and rows (sr) of spots. This
step is partly based in the procedure described in [1]. The following paragraphs are a
brief explanation of the the orientation estimation procedure presented in [1].

Initially we apply the Orientation Matching (OM) transform to the grid image I(x, y)
obtainingOM{I}(x, y). Given the percentage v of spot radius variability we define the
following maximum and minimum radii for the OM transform: RM = r(1 + v/100)
and Rm = r(1 − v/100)). The OM transform provides us with an image intensity
values in the range [−1, 1] which represent the match between the gradient of the
image and the normals of an annulus of Rm and RM radii centered on (x, y). The
OM transform of the grid image of Fig.1 is shown on Fig.2. We filter the OM im-
age with a median filter of size [5 × 5] since our experiments had shown the follow-
ing steps benefit from an image with less noise. Next, we apply the Radon Trans-
form (RT), obtaining R{OM(I)}(s, φ). We then integrate the s variable obtaining
Γ (φ) =

∫
s
R2{OM(I)}(s, φ) ds. Then we low-pass filter Γ (φ) (with the same pa-

rameters as specified in [1]) and take the two maximum values m1 = Γ (φa) and
m2 = Γ (φb) corresponding to the principal orientations φa and φb (see Fig. 2(b)).
A typical grid with little rotation will have it’s maxima around φ ≈ 90 and φ ≈ 180. So
we choose φa as the radon angle closer to 90◦, and φb closer to 180◦. Up to this point
the method is the same as in [1].

Because the maxima are expected to be at 90◦ and 180◦, we calculate φi ranging
from 45◦ to 225◦ instead of from 0◦ to 180◦. So φ is the vector φ = {φ0, φi, . . . , φn},
where φ0 = 45 and φn = 225. We do that in order to avoid having a maximum of Γ (φ)
which would correspond to the grid orientation at the end point. It follows the higher is
n the more precision we have for Γ (φ). However, since the RT has to be calculated with
a given angle step, increasing n to obtain more precise angles is more computationally
demanding. As an alternative we can propose interpolation.

Angle interpolation. Given φa and φb we improve angle estimation via interpolation.
We find a new interpolated angle α by taking the points (φa−1, Γ (φa−1)), (φa, Γ (φa))
and (φa+1, Γ (φa+1)) and solve the parabola y = ax2+bx+c that passes through these

1 c = P2

4πA
.

2 Defined as the ratio of the distance between the foci of the ellipse and its major axis length.
0 ≤ e < 1.
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(a) (b)

(c) (d)

Fig. 2. (a) OM transformed image of the grid. (b) Γ (φ) graph. The peaks correspond to the angles
φa and φb. Profiles (c):α = 89.616 and (d):β = 180.15.

points. We then take the maximum value as the new α = −b/(2a). In the same way the
anlge β is computed.

Obtaining grid rows and columns. Given the new interpolated angles, we find the
profiles given by rotating (using interpolation) the grid image with α and β. This
step provides us of two profiles, which are the radon profiles R{OM(I)}(s, α) and
R{OM(I)}(s, β) (see Fig. 2).

To simplify the notation we useR(s, φ) instead ofR{OM(I)}(s, φ). Now, for every
s,R(s, α) represents the OM image projected with the direction α. The angle α is such
that the local maxima of R(s, α) indicate the spacing between the rows of the grid,
as seen in Fig.2. Lets call the radon distances where the local maxima occur {sα} =
{sα

1 , s
α
2 , . . . , s

α
n1
}. In a similar way, the maxima of R(s, β) indicate the spacing of

the columns, and we call it {sβ} = {sβ
1 , s

β
2 , . . . , s

β
n2
}. So, we consider normal lines

originating at the center of the image, with angle α and distance {sα} and call them
{lα}. We do the same with angle β and distance {sβ}, getting {lβ}. We are using the
peaks in the profile as indicators of the location of the spots rows and columns. We
are going to use this information to construct a non-regular grid (not the same distance
between spot rows and columns).

Up to this point we have the profiles in function of s. Using the same ideas as in
Angle interpolation we find the maximum values of the profiles. The process is the
same, but instead of interpolating the angles vector we apply it on the distances vector s.
We obtain a set of interpolated distances which we call {sα} and {sβ}. These distances,
in subpixel resolution, represent the spot rows and columns plus noise, as we will see
next.

Filtering erroneous maxima. If the array image was ideal, we would expect to find
the spot centers in the intersection of the two set of lines {C} = {lα} ∩ {lβ}. Or
equivalently, we would expect for {sα} and {sβ} to have n1 = sr and n2 = sc elements
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(a) (b)

Fig. 3. (a) Spot template. (b) The output of the gridding method.

respectively. But, in a real grid image, noise takes part in erroneous detection of the
maxima of R(s, α) and R(s, β) as can be seen in Fig. 2. Note that, in the first profile
we have 29 maxima and sr = 26. To filter out these false maxima we propose the
following iterative procedure to remove elements in the set of distances {sα} and {sβ}.
We iterate through the distance differences vector d, and if some element falls below
the threshold T , the algorithm removes the element of {s} so that the new {s} has
differences closer to its median. In other words this filter tries to remove false spot rows
or columns which are in between the real rows and columns. After this process we have
the set of distances {sα} and {sβ}with some erroneous elements removed and tentative
spot center coordinates at the intersection of corresponding lines.

Grid placement. At this point we have a set of spot centers but there can still be erro-
neous centers due to noise. In this step we build a grid, based on the known number of
spot columns and rows and the coordinates we already have, to find the best match of
that generated grid to the image. We start by making a spot template, see Fig. 3, as a
disc with radius r obtained earlier. We OM transform this disc since the input image for
this step is the OM transformed grid image. Then we generate a grid with sr×sc deltas
centered at the intersection of previously found lines. Since wrong line detection gener-
ates false spot centers, we could have detected more spot centers than the ones present
in image. To select the correct spot centers we generate several grids of deltas with the
known number of rows and columns based on the number of spot center coordinates we
found previously. Then we convolve each delta grid and the spot template to obtain a
grid template. Finally, we find the correlation of the template grids with the OM trans-
formed grid images, and select the template grid that best matches the image. After the
steps presented above we have a grid that best matches the input image, its parameters
and the spots parameters (center and radius). Next, we present a segmentation method
to refine the spot center coordinates.

2.2 Spot Segmentation Using Computational Gestalt Theory

Computational Gestalt Theory was first presented by Desolneux, Moisan and Morel [2]
as a way to obtain a quantitative theory of the Gestalt laws. Computational Gestalt uses
the Helmholtz Principle to define a quantitative measure of a given gestalt [2].

Helmholtz Principle. The observation of a given configuration of objects in an image is
meaningful if the probability of its occurrence by chance is very small. The Helmholtz
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principle can be formalized by the definition of the Number of False Alarms and ε-
meaningful events:

Number of false alarms - NFA. The number of false alarms (NFA) of an event E is
defined as: NFA(E) = N · P[E ≥ E|H1] where N is the number of possible config-
urations of the event E and H1 is the background or a contrario model. An event E is
ε-meaningful if the NFA is less than ε: NFA(E) < ε.

Spot Segmentation. Using the center coordinates and radius estimated before we apply
a threshold based segmentation. The optimal threshold which separates the spot from
the background is estimated with an NFA approach.

This method is applied to a small, square image centered on the spot of size 2r +
1. Given a threshold, t, we compute the number of pixels, ko, outside the spot with
grey level above t. If No is the total number of pixels outside the spots and ps is the
probability of a pixel being above the threshold t3 we can estimate the probability of at
least ko pixels above the threshold amongNo using the binomial distribution. Therefore,
in this case the NFA is computed using the binomial tail as: NT ×B(ps, no, ko) where
NT is the number of thresholds tested. Additionally, with this procedure the NFA is a
confidence measure which tells us if there is a spot or not in this position. Spots with
NFA > ε are not considered in following steps. We iterate this procedure in a small
region around the spot center given by the gridding step. We settle with the coordinates
that give the best NFA figure. Therefore obtaining a better estimate of the spot center
coordinates.

Data extraction. Our software also includes this step. Due to lack of space we do not
present or evaluate this step here.

3 Results

In this section we show a comparison between the results obtained by our method and
the program UCSF spot 4. We used simulated microarray images with noise and distor-
tions generated by mamodel [3].

In the mamodel website there are three parameter sets to generate different images.
Their description read: “High quality slide”, “Noisy slide” and “Disturbing noise”. We
chose the last one and made the necessary adjustments to the parameters for generating
one grid of size 40x25 spots providing us a grid of 1000 spots.

As can be seen in Fig. 5 each image channel is generated with the same spot intensi-
ties and some distortions are present in both channels (scratches, air bubbles). However,
stains can be present in one or both channels.

We begin our tests by obtaining the true positives (TP), that is, spots that should be
found. mamodel provides in its output the noise free intensity values for each spot. In
a posterior process, mamodel generates the noise contaminated slide image from those
values. So, a reasonable approach would be to flag a spot as negative if its original in-
tensity falls below the background noise level. For this matter, we took a region of the

3 The probability ps is empirically estimated based on the values of the pixels of a square region
around the spot.

4 www.jainlab.org
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(a) (b) (c)

(d) (e) (f)

Fig. 4. (a) NFA of TP. (b) NFA of true negatives. (c-f) Histogram of distances from the reference
center coordinates with: (c) Our method for TP, (d) Our method for all positives, (e) UCSF for
positives, (f) UCSF for positives.

image containing only background noise and found its mean and obtain the true posi-
tives, as explained above. Although simple, this procedure has one obvious drawback:
we are not taking into account any distortion, for example scratches, air bubbles, etc.

In Fig.4(a) and (b) we show the histogram of the NFA values for the TP and the true
negatives (TN). Note that the NFA value can be used to flag a spot as found or missing
as correctly discriminates between TP and TN. Also note that in Fig.4(a) there are still
a significant amount of spots with NFA>0. Manual inspection of those spots confirmed
that is caused by our imperfect way of flagging a spot as TP, without taking into account
the distortions in the image as mentioned earlier.

If we consider a spot as positive if its NFA<0 we obtained the results in the following
table with false positives (FP) and false negatives (FN). As we can see our method
produces a more balanced pair sensitivity-specificity.

Value Our method UCSF Spot
Number of FN 50 5
Number of FP 22 137

Sensitivity 94.5% 99.4%
Specificity 86.2% 50%

Now we compare the accuracy on spot center detection for our method and UCSF.
We take into account only the spots flagged as found by each program. We computed
the distances to the reference spot center coordinates given by mamodel and plotted its
histogram shown in Fig.4. As we can see for TP our method gives zero error for most
of the spots while UCSF has errors ranging from 1 to 5. Regarding all detected spots
(positives) our method gets some spots with larger errors but still the great majority has
error cero as can be seen in the histograms. The statistics are presented in the following
table.
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Value Our method Our method UCSF Spot UCSF Spot
(positives) (positives and TP) (positives) (positives and TP)

Mean 0.1267 0.0980 3.1488 3.1552
Median 0 0 3.1623 3.1623
Variance 0.2501 0.1456 1.3497 1.3554

(a) (b)

Fig. 5. (a) Simulated Image. (b) Screen of the developed software prototype showing the detected
spots: green NFA ≤ 0, red NFA > 0.

4 Conclusion

We developed a software prototype for the analysis of microarray images which in-
cludes the stages of gridding, segmentation and data extraction (not presented here).
Starting from the method proposed in [2] we introduced several improvements to in-
crease the accuracy. For the segmentation step we presented a method based on NFA
which provides a confidence measure that can be used to flag spot and assist the user
during manual inspection. We compared the results of our method with UCSF and out-
performed it in sensitivity-specificity and spot center detection.
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Abstract. In this paper, we proposed a new method for spatially registered mul-
ti-focus images fusion. Image fusion based on wavelet transform is the most 
commonly fusion method, which fuses the source images information in wave-
let domain according to some fusion rules. There are some disadvantages in 
Discrete Wavelet Transform, such as shift variance and poor directionality. Al-
so, because of the uncertainty about the source images contributions to the 
fused image, designing a good fusion rule to integrate as much information as 
possible into the fused image becomes one of the most important problem. In 
order to solve these problems, we proposed a fusion method based on double-
density dual-tree discrete wavelet transform, which is approximately shift inva-
riant and has more sub-bands per scale for finer frequency decomposition, and 
fuzzy inference system for fusing wavelet coefficients. This new method pro-
vides improved subjective and objectives results compared to the previous 
wavelet fusion methods. 

Keywords: Image fusion, double-density dual-tree discrete wavelet transform, 
fuzzy classifier, multi-focus. 

1   Introduction 

Image fusion provides a means to integrate multiple images into a composite image, 
which is more appropriate for the purposes of human visual perception and computer-
processing tasks such as segmentation, feature extraction and target recognition. Im-
portant applications of the fusion of images include medical imaging [1], microscopic 
imaging, remote sensing [2], computer vision, and robotics [3]. 

Fusion techniques include the simplest method of pixel averaging to more compli-
cated methods such as principal component analysis [4], and multi-resolution fusion 
[5]. Multi-resolution images fusion is a biologically-inspired method, which fuses 
images at different spatial resolutions. Similar to the human visual system, this fusion 
approach operates by decomposing the input images into a resolution pyramid of 
numerous levels. Each level contains one or more bands representing orientation or 
detail/approximation information. Following this decomposition, the fusion now takes 
place between the corresponding coefficients or samples in each band. The fused 
pyramid is then reconstructed to form the final fused output image.   



 Multi-focus Image Fusion Based on Fuzzy and Wavelet Transform 971 

 

Nick Kingsbury has introduced DT-CWT [6], which introduces limited redundancy 
(4X) and allows the transform providing approximate shift invariance and directionally 
selective filters while preserving the usual properties of perfect reconstruction and 
computational efficiency. There are many publications, which used DT-CWT for fu-
sion schemes and showed better subjective and objective results [7]. In this paper we 
proposed a new algorithm based on double-density dual-tree DWT [8], which is an 
over complete discrete wavelet transform (DWT) designed to simultaneously possess 
the properties of the double-density DWT [9], and the dual-tree complex DWT [6]. 

The three previously important developed fusion methods, which were imple-
mented in wavelet transform domain, are as follows: Maximum selection (MS), which 
just picks the coefficients in each sub-band with the largest magnitude; Weighted 
average (WA), which is developed by Burt and Kolczynski [10] and used a norma-
lized correlation between the two images sub-bands over a small local area. The resul-
tant coefficients for reconstruction are calculated from this measure via a weighted 
average of the two images coefficients; Window based verification (WBV), which is 
developed by Li et al. [11] and creates a binary decision map to choose between each 
pair of coefficients using a majority filter.  

These fusion rules ignore some useful information and are sensitive to noise. Se-
lective operation made the fused coefficients completely dependent on the coeffi-
cients with larger average of local area energy and ignores the other corresponding 
coefficient. In the weighted average scheme, the weights were computed by a linear 
function which cannot describe the uncertainty of each source image contributions. 
Also in coarser level of decomposition, fusion task is much harder and these fusion 
rules do not work very well. In order to solve these uncertainties and information 
integration, this paper proposed a new fusion algorithm, which also is based on new 
wavelet transform and new fusion rule based on fuzzy classifier.  

The paper is structured as follows: In Section 2 we describe briefly about the 
double density dual tree DWT. In section 3 the proposed fuzzy image fusion is ex-
plained. Section 4 gives various results and comparisons. Finally, we conclude with a 
brief summary in section 5. 

2   Double-Density Dual-Tree DWT 

A double-density dual-tree DWT [8] is proposed by Selesnick in 2004. Important 
refinements in DD-DT-DWT provide filters that are nearly shift-invariant with va-
nishing moments, compact support, and a high degree of smoothness. 

The 2-D DD-DT-DWT has a total of 32 oriented real wavelets or 16 complex 
wavelet sub-images per level, while the DT-DWT has 12 oriented real wavelets or 6 
complex wavelet sub-bands filters per level. This structure is sometimes described by 
a parent children- grandchildren genealogy (e.g. parents start at level 3, children at 
level 2, and grandchildren at level 1). The DD-DT-DWT by comparison with the DT-
DWT can has wavelets, which are more closely spaced spatially, or wavelet sub-
bands which are more closely spaced with respect to scale. It also has more sub-bands 
per scale for finer frequency decomposition with increased wavelet regularity for 
same length filters. However, 2-D DD-DT-DWT requires 10.66X rather than 4X 
memory increase in DT-DWT. Nevertheless, because of their finer regular sub band 
coverage, the DD-DT-DWT will be used in this research. 
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3   Proposed Fuzzy Image Fusion 

In this scheme, the fusion output achieved by combination of three inputs obtained 
with three different fusion rules. In fact the fuzzy system specifies three inputs contri-
bution in the final output. These fusion rules can be explained as follows:  

3.1   Fusion Using Decision Map 

This rule forms the first input of the fuzzy system using a logical matrix, called deci-
sion map. In many publications local features is used to generate the decision map, for 
selecting coefficients between high frequency sub-bands of two images such as mean 
and standard deviation [12], energy, gradient, fractal dimension, contrast, and stan-
dard deviation [2], spatial frequency, visibility, and information entropy [13], for 
image fusion. Here, we used a combination of two features for generating confident 
decision map.  

The high frequency coefficients reflect the image edge and detail information. Ac-
cording to imaging mechanism of optical system, the bandwidth of system function 
for images in focus is wider than that for images out of focus. Therefore the pixel 
values of clear images are larger than that of blurred images. 

In order to enhance this information, we used two texture features. The first feature 
calculates local range and second one calculates local energy of the high-frequency 
sub-bands. We calculate the two features using:  

                            (1) 

                                                        (2) 

where ݆ ൌ 1,2 …  ܰ െ 1, which ܰ is the level of the decomposition, ݅ ൌ 1,2 … 16, 
which denote the sixteen sub-bands of high frequency coefficients at each level, ݇ ൌ 1,2, which is the number of  images, and ܹ is the local window. 

Also for improving these features a nonlinear averaging filter is used for reducing 
noise and taking into accounts neighbor dependency. This operation implement as 
follows: 

                                                        (3) 

where ݅ ൌ 1,2, which is two texture features, ݇ ൌ 1,2 is the number of images and ሾ2 ൈ ܣ  1,2 ൈ ܤ  1ሿ is the size of local window. Also ߤሺܽ, ܾሻ  is calculated using: 

                                                              (4) 
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Fig. 1. (a) Right-focus “Disk” image. (b) 2th Sub-band at first level of decomposition for right 
focus image. (c) Decision map for 2th sub-band. 

where ܹܰ is the number of pixel in the local window and ܽ ∈ ሼെܣ … ,ሽܣ ܾ ∈ሼെܤ …  :ሽ. Having the two features, decision map is calculated usingܤ

                                           (5) 

For example a decision map is obtained for the “Disk” images, which shows in the 
Figure 1. Finally the first rule output is calculated using: 

                                                      (6) 

3.2   Fusion Using Finer Level Decision Map 

Most of the fusion rules for merging wavelet coefficients [10], [11] do not work well 
in coarser level of decomposition. This is happened because of in the coarser level of 
decomposition there is not sufficient different between features for generation of 
desired decision map. Therefore we used an estimation of finer level decision map via 
down-sampling or interpolation for fusing sub-band of two images in coarser levels. 
Figure 2 shows estimation of decision map for coarser level. The output of second 
rule can be defined by following equation: 

  
                                                 (7) 

where ݆ ൌ 2,3 …  ܰ െ 1, which ܰ is the level of the decomposition, ݅ ൌ 1,2 … 16, 
which denote the sixteen sub-bands of high frequency coefficients at each level. For ݆ ൌ 1, Yଶ obtained via first rule.  

Spatial correlation between wavelet coefficients in different levels, which is called 
inter-scale dependency is the idea behind this fusion rule, which is used in many pub-
lication for wavelet based compression and denoising [14]. 
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we used a simple fusion rule, which is averaging that can remove Gaussian noise. This 
rule can be defined using: 

                                                                     (8) 

3.4   Fuzzy Classifier 

We want to design a good fusion rule with combining these three fusion rules to inte-
grate as much information as possible into the fused image. We used a fuzzy classifier 
for this purpose. 

Here we used fuzzy rule-based classifier. The simplest fuzzy rule-based classifier 
is a fuzzy if-then system, similar to that used in fuzzy control [15]. We labeled output 
of each fusion rules as a class. This classifier can be constructed by specifying classi-
fication rules as linguistic rules: 

1. IF NFଵ is large AND NFଶ is large THEN Yଵ is output. 
2. IF NFଵ is large AND NFଶ is small THEN Yଶ is output. 
3. IF NFଵ is medium AND NFଶ is large THEN Yଵ is output. 
4. IF NFଵ is medium AND NFଶ is small THEN Yଶ is output. 
5. IF NFଵ is small THEN Yଷ is output.  

where ܰܨଵ ൌ ଵଵܨܰ| െ ଶܨܰ ଵଶ|, andܨܰ ൌ ଶଵܨܰ| െ  .|ଶଶܨܰ
Each linguistic value is represented by a membership function. Figure 3 shows tri-

angular membership functions for ܰܨଵ, which is normalized and ଵܶ is a constant val-
ue. For the pair of values ሺܰܨଵ,  ଶሻ, the degree of satisfaction of the antecedent partܨܰ
of the rule determines the firing strength of the rule. The firing strengths of these rules 
are calculated as: 

 

Fig. 2. Estimation of decision map ሺכࢊ ሻ for coarser level 

2
21

3

j
i

j
i sbsb

Y
+

=



 Multi-focus Image Fusion Based on Fuzzy and Wavelet Transform 975 

 

 

Fig. 3. Fuzzy membership function for the linguistic terms of ࡲࡺ ߬ଵ ൌ ଵߤ ሺܰܨଵሻ  ൈ ଶߤ ሺܰܨଶሻ, ߬ଶ ൌ ଵߤ ሺܰܨଵሻ  ൈ ௦ଶߤ ሺܰܨଶሻ         
 ߬ଷ ൌ ௗ௨ଵߤ ሺܰܨଵሻ  ൈ ଶߤ ሺܰܨଶሻ, ߬ସ ൌ ௗ௨ଵߤ ሺܰܨଵሻ  ൈ ௦ଶߤ ሺܰܨଶሻ ߬5 ൌ 1݈݈ܽ݉ݏߤ ሺܰ1ܨሻ   

 
The AND operation is typically implemented as minimum but any other t-norm may 
be used. We have chosen algebraic product for the AND operation.   

The rules "vote" for the class of the consequent part. The weight of this vote is ߬. 
To find the output of the classifier, the votes of all rules are aggregated. Among the 
variety of methods that can be applied for this aggregation, we considered the maxi-
mum aggregation method. Let k is the class labels, j denote number of rules and ݅ ՜ ݇  
denote that rule i votes for Y୩. Then: 

                          (9) 

For building fuzzy membership function ଵܶ must be defined. We obtained 0.1  ଵܶ 0.2 using test images and try and error. Finally the new sub-band for generating output 
image is obtained using: 

                                                                      (10) 

where ݆ ൌ 1,2 …  ܰ െ 1, which N is the level of the decomposition, ݅ ൌ 1,2 … 16, 
which denote the sixteen sub-bands of high frequency coefficients at each level.  

Also fusion rule for low-frequency sub-bands is defined by: 

                                                           (11) 

where ݅ ൌ 1,2, which is low frequency sub-bands in the last level. After merging the 
wavelet coefficients, the final fusion result is obtained by inverse wavelet transform. 

4   Experimental Results 
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Fig. 4. Test images used in the experiments. (a)-(d) Book, Disk, Lab and Pepsi, respectively. 

the fused image. It should be mentioned that for image fusion experiment, a ground-
truth image was used by cutting and pasting method. Subjective results show better 
visual effect without any artifact compared to other fusion schemes. Notice to the 
artifacts around the head in the Figure 5 (a)-(c) images. Also objective results in the 
Tables 1 obviously indicate that our fusion scheme is better than others. 

 

 

 

Fig. 5. Subjective fusion results, Fusion result of a part of “Lab” image using DD-DT-CWT 
and (c) MS (d) WA (e) WBV (f) proposed method 

Table 1. objective image fusion results 

 “Disk” 640 ൈ 480 “Lab” 640 ൈ 480 “Pepsi” 512 ൈ 512 “Book” 1024 ൈ 768 
Method PSNR Petrovic PSNR Petrovic PSNR Petrovic PSNR Petrovic 

DWT(Haar)   MSWAWBV 

                 Fuzzy     

32.6 36.5 . ૡ 35.1 
0.647 0.681 . ૡૢ 0.682 

34.235.235.7. ૡ
0.6440.680. ૡ0.682

38.340.3. ૡ40.0
0.7340.743. ૠૠ0.754

34.337.237.5ૡ. 
0.634 0.668 0.671 . ૠૡ 

SIWT(Haar)  MSWAWBV 

           Fuzzy 

35.7 36.3 36.7 . ૢ 
0.672 0.683 0.687 . ૢ 

36.036.236.5ૠ. 
0.6690.6810.685. ૢ

39.439.639.8. 
0.7580.7610.761. ૠ

35.337.838.1ૢ. 
0.644 0.678 0.689 . ૢૢ 

DT-DWT     
MSWAWBV 

           Fuzzy 

35.2 36.6 37.1 ૡ. ૠ 
0.667 0.690 0.692 . ૢૢ 

35.836.737.0ૡ. ૡ
0.6660.6880.692. ૠ

39.239.839.9. 
0.7560.7630.763. ૠૠ

36.939.338.6. 
0.684 0.698 0.700 . ૠ 

DD-DT-DWT
MSWAWBV 

           Fuzzy 

34.2 36.9 37.3 ૢ.  
0.678 0.697 0.700 . ૠ 

35.437.138.2. 
0.6690.6930.699. ૠૢ

38.940.341.0. ૢ
0.7650.7710.772. ૠૠૢ

37.139.739.3. 
0.691 0.699 0.706 . ૠૢ 

(a) (b) (c) (d) 

(d) (c) (b) (a) 
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5   Conclusion  

In this paper, we have presented a new multi-focus image fusion method using 
double-density dual-tree DWT and fuzzy classifier. This new method used DD-DT-
DWT for finer frequency decomposition and shift invariant property compared to 
other wavelet decomposition and fuzzy classifier for fusing sub-bands of two images, 
because of overcoming uncertainties in other fusion algorithm mentioned before. The 
experimental results demonstrated that the proposed method outperforms the standard 
wavelet fusion methods in the fusion of multi-focus images. 

References 
1. Garg, S., Kiran, U., Mohan, K., Tiwary, R.: Multilevel Medical Image Fusion using Seg-

mented Image by Level Set Evolution with Region Competition. In: 27th Annual Interna-
tional Conference of the Engineering in Medicine and Biology Society, January 17–18, pp. 
7680–7683 (2006) 

2. Yang, X.-H., Jing, Z.-L., Liu, G., Hua, L.Z.: Fusion of multi-spectral and panchromatic 
images using fuzzy rule. Communications in Nonlinear Science and Numerical Simula-
tion 12, 1334–1350 (2007) 

3. Kam, M., Zhu, X., Kalata, P.: Sensor fusion for mobile robot navigation. Proceedings of 
the IEEE 85, 108–119 (1997) 

4. Kumar, S., Senthil, M.S.: PCA-based image fusion. In: Proceedings of the SPIE, vol. 6233, 
p. 62331T (2006) 

5. Ke, R.Z., Li, Y.-J.: An Image Fusion Algorithm Using Wavelet Transform. Acta Electro-
nica Sinica 32(5), 750–775 (2004) 

6. Kingsbury, N.: A Dual-Tree Complex Wavelet Transform with Improved Orthogonality 
and Symmetry Properties. In: ICIP, vol. 2, pp. 375–378 (2000) 

7. Wei, S., Ke, W.: A Multi-Focus Image Fusion Algorithm with DT-CWT. In: International 
Conference on Computational Intelligence and Security, pp. 147–151 (2007) 

8. Selesnick, I.W.: The Double-Density Dual-Tree DWT. IEEE Trans. on Signal 
Processing 52(5), 1304–1314 (2004) 

9. Petrosian, Meyer, F.G.: The double density DWT. In: Wavelets in Signal and Image Anal-
ysis: From Theory to Practice, Kluwer, Boston (2001) 

10. Burt, P.J., Kolczynski, R.J.: Enhanced image capture through fusion. In: Proceedings of 
the 4th International Conference on Computer Vision, pp. 173–182 (1993) 

11. Li, H., Manjunath, B.S., Mitra, S.K.: Multi-sensor image fusion using the wavelet trans-
form. Graphical Models and Image Processing 57(3), 235–245 (1995) 

12. Arivazhagan, S., Ganesan, L., Subash Kumar, T.G.: A modified statistical approach for 
image fusion using wavelet transform. Springer, London (2008) 

13. Li, S., Kwok, J.T.: Multi-focus image fusion using artificial neural networks. Pattern Rec-
ognition Letters 23, 985–997 (2002) 

14. Sendur, L., Selesnick, I.W.: Bivariate Shrinkage Functions for Wavelet-Based Denoising 
Exploiting Interscale Dependency. IEEE Transactions on Signal Processing 50(11), 2744–
2755 (2002) 

15. Kuncheva, L.I.: Fuzzy Classifier Design. Springer, Heidelberg (2000) 
16. Rockinger, O.: Image Sequence Fusion Using a Shift Invariant Wavelet Transform. In: 

ICIP, pp. 288–291 (1997) 
17. Petrović, V., Xydeas, C.: Evaluation of image fusion performance with visible differences. 

In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 380–391. Springer, 
Heidelberg (2004) 

18. http://imagefusion.org 
 



Unsupervised Object Discovery from Images by
Mining Local Features Using Hashing

Gibran Fuentes Pineda, Hisashi Koga, and Toshinori Watanabe

Graduate School of Information Systems, The University of Electro-Communications,
1-5-1 Chofugaoka, Chofu-si, Tokyo 182-8585, Japan

Abstract. In this paper, we propose a new methodology for efficiently
discovering objects from images without supervision. The basic idea is
to search for frequent patterns of closely located features in a set of
images and consider a frequent pattern as a meaningful object class. We
develop a system for discovering objects from segmented images. This
system is implemented by hashing only. We present experimental results
to demonstrate the robustness and applicability of our approach.

1 Introduction

Object recognition and discovery from images have been challenging problems in
image analysis over the past decades. Typically, objects are represented by either
a set of geometric elements such as cones, spheres, and planes (model-based),
their contour (shape-based) or their appearance (appearance-based). Then, an
object class is modeled by creating an approximate representation (generative
models such as Bayesian network [1], and Non-Negative Factorization [2]) or
defining an optimal decision boundary (discriminative models, e.g. boosting [3],
and SVM [4]) from a set of given examples. In general, these methods scale
poorly for very large databases because a) they require some kind of supervision,
b) their performance is greatly affected by the high dimensionality of the object
representation, and/or c) they are tailored to specific object classes (e.g. faces).

This work attempts to overcome these limitations by efficiently discovering
objects from images without supervision. Our assumption is that an object con-
sists of multiple components which are expressed as a set of local image features.
To discover object classes without supervision we search for frequent patterns
of closely located image features and consider one frequent pattern as a mean-
ingful object class. By searching the known classes, the same approach can be
further used for matching a query object with the most similar class, thus en-
abling the unification of modeling and matching. To simplify the complexity
of our approach, we implement it completely by relying on a single technique,
namely hashing. We show that hashing can be used to efficiently realize a variety
of similarity judgments. Specifically, we demonstrate that the next three kinds
of similarity judgments can be implemented by hashing: (1) standard distance-
based similarity judgment, (2) distance-based similarity judgment considering
the relative size, and (3) matching robust to small variations. By experiment,
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we prove that our approach can discover diverse object classes robustly against
rotation and slide operations as well as small intraclass variations.

This paper is organized as follows. We describe locality-sensitive hashing in
Sect. 2. In Sect. 3 we give an overview of our approach. Then, Sect. 4 discusses
the detailed description of our system and reports some experimental results.
Finally, Sect. 5 concludes the paper.

2 Similarity Judgments by Hashing

Similarity judgment is a fundamental element for pattern recognition in image
analysis systems where multiple similarity measures might be necessary because
items are defined by many attributes. However, as most image analysis schemes
presume only specific spaces and similarity measures (commonly the Euclidean
distance), it is not guaranteed that the same scheme will have the same good
performance when applied to other spaces and/or similarity measures. The com-
plexity of the system will increase if one decides to support several schemes
simultaneously to treat different kinds of similarity measures.

Since hashing techniques have provided an efficient searching mechanism for
various similarity judgments that are common in image analysis tasks, we believe
that it is possible to construct a simple and efficient image analysis system
by using such techniques. Hence, in this paper we consistently rely on hashing
techniques inspired by the locality-sensitive hashing (LSH) [5].

We describe in detail LSH hereinafter. Let P be a set of points in a d-
dimensional space and C be the maximum coordinate value of any point in
P . We can transform every p ∈ P to a Cd-dimensional vector by concatenating
unary expressions for every coordinate, that is,

f(p) = Unary(x1)Unary(x2) · · ·Unary(xd), (1)

where Unary(x) is a sequence of x ones followed by C−x zeros. A hash function
is computed by picking up k bits (which are called sample bits) randomly from
these Cd bits and concatenating them. This corresponds to partitioning the d-
dimensional space into cells of different sizes by k hyperplanes so that near points
tend to have the same hash value. As k becomes large, remote points are less
likely to take the same hash value because the size of generated cells becomes
small. Figure 1 illustrates the space partitioning when d = 2, C = 5 and k = 2.
This example presents the hash value of each cell when the second and eighth
bits (i.e. x = 2 and y = 3) are selected from the total 2×5 = 10 bits. By contrast,
depending on the result of space division, near points may take different hash
values (e.g. point A and point B in Fig. 1). To exclude this failure, multiple l
hash functions h1, h2, · · ·hl are prepared in LSH expecting that two points close
to each other will take the same hash value at least for one hash function.

Overall, LSH considers that a pair of points with the same hash value are
close to each other. We borrow this idea but while this LSH scheme utilizes
randomized functions, we define deterministic functions more suitable for our
object discovery scheme.



980 G.F. Pineda, H. Koga, and T. Watanabe

x

y
5

50

(11)
Hash Value

(10)
Hash Value

(00)
Hash Value

(01)
Hash Value

x=2

y=3

A B

Fig. 1. Space partition by LSH

3 Overview of Our Approach

In this section we present an overview of our approach for discovering objects
automatically from a set of images Σ. Each image in Σ consists of several local
image features. The underlying idea is to search for frequent patterns of closely
located features in Σ and consider each frequent pattern as a meaningful object
class. Thereby, our approach runs in four phases described below.

Phase I: By extracting every feature in Σ, we derive a set of object compo-
nents. We denote this set by C = {C1, C2, . . . , CN}.

Phase II: The components in C are classified according to their attributes.
A label ID is assigned to each component according to the classification
result; the labels are expressed by #1, #2, . . . , #M , where M is the number
of component classes.

Phase III: Closely located components are gathered to generate object can-
didates. Let T = {T1, T2, . . . , TZ} be the set of all object candidates.

Phase IV: We determine object classes by searching frequent patterns in T .
A pattern with multiple occurrences is regarded as a meaningful object
class. Each object class is represented by the set of component labels
that is common in the multiple occurrences.

Figure 2 presents an example of the operation of our approach. First, 11 compo-
nents from C1 to C11 are extracted from two images. Next, the labels from #1 to
#6 are assigned to each component; here, similar components have the same label
(e.g. both roofs C3 and C8 have #3). Then, the object candidates T1, T2, T3 and
T4 are generated by gathering closely located components. Finally, the Class 1
(”tree”) and Class 2 (”house”) are regarded as meaningful object classes because
each of them has two occurrences in the images; ”tree” is represented by #1 and
#2 whereas ”house” is represented by #3, #4 and #5.
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Fig. 2. Intuitive example of our object discovery approach

4 Object Discovery from Segmented Images

This section describes the implementation details of our system. As inputs, our
system receives images preprocessed by segmentation and color quantization
algorithms; each region of the preprocessed images is regarded as a single local
feature. In addition, we assume that an object consists of closely located regions
and does not overlap with other objects. Thus, our system performs three kinds
of similarity judgments: (1) distance-based similarity judgment considering the
relative size in Phase II, (2) ordinary distance-based similarity judgment in Phase
III, and (3) matching robust to small variations in Phase IV. We modify the
LSH scheme described in Sect. 2 to implement the first two kinds of similarity
judgments whereas for the third kind we extend the standard hashing for exact
matching to perform matching robust to small variations.

4.1 Phase I: Extraction of Components

In order to extract object components, we first identify regions in Σ that corre-
spond to background. Then, we consider as object components all regions in Σ
that are not identified as background . Let us denote this set of components by C.
Although the discrimination between background and foreground regions is dif-
ficult and sometimes requires supervision, when the background is non-textured
or represents the largest regions of the image, the automatic identification of the
background becomes possible.
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Fig. 3. Location of sample bits on the real line when α = 10, β = 2 and i = 1

4.2 Phase II: Labeling of Components

The components in C are labeled according to their color and size such that com-
ponents of the same color with similar size are assigned the same label. For this
purpose, since color quantization is performed in the preprocessing phase, we may
cluster components of different color separately. Therefore, the components of the
samecolor arehashedaccording to their sizes.However, the similaritybetween sizes
should be relative to their absolute value. Hence, the hash functions are defined by
selecting sample bits at intervals proportional to the distance from the origin. That
is, for the i-th hash function (1 ≤ i ≤ l), the sample bits are set as follows.

Location of sample bits
hi : α+ i, αβ + i, αβ2 + i, . . . , αβk + i, (2)

where α determines the position of the first sample bit and β is the growth
factor of the intervals (α > 0 and β > 1). Figure 3 illustrates the location of
the sample bits on the real line when α = 10, β = 2 and i = 1. Note that the
intervals between the sample bits become wider as they become farther from 0.

To cluster similar components we apply the CENTER algorithm [6]. CENTER
makes graphs where vertices are components and an edge is made between a pair of
components if they have the same hash value at least for one hash function. Then,
graphs are partitioned in such a way that in each cluster the center node has an
edge to the other nodes. This process is carried out by following the next steps.

Step I: For each color, pick up the biggest unchecked component B in C.
Step II: Select all the unchecked components that have an edge to B and merge

them into the same cluster.
Step III: Mark all the merged components as checked.
Step IV: Repeat step 1-3 until all the components have been checked.

After this process, we assign the labels #1, #2, . . . , #M to the clusters according
to the size of the center components such that #1 and #M corresponds to the
largest and smallest component respectively.

4.3 Phase III: Generation of Object Candidates

We generate object candidates by clustering closely located components. The
nearness between two separate components is determined by the Euclidean dis-
tance among their pixels. Therefore, we hash all pixels in every component in C.
The hash functions are defined by selecting sample bits at equal intervals of a
parameter I. Consequently, the number of sample bits k is expressed as follows.
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k =
Xmax + Ymax

I
, (3)

where Xmax and Ymax denote respectively the number of columns and rows of
the given image. We define the I hash functions so that the sample bits do not
coincide one another at all in the following way.

Location of sample bits
h1 : 1, I + 1, 2I + 1, · · · (k − 1)I + 1
h2 : 2, I + 2, 2I + 2, · · · (k − 1)I + 2

...
hI : I, 2I, 3I, · · · kI

. (4)

For generating object candidates, we adopt the next rule.

Rule 1. Two separate components Ci and Cj (i, j = 1, . . . , N) are clustered into
the same object candidate if one pixel in Ci and one pixel in Cj have the same
hash value at least for one hash function.

Each object candidate Ti (1 ≤ i ≤ Z) is represented by a vector

Ti = [υ1, . . . , υM ], (5)

where υr (1 ≤ r ≤ M) denotes the number of components with label #r in the
object candidate Ti. For example, the object candidate T1 in Fig. 2 is generated
from the components C6 and C7 (with labels #1 and #2 respectively) because they
are close to one another. In this case, the representation of the object candidate
becomes T1 = (1, 1, 0, 0, 0, 0).

4.4 Phase IV: Determination of Object Classes

In order to determine meaningful object classes, we search for multiple occur-
rences of similar object candidates. We judge object candidates as similar if their
primary components are the same. Standard hashing is applied to accelerate this
process. To compute the hash value for an object candidate Ti (1 ≤ i ≤ Z), we
first concatenate the elements υr (1 ≤ r ≤M) of Ti, that is,

cat(Ti) = υ1υ2 · · · υM , (6)

where υ1, υ2, · · · , υM are expressed by λ bits so that |cat(Ti)| = λM . In order to
avoid small intra-class variations, we generate J hash values for Ti by ignoring
the ξ, ξ+1, . . . , ξ+J−1 smallest components from cat(Ti), where ξ presents the
maximum integer such that the sum of the size of the ξ smallest components in
Ti does not exceed the µ% of the whole size of Ti. After computing the J hash
values for each object candidate, we obey the next rule to determine meaningful
object classes.

Rule 2. Two object candidates are classified into the same cluster if at least one
of their J hash values is the same.
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(a) (b) (c) (d)

Fig. 4. Discovery of objects with rotation and slide variations: (a) original image, (b)
preprocessed image, (c) class 1 and (b) class 2

Fig. 5. Discovery of objects with intraclass variations

After clustering the object candidates, we regard as meaningful object classes
only those clusters with multiple object candidates. We represent each of these
classes in the same form as (5), where υr (r = 1, . . . ,M) stands for the number
of components with label #r that are common to all object candidates of the
given class. For instance, T2 and T4 in Fig. 2 are classified into the same cluster
by ignoring C11, which is extremely small relative to the size of T2. Then, since
this cluster has two object candidates, it is regarded as a meaningful object class
(Class 1) and represented by #3, #4 and #5, i.e., υ = (0, 0, 1, 1, 1, 0). Note that #6
is not included, because it is not a component of T4.

4.5 Experimental Results

For the experiments, each image was segmented by using the MST-based algo-
rithm [7] and then a color quantization was performed. Finally, we considered
the extremely big regions of the image as background and remove them so that
objects were isolated. An example of the segmentation, quantization and back-
ground removal can be seen in Fig. 4(a) and 4(b).
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Initially, we evaluated the robustness of our system against rotation and slide
operations. To that end, we applied our system to an image that contains two
instances of two different object classes (Fig. 4(b)). Note that the orientations
of the two instances of the same class differ approximately by 90 degrees. Since
our system does not consider the exact location relation between components,
both object classes (Fig. 4(c) and 4(d)) were successfully discovered despite these
transformations.

We also evaluated the robustness of our system against intraclass variations.
In Fig. 5 we present two examples of this evaluation. The first example consists of
an image containing two kinds of candy (Fig. 5(a)). The other example consists
of two kinds of faces: human faces and tiger faces (see Fig. 5(b)). Note that the
two human faces are different. In both examples our system derived two object
classes successfully. The columns Class 1 and Class 2 in Fig. 5 illustrate the
instances of each derived class in each image. As we can observe our system can
cope with small intraclass variations such as faces of different subjects.

5 Conclusions

We proposed a new methodology for discovering object classes from images
which can discover and recognize diverse object classes without supervision. This
methodology can be suitable for indexing and searching objects in large image
databases with diverse contents. We demonstrated that frequent patterns of local
image features can lead to discover meaningful object classes. Our approach can
be completely implemented by only hashing which simplifies its implementation
and at the same time enables the integration of various similarity measures. We
proved by experiment that our approach is robust against rotation and slide
operations as well as small intraclass variations.
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Abstract. In this article, the approach based on the orthogonal Kravchenko 

wavelets k{ }( )ah t  is proposed. There is shown that obtained structures have 

some advantages in comparison with spectral wave analysis of ultra wideband 
(UWB) signals that are widely used in the remote sensing. This approach based 
on application of wavelets as spectral kernels is considered in the problems of 
digital UWB signal processing. In communication theory, the signals are repre-
sented in the form of linear combination of elementary functions. Application 
of spectral analysis of UWB signals in basis of digital functions in comparison 
with the spectral harmonious analysis gives certain advantages which are de-
fined by the physical nature of the signal representation. Optimal processing in 
spectral area in comparison with the time possesses has advantages on applica-
tion of numerical algorithms. The physical characteristics and analysis of  
numerical experiment confirm efficiency of new wavelets in the spectral esti-
mation and digital UWB signal processing. 

Keywords: Atomic functions, Wavelets, Remote sensing, Digital ultra wide-
band signal processing. 

1   Introduction 

Application of the spectral analysis of signals in basis of digital functions in comparison 
with the spectral harmonious offers certain advantages which are defined by the physi-
cal nature of representation of the signals [1-11] in the remote sensing problems [1, 2]. 
Signals can be set in the form of some linear combination of elementary functions [3-5]  

( ) ( ) ( )
1

0

,
N

k

s t C k k tϕ
−

=

=∑ , (1)

where ( ),k tϕ  is an elementary function of number k, and N is quantity of the functions 

used in the decomposition. At approximation the generalized Fourier transformation  
of a kind  



990 V. Kravchenko et al. 
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0

,
T

C k s t k t dtϕ= ∫  (2)

provides the minimum value of mean-square error. Thus, there is signal decomposi-
tion on some basis, which in many problems of digital signal processing can not be 
orthogonal. The work purpose is consisted of justify the advantages of the new 
Kravchenko wavelets. 

2   Atomic Functions ( )ah t  and Their Properties 

Atomic functions [5-8], [12-17] ha(t) (a > 1) are finite decisions of the functional-
differential equation 

( )
2

( ) ( 1) ( 1)
2

a
y t y at y at′ = + − − , (3)

where a is any real number. The basic properties of ha(t) are the following. 
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1

,
4
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t

a
⎡ ⎤= ⎢ ⎥⎣ ⎦
∓ . 4O. The Fourier transform of ha(t) looks 
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�
1

( ) sinca k
k

h
a

ωω
∞

=

⎞⎛= ⎜ ⎟
⎝ ⎠

∏ . (4)

In practical calculations, it is enough to limit the product (4) to a small number of 
terms, as they quickly aspire to unit with growth of k. 

5O. Derivatives of ( )ah t  are expressed through shifts-compression of the function 

recurrently by means of a parity (3). 

3   Constructing of the Orthogonal Kravchenko Wavelets 

The orthogonal Kravchenko wavelets that is based on AF ha(t) and have smooth Fou-
rier transform are proposed. It allows providing the best time localization in compari-
son with Kotelnikov-Shannon wavelet. Their construction [7-11] is carried out by 

means of the quadrature mirror filters l ( )0m ω . For maintenance of orthogonality 

performance, the following conditions in transitive area are necessary 

l ( ) l ( )
2 2

0 0 2 2m mω ω π+ − = . (5)
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The Fourier transform of scaling function [7-11] is defined from the equation 

� ( ) l �
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2 22
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ω ωϕ ω ϕ⎞ ⎞⎛ ⎛= ⎜ ⎟ ⎜ ⎟
⎝ ⎝⎠ ⎠

 ⇔  � ( ) l
0

1

1

22 k
k

m
ωϕ ω

∞

=

⎞⎛= ⎜ ⎟
⎝ ⎠∏ . (6)

The Fourier transform of wavelet function can be written as 

l ( ) � �1

2 22
g

ω ωψ ω ϕ⎞ ⎞⎛ ⎛= ⎜ ⎟ ⎜ ⎟
⎝ ⎝⎠ ⎠

, (7)

where � ( ) l ( )0e ig mωω ω π−= + . Considering the properties of ( )ah t  it is possible to 

simplify a construction of function l ( )0m ω . For this purpose, we modify ( )ah t  ac-

cording to following additional conditions. 

6O. The support of function 
2 2

;
3 3

t π π⎡ ⎤∈ −⎢ ⎥⎣ ⎦
. 7O. ( ) 2ah t =�  for 

1 1
;

3 3
t π π⎡ ⎤∈ −⎢ ⎥⎣ ⎦

. 

8O. For interface of the Fourier transforms 
1

1
2ah π ⎞⎛ =⎜ ⎟

⎝ ⎠
� . 

Thus, as l ( )0m ω  we take ( )ah t�  with formal replacement of argument t ω= . Prop-

erties 1st and 7th allow rewriting (7) in such a form  

� ( )
2ah
ωϕ ω ⎞⎛= ⎜ ⎟
⎝ ⎠

� , (8)

so long as 0
2ah
ω ⎞⎛ ≠⎜ ⎟
⎝ ⎠

�  only for 
4 4

;
3 3

t π π⎡ ⎤∈ −⎢ ⎥⎣ ⎦
, where 2

4ah
ω ⎞⎛ =⎜ ⎟
⎝ ⎠

� . From 5th  prop-

erty, it follows that in transitive area ( )ah t  is symmetric relatively of inflection. 

Therefore, if as function ( )ah ω�  we take a square root of the ( )ah t , then the condition 

(4) is carried out. Hence, the function ( )ah ω�  is constructed as follows: 

(a) replacement of variable 
3

2
t ω

π
= , (b) to satisfy the property 6th it should be 4a ≥ , 

(c) scaling of function and argument, and also taking a square root. 
Thus, we obtain the function for the scaling equation with various velocities of in-

crease and recession depending of parameter a 

( ) 2 2
a ah h

aa
ω ω

π
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⎝ ⎠
� . (9)

Finally, we can write the Fourier transforms for scaling and wavelet functions as 
follows: 

� ( ) 2
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 a) b) 

Fig. 1. The Kravchenko k{ }( )ah t scaling (dark line) and wavelet (light line) functions for 4a =  

(a) and 6a =  (b)  

As an example, the Kravchenko wavelets k{ }( )ah t  and their spectrums are exposed in 

Fig.1 for 4a = , 6 .  
Energy of scaling and wavelet functions on Nth level is equal to energy of scaling 

function of (N+1)th level because 

� ( ) l ( ) l �
2 2

22
0 .

4 2
m

ω ωϕ ω ψ ω ϕ⎞ ⎞⎛ ⎛+ = =⎜ ⎟ ⎜ ⎟
⎝ ⎝⎠ ⎠

 (11)

Constructed functions are satisfying with all wavelet properties [6-10] and also they 
are orthogonal ones. 

4   Physical Characteristics 

To study the scaling and wavelet functions, we use the modified physical characteris-
tics [5]: wideband index µ ; central frequency of spectral density function (SDF) 0f ; 

relative position of SDF maximum (defined as 1 0/mf fγ = , where mf  is frequency of 

the main maximum); relative position of SDF first zero 2γ ; relative SDF width on 

level -3 dB 3γ ; relative SDF width on level -6 dB 4γ ; coherent amplification defined 

as 
/2

7

/2

1
( )t dt

τ

τ

γ ϕ
τ

−

= ∫ ; equivalent noise band 8γ ; maximum level of sidelobes (in dB) 

9γ . Mentioned physical characteristics of the Kravchenko wavelets and known ones 

for comparison are exposed in Table 1 below.  
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Table 1. Physical characteristics of the Kravchenko wavelets in comparison with known ones 

 a  1γ  2γ  3γ  4γ  7γ  8γ  9γ  

Kravchenko wavelets k{ }( )ah t  

( )tϕ   0 0,676 0,563 0,608 0,704 4,158 -19,65 
( )tψ  

4 
 0,850 0,665 0,688 0,836 0,810 4,032 -19,77 

( )tϕ   0 0,637 0,546 0,585 0,655 3,744 -17,36 
( )tψ  

5 
 0,874 0,577 0,642 0,762 0,713 3,442 -17,30 

( )tϕ   0 0,619 0,534 0,568 0,629 3,505 -16,73 
( )tψ  

6 
 0,876 0,528 0,614 0,710 0,671 3,230 -16,55 

Kotelnikov-Shannon wavelet 
( )tϕ  -  0 0,540 0,494 0,512 0.500 2,429 -11,73 
( )tψ  -  0,996 0,290 0,489 0,523 0,458 2,037 -10,56 

Meyer wavelet 
( )tϕ  -  0 0,654 0,523 0,557 0,586 3,430 -29,11 
( )tψ  -  0,863 0,648 0,574 0,671 0,565 3,196 -27,13 

Daubechies 4 wavelet 
( )tϕ  -  0 0,500 0,284 0,329 0,352 2,485 -10,92 
( )tψ  -  0,847 0,637 0,375 0,506 0,343 2,362 -10,63 

5   Models of Ultra Wideband Signals 

We consider of following models of ultra wideband (UWB) signals [3, 4], [5-7] in 
respect of remote sensing problems [1, 2]: 

1. ( ) ( )1
0,5 0,5

sgn
t t

y t H H t
τ τ

⎛ + − ⎞⎛ ⎞ ⎛ ⎞= − − ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

,  

2. ( ) ( )2 1 sin exp 1 1
n t t t t

y t n H Hπ
τ τ τ τ

⎞ ⎞⎛ ⎛⎞ ⎞ ⎞⎛ ⎛ ⎛= − ⋅ ⋅ − ⋅ + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎟ ⎟⎜ ⎜⎝ ⎝ ⎝⎠ ⎠ ⎠⎝ ⎝⎠ ⎠
,  

3. ( )
2

3 2

2
exp

t t
y t

ττ
⎞⎛ ⎞⎛= − ⋅ − ⎟⎜ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

,          4. ( )
22

4 2 2

2 2
1 exp

t t
y t

ττ τ
⎞⎛⎞⎛ ⎞⎛= − − ⋅ − ⎟⎜⎟⎜ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

,  

5. ( ) ( )
( )

[ ] 2/22

5
0

/1
exp !

2 2 2 ! !

n kn k

k

tt
y t n

n k k

τ
τ

−

=

⎞⎛ ⎞ ⎞⎛ ⎛= − −⎟⎜ ⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎝⎠ ⎠⎝ ⎠
∑ , 
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where ( ) 0, 0,

1, 0.

t
H t

t

<⎧
= ⎨ ≥⎩

 is the Heaviside function and ( )sgn t  is the sign function. 

Their physical characteristics are presented in Table 2. 

Table 2. Model UWB signals and their physical characteristics 

No. 
Model UWB 

signals 
µ  1γ  2γ  3γ  4γ  5γ  6γ  7γ  8γ  9γ  

1 ( )1y t , τ =1 s 1,54 0,91 1,04 0,85 1,11 -1,58 -1,41 1,00 1,00 -5,29 

2 ( )1y t , τ =1,5 s 1,50 0,92 1,00 0,83 1,11 -1,49 -1,34 0,67 0,67 -5,28 

3 ( )2y t , n=1 1,46 0,91 1,06 0,81 1,13 -11,47 -7,81 0,81 0,63 -12,99 

4 ( )3y t , τ =0,3 s 1,59 0,87 2,26 0,81 1,13 -37,58 -9,17 1,43 1,04 -49,15 

5 ( )3y t , τ =0,5 s 1,48 0,87 1,82 0,88 1,18 -8,80 -5,88 0,87 6,49 -18,87 

6 ( )4y t , τ =0,3 s 1,22 0,90 2,19 0,84 1,16 -32,05 -8,43 1,94 1,07 -43,44 

7 ( )4y t , τ =0,5 s 1,20 1,00 1,11 0,83 1,17 -6,20 -4,60 1,22 0,69 -14,08 

8 ( )5y t , n=1, τ =0,15 s 1,59 0,87 2,26 0,81 1,13 -37,58 -9,17 1,43 1,04 -49,15 

9 ( )5y t , n=3, τ =0,15 s 1,77 0,85 1,39 0,89 1,09 -25,77 -10,44 1,15 0,81 -34,63 

10 ( )5y t , n=5, τ =0,15 s 1,81 0,84 1,08 0,93 1,07 -17,01 -10,40 1,02 0,70 -26,63 

11 ( )5y t , n=1, τ =0,1 s 1,59 0,86 3,28 0,85 1,15 -96,77 -8,86 2,14 1,57 -108,3 

12 ( )5y t , n=3, τ =0,1 s 1,75 0,82 2,21 0,90 1,10 -81,50 -10,37 1,73 1,22 -92,79 

13 ( )5y t , n=5, τ =0,1 s 1,83 0,85 1,69 0,93 1,06 -68,61 -11,34 1,53 1,04 -77,97 

14 ( )5y t , n=7, τ =0,1 s 1,85 0,87 1,42 0,95 1,06 -57,50 -11,65 1,40 0,93 -67,70 

6   Quality Functional of Wavelet-Basis Choice for Analysis of 
UWB Signals 

It is proposed to apply the quality functional in the analysis of the UWB signals al-
lowing optimal choice of basic wavelets functions in such a form 

( )
2

0

,
yN

k k
y

k k

J y
ψγ γψ
γ=

−=∑ , (12)

where ( )tψ  is wavelet function, ( )y t  is analyzed signal, k
ψγ  and y

kγ  are their physi-

cal characteristics, and N is quantity of compared parameters. Here, 0γ µ=  and N=4. 

Below, in Table 3, the values of quality functional of model UWB signal processing 

for the Kravchenko k{ }2 ( )h t  and Meyer wavelets are presented. 



 Spectral Estimation of Digital Signals 995 

 

Table 3. The values of quality functional of model UWB signal processing for the Kravchenko 
k{ }2 ( )h t  and Meyer wavelets 

No. of 
UWB signals 

realization 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 
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 a) b) 

   
 c) d) 

Fig. 2. Discrete wavelet coefficients of 1st (a), 3th (b), 4th (c), and 7th (d) UWB signals realization 

for the Kravchenko k{ }2( )h t  wavelet 

7   Conclusions 

In this article, the application of the orthogonal Kravchenko wavelets k{ }( )ah t  for the 

digital UWB signal processing is proposed and justified. A number of the test signals 
and their wavelet transform examples are presented. A numerical experiment carried 
out and also an analysis of physical results have shown the advantages of novel wave-
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let class in its applications for areas of remote sensing, radar, computer vision, radio 
physics, etc. 
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Video Denoising by Fuzzy Directional Filter Using the 
DSP EVM DM642 
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Abstract. We present a new 3D Fuzzy Directional (3D-FD) algorithm for the 
denoising of video colour sequences corrupted by impulsive noise. The pro-
posed approach consists of the estimations of movement levels, noise in the 
neighborhood video frames, permitting to preserve the edges, fine details and 
chromaticity characteristics in video sequences. Experimental results show that 
the noise in these sequences can be efficiently removed by the proposed 3D-FD 
filter, and that the method outperforms other state of the art filters of compara-
ble complexity on video sequences. Finally, hardware requirements are evalu-
ated permitting real time implementation on DSP EVM DM642. 

Keywords: Fuzzy logic, Directional Processing, Impulsive Noise. 

1   Introduction 

Video signals are corrupted by noise from the capturing devices or during transmis-
sion due to random thermal or other electronic noises. Noise reduction can considera-
bly improve visual quality and facilitate the subsequent processing tasks, such as 
video compression. There are many existing video denoising approaches employed 
for impulsive noise suppression in images and video sequences [1-11]. Another prob-
lem, which is exist here, is possible camera moving or occlusion that produce the 
temporal changes, which together spatial fine details and edges, and texture hinder 
traditional technique and demand to introduce novel adaptive frameworks. 

The proposed 3D-FD filter is based on fuzzy set theory and order vector statistic 
technique in processing of RGB colour video sequences, detecting the noise and 
movement levels, and permitting to suppress impulsive noise. The 3D-FD algorithm 
consists of use of novel 2D-FD filter as a first (spatial) stage applied to t-1 frame. At 
the second (temporal) stage of algorithm, the filtering result of first stage should be 
employed in filtering of next t frame of the video sequence. As a final stage, the pre-
sent frame is filtered applying again the 2D-FD filter, which permits noise suppres-
sion in a current frame. Numerical simulations demonstrate that new 3D-FD filter can 
outperform several filtering approaches in processing the video colour sequences in 
terms of noise suppression, edge and fine detail preservation, and colour retention. 
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Finally, the Real-Time evaluation was realized using Texas Instruments EVM DM642 
presenting good capabilities in the real-time environment. 

2   Proposed 3D Fuzzy Directional (3D-FD) Filter 

The 3D Fuzzy Directional (3D-FD) procedure employs a 2D-FD filter as a first (spa-
tial) stage in the initial frame of video sequence. After, the temporal stage of the algo-
rithm, proposed 2D-FD algorithm should be used again to suppress the non-stationary 
noise left during the temporal stage of the procedure. 

Let introduce gradients and angle variance as absolute differences to represent the 
level of similarity among different pixels. Next, we calculate the gradient for each 
direction { }SWSENENWWSEN ,,,,,,,=γ  according to Figure 1a. We employ not 

only one basic gradient for any direction, but also four related gradient, with ( ),k l  

values { }2, 1,0,1,2− −  [12,13]. The angle variance is computed for each a channel in 

such a way where we omit two of the three channels in the case of each a RGB colour 
frame. We use two neighbor frames of a video sequence to calculate the movement 
and noise fuzzy levels of a central pixel. A 5x5x2 sliding window is formed by past 
and present frames (see Figure 1b),  

The gradient can be computed as, 

( ) ( )
βββ

ljkiljkilk BAG ++++ −= ,,),( , (1)

where β
),( lkG  can be a gradient β

γ∇  or a gradient difference value ( ),k l
βλ  (in the case of 

3D), ( )
β

ljkiA ++ ,  and ( )
β

ljkiB ++ ,  are the pixels in 2D window processing (see Figure 1a) or 

the pixels in t-1 and t frames of sequence (see Figure 1b), β  is the RGB colour space, 

and γ  marks any chosen direction according to indexes ( ) { }, 2, 1,0,1, 2k l ∈ − − . 

The angle variance is calculated as follows: 

( )( ) ( )( ) ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+⋅+

⋅+
=

++++

++++
2/12

),(
2

2/12

),(
2

),().(
2

),(

)255(2)255(2

)255(2
arccos

ββ

ββ
βϕ

ljkiljki

ljkiljki
lk

AA

BA . (2)

where βϕ ),( lk
 can be an angle variance ( )

βθ lk ,  or an absolute difference vectorial (angle 

variance in the case of 3D) value ( ),k l
βφ . 

Figure 1a exposes the employed pixels in 2D processing procedure in the case of 
SE direction for the basic and related components. The basic gradient value for SE 
direction is ( )

ββ
bSEjix ∇=∇ ),()1,1(

 and the related gradients and angle variance values are 

given by βββ θ )()()2,0( 11
)1,1( rSErSEjixF =∇=+− , βββ θ )()()0,2( 22

)1,1( rSErSEjixF =∇=−+ , 
βββ θ )()()0,0( 33

)1,1( rSErSEjixF =∇=+− , and βββ θ )()()0,0( 44
)1,1( rSErSEjixF =∇=−+ . 

In the case of 3D procedure, we calculate the absolute difference gradient values 
β

γ
t
&∇  of a central pixel with respect to its neighbours for a 5x5x1 window processing.  
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                                      a)                                                                     b) 

Fig. 1. Windows processing, a) Neighbourhood pixels, basic (b) and related (r1, r2, r3, r4) direc-
tions for gradient and angle variance values, and b) Processing frames in the proposed 3D-FD 
filter 

Using angle variance value ( ),k l
βφ , we can characterize the absolute vectorial variance 

β
γ
tt
&∇ . The absolute difference gradient value and absolute vectorial variance for the 

SE (basic) direction are given by values ( ) ( ) ( ) ( ) ( )
ββββ λλλ 1,10,00,01,1 −=∇=∇ tt

basicSE
 and 

( ) ( ) ( ) ( ) ( )
ββββ φφφ 1,10,00,01,1 −=∇=∇ tttt

basicSE
, respectively. The same reasoning done by ( )SE basic

β′∇  

with respect to ( )SE basic
β∇  is realized also by value ( )SE basic

β′′∇ . 

We introduce BIG (B) and SMALL (S) fuzzy sets to estimate the noise presence in 
a central pixel for each a sliding window. A big membership degree (≈1) in the 
SMALL set shows that the central pixel is free of noise, and a large membership de-
gree in the BIG set shows that the central pixel is noisy one with large probability. To 
calculate membership degrees for fuzzy gradient and fuzzy vectorial values, we use 
the following Gaussian membership functions: 

[ ]{ }⎪⎩

⎪
⎨
⎧

−−
<

=
otherwise,2/)(exp

,1
)SMALL( 22

FF

F

medF

medF
F

σ
µ β

γ

β
γβ

γ , (3)

[ ]{ }⎪⎩

⎪
⎨
⎧

−−
>

=
otherwise,2/)(exp

,1
)BIG( 22

FF

F

medF

medF
F

σ
µ β

γ

β
γβ

γ , (4)

where σ1
2=1000, med1=60 and med2=10 for fuzzy gradient sets BIG and SMALL, 

respectively, σ2
2=0.8, med3=0.1 and med4=0.615 for fuzzy angular deviation sets BIG 

and SMALL, respectively. The values med3=0.01 and med4=0.1 are changed in the 
case of use of 3D-FD filter. These values were found according to optimal PSNR and 
MAE values. 

Table 1 presents the novel fuzzy rules that are based on gradient and angle  
variance values to determine if the central component is noisy or present local 
movement [3]. 

 
 

i 

NW N NE 

W

SW

E 

SE S 

(i,j) 

j

2 -2 

-2 

2 

1 

1 

-1 

-1 

0 

( ) ( )
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Table 1. Fuzzy rules used in the proposed 2D-FD and 3D-FD filters 

Fuzzy Rule 1 introduces the membership level of ( ),i jxβ
 in the set BIG for any γ  direction: 

IF ( β
γ∇ B ⊗ β

γ )( 1r
∇ S ⊗  L ⊗ β

γ )( 4r
∇ B) 1⊗ ( β

γθ B ⊗ β
γθ )( 1r

S ⊗ L ⊗ β
γθ )( 4r

B), THEN the 

fuzzy gradient-vectorial value FF β
γ

β
γ θ∇ B. 

Fuzzy Rule 2 presents the noisy factor gathering eight fuzzy gradient-directional values 

calculated for each a direction: IF F
N

F
N

ββ θ∇ B ⊕ F
S

F
S

ββ θ∇ B ⊕ L ⊕ F
SE

F
SE

ββ θ∇ B 

⊕ F
SW

F
SW

ββ θ∇ B THEN the noisy factor βr B. 

Fuzzy Rule 3 characterizes the movement and noise confidence in a central pixel by 
neighbour fuzzy values in any γ  by use the FIRST fuzzy gradient-vectorial difference 

value ( )
FIR

FttFt β
γ

β
γ ∇∇ : IF ( β

γ
t∇ B ⊗  β

γ
t

r )( 1
∇ S ⊗  β

γ
t

r )( 2
∇ S ⊗  β

γ
t

r )( 3
∇ B ⊗  β

γ
t

r )( 4
∇ B) 1⊗  

( β
γ
tt∇ B ⊗ β

γ
tt

r )( 1
∇ S ⊗ β

γ
tt

r )( 2
∇ S ⊗ β

γ
tt

r )( 3
∇ B ⊗ β

γ
tt

r )( 4
∇ B), THEN ( )

FIR

FttFt β
γ

β
γ ∇∇ B.  

Fuzzy Rule 4 characterizes the no movement confidence in a central pixel in any γ  direc-

tion, distinguishing different areas, such as, uniform region, edge or fine detail by use the 
SECOND fuzzy gradient-vectorial difference value ( )

SEC

FttFt β
γ

β
γ ∇∇ : 

IF ( β
γ
t∇ S ⊗ β

γ
t

r )( 1
∇ S ⊗ β

γ
t

r )( 2
∇ S) ⊕ ( β

γ
tt∇ S ⊗ β

γ
tt

r )( 1
∇ S ⊗ β

γ
tt

r )( 2
∇ S), THEN ( )

SEC

FttFt β
γ

β
γ ∇∇ S.  

Fuzzy Rule 5 estimate the movement and noise level in a central component using the fuzzy 

values determined for all directions by use the fuzzy noisy factor r β :  

IF ( )FIR
Ftt

SE
Ft

SE
ββ ∇∇ B ⊕ ( )FIR

Ftt
S

Ft
S

ββ ∇∇ B ⊕ ,…, ⊕ ( )FIR
Ftt

N
Ft

N
ββ ∇∇ B, THEN r β B. 

Fuzzy Rule 6 defines the no movement confidence factor βη :  

IF ( )SEC
Ftt

SE
Ft

SE
ββ ∇∇ S ⊕ ( )SEC

Ftt
S

Ft
S

ββ ∇∇ S ⊕ ,…, ⊕ ( )SEC
Ftt

N
Ft

N
ββ ∇∇ S, THEN βη S. 

where BABA  AND =⊗ , ( )BABA ,min1 =⊗ , ( )BABA ,max=⊕ , and PB and QS denote 

that value P is BIG and value Q is SMALL, respectively. 

 
The parameters r β  and βη  can be effectively applied in the decision: if a central 

pixel component is noisy, or is in movement, or is a free one. Fuzzy Rules 1 and 2, 
and from 3 to 6 determine the 2D-FD and 3D-FD algorithm based on fuzzy parame-
ters, respectively. 

The noisy factor is used as a threshold to distinguish among a noisy pixel and a 
free noise one. If 3.0≥βr , the filtering procedure is applied employing the fuzzy 
gradient-vectorial values as weights. The fuzzy weights are used in the standard nega-
tor function ( ) 1x xς = − , [ ]0,1x ∈  defined as ( ) 1F F F Fβ β β β

γ γ γ γρ θ θ∇ = − ∇ , this value origins a 

fuzzy membership value in a new fuzzy set defined as FREE (free noise). The fuzzy 
weight for central pixel in FREE fuzzy set is ( ) ( )( )0,0 0,0 3 1F F rβ β βρ θ∇ = ⋅ − . In opposite case, 

the output is presented as unchanged central pixel ( )j
output xy β

γ
β

&= . 

To enhance the noise suppression capabilities of the proposed 3D filter, we use at 
the final stage the 2D-FD filter that permits to decrease the influence of the non-
stationary noise left by temporal filter. Table 2 shows some modifications of the  
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Table 2. Parameters of 2D-FD Filter 

2D-FD Filter 
Initial stage Final stage 

0.3r β ≥  0.5rβ ≥  

( ) ( )( )3 1 2F F rβ β β β β
γ γγ

ρ θ ρ θ∇ = ∇ + ⋅ −∑ & &&
 ( ) ( )( )5 1 2F F rβ β β β β

γ γγ
ρ θ ρ θ∇ = ∇ + ⋅ −∑ & &&

 

( ) ( )( )0,0 0,0 3 1F F rβ β βρ θ∇ = ⋅ −  ( ) ( )( )0,0 0,0 5 1F F rβ β βρ θ∇ = ⋅ −  

If condition ( )sumβ β βρ θ≥ ∇  until ( )( )2F Fβ β
γ γρ θ∇ & &

 is not satisfied, total weight is updated 

according to ( ) ( ) ( )( )( )1
2F Fβ β β β β β

γ γρ θ ρ θ ρ θ∇ = ∇ − ∇ & &
. 

 
 

2D-FD applied after the 3D-FD that should be realized because of the non-stationary 
nature of noise according the best PSNR and MAE criteria results. 

The output of 2D-FD filter is formed by selection of one of the neighbour pixels or cen-
tral component. The condition j≤2 avoids the selection of the farther pixels, otherwise, the 
total weight is upgraded. Finally, the algorithm of 2D-FD filter is realized as follows: 
1) Let  calculate  the fuzzy weights   by use  an ordering  procedure:  
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γ =& {N,E,S,W, ( ),i j ,NW,NE,SE,SW}, permitting to remove the values more outly-

ing from the central pixel (i,j). 
2) We define ( )FFsum β

γ
β
γ

β θρ &&∇=+
(9) with j=9, decreasing j from 9 to 1 that is valid 

until the condition ( )βββ θρ ∇≥sum  can be satisfied (where 

( ) ( )( ) 213 β
γ

β
γ

β
γ

ββ θρθρ rFF −+∇=∇ ∑ & &&
). When j satisfies this condition, the jth or-

dered value ββ
γ output

j yx =)(
&

 is selected as the output filtered value. If j≤2, the next 

step of algorithm is realized. 
3) If   j≤2,   it  should   be   computed   the  weights 

( ) ( ) ( )( ) ( )( )( ) 2
21

2
FFFF

j
β
γ

β
γ

β
γ

β
γ

ββββ θρθρθρθρ &&&& ∇−∇−∇=∇≤
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γ
β
γ

β θρ
&&

∇=+ , 

and restore j=9, decreasing j from 9 to 1 that is valid until the condition 
( )βββ θρ ∇≥tsum . When j satisfies this condition, the jth ordered value 

ββ
γ output

j yx =)(
&

 is selected as the output filtered value. 

Figure 2 exposes the block diagram of the proposed 3D-FD filter, where the j-th com-
ponent pixel should be chosen, if it satisfies the proposed conditions, guaranteeing 
edges and fine detail preservation according to ordering criterion in the selection of 
the nearest pixels to the central one in t-1 and t frames. 

3   Experimental Results 

The described 3D-FD filter has been evaluated, and its performance has been com-
pared with different filters proposed in literature [1-6, 10-13].  
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Fig. 2. Block diagram of proposed 3D Fuzzy Directional (3D-FD) algorithm 
 

 
The performance criteria used to compare the restoration performance of various 

filters were the peak signal-to-noise ratio (PSNR) for evaluation of noise suppression, 
the mean absolute error (MAE) for quantification of edges and detail preservation, 
the mean chromaticity error (MCRE) for evaluation of chromaticity retention, and the 
normalized color difference (NCD) for quantification of color perceptual error [1-6]. 

The 176x144 QCIF video colour sequence “Miss America” was contaminated arti-
ficially by 5 and 15% of impulsive noise in independent way for each a channel. 

Table 3 shows the performance results in the case of averaging of 100 frames of 
video sequence “Miss America”. In the case of 5% of degradation, the proposed 3D-
FD filter provides the best restoration performance, and for 15% of impulsive noise, 
one can see that the best PSNR performance is given by 3D-AVDATM filter but the 
best detail preservation and chromaticity properties criteria are realized by proposed 
3D-FD filter. Figure 3 depicts the zoomed filtered frames of video sequence “Miss 
America” in the case of 15% of impulsive noise, where the proposed 3D-FD filter 
preserves better preservations of edges and fine details, and chromaticity properties 
against other filters. 

To provide better evaluation capabilities, we have implemented some promising 
algorithms on DSP to a Real-Time evaluation with real video sequences. So, this can 
provide reliability of the proposed filter against some better algorithms found in sci-
entific literature. Table 4 presents the processing time values in filtering of 20 video 
frames for several filters using the Texas Instruments EVM DM642. From these re-
sults, we observe that the proposed 3D-FD filter presents good capabilities in the real 
time environment.  
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Table 3. Performance results in the video sequence “Miss America” using different filters 

5% of impulsive noise 15% of impulsive noise Filters 
PSNR MAE NCD MCRE PSNR MAE NCD MCRE 

3D-FD 39.59 0.372 0.002 0.003 34.33 1.180 0.005 0.008 
3D-MF 35.12 2.514 0.009 0.013 34.36 2.701 0.010 0.014 
3D-VMF 34.86 2.544 0.009 0.013 34.18 2.708 0.010 0.014 
3D-VDKNNVM[10] 33.48 3.106 0.011 0.015 32.37 3.428 0.012 0.016 
3D-GVDF [2] 33.76 2.905 0.011 0.014 33.70 2.847 0.010 0.014 
3D-AVDATM [11] 36.97 1.112 0.004 0.006 35.38 1.714 0.006 0.009 
3D-ATM [12,13] 35.22 2.569 0.009 0.013 34.42 2.767 0.010 0.013 
3D-KNNF [12,13] 37.21 1.909 0.007 0.010 30.09 3.838 0.014 0.020 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Subjective visual qualities of restored 10th frame of “Miss America” video sequence, a) 
Zoomed image region contaminated by impulsive noise of 15% intensity, b) Designed 3D-
FD, c)  3D-VMF, d) 3D-GVDF, e) 3D-AVDATM, f) 3D-ATM 

 
Table 4. Time values needed for processing 20 frames of video sequence “Miss America” 

Filters Processing time in seconds 
 Maximum Average Total 

3D-FD 7.533 7.440 148.806 
3D-MF 0.0065 0.0057 0.114 

3D-VMF 0.075 0.075 1.496 
3D-GVDF [2] 28.52 25.6 512.02 

3D-ATM 0.1347 0.134 2.681 
3D-AVDATM 25.551 24.867 497.356 

3D-KNNF [12,13] 0.103 0.102 2.04 
 
 

a) b) c) 

d) e) f) 
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4   Conclusions 

The proposed 3D-FD filter uses fuzzy set theory and order vector statistic technique 
to provide better performance in noise suppression, edge and fine detail preservation, 
and chromaticity characteristics for video colour sequence denoising in comparison 
with existed filtering approaches in terms of objective criteria, as well subjective 
perception by human viewer. Finally, the Real-Time evaluation was realized using 
EVM DM642 presenting good capabilities in the real-time environment. 
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Abstract. This paper presents a block-wise and content-based semi-fragile image 
watermarking authentication scheme with location and recovery capability. Firstly 
the image is segmented by two regions: Region of Interest (ROI) and Region of 
Embedding (ROE). The watermark sequence is extracted from ROI and it is em-
bedded into the middle frequency band of DCT coefficients of ROE. In the authen-
tication stage, two watermark sequences extracted ROI and ROE, respectively, are 
used. If difference between both sequences of a ROI block is smaller than the pre-
defined threshold value, the ROI block is determined authentic, otherwise the block 
is considered as tampered and it is recovered by the recovery process. The pro-
posed scheme is evaluated from several points of view: watermark imperceptibili-
ty, capability of tamper detection, image quality of recovered regions and robust-
ness of no-intentional manipulations, such as JPEG compression. The simulation 
results show fairly good performance of the proposed scheme. 

Keywords: Image authentication, Semi-fragile watermarking, Self-embedding 
watermarking, Tamper detection, Tamper localization. 

1   Introduction 

With the growth of Internet, digital images play an important role to show some evi-
dences in the news and reports in the digital media. Digital images captured by remote 
sensing technique provide us important information in several fields.  However, using 
some software tools, digital images can be modified easily without any traces, causing 
economic and social damages. Therefore development of a reliable digital image 
authentication scheme is an urgent issue. Among several approaches, a watermarking 
based approach is considered as one of alternative solutions. In general, image au-
thentication schemes can be classified into two approaches: signature-based authenti-
cators [1,2] and watermarking-based authenticators [3-6]. The major difference be-
tween these two approaches is that the authentication message is embedded into the 
same digital media in watermarking-based authenticators, while it is transmitted or 
saved separately from digital media in the signature-based authenticators. In water-
marking-based authenticators, they can be further classified into two schemes: fragile 
(complete authentication) [3, 4] or semi-fragile (content authentication) [5, 6] water-
marking authentication schemes.  
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Many watermarking based methods determine if the image is tampered or not, and 
some of them can localize the tampered regions [3-6], however, very few schemes 
have capability to recover the tampered region without original image [7, 8].  In this 
paper, an image authentication scheme, with a capability of tampered region localiza-
tion and recovery, is proposed. In the proposed scheme, an image is segmented by 
two regions: Regions of Interest (ROI) and Regions of Embedding (ROE).  ROI is a 
region which contains important information and it is required protection, for example 
regions of faces of persons involved in some scandal scene, while ROE is rest of the 
whole image after subtracting region belonged to ROI. ROE can be background of the 
image. The information of ROI is encoded to generate watermark sequence, and it is 
embedded into ROE of the same image in an imperceptible manner. In the authentica-
tion stage, two watermark sequences, extracted from ROI and ROE respectively, are 
used. If some blocks of ROI are detected as tampered, the recovery process performs 
to construct these blocks from the watermarked sequence extracted from ROE. 

The proposed scheme is evaluated from several points of view: watermark imper-
ceptibility in the watermarked image, capability of tampered regions detection, recov-
ery capability of the altered region, and watermark robustness against no-intentional 
modification, such as JPEG compression. Simulation results show a fairy good per-
formance about above three issues. 

The rest of the paper is organized as follows. In Section 2, the proposed authenti-
cation method is described, and in Section 3 the experimental results are provided. 
Finally a conclusion of this paper is described in Section 4. 

2   The Proposed Authentication Method 

2.1   Watermark Sequence Generation 

Generally in a photo image, some objects or some regions contain information more 
important than other regions. For example in an image of traffic accident, perhaps the 
regions of license plates of vehicles involved with the accident are more important 
than its background or other vehicles no related with the event. Therefore we define 
two regions in the image: region of interest (ROI) and region of embedding (ROE).  
 

 
Fig. 1. Watermark sequence generation stage 
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ROI is important region of the image that requires a protection against malicious 
modification, while ROE is the rest of the image that no requires any protection. In 
the proposed algorithm, information of ROI is extracted to generate a watermark 
sequence and this sequence is embedded into ROE. Figure 1 illustrates the proposed 
watermark generation process that can be summarized as follows: 

 
1) Subtract 127 from gray levels of the original image to force pixel values to be 

[-127,128]. It reduces DC-coefficient value after the image is transformed by 
DCT.  

2) In the original image X, ROI is selected by owner and automatically ROE is 
determined in order that the following condition is satisfied. 
ܫܱܴ  ת ܧܱܴ ൌ ܫܱܴ  ݀݊ܽ     (1)                                               . ܧܱܴ

 
3) ROI region is divided into non-overlapping blocks of 8×8 pixels. 
4) In each block of ROI, 66 bits watermark sequence is extracted as a following 

manner. 
a) Compute the 2D-DCT. 
b) The DC-coefficient is rounded and represented by 11 bits (10 bits for abso-

lute value and 1 bit for sign). Because the maximum values of DC for 8x8 
block of an image with range [-127,128] is 1016, it can be represented in a 
binary form using 11 bits, including sign bit.    

c) Encode each one of the first 6 lowest AC-coefficients, taking first 6 AC 
coefficients in the zig-zag order of the block, to 8 bits together with 1 sign 
bit (total 9 bits). 

5) The length of watermark sequence of each ROI block is 66 bits, composed by 
11 bits of DC-coefficient, 54 bits corresponded to the 6 AC-coefficients of 
DCT coefficients and finally we add 1 zero, which can be divided into 6 seg-
ments with 11 bits sequence per segment. 

2.2   Watermark Embedding 

The proposed watermark embedding process can be summarized as follows: 
 
1) Using a user’s key K, the mapping list between ROI blocks and ROE blocks is 

constructed. 
2) Using this mapping list, each ROI block of 8x8 pixels is mapped into 6 ROE 

blocks, which are used to embed watermark sequence extracted from the ROI 
block. 

3) In each selected 6 ROE blocks, following processes are carried out. 
 
a) Apply 2D-DCT to 6 ROE blocks. 
b) Quantify by a quantized matrix Q that corresponds to quality factor 70. 

This value is selected considering tradeoff between watermarked image 
quality and watermark robustness against JPEG compression. Quantization 
of DCT coefficients by Q is given by (2). 
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,ݑሚሺܥ ሻݒ ൌ ,ݑሺܥہ ,ݑሻ/ܳሺݒ  (2)                                           . ۂ ሻݒ

 Where Cሺu, vሻ and C෨ሺu, vሻ are the ሺu, vሻ-th DCT coefficient and it quan-
tized version, respectively, ہxۂ is lower nearest integer value of  x. 

c) Each 11 bits of watermark sequence is embedded into the LSB of the 11 
DCT-coefficients of the middle frequency band of the selected 6 ROE 
blocks. 

d) The watermarked DCT blocks are multiplied by Q. 
e) It is transformed by the inverse DCT to get watermarked blocks. 

 
4) Concatenating all watermarked blocks, the watermarked image is generated.  

2.3   Authentication and Recovery 

The authentication procedure verifies if the contents of the received image are authen-
tic or not. To authenticate the image, two watermarks must be extracted and then 
compared. This authentication and recovery process are described as follows: 

 
1) The first watermark WROIext is generated from the ROI blocks; these operations 

are same as the watermark generation process before described. 
2) The second watermark WROEext is extracted from the ROE blocks.  Using the 

same secret key to construct ROI-ROE mapping lists, the 6 corresponded ROE 
blocks are determined for each ROI block, from which WROEext  is extracted.  

3) For selected 6 ROE blocks, the following operations are carried out to get 
WROEext 
 
a) Apply 2D-DCT to each one of 6 ROE blocks. 
b) DCT blocks are quantized by quantification matrix Q. 
c) 11 bits sequence is extracted from LSB of 11 AC coefficients in the middle 

frequency band of each ROE block. 
d) Concatenated 6 extracted sequences of longitude 11 bits to generate 66 bits 

WROEext. 
4) In the watermark comparison between WROIext and WROEext, the tolerant thre-

shold Th is employed to distinguish a content preserving operation from mali-
cious manipulation.  This authenticity check is given by (3). ݂݅  ∑ ܱܴܺሺ ோܹைூ௫௧, ோܹைா௫௧ሻ ൏ ∑  ݂݅ܿ݅ݐ݄݊݁ݐݑܽ ݏ݅ ݈ܾ݇ܿ ݄݁ݐ ݄݊݁ݐ     ݄ܶ ܱܴܺሺ ோܹைூ௫௧, ோܹைா௫௧ሻ  ݂݀݁݅݅݀݉ ݏ݅ ݈ܾ݇ܿ ݄݁ݐ ݄݊݁ݐ     ݄ܶ         (3) 

Once the authenticity check indicates that a ROI block was tampered, the recovery 
process of this ROI block is triggered. The recovery process can be summarized as 
follows: 

 
1) From the extracted watermark sequence WROEext, last bit is eliminated to get a 

watermark sequence with 65 bits. 
2) Assign the first 11 bits of WROEext to DC-component and the rest 54 bits are di-

vided into 6 sequences with 9 bits and these are assigned to 6 lowest AC-
coefficients of a recovery DCT block. 
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3) Compute the inverse 2D-IDCT of recovery DCT block to get a recovery block. 
4) Replace the tampered ROI block by the recovery block. 

3   Experimental Results 

We conduct three experiments to evaluate performance of the proposed algorithm. 
The first experiment is to assess watermark imperceptibility, and in the second one 
the tamper detection and the recovery capability of the proposed algorithm are eva-
luated. Finally, in the third experiment, the watermark robustness to incidental mod-
ification such as JPEG compression is evaluated. In table 1, the values of some factors 
used during the evaluation are given. 

Table 1. Parameter’s values used during the evaluation process 

Number of test images 256-gray level 
(8 bits/pixel) 

100 

Length of watermark sequence for each ROI block W 66 bits 
Threshold value used in (3) Th 13 

Number of ROI blocks used  [min, max] [117,453] 

 
Experimental results of three evaluations are described in the following sections. 

3.1   Watermark Imperceptibility 

Gray-scale images are used for these experiments. Figure 2 shows watermark impercep-
tibility using two images “Car” and “Camera” as examples. Figs. 2(a) and 2(d) show 
original image and figs. 2(b) and 2(e) show the watermarked images, respectively.  Peak 
signal to noise ratio (PSNR) between the original image and the watermarked one are 
36.8 dB and 33.17 dB, respectively. These results indicate that the image distortions 
incurred by the watermark embedding process are not significant. Also, in perceptual 
comparison by human visual system between the original images and the watermarked 
one, it is difficult to distinguish the difference between both images. 

The watermark length of the cover image depends directly on the number of ROI 
blocks selected by the owner, and also watermarked image distortion depends on the 
embedded watermarked length. Figs. 2(c) and 2(f) show an example of possible ROI 
blocks selected by the owner, which are represented by black squares. Here 4% of blocks 
in Fig. 2(c) and 14.8% of blocks in Fig 2(f) are selected as ROI blocks. Fig. 3 shows a 
plot of the PSNR as a function with number of ROI blocks. In this figure, watermarked 
image quality (PSNR) is inversely proportioned by number of ROI blocks. The number 
of ROI blocks must satisfy (4), because each ROI block requires 6 ROE blocks. 

ሻܫሺܴܱݎܾ݁݉ݑܰ  ൏ ሻܫሺܤܰ 7ൗ  .                                        (4) 

 

where NB(I) is total number of blocks (8x8 pixels) of the Image I. 
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Fig. 2. Watermark imperceptibility, (a,d) Original images, (b,e) Watermarked images, (c,f) ROI 
blocks indicated by black blocks, which are assigned by owner of the image 

3.2   Tamper Detection and Recovery Capability 

To evaluate the tamper detection and recovery of the proposed authentication scheme, 
the watermarked images were tampered as shown by fig. 4(b) and (f). In the fig. 4 (b), 
number ‘7’ of license plate is tampered, modifying ‘9’ and in the fig. 4 (f), a tower 
behind cameraman is eliminated. As shown by fig. 2(c) and 2(f), tamped regions are 
assigned as ROI blocks. The tamper detection results are shown by fig. 4(c) and (g), 
where tampered ROI blocks are represented by black squares, and fig. 4(d) and (h) 
show images that the tampered regions were recovered.  

 

Fig. 3. Relationship between number of ROI blocks and watermarked image distortion 

3.3   Watermark Robustness  

Generally any images, including watermarked image, suffer some no-intentional mod-
ifications, such as compression or noise contamination, therefore, watermark robust-
ness against these incidental modifications must be taken into account. In the  
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Fig. 4. (a,e) are watermarked images, (b,f) are tampered images, (c,g) show detection of tam-
pered regions and (d,h) are recovered images 

proposed authentication method, ROI information is embedded as watermark se-
quence into quantized DCT coefficients, which is generated by a predefined JPEG 
quality factor. This embedding domain guarantees that watermark sequence can be 
extracted in almost intact manner, after watermarked image suffer JPEG compression 
with a better quality factor than the predefined one. Therefore in the proposed 
scheme, embedded watermark sequence is robust to JPEG compression with a quality 
factor better than 70. 

4   Conclusions 

In this paper, a block-based image authentication with tamper detection and recovery 
capability is proposed. Firstly image is segmented by two regions: Regions of Interest 
(ROI) and Regions of Embedding (ROE). The watermark sequence is a compressed 
version of each ROI block and it is encoded a binary sequences with 66 bits. Then the 
66 bits watermark sequence of each ROI block is embedded into corresponded 6 ROE 
blocks in its DCT domain. In the authentication stage, watermark sequence extracted 
from ROI blocks of the image under analysis is compared with the watermark se-
quences extracted from ROE blocks. If some ROI blocks are determined as tampered 
blocks, the recovery processes is triggered, in which, the tampered ROI blocks are 
recovered from the watermark sequence extracted from ROE blocks. Computer simu-
lation results show fairly good performance of the proposed scheme, analyzing wa-
termark imperceptibility, tamper detection and recovery capability and watermark 
robustness against no intentional attacks, such as JPEG compression. In the proposed 
scheme, recovered image of the tampered ROI blocks are sufficiently clear after wa-
termarked image is compressed by JPEG compression with a reasonable quality factor 
(better than 70). 
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Abstract. We address new approach for enhanced multi-sensor imaging in  
uncertain remote sensing (RS) operational scenarios. Our approach is based on 
incorporating the projections onto convex solution sets (POCS) into the descrip-
tive experiment design regularization (DEDR) and fused Bayesian regulariza-
tion (FBR) methods to enhance the robustness and convergence of the overall 
unified DEDR/FBR-POCS procedure for enhanced RS imaging. Computer 
simulation examples are reported to illustrate the efficiency and improved op-
erational performances of the proposed unified DEDR/FBR-POCS imaging 
techniques in the extremely uncertain RS operational scenarios. 

Keywords: Convex sets, descriptive regularization, experiment design, multi-
sensor imaging, remote sensing.  

1   Introduction 

In this study, we propose a unification of the previously developed descriptive ex-
periment design regularization (DEDR) [1] and the fused Bayesian regularization 
(FBR) [2] methods for enhanced imaging in the remote sensing (RS) operational 
scenarios with model uncertainties. The operational uncertainties are associated with 
the unknown statistics of random perturbations of the signal formation operator (SFO) 
in the turbulent medium, imperfect sensor system calibration, finite dimensionality of 
measurements, multiplicative signal-dependent speckle noise, uncontrolled antenna 
vibrations and random carrier trajectory deviations in the case of SAR. The general 
DEDR method for solving such class of uncertain RS inverse problems has been  
constructed in our previous study [3] as an extension of the statistically optimal maxi-
mum likelihood (ML) technique [1], in which the spatial spectrum pattern (SSP)  
estimation error was minimized in a descriptively balanced fashion via weighted 
maximization of spatial resolution over minimization of resulting noise energy algo-
rithmically coupled with the worst-case statistical performance optimization-based 
convex regularization. In this paper, we are focused on the design of the unified 
DEDR/FBR method employing the idea of incorporating the projections onto convex 
solution sets (POCS) into the corresponding DEDR/FBR-related solution operators to 
enforce the robustness and convergence. The crucial practical issue relates to proper 
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adjustment of the regularization parameters in the unified DEDR/FBR-POCS iterative 
reconstructive technique to the particular uncertain RS operational scenario. The ad-
vantage in using the developed method over the previously proposed RS imaging and 
de-speckling techniques is demonstrated through the reported computer simulation 
experiments performed using the elaborated virtual remote sensing laboratory (VRSL) 
software. 

2   Problem Formalism 

Referring to our previous studies [1]–[3], the random signal  u  at the output of the 
sensor system antenna (SAR system in this particular study) moved by the carrier 
along the deviated linear trajectory  ρ(t)  in the time instance t  relates to the field e  
scattered from the probing surface through the integral equation of observation 

( )u p = )))((
~

( prSe  + ( )n p  = ( , ) ( )
R

S e d∫ % p r r r  + ( )n p  
(1) 

where p = (t, ρ(t)) defines the time-space trajectory points, the complex scattering 
function e(r) represents the random scene reflectivity over the probing surface in the 
plane of the scanned scene [6]; r  is a vector of the scan parameters, usually the polar, 

cylindrical or Cartesian coordinates of the probing surface; the uncertain SFO S%   is 
defined by the integral at the right hand of (1) with the nominal kernel              

( , )S p r = ( , )S% p r  specified by the time-space modulation of signals employed in a 

particular imaging SAR system [4]. The variations about the mean                   

( , )Sδ p r = ( , )S% p r – ( , )S p r  pertain to the random perturbation component in the SFO.  

The spatial spectrum pattern (SSP)  b(r) = 〈|e(r)|2〉   represents  the  ensemble  av-
erage of the squared  modulus of  the  random complex scene reflectivity e(r)  as a 
function over the analysis domain  R∋r and is referred to as a desired RS image to be 
reconstructed from the measurement data recordings. The vector-form model of (1) is 
given by discrete-form equation of observation (EO) [3] 

u = eS~  + n = Se +∆e  + n, (2) 

where u, n and e define the vectors composed of the coefficients {um}, {nm} and {ek} 
of the discrete-form approximations of the fields u, n and e with respect to the se-
lected orthogonal decomposition function set {hm(p)} in the observation domain and 
the pixel set {gk(r)} in the scene domain, respectively [3]. The matrix-form represen-
tation of the uncertain SFO in (2) was formalized in [3] by 

%S = S + ∆ . (3) 

The M×K nominal SFO matrix S in (2), (3) is composed of the scalar products       
{ [ , ]k mSg h U } [1], while all problem model uncertainties are attributed to the distortion 

term ∆ . We refer to our previous study [3], where the distortions in the random me-
dium were explained based on the propagation theory models [6]. Note that in prac-
tice, one cannot attribute the exact portion of the composite SFO perturbation term ∆  
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to a particular source of disturbances, thus cannot separate in (3) the uncertainties 
caused by the turbulent medium effects, speckle noise or the observation mismatch 
errors as those are randomly mixed in the ∆ . These practical aspects motivated our 
adopting in [3] the robust statistical treatment of the irregular SFO perturbations ∆  as 
a random zero-mean matrix with the bounded second-order moment, i.e. 

∆  = 0;   2|| ||∆  = 〈tr{ +∆∆ }〉 η≤  (4) 

where 2|| ||∆ = tr{ +∆∆ } defines the squared matrix norm, tr{⋅} is the trace operator, 

superscript  +  defines the Hermitian conjugate (conjugate transpose), and η  is the 

bounding constant [3].  
Because of an incoherent nature of the scattering function e(r), vector e in the 

equation of observation (2) is characterized by a diagonal correlation matrix,            
Re = diag(b) = D(b), in which the K×1 vector b of the principal diagonal (composed 

of the elements bk = 2| |ke ; k = 1, …, K) is referred to as the vector-form SSP. The 

problem that we solved in our previous studies [1]–[3] was to derive an estimate  b̂  
of the SSP vector and to reconstruct the desired SSP distribution 

( )
ˆ ( )Kb r =

1
ˆ ( )

K

k kk
b g

=∑ r  (5) 

over the pixel-formatted observation scene R∋r by processing the data vector u (in the 
operational scenario with the single processed uncertain data realization) or J>1 what-
ever available recorded independent realizations { ( )ju ; j =1, …, J } of the data (in the 

scenario with multiple observations) collected with a particular system operating in the 
uncertain RS environment. 

3   Phenomenology 

3.1   DEDR Method 

To alleviate the ill-posedness of the SSP reconstruction problem (5) with the uncer-
tain observation model (2)–(4), the DEDR method was constructed in [3] given by 

ˆ
DEDRb  = { DEDR DEDR

+F YF }diag  = 1 1
diag{ }+ − −

Σ ΣKS R YR SK  (6) 

that estimates the SSP vector b̂  via applying the DEDR-optimal solution operator  

FDEDR = 1+ −
ΣKS R  (7) 

to the data matrix Y composed of the uncertain data measurements,  i.e.  the rank-1 
(ill-conditioned) outer product matrix   Y = Y(rank-1) = uu+     in the scenario with the 
single recorded data realization (e.g., single-look imaging SAR applications), and the 

rank-J empirical estimated correlation matrix Y = Y(rank-J) = ( ) ( ) ( )1
1 J

j jjJ
+

=∑ u u  in the 

scenario with J>1 independent multiple observations [3]. 
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The S+ in the solution operator (7) represents the adjoint (Hermitian conjugate [5]) 
to the nominal SFO matrix S, and 1−

ΣR  is the inverse of the augmented (diagonal 

loaded) noise correlation matrix defined by [3], ( )βΣ Σ=R R = (Rn + β I). In the 

practical RS scenarios [4], [5], (and specifically, in the SAR imaging applications), it 
is a common practice to accept the robust white additive noise model, i.e.  Rn = N0I, 
attributing the unknown correlated noise component as well as the speckle to the 
composite uncertain noise term ∆e  in (2), in which case ΣR = NΣI , NΣ = N0 + β  

with the composite noise variance NΣ = N0 + β,  the initial N0 augmented by the load-

ing factor β = /γη α ≥  0 adjusted to the regularization parameter α, the Loewner 

ordering factor γ>0, and to the SFO uncertainty bound  η ≥ 〈tr{ +∆∆ }〉  (see [3] for 

details).   
Next, we refer to [3] for specifying the family of the DEDR-related estimators for 

the considered there feasible adjustments of the processing-level degrees of freedom 
{α, NΣ, A}, 

( )ˆ pb = ( ) ( )
diag{ }p p +F YF ;    p = 1, …, P, (8) 

where different employed solution operators {F(p); p = 1, …, P} specify the corre-
sponding DEDR-related estimators.  

3.2   FBR Method 

The estimator that produces the high-resolution optimal (in the sense of the Bayesian 

minimum risk strategy) estimate b̂  of the SSP vector via processing the M-
dimensional data recordings u applying the fused Bayesian-regularization (FBR) 
estimation strategy that incorporates nontrivial a priori geometrical and projection-
type model information was developed in [1], [2]. The FBR method [1], [2] implies 
two-stage data processing. First, the vector of sufficient statistics (SS) is formed          
v = { FBR FBR

+ +F uu F }diag  applying the regularized solution operator  

FFBR = F(6) =  1( + −
nS R S  + 1 1 1ˆ )− − + −

nD S R  
(9) 

to the sampled trajectory data signal u. Second, the smoothing window W is applied 
to such SS to satisfy the regularizing consistency and metrics constraints [1], [2] that 
yields the resulting FBR estimator     

ˆ
FBRb  = Wv = W{FFBRuu+F+

FBR}diag. (10) 

Thus, the FBR method may also be viewed as a particular member of the unified 
DEDR-related family (8), in which the additional pseudo averaging is performed 
applying the regularizing window W.  
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4   POCS Regularized Unified DEDR/FBR Technique 

To precede from the general-form DEDR and FBR estimators to the practically real-
izable SAR-adapted SSP reconstruction techniques, we follow the convex regulariza-
tion paradigm invoked from the fundamental theorem of POCS [5].  Our approach 
incorporates the intrinsic factorization and sparseness properties of the SAR ambigu-
ity functions [4], [7] into the construction of the POCS-regularized fixed-point itera-
tive SSP reconstruction procedures that drastically reduces the overall computational 
load of the resulting algorithms. 

To convert the general-from estimators (6) and (10) with the ML-optimally specified 

degrees of freedom [3] (i.e., αA = D( b̂ ), NΣ = N0+β) to a unified POCS-regularized 

fixed-point iterative algorithm, we first, define a sequence of estimates { [ ]
ˆ

ib } as 

[ ]
ˆ

ib  =P [ ] [ ] diag{ }i i
+K S YSK  

(11) 

i = 0, 1, … , where P  is a convergence enforcing projector (in our case, the POCS-
regularizing operator) [5]; 

[ ] [ ]
ˆ( )i i=K K b = (Ψ + NΣ [ ]

1 ˆ( )i
−D b )–1 (12) 

represents the self-adjoint reconstruction operator at the ith iteration step and  

Ψ = +S S  (13) 

is the nominal system point spread function (PSF) operator [2]. Applying routinely 
the fixed-point technique [5] to the equation (12), we next, construct the unified 
POCS-regularized iterative SSP estimation algorithm 

[ 1]
ˆ

i+b  =  [0]
ˆP b + [ ] [ ]

ˆ
i iP T b ;  i = 0, 1, … (14) 

Here,  

[ ][ ] [ ]
ˆ( )ii i=T T b = [ ] [ ] diag [ ] [ ]

ˆ ˆ2diag({ ( )} ) ( )i i i i−Ω b H b ;  i = 0, 1, … (15) 

represents the solution-dependent matrix-form iteration operator, where  

1
[ ] [ ] [ ] [ ]

ˆ ˆ( ) ( )i i i iN −
Σ= = − −Ω Ω b I Ψ D b  ; (16) 

*
[ ] [ ] [ ] [ ] [ ] [ ] [ ]

ˆ ˆ ˆ( ) ( ) ( )i i i i i i i= = oH H b Ω b Ω b ; (17) 

o  denotes the Shur-Hadamar (element-by-element) matrix product,  and the zero-step 
iteration 

[0]b̂  = ˆ
MSFb  = {S+YS}diag (18) 

is formed as an outcome of the conventional matched spatial filtering (MSE) algo-
rithm from the DEDR family (8) specified for the adjoint SFO solution operator S+. 
The principal advantage of the fixed-point procedure (14) relates to the exclusion of 
the solution-dependent operator inversions (12), which are now performed in an  
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indirect iterative fashion. This transforms the computationally extremely intensive 
general-form procedures (6), (10) into the iterative technique (14) executable in (near) 
real computational time. 

5   Simulations  

Having established the unified POCS-regularized DEDR/FBR-related iterative tech-
nique (14) for SSP reconstruction, in this section, we present the results of compara-
tive numerical simulations of six different SSP formation/reconstruction algorithms, 
in particular, the conventional MSF algorithm [1], the best existing adaptive Lee de-
speckling algorithm [7], the non-constrained robust spatial filtering (RSF) algorithm 
from [3], the constrained RSF algorithm from [3], the adaptive spatial filtering (ASF) 
algorithm from [2], and the proposed here POCS-regularized unified DEDR/FBR 
algorithm (14). We considered a SAR imaging system operating in a typical uncertain 
RS imaging scenario. The operational uncertainties were simulated via incorporating 
random perturbations into the regular SFO and contaminating the data with composite 
multiplicative and additive noise.  In the simulation experiments that we report in this 
paper, the PSF of the fractional SAR system was modeled by of a Gaussian "bell" 
function in both directions of the 2-D scene (in particular, of 16 pixel width at 0.5 
from its maximum for the 512-by-512 pixel-formatted scene). The composite multi-
plicative noise was simulated as a realization of the 2

2χ -distributed random variables 

with the pixel mean value assigned to the actual degraded scene image pixel that 
directly obeys the RS speckle model [4], [7]. Such signal-dependent multiplicative 
image noise dominates the additive noise component in the data in the sense that 

0N NΣ >> , hence the estimate N̂Σ  performed empirically using the local statistics 

method [7] was used to adjust the regularization degrees of freedom in the 
DEDR/FBR-POCS procedure (14). Two scenes (the artificially synthesized and bor-
rowed from the real-world RS imagery [8]) were tested. These scenes are displayed in 
Figures 1(a) and 1(b), respectively. The qualitative simulation results for six different 
simulated image formation/reconstruction procedures for the first simulated scene are 
presented in  Fig. 2 and for the second scene in Fig. 3, respectively, as specified in the 
figure captions. The advantage of the unified DEDR/FBR-POCS technique over the 
previously proposed conventional MSF, de-speckling without DEDR/FBR enhance-
ment and non-adaptive RSF algorithms is evident from the reported simulations. 

   
(a)       (b) 

Fig. 1.  Original test scenes: (a) artificially synthesyzed scene; (b) real-world RS scene 
borrowed from the high-resolution RS imagery [8] 
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(a)        (b)      (c) 

     
(d)       (e)      (f) 

Fig. 2. Simulation results for the first test scene: (a) degraded SAR scene image formed apply-
ing the MSF method [1]; (b) adaptively de-speckled MSF image; (c) image reconstructed ap-
plying the non-constrained RSF algorithm [2]; (d) image reconstructed with the constrained 
RSF algorithm [3]; (e) image reconstructed applying the non-constrained ASF algorithm [2];  
(f) image reconstructed applying the developed POCS-regularized DEDR/FBR method 

 

 

     
(a)       (b)      (c) 

     
(d)       (e)      (f) 

Fig. 3. Simulation results for the second test scene: (a) degraded SAR scene image formed 
applying the MSF method [1]; (b) adaptively de-speckled MSF image; (c) image reconstructed 
applying the non-constrained RSF algorithm [2]; (d) image reconstructed with the constrained 
RSF algorithm [3]; (e) image reconstructed applying the non-constrained ASF algorithm [3]; (f) 
image reconstructed applying the developed POCS-regularized DEDR/FBR method 
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6   Concluding Remarks 

In this paper, we have presented the POCS-regularized fixed-point iterative 
DEDR/FBR method particularly adapted for enhanced RS imaging in the uncertain 
environment. The unified DEDR/FBR-POCS approach leads to the fixed-point SSP 
estimator that may be regarded as adaptive post-image-formation enhancement proce-
dure. To facilitate it application for the uncertain imaging scenarios the adaptive 
scheme for evaluation of the operational degree of freedom (regularization parameter) 
directly from the uncertain RS data was incorporated into the SSP reconstruction 
algorithm. We have demonstrated that with such developed adaptive POCS-
regularized DEDR/FBR technique, the overall RS image enhancement performances 
can be improved if compared with those obtained using conventional single-look SAR 
systems that employ auto-focusing techniques or the previously proposed adaptive de-
speckling and reconstruction filters that do not unify the POCS regularization with the 
DEDR/FBR method.  
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Abstract. We address unified intelligent descriptive experiment design regu-
larization (DEDR) methodology for computer-aided investigation of new intel-
ligent signal processing (SP) perspectives for collaborative remote sensing (RS) 
and distributed sensor network (SN) data acquisition, intelligent processing and 
information fusion. The sophisticated “Virtual RS Laboratory” (VRSL) soft-
ware elaborated using the proposed DEDR methodology is presented. The 
VRLS provides the end-user with efficient computational tools to perform nu-
merical simulations of different RS imaging problems. Computer simulation 
examples are reported to illustrate the usefulness of the elaborated VRSL for 
the algorithmic-level investigation of high-resolution image formation, en-
hancement, fusion and post-processing tasks performed with the artificial and 
real-world RS imagery. 

Keywords: Computer simulations, experiment design, regularization, remote 
sensing, software.  

1   Introduction 

This paper is focused on the challenging problems of intelligent remote sensing 
(RS) data processing, distributed fusion, algorithm design and simulation software 
development. First, we address a unified intelligent descriptive experiment design 
regularization (DEDR) methodology for (near) real time formation/enhancement/ 
reconstruction/post-processing of the RS imagery acquired with different types of 
sensors, in particular, conventional 2-D stationary arrays [1] and the mobile syn-
thetic aperture radar (SAR) systems [2]. Second, we present the elaborated “Virtual 
Remote Sensing Laboratory” (VRSL) software that provides the end-user with effi-
cient computational tools to perform numerical simulations of different collabora-
tive RS imaging problems in various experiment design settings. The scientific 
challenge is to develop and investigate via the VRSL an intelligent signal process-
ing (SP) perspective for collaborative RS data acquisition, adaptive processing and 
information fusion for the purposes of high-resolution RS imaging, search, discov-
ery, discrimination, mapping and problem-oriented analysis of spatially distributed 
physical RS signature fields. The end-user oriented VRSL software is elaborated  
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directly to assist in system-level and algorithmic-level investigation of such  
multi-sensor collaborative image formation, enhancement, and post-processing 
tasks performed with the artificial and real-world RS imagery. 

2   Unified DEDR Paradigm 

The DEDR paradigm constitutes a methodology for solving a manifold of algorithm 
design problems related to high-resolution multisensor imaging and knowledge-
based (KB) collaborative RS data processing. In the DEDR framework developed 
originally in [8], [10], [11] complex multisensor measurement data wavefields in 
the observation domain are modeled as operator transforms of the initial scene scat-
tering fields degraded by clutter and noise. The formalism of such transforms is 
specified by the corresponding uncertain signal formation operator (SFO) models 
derived from scattering theory [2], [4]. In [8], [10], [11], we followed a generalized 
maximum entropy (ME) formalization of a priori information regarding the spatial 
spectrum patterns (SSPs) of the scattered wavefields that unify diverse RS imaging 
problem settings. Being nonlinear and solution-dependent, the optimal general-form 
DEDR estimators of the SSPs constructed in [8], [10] require computationally in-
tensive adaptive signal processing operations that involve also the proper construc-
tion of the regularizing projections onto convex (solution) sets (POCS) ruled by the 
adopted fixed-point contractive iteration process. The fused KB DEDR algorithm 
design methodology [11] aggregates next the ME method with the diverse regulari-
zation and KB post-processing considerations. Such the methodology [11] enables 
one not only to form the atlas of the desired remote sensing signatures (RSS) ex-
tracted from the collaboratively processed multisensor RS imagery but also to per-
form their problem-oriented analysis in an intelligent KB fashion. Figure 1 presents 
the block-diagram of the addressed intelligent DEDR approach with the KB mul-
tisensor data fusion.  

3   DEDR Phenomenology 

Following [6], [8], [10] the DEDR is addressed to as a methodology that unifies the 
family of the previously developed nonparametric high-resolution RS imaging tech-
niques. Such unified formalism allows involving into the DEDR different convex 
regularization and neural computation paradigms (e.g., the POCS regularization and 
KB method fusion) that enables the end user to modify the existing techniques via 
incorporation of some controllable algorithmic-level “degrees of freedom” as well as 
design a variety of efficient aggregated/fused data/image processing methods. The 
data/image processing tasks that may be performed applying the DEDR methodology 
can be mathematically formalized in the terms of the following unified optimization 
problem [8], [10].   
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with respect to the desired  K-D image vector v for the assigned (or adjusted) values 
of M+1 regularization parameters {λm} that compose a vector of the controllable algo-
rithmic “degrees of freedom” λ. In a particular employed method, the proper selection 
of {λm} is associated with the parametric-level adjustment of the SP optimization pro-

cedure (2). Here, H(v) = – 
1

ln
K

k kk
v v

=∑  represents the image entropy [3], {Jm(v)} (m 

= 1, …, M) compose a set of particular objective (cost) functions incorporated into the 
optimization, and JM+1(v) represents the additional regularizing stabilizer [3] that con-
trols specific metrics properties of the desired image. The data acquisition model is 
defined by the set of equations, u(m) = F(m)v + n(m) for M methods/systems to be aggre-
gated/fused, i.e. m = 1, …, M, where F(m) represent the system/method degradation 
operators usually referred to as the imaging system point spread functions (PSF), and 
vectors n(m) represent composite noises (usually with unknown statistics) in the actu-
ally acquired images, respectively.  

Different RS imaging methods incorporate different definitions for corresponding 
employed objective (cost) functions {Jm(v)} [2], [3], [5], [6], [8], [10]. For the deter-
ministic constrained least squares (CLS) method [2], [3], Jm(v) = ||u(m) – F(m)v||2, are 
associated with partial error functions. For the weighted CLS (WCLS) method [6], the 
objective costs incorporate the user-defined weight matrices {Wm} as additional  
“degrees of freedom”, i.e. Jm(v) = ||u(m) – F(m)v||2Wm. The unified DEDR paradigm 
incorporates into the unified optimization problem (1), (2) also other robust and more 
sophisticated statistical methods, among them are: the rough conventional matched 
spatial filtering (MSF) approach [8]; the descriptive maximum entropy (ME) tech-
nique [6]; the robust spatial filtering (RSF) method [5], the robust adaptive spatial 
filtering (RASF) technique [8], the fused Bayesian-DEDR regularization (FBR) 
method [5], the POCS-regularized DEDR method, i.e., the unified DEDR-POCS [10]; 
etc. All such methods involve particular specifications of the corresponding {Jm(v)} 
and {Wm} into the DEDR optimization procedure (1), (2). It is important to note that 
due to the non-linearity of the objective function (2) the solution of the parametrically 
controlled fusion-optimization problem (1), (2) will require extremely complex (NP-
complex [10]) algorithms and result in the technically intractable computational 
schemes if solve these problems employing the standard direct minimization tech-
niques [1], [3]. For this reason, we propose to apply the POCS-regularized fixed-point 
iterative techniques implemented using the neural network (NN) based computing for 
solving such aggregated DEDR optimization problems (1), (2) as those were detailed 
in the previous studies [3], [10], [11].  
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4   Integrated VRSL Software  

Having developed a manifold of the DEDR-POCS computational techniques, the next 
goal is to computationally implement, verify, and demonstrate the capabilities of the 
collaborative RS signal and image processing for RSS extraction, KB intelligent scene 
analysis, multiple target detection and scene zones localization via development of the 
sophisticated end-user-oriented software that we refer to as “Virtual remote sensing 
laboratory” (VRSL). The purpose of the elaborated VRSL software is to implement 
computationally all considered DEDR-related methods (MSF, CLS, WCLS, ME, RSF, 
RASF, FBR, etc) and to perform the RS image formation/ reconstruction/enhancement 
tasks with or without method and/or sensor system fusion. The VRSL software (created 
in the MATLAB V.7 computational environment) aggregates interactive computational 
tools that offer to the user different options of acquisition and processing of any image 
in the JPEG, TIFF, BMP and PNG formats as test input images, application of different 
system-level effects of image degradation with a particular simulated RS system, simu-
lation of random noising effects with different noise intensities and distributions. Next, 
various RS image enhancement/fusion/reconstruction/post-processing tasks can be 
simulated in an interactive mode applying different DEDR-related algorithms to the 
degraded noised images, and the quantitative performance enhancement characteristics 
attained in every particular simulated scenario can then be computed and archived [11]. 

 

Fig. 2. Elaborated graphical user interface of the VRSL 
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The user has options to display on the screen all simulated processed scene images 
and RSS along with the corresponding protocols of analysis of different performance 
quality metrics (see the illustrative RS image reconstruction examples displayed in the 
user interface presented in Fig. 2).  

5   Simulation Examples 

Here, we report some simulations of the DEDR-related algorithms (performed using 
the elaborated VRSL) carried out in two dimensions for the uncertain operational sce-
nario with the randomly perturbed SFO, in which case the measurement data are con-
taminated by the composite speckle and multiplicative signal-dependent noise [9], 
[10]. The simulation experiments that we report in this paper relate to enhancement of 
the RS images acquired with a fractional SAR system characterized by the PSF of a 
Gaussian "bell" shape in both directions of the 2-D scene (in particular, of 16 pixel 
width at 0.5 from its maximum for the 512-by-512 pixel-formatted test scenes). The 
chi-squared additive noise with the SNR = 15 dB was incorporated to test and com-
pare the performances of different employed enhancement methods. Two scenes (the 
artificially synthesized and borrowed from the real-world RS imagery) were tested. 
These are displayed in Figures 3(a) and 3(b), respectively. The qualitative simulation 
results for six different DEDR-related enhancement/reconstruction procedures for the 
first test scene are presented in Fig. 4 and for the second scene in Fig. 5, respectively, 
with the corresponding IOSNR (improvement in the output signal-to-noise ratio [8]) 
quantitative performance enhancement metrics reported in the figure captions (in the 
[dB] scale). 

From the reported  simulation  results,  the  advantage  of  the  well  designed  im-
aging  experiments (POCS-regularized DEDR, ASF and adaptive RASF) over the 
case of badly designed experiment (non-robust MSF, de-speckling without DEDR 
enhancement and non-constrained RSF) is evident for both scenes. Due to the per-
formed regularized inversions, the resolution was substantially improved in both 
tested scenarios. The higher values of IOSNR were obtained with the adaptive robust 
DEDR-related estimators, i.e. with the POCS-regularized iterative fixed-point DEDR 
technique empirically adapted to the uncertain operational scenario. 

 

   
(a)          (b) 

Fig. 3.  Original test scenes: (a) artificially synthesyzed scene; (b) real-world RS scene bor-
rowed from the high-resolution RS imagery [12]. These test scenes are not observable with the 
simulated SAR imaging system that employs the conventional MSF image formation method. 
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(a)             (b)      (c) 

     
(d)       (e)      (f) 

Fig. 4. Simulation results for the artificially synthesized scene: (a) degraded SAR scene image 
formed applying the MSF method [IOSNR = 0 dB]; (b) adaptively de-speckled MSF image 
[IOSNR = 0.62 dB]; (c) image reconstructed applying the non-constrained RSF algorithm 
[IOSNR = 7.24 dB]; (d) image reconstructed with the constrained RSF algorithm [IOSNR = 
8.35 dB]; (e) image reconstructed applying the non-constrained ASF algorithm [IOSNR = 9.41 
dB]; (f) image reconstructed applying the POCS-regularized adaptive DEDR method [IOSNR = 
15.70 dB] 

     
(a)        (b)      (c) 

     
(d)       (e)      (f) 

Fig. 5. Simulation results for the real-world RS test scene: (a) degraded SAR scene image 
formed applying the MSF method [IOSNR = 0 dB]; (b) adaptively de-speckled MSF image 
[IOSNR = 0.62  dB]; (c) image reconstructed applying the non-constrained RSF algorithm 
[IOSNR = 6.33 dB]; (d) image reconstructed with the constrained RSF algorithm [IOSNR = 
7.78 dB]; (e) image reconstructed applying the non-constrained ASF algorithm [IOSNR = 9.14 
dB]; (f) image reconstructed applying the POCS-regularized adaptive DEDR method [IOSNR = 
14.33 dB] 
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6   Concluding Remarks 

The descriptive experiment design regularization (DEDR) approach for high-
resolution estimation of spatial RS signature fields has been unified with the KB  
post-processing paradigm for the purposes of high-resolution RS imaging, search, 
discovery, discrimination, mapping and problem-oriented analysis of the diverse RS 
data. To accomplish computationally different DEDR-specified numerical optimiza-
tion and processing tasks we have elaborated and reported the end-user-oriented 
VRSL software. The VRSL provides the necessary tools for computer-aided simula-
tion and analysis of different DEDR-related RS image formation/enhancement/ recon-
struction/fusion/post-processing techniques developed using the unified KB DEDR 
methodology. The reported simulation results are illustrative of the VRSL usefulness 
and capabilities in computer simulations of different RS imaging tasks performed 
with the artificial and real-world RS imagery. 
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Abstract. Image fusion is a basic tool for combining low spatial res-
olution multi-spectral and high spatial resolution panchromatic images
using advanced image processing techniques. Study on efficient image
fusion method for specific application is one of the most important ob-
jectives in current remote sensing community. On the other hand, it is
well known that the image classification techniques combine complex
processes that may be affected by factors like the resolution of remote
sensed images. This study focuses on the influence of image fusion on
spectral classification algorithms and their accuracy. Results are pre-
sented on SPOT images. The best results were achieved by Dual Tree
Complex Wavelet Transform (DT-CWT)).

Keywords: Classification accuracy, Image fusion, Dual Tree Complex
Wavelet Transform, DT-CWT.

1 Introduction

Remote sensing is a fundamental tool providing a relatively lower cost for the de-
tection, classification and monitoring of landslide phenomena.Classification aims
to convert the remotely sensed image into a thematic map that depicts the spa-
tial distribution of the various land-cover classes found within the region. These
maps have been used to analyze the impacts of land use change on the environ-
ment, improve land use planning and natural resource management, and better
understand ecological processes on Earth. Of the many classification approaches
available, most researchers use either supervised or unsupervised classification.
Supervised classification consists of two stages: training and classification. In the
training stage, the analyst identifies representative training areas and develops
a numerical description of the spectral attributes of each land cover type of in-
terest in the scene. In the classification stage, each pixel in the image data set is
categorized into the land cover class it most closely resembles [1]. Unsupervised
classification techniques do not utilize training data as the basis for classification.
Usually supervised classifiers are preferred to unsupervised clustering algorithms,
which are intrinsically less suitable to obtain accurate classification maps.

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 1031–1038, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.fi.upm.es
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Classification of remote sensing images is a complex task whose accuracy
strongly depends on the available prior information. In this sense, given the gen-
eral high complexity of the problem, we need to dispose of high quality images.
Image fusion techniques are useful to integrate the geometric detail of high spa-
tial resolution panchromatic (PAN) image with the colour information of high
spectral resolution multispectral (MS) image to produce a MS image with high
spatial quality. High spatial resolution MS image data are indispensable for in-
ventorying and monitoring of land surface phenomena [2].

A recent study shows the influence of image fusion on spectral classification
for Landsat images, with acceptable results [3]. This paper analyzes the accu-
racy results of image supervised classification, which can be improved by using
fused SPOT images obtained through multi-resolution analysis (MRA) by Dual
Tree Complex Wavelet Transform (DT-CWT), compared with classical fusion
algorithms.

2 Background

2.1 Fusion Methods

The advantage of a fusion process is that a single image can be achieved con-
taining both the high spatial resolution and spectral information, hence, the
result of image fusion is a new image which is more suitable for human and
machine perception or further image-processing tasks such a classification, seg-
mentation, feature extraction or object recognition. There are a variety of types
of fusion, these range from a simple average of the pixels in registered images
to a more complex schemes using multiresolution analysis (MRA) (pyramids,
wavelets, etc), this variety of schemes have been developed over the last 25
years, with classical approaches such as IHS (Hue-Intensity-Saturation), PCA
(Principal Component analysis) or HPF (High pass filter).

One step beyond, are the multi-resolution analysis (MRA), which provides
effective tools to facilitate the implementation of data fusion and have shown
a better performance when injecting the high frequency information extracted
from de PAN into resampled versions of MS [4], by example A Trous Wavelet
transform 1, Curvelet Transform 2, Hermite transform 3. Here, it is necessary
to consider that when injecting high-pass details, spatial distortions may occur,
resulting in translations or blurring of the contours and textures, this occurs
mainly when the MRA is not shift invariant [4].

There is a MRA algorithm, that is particularly suitable for images and other
multi-dimensional signals processing, which is approximate shift invariance and
computational efficiency with good well-balanced frequency responses, this will
be described below.
1 Zhu et al: Fusion of High-Resolution Remote Sensing Images Based on a trous

Wavelet Algorithm, 2004.
2 Nencini et al: Remote sensing image fusion using the curvelet transform, 2007.
3 Escalante et al, A.: The Hermite Transform An Efficient Tool for Noise Reduction

and Image Fusion in Remote-Sensing, 2006).
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2.2 Dual Tree Complex Wavelet Transform

An effective approach for conducting an analytical wavelet transform, originally
introduced by Kingsbury in 1998, is called Dual Tree Complex Wavelet Trans-
form, avoid unwanted frequency component and is also expansive, but only by a
factor 2 (1-D signals), independent of the number of stages. The properties that
characterize the DT-CWT are highlighted in several papers [5]. The principal
properties are: good shift invariance, good directional selectivity in m-D, perfect
reconstruction with short support filters, limited redundancy (2:1 in 1-D, 4:1
in 2-D, etc) and low computation, much less than the undecimated (a trous)
DWT.

The Framework of the Dual-Tree. The DT-CWT uses two real DWTs,
the first DWT delivers real part of transform while the second DWT delivers
the imaginary part. FBS for the analysis and synthesis used to implement the
dual-tree CWT and its inverse are shown in Figure 1.
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Fig. 1. Filter Bank (FB) for DT CWT (a) Analysis (b) Synthesis

Here, h0(n), h1(n) are the pair of low pass filter / high pass to the superior
FB (tree a), g0(n), g1(n) the pair of low pass filter / high pass for inferior FB
(tree b). ψh (t) y ψg (t) are the two real wavelets associated with each of the
two transform (tree a and b, respectively), below there are the features for the
DT-CWT’s filter banks.

– The two real wavelet transforms use two different sets of filters, each of whom
meets the conditions for PR.

– In addition to satisfying the PR conditions, the filters are designed so that
the complex wavelet ψ := ψh (t) + jψh (t) is approximately analytic.

– According to the above, are designed so that ψg (t) is approximately the
Hilbert transform of ψh (t) (denoted by H {ψh (t)}).
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– To satisfy this condition, one of the filters must have a displacement ap-
proximately half-sample with respect to the other [5]. Recent studies show
alternatives to this classical approach4,5,6.

– The filters themselves are real.
– The transform is twice expansive (not critically sampled).

3 Methodology

3.1 Scene Study

A multispectral (MS) and panchromatic (PAN) SPOT images were used in this
study. The images have a spatial resolution of 10 m and 2.5 m and covered an
area of the order of 26 km2. The scene consists of three great environmental
blocks: to the left there are extensions of natural mediterranean forest partially
degraded, in the central axis and crossing all the scene it is characterized by the
city-planning, industrial advance and road infrastructures that degrade zones
of agrarian development in other times and the right part are the vestiges of
agricultural zones as a result of the Jarama river presence, one important of the
community of Madrid (Spain). The left corner is placed at 450775 E and 4494685
N (UTM geographic coordinates, h30).

Eleven thematic classes have been supervised in situ: the water class corre-
sponding to a reservoir and in a golf course; five vegetation types like the natural
of degraded Mediterranean forest (oak forest), two zones of irrigated land crop,
green of golf course and riverside vegetation; mixed area with vegetation and
ground; clearly built-up ground with highway and three types of ground as soil
in fallow land and without specific use. Thus, the names asigned for training ar-
eas have been: water, natural soil, crop1, crop2, green-golf, riverside vegetation,
mixed soil, urban soil, soil1, soil2 and soil3.

3.2 Fusion Process and Quality Determination

From the increasing variety of image fusion methods, a selection oh three fusion
techniques was chosen, Principal Components Analysis (PCA) and two based
on multi-resolution analysis: A Trous Wavelet Transform (AWT3) (3 levels) and
Dual Tree complex Wavelet Transform (3 levels). For first two, we used the
IJFusion framework7; for the last one, we propose a method using the toolbox for
DT-CWT, provided by the Dr. Nick Kingsbury8. This method will be described
below.
4 Tayet al.: Orthonormal Hilbert-Pair of Wavelets With (Almost) Maximum Vanishing

Moments, 2006.
5 Bogdan et al.: Optimization of Symmetric Self-Hilbertian Filters for the Dual-Tree

Complex Wavelet Transform, 2008.
6 Yu et al.: Sampled-Data Design of FIR Dual Filter Banks for Dual-Tree Complex

Wavelet Transforms via LMI Optimization, 2008.
7 http://www.ijfusion.es/
8 ngk@eng.cam.ac.uk
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Fig. 2. Image Fusion with DT-CWT

Image Fusion with DT-CWT. The fusion process involves the following
steps, see Figure 2.

1. The low-resolution MS image is resample to the size of the panchromatic
image, after this process, the 2 images are the same size.

2. Implement the dual tree wavelet transform to MS bands and PAN image, a
certain number of levels, for this particular case, we use 3 levels of decom-
position.

3. Defines the coefficients of the DT-CWT decomposition for a new high-
resolution MS image (HRMS). For these new coefficients is preserved ap-
proximation of the MS decomposition.

4. To calculate the details of the new HRMS are considered both the wavelet
coefficients of the PAN as the MS, i.e., injecting the details of the PAN
according to a weight that depends on the ratio of standard deviations for a
neighborhood around the coefficient in question.

5. This procedure is carried out recursively from the lowest to the highest level.
6. Finally apply the inverse DT-CWT to new (HRMS) coefficients.
7. New bands come together to compose the merged image, this image not only

contains the original spectral information but also the structure of informa-
tion in the panchromatic image, i.e., improving both the spatial and spectral
information of original images.

Image Fusion Assessment. To know the quality of the merged image, the new
fused image is usually compared against a reference image (true), to create it,
and having the sets of original images Ah and BKL, where A denotes the PAN
image, B the MS image, h high resolution, l low resolution and K each band of
the MS; the image Ah is degraded to the low resolution l, giving Al. BKL images
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Table 1. Metrics used for fusion assessment

Correlation
Coefficient
(CC) [6] CC (X, Y, k) =

∑
m

∑
n

[(Xmn (k) − X ′
mn) (Ymn (k) − Y ′

mn)]
√∑

m,n

(Xmn (k) − X ′
mn)2

∑
m,n

(Ymn (k) − Y ′
mn)2

(1)

K: k-band, X: Original image, Y : Merged image, MxN : Image dimensions
ERGAS [7]

ERGAS = 100
dh

dl

√√√√ 1
L

L∑
l=1

(
RMSE (l)

µ (l)

)2

(2)

dh :PAN pixel size (m), dl: MS pixel size (m) L: Number of spectral bands,
µ (l):Mean of each spectral band, RMSE (l): Root Mean Squared Error

Spatial CC
(SCC) CC (Xhf, Yhf, k) (3)

Xhf , Y hf : High frequency image, obtained by means a Laplacian filter

are degraded to the resolution l(l/h), giving B′
kl. The fusion process is applied

to images Al and B′
KL, the quality can be assessed using as a reference image

the original MS image, i.e. Bkl. The metrics used are listed in the Table 1.

3.3 Classification Process

We employed a consistent classification scheme applied to each fusion result us-
ing two supervised parametric and non-parametric classifiers. Within the para-
metric classification approaches, the maximum likelihood classification (MLC)
algorithm [8] is one of the most applied methods. In contrast to the maximum
likelihood classifier, support vector machines (SVM) [9] can be used as nonpara-
metric or discriminative, binary classifiers. In this study, the two classifiers above
mentioned have been used.

Since supervised methods have been considered, the first step is the definition
of a set of training areas in the images to be classified. This process is critical
because these areas would be used like an estimator of the land cover classes.
The selection of training areas has been carried out through a two-dimensional
scatter diagram (scattergram) methodology [10].

Then for supervised classification, the training areas were selected according
to eleven thematic classes derived by scattergram methodology, visual image
inspection and field work. The total number of training areas pixels were 130 per
class approximately. Additionally, a 10% of test samples for accuracy assessment
were collected and treated separately. For fused images, the training and test
areas were selected in the same geographical location. Each classification was
performed and assessed with identical training and test samples.

When the remote sensing images were classified, the accuracy of each clas-
sification was assessed using statistical method [11]. Error matrices were con-
structed, then overall accuracy (OA) and the kappa index (K) were calculated
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to assess the whole accuracy of the classified map, and the producer accuracy
and user accuracy were used to interpret the success of each class.

4 Results

The Table 2 shows the results in each band (b1:green, b2:red, b3:NIR y b4:SWIR)
for the quality indexes used in this work. The proposedmethod (DT-CWT3) shows
high spectral quality with high spatial quality; better results in spatial quality
were achieved with the simple injection of PAN details (DT-CWT3P), but with a
slightly lower spectral quality. In general terms, the DT-CWT is a good approach
for image fusion, reaching better results than traditional schemes.

Table 2. Results for image fusion

ERGAS CC SCC

b1-b4 b1 b2 b3 b4 b1 b2 b3 b4

PCA 7.4184 0.9701 0.9739 0.9196 0.938 0.9944 0.9982 0.9575 0.9924
AWT3 1.7987 0.9737 0.9863 0.7893 0.8776 0.9995 0.9994 0.9993 0.9994
DT-
CWT3P

1.7581 0.9735 0.9884 0.8104 0.883 0.9994 0.9993 0.9982 0.9989

DT-
CWT3

1.3945 0.9827 0.987 0.8653 0.9216 0.9946 0.994 0.9928 0.9941

The results of the accuracy classification are showed in the Table 3. In all
cases, the overall accuracy (OA) and the kappa (K) index are good. The best
results are achieved in the classifications of fused images obtained by DT-CWT.
In general, user’s accuracy of natural soil class is lower (60.87-82.35%) than
the others classes. There is a considerable confusion with riverside vegetation
class in the case of AWT3 fusion. This mis-assignment was caused by the mixed
and variable spectral response of the natural soil class, which comprises a wide
variety of surface cover types.

Table 3. Accuracy Parameters of Image Classification

MULTI PCA-Fus AWT3-Fus DT-CWT3-Fus
MLC SVM MLC SVM MLC SVM MLC SVM

OA (%) 95.6 97.2 94.2 96.7 95.6 95.4 98.5 97.5
K 0.951 0.969 0.936 0.964 0.951 0.949 0.984 0.973

5 Conclusions

In this study focused on the influence of image fusion approaches on classification
accuracy, three fusion approaches were applied to a SPOT image. The fusion
results were employed for supervised classification with two methods (MLC and
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SVM). High values of classification accuracies of fused and no fused images are
obtained. From evaluations with fused images, the following ranking was derived
(from best to poorest): Dual Tree Complex Wavelet Transform (DT-CWT), A
Trous Wavelet Transform (AWT) and Principal Component Analysis (PCA).

Acknowledgments. The authors would like to thank Dr. Nick Kingsbury (from
the Signal Processing Group, Dept. of Eng., University of Cambridge) for the
DT-CWT source code, and to Dr. Boris Escalante (from National Autonomous
University of Mexico) for advice in the process fusion.
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Abstract. Satellite hyperspectral imaging deals with heterogenous images con-
taining different texture areas. Filter banks are frequently used to characterize
textures in the image performing pixel classification. This filters are designed us-
ing different scales and orientations in order to cover all areas in the frequential
domain. This work is aimed at studying the influence of the different scales used
in the analysis, comparing texture analysis theory with hyperspectral imaging ne-
cessities. To pursue this, Gabor filters over complex planes and opponent features
are taken into account and also compared in the feature extraction process.

1 Introduction

Nowadays imaging spectrometers are significantly increasing their spatial resolution.
As their resolution increases, smaller areas are represented by each pixel in the im-
ages, encouraging the study of the relations of adjacent pixels (texture analysis) [9] [6].
However, not only the spatial resolution increases but also the spectral resolution. This
entails dealing with a large number of spectral bands with highly correlated data [7].

Both dimensionality and texture analysis in hyperspectral imaginary have been tack-
led from different points of view in literature. Several solutions to the dimensionality
problem can be found, such as selection methods based on mathematical dimensional-
ity reduction [10] or methods based on information theory which try to maximize the
information provided by different sets of spectral bands [7].

Moving to texture analysis, literature survey provides us with a wide variety of well
known texture analysis methods based on filtering [8] [4]. It is well known that, when
dealing with microtextures, the most discriminant information falls in medium and high
frequencies [1] [9]. It has been recently proposed that spatial/texture analysis may
significantly improve the results in pixel classification tasks for satellite images using
a very reduced number of spectral bands [11]. Therefore, it may be convenient to
identify the influence of each frequency band separately in order to compare the textural
information with the specific necessities of hyperspectral satellite imaging.

Besides, color opponent features were first introduced in color texture characteriza-
tion with fairly good performance [3] and later extended to deal with multi-band texture
images [4]. However, they have never been used to perform pixel classification tasks in
satellite images. In this paper, we study several Gabor filter banks as well as multi-band
opponent features for pixel classification tasks.

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 1039–1046, 2009.
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2 Filter Banks and Feature Extraction

Applying a filter over an image band provides a response for each pixel. If a filter bank
is applied, a pixel can be characterized by means of the responses generated by all
filters. It is possible to apply a filter in the space domain by a convolution or in the
frequency domain by a product. In both cases, the response is the corresponding part of
the original pixel value which responds to the filter applied [12].

When using filter banks, they are generally designed considering a dyadic tessella-
tion of the frequency domain, that is, each frequency band (scale) considered is double
the size of the previous one. It should not be ignored that this tessellation of the fre-
quency domain thoroughly analyzes low frequencies giving less importance to medium
and higher frequencies. Because the purpose of this work is to study the importance
of texture in the pixel classification task, an alternative constant tessellation (given the
same width to all frequency bands) is proposed in order to ensure an equal analysis of
all frequencies.

2.1 Gabor Filters

Gabor filters consist essentially of sine and cosine functions modulated by a Gaussian
envelope that achieve optimal joint localization in space and frequency. They can be
defined by eq. (1) and (2) where m is the index for the scale, n for the orientation and
um is the central frequency of the scale.

f real
mn (x, y) =

1
2πσ2

m

exp
{
−x

2 + y2

2σ2
m

}
× cos(2π(umx cos θn + umy sin θn)) (1)

f imag
mn (x, y) =

1
2πσ2

m

exp
{
−x

2 + y2

2σ2
m

}
× sin(2π(umx cos θn + umy sin θn)) (2)

If symmetrical filters are considered only the real part must be taken into account.

2.2 Gabor Filters over Complex Planes

Texture analysis in multi-channel images has been generally faced as a multi-dimensional
extension of techniques designed for mono-channel images. In this way, images are de-
composed into separated channels and the same feature extraction process is performed
over each channel. This fails in capturing the interchannel properties of a multi-channel
image.

To describe the inter-channel properties of textures we propose features obtained
using Gabor filters over complex planes. This means that instead of using each spectral
band individually, we take advantage of the complex definition and introduce the data
of two spectral bands into one complex band, one as the real part and the other one
as the imaginary part. In this way we involve pairs of bands in each characterization
process, as it happens for the opponent features. As a result, for a cluster of spectral
bands, we will consider all possible complex bands (pairs of bands). The Gabor filter
bank will be applied over all complex bands as shown in eq. 3, where Ii(x, y) is the ith

spectral band.
hij

mn(x, y) = (Ii(x, y) + Ij(x, y)i) ∗ fmn(x, y) (3)
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The feature vector for each pixel in the image is composed of the response for that pixel
to all filters in the filter bank, that is:

ψx,y = {hij
mn(x, y)}∀i,j/i�=j,∀m,n (4)

The size of the feature vector varies with the number of complex bands. For each com-
plex band, one feature is obtained for each filter applied what means that there will be
as many features as filters for each complex band and as many complex bands as com-
binations without order nor repetition may be done with two bands in the clusterB. The
total number of features is given by eq. 5 where M stands for the number of scales and
N for the number of orientations.

size(ψx,y) = M ×N ×
(
B

2

)
(5)

2.3 Opponent Features

Opponent features combine spatial information across spectral bands at different scales
and are related to processes in human vision [3]. They are computed from Gabor filters
as the difference of outputs of two different filters. The combination among filters are
made for all pair of spectral bands i, j with i �= j and |m−m′| ≤ 1:

dij
mm′n(x, y) = hi

mn(x, y)− hj
m′n(x, y) (6)

In this case, the feature vector for a pixel is the set of all opponent features for all
spectral bands.

ϕx,y = {dij
mm′n(x, y)}∀i,j/i�=j,∀m,m′/|m−m′|≤1,∀n (7)

Hence, the size of the opponent feature vector also depends on the number of bands,
scales, and orientations:

size(ϕx,y) = (
(
B

2

)
×M +B2 × (M − 1))×N =

= size(ψx,y) +B × (B − 1)× (M − 1)×N

(8)

Note that, in this case, the number of features is considerably increased.

3 Experimental Setup

The hyperspectral image database 92AV3C image has been used in the pixel classifica-
tion experiments. It was provided by the Airborne Visible Infrared Imaging Spectrom-
eter (AVIRIS) [13]. The 20-m GSD data was acquired over the Indian Pine Test Site in
Northwestern Indiana in 1992. From the original 220 AVIRIS spectral bands our band
selection method provides us with ten clusters of bands which are sets of bands that are
intended to maximize the information provided [7]. The first cluster contains just one
bands, the second contains two bands, and so on.
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The experimental activity was held using two filter banks. For the first one, six dyadic
scales (the maximum starting from width one and covering all the image) and four
orientations were used. For the second one, eight constant frequency bands and four
orientations were considered. It has been introduced certain degree of overlapping as
recommended in [2]. Gaussian distributions are designed to overlap each other when
achieving a value of 0.5.

For each of the scales a classification experiment was held using only the features
provided for that scale. In addition, an analysis of the combination of adjacent scales
have been performed. In order to study the importance of low frequencies an ascendent
joining was performed, characterizing pixels with the data provided by joined ascendent
scales. Similarly, the study of the high frequencies was carried out by a descendant join-
ing. Also for medium frequencies, central scales are considered initially and adjacent
lower and higher scales are joined gradually.

The pixels in the image database are divided in twenty non overlapping sets keep-
ing the a priori probability of each class. Therefore, no redundancies are introduced
and each set is a representative set of the bigger original one. Ten classification at-
tempts were carried out for each experiment with the k-nearest neighbor algorithm
with k = 3 and the mean of the error rates of these attempts was taken as the fi-
nal performance of the classifier. Each classification attempt uses one of these sets for
training and another as test set. Therefore, each set was never used twice in the same
experiment.

4 Evaluation of the Results

Figure 1 shows the percentages of correct pixel classification obtained for the experi-
ments that used the dyadic filter bank. Figure 2 shows similar results when the constant
filter bank was used.

As it can be observed from both figures, when the characterization processes in-
cluded all scales, the filter bank using the dyadic tessellation outperforms the constant
one. It seems clear that the better the low frequencies are analyzed the better the pix-
els are characterized. This means that, for this sort of images, the texture information,
although still helps in the characterization process, is significantly lower than the infor-
mation contained in the low frequencies. It can be seen that no scale can ever outper-
form the classification rates achieved by scale one which achieve up to 81% by itself.
In general, the more detail is obtained from low frequencies the best the image is char-
acterized.

For the dyadic tessellation, although scales two and three do not outperform scale
one when characterizing independently (Fig. 1a-b), their performance is considerably
high. Because the first scales cover a very small part of the frequency domain, the
characterization joining scales 1, 2 and 3 improve the pixel classification rates (Fig. 1c-
d). In a nutshell, when all (six) scales are used, the classification rates are better than the
ones obtained using just the first scale. However, it is worse than the results obtained
for the first three scales although having a double number of features. The descendent
and central joinings (Figs. 1e-f and 1g-h) clearly show that the performance increases
significantly as features derived from lower frequencies are considered.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1. Pixel classification rates using the filter bank with dyadic tessellation. (a,c,e,g) Gabor
features over complex planes (b,d,f,h) Opponent features (a,b) Individual scales (c,d) Ascendent
join (e,f) Descendent join (g,h) Central join. Note the different ranges over the Y-axis in each
graph.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. Pixel classification rates using the filter bank with constant tessellation. (a,c,e,g) Gabor
features over complex planes (b,d,f,h) Opponent features (a,b) Individual scales (c,d) Ascendent
join (e,f) Descendent join (g,h) Central join. Note the different ranges over the Y-axis in each
graph.
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Regarding the filter bank, using a constant tessellation (Fig. 2), the first scale is the
only one containing discriminant information. This first scale is wide enough in this
case to include the information of several scales of the dyadic tessellation. It is very
clear from the graphs that the features derived from other scales do not help the char-
acterization processes as the classification rates always decrease. It can be noticed that
the best classification rates obtained for the dyadic tessellation is over 84% but is only
about 77% for the constant tessellation.

Last but not least, the comparison between the feature extraction methods suggest
that opponent features perform similarly to Gabor filters over complex planes. It seems
that Gabor features provide better results when using a very small number of spectral
bands whereas opponent features provide slightly higher classification rates when more
spectral bands are used. Nevertheless, on the whole, the characterization with opponent
features requires a larger number of features than Gabor filters, which may worsen
performance if a large number of spectral bands is to be considered.

Briefly, spatial analysis between pixels improves hyperspectral satellite images char-
acterization [11] but the nature of this kind of images, which are heterogeneous due
to being composed of different homogeneous areas, made low frequencies very impor-
tant for the characterization task, while texture information may help the process, but
not significantly. Furthermore, including much more information but the provided by
the low frequency analysis may even decrease the performance because of the so call
Hughes phenomenon [5].

5 Conclusions

An analysis of the contribution of each scale to the characterization of hyperspectral
images has been performed. As it is known in the texture analysis field, medium and
high frequencies play an essential role in texture characterization. However, satellite
images cannot be considered as pure texture images since the homogeneity of the dif-
ferent areas in the image is more important than the texture these areas may content. A
thoroughly analysis of the contribution of each independent scale and the group com-
posed by low, medium or high frequencies has been carried out. It has been shown that a
detailed analysis of low frequencies helps the characterization improving performance.
Also a few scales could be considered in the feature extraction process providing by
themselves very high classification rates with a few number of features. The compar-
ison between Gabor filters over complex plains and opponent features has shown that
the classification rates obtained are almost identical in both cases. The main difference
is the number of features required in each case, being much larger for the opponent
features.
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Abstract. In this paper, a minimum variance estimator for the gain
nonuniformity (NU) in infrared (IR) focal plane array (FPA) imaging
system is presented. Recently, we have developed a recursive filter esti-
mator for the offset NU using only the collected scene data, assuming
that the offset is a constant in a block of frames where it is estimated. The
principal assumption of this scene-based NU correction (NUC) method
is that the gain NU is a known constant and does not vary in time. How-
ever, in several FPA real systems the gain NU drift is significant. For
this reason, in this work we present a gain NU drift estimation based
on the offset NU recursive estimation assuming that gain and offset are
jointly distributed. The efficacy of this NUC technique is demonstrated
by employing several real infrared video se quences.

Keywords: Minimum Variance Estimator, Image Sequence Processing,
Infrared Focal Plane Arrays, Signal Processing.

1 Introduction

It is well known that the NU noise in infrared imaging sensors, which is due
to ṕıxel-to-pixel variation in the responses of the detector; degrades the qual-
ity of IR images [1,2]. In addition, what is worse is that the NU varies slowly
on time, depending on the type of technology that is been used. In order to
solve this problem, several scene-based NUC techniques have been developed
[3,4,5,6,7,8,9]. Scene-based techniques perform the NUC using only the video
sequences that are being imaged and not requiring any kind of laboratory cal-
ibration technique. In [10] we have developed a recursive filter to estimate the
offset of each detector on the FPA. The method is developed using two key as-
sumptions: i) the input irradiance at each detector is a random and uniformly
distributed variable in a range that is common in all detectors in FPA; and ii)
the FPA technology exhibits important offset non-uniformity with slow tempo-
ral drift. The proposed algorithm is developed to operate on one block, short
enough to assume that the offset NU can be estimated as a constant in noise

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 1047–1053, 2009.
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(ECN) [11]. In this paper the gain NU drift is considered and it is obtained from
the offset estimated using the ECN method. Afterwards, assuming that the offset
and gain are jointly distributed, a minimum variance estimator for the gain can
be obtained. This paper is organized as following. In section 2, a review of the
ECN NUC method is presented. In Section 3, the gain estimator (GE) proposed
is exposed and the results using this method are presented in Section 4. Finally,
in Section 5 the conclusions of the paper are summarized.

2 Estimation of a Constant in Noise NUC Method

The pixel-to-pixel variation in the detectors’ responses is modeled by the com-
monly used linear model for each pixel on the infrared focal plane array. For
the (ij)th detector, the measured readout signal yij at a given time n, can be
expressed as:

yij(n) = Aij(n)xij(n) +Bij(n) + vij(n), (1)

where Aij(n) and Bij(n) are the gain and the offset of the (ij)th detector respec-
tively and xij(n) is the real incident IR photon flux collected by the detector.
The term vij(n) is additive electronic noise represented by a zero-mean Gaus-
sian random variable that is statistically independent of noise in other detectors.
The ECN method assumes that Aij(n) is a known constant and Bij(n) remains
constant in a block of frames, i.e., B(n) = B(n − 1) = B, and the model of (1)
is re-written as:

y(n) = Ax(n) +B + v(n), (2)

where the subscript ij is omitted with the understanding that all operations
are performed on a pixel by pixel basis. Equation (2) is valid only in a block of
frames. The recursive estimator for the offset NU is given by:

B̂(n) = CnB̂(n− 1) +Kny(n), (3)

where B̂(n) and B̂(n − 1) are the estimates for the offset and Cn and Kn are
the coefficients of the filter. Equation (3) can be recursively calculated using the
follows equations:

Cn =
1 + an

1 + (n+ 1) a
, (4)

Kn =
a

1 + (n+ 1) a
, (5)

where a is the convergence control parameter typically less than 1. ECN have
two parameters, a and the length of the block of frames, nb, when the algorithm
stops the estimation. The corrected frame is obtained by:

x̂(n) = y(n)− B̂(nb). (6)
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3 Minimum Variance Gain NU Estimator (GE)

First of all, it is assumed that the gain A and the offset B are Gaussian random
processes and they are jointly distributed. Then, the conditional probability of
A given B is defined by:

pA|B (A|B) =
pA,B (A,B)
pB (B)

, (7)

where, pA,B(A,B) is the joint probability of A and B, and pBB is the probability
of B (obviously non-zero). After this, a minimum variance estimator for A is
formulated from this relationship. With A and B Gaussian random variables
jointly distributed, where the information is known with regard to B. Then, the
estimator for a minimum variance is defined as only a conditional average of A
given B:

Â = E [A|B] =
∫ ∞

−∞
ApA|B (A|B) dA, (8)

where the error E
[∥∥∥A− Â

∥∥∥
2
|B
]

is minimal. Then, as A and B are assumed

Gaussian random process individual and mutually, they are completely defined
by their mean and their variance and pA|B(A|B) can be expressed as:

pA|B (A|B) =
exp

{
− (A−{Ā+(B−B̄)σAB/σ2

B})2

2(σ2
A−σABσBA/σ2

B)

}

√
(2π)

∣∣σ2
A − σABσBA

/
σ2

B

∣∣1/2
, (9)

where, Ā + σAB

σ2
B

(
B − B̄

)
and σ2

A − σABσBA

/
σ2

B are the mean and variance
respectively. Then, the minimum variance estimator for A is obtained by:

Â = E [A|B] =
∫ ∞

−∞
ApA|B (A|B) dA = Ā+

σAB

σ2
B

(
B − B̄

)
. (10)

In our case, we needed to know that B, B̄, σ2
B and σAB . B were obtained from

ECN method when n = nb, the mean and variance of B can be calculated as an
approximation to the mean and spatial variance, and the covariance is calculated
by:

σAB = R0

√
σ2

Aσ
2
B , (11)

where, R0 is the correlation between A and B. This index can be measured
from other methods of NUC. Finally, using (11) the GE given by (10) is recast
resulting in:

Â = Ā+R0
σA

σB

(
B − B̄

)
, (12)

and the corrected frame is obtained using the following equation :

x̂(n) =
y(n)− B̂(nb)

Â
. (13)
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4 Results

Real IR video data are used to test the ability of the proposed method and
reduce NU. The sequence has been collected at 1 PM using a 128 × 128 InSb
focal plane array cooled camera Amber Model AE-4128 operating in the 3µm –
5µm range. In the data set, 3000 frames were collected at a rate of 30 frames per
second, at 16 bits of resolution. There are data of black bodies radiators, which
are used to estimate the gain and the offset associated with each detector. With
these parameters, the best correction of nonuniformity is performed, obtaining
a sequence that is used as a reference.

As a quantitative measure of performance, the Root Mean Square Error
(RMSE) was used, which measures the difference between the reference infrared
image and the corrected image using the proposed method. The RMSE is cal-
culated by:

RMSE(n) =

√√√√ 1
pm

p∑
i=1

m∑
j=1

(x̂ij(n)− xij(n))2, (14)

where, p ×m is the number of detectors in the focal plane array, x̂ij(n), is the
infrared irradiance calculated with the gain estimated by the recursive filter, and
xij(n) is the infrared irradiance calculated by the black-body radiator data. A
lower value of RMSE means a good correction of the frame data.

Also the roughness index ρ metric is used to measure performance without
reference. ρ delivers information about the level of softness that an image has,
i.e., the degree of non-uniformity in this image. This index is calculated by:

ρ =
‖h ∗ I‖1 +

∥∥hT ∗ I
∥∥

1

‖I‖1
, (15)

where, the image I is the corrupted or compensated frame, a filter h is needed
to find the softness of the image, ∗ represents the convolution and ‖‖1 represents
the norm L1. In the same form of RMSE a low value of ρ close to zero indicates
a good correction.

Initially, we estimate the offset NU using the ECN NUC method. From [10],
the value for the parameter a = 0.1 is the best selection using RMSE and ρ.
Then, from the estimated offset the gain NU is obtained using (12), and for each
value of nb = {250, 500, 750, 1000, 1250, 1500} the RMSE and ρ are calculated
and the results are shown in Fig. 1. The estimated gain NU is presented in
Fig. 2b and 2d. For all results we are selected R0 = −0.9 and σA = 0.015.

Finally, a comparison of the performance method is presented in Fig. 3.
In this case, the 1600th corrupted frame of the real IR sequence is presented
(Fig. 3a). The ECN compensates the corrupted frame and the results are shown
in Fig. 3b, and the GE NUC method generates the corrected frame in Fig. 3c.
The corresponding RMSE and ρ values are presented in Table 1. For this case,
the RMSE values are 3.37, 2.96 and 2.12 for the corrupted frame, corrected frame
with ENC and corrected frame with GE, respectively. The ρ values correspond
to 2.417 for the corrupted frame, 2.108 for the compensated frame using ENC
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Fig. 1. RMSE (a) and ρ (b) for the compensated frame using ECN and ECN with GE
NUC method. In this case, nb = {250, 500, 750, 1000, 1250, 1500} and a = 0.1.

(a) (b)

(c) (d)

Fig. 2. Different offset and gain NU estimated using the proposed method. a) and c)
correspond to the estimation of B using ECN for nb = 500 and nb = 1000 respectively;
b) and d) show the gain NU using GE method for nb = 500 and nb = 1000 respectively.



1052 C. San-Martin and G. Hermosilla

(a) (b) (c)

Fig. 3. Performance of the proposed method using real IR data. (a) corrupted frame,
(b) compensated frame using ECN method, and (c) corrected frame using ECN with
GE method.

Table 1. The calculated RMSE and ρ parameters for real IR frames corrected for NU
by using the ECN method and ECN with GE method

Frame RMSE ρ

Corrupted 3.37 2.417
Corrected using ECN 2.96 2.108

Corrected using ECN with GE 2.12 2.093

and 2.093 for ECN with GE. From these results clearly the proposed method
generates a better performance when the gain NU drift is considered.

5 Conclusions

A recursive estimation for gain NU on infrared imaging systems is proposed in
this paper. It was shown experimentally using real IR data that the method is
able to reduce non-uniformity substantially. Indeed, the method has shown an
acceptable reduction of nonuniformity after processing only approximately 500
frames. The main advantage of the method is a simplicity using only fundamental
estimation theory. The key assumption of the proposed method is that the offset
and the gain are jointly distributed. The offset is estimated using a recursive
filter, and then, the gain is obtained using a minimum variance estimator. The
results presented showed that this assumption is validated with real IR data.
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Abstract. The use of image processing schemes as part of the security systems 
have been increasing, to detect, classify as well as to tract object and human 
motion with a high precision.  To this end several approaches have been  
proposed during the last decades using image processing techniques, because 
computer vision let us to manipulated digital image sequences to extract useful 
information contained in a video stream.  In this paper we present a motion de-
tection algorithm using the movement vectors estimation which are subse-
quently filtered to obtain better information about real motion into a given 
scenes. Experimental results show that the accuracy of proposed system.  

Keywords: Motion Vectors, Movement Detection, Surveillance System, Sur-
veillance system development. 

1   Introduction 

The advance of electronic and computer technologies increase the ability to perform 
video analysis to extract useful information from a video frames to carry out [1] 
motion detection and characterization [2], remote sensing, and pattern recognition, 
among others [3]-[5].  Pattern recognition is a research area that has been amply 
studied during the last years, it use information contained in video sequences; In 
many applications of pattern recognition, approaches with recognition capability are 
usually based on a corpus of data which is treated either in a holistic manner or 
which is partitioned by application of prior knowledge [5] like shape, velocity, 
direction, texture, magnitude, behavior and so on from different kind of objects 
around the area of interest. 

Several approaches have been proposed to solve the problem of detecting and 
tracking motion during the last several years [6]-[16]. Some of them are describe 
in the following paragraphs [6]. Reference [7] proposes a motion detection ap-
proach based on the MPEG image compression algorithm in which the estimation 
of detection motion and the moving object direction only use the information 
contained in the MPEG motion vectors and the DC coefficients of the DCT di-
rectly extracted from the MPEG bit stream of the processed video. Evaluation 
results of this method shows that it can handle several situations where moving 
objects are present in the scene observed with a mobile camera. However, the 
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efficiency of the moving object detection depends on the quality of MPEG motion 
vectors [8-12]. This method also has a constraint in the context of contend-based 
video browsing and indexing that should be taken into account when the MPEG 
encoder is selected. Reference [9] proposed an algorithm that intends to extend 
the capabilities to MPEG2 streams, allowing tracking objects selected by a user 
throughout the sequence. The way in which the tracking has been realized, is 
through exploitation of the motion information already present in the bit stream 
and generated by the decoder, another important feature of this scheme is that it is 
not necessary to decode the full sequence, if the user wants to access only part of 
the video stream [10]. This proposed scheme performs well in assisting the infor-
mation insertion/retrieval process. However, no segmentation or filtering tech-
niques are used for the extraction and tracking of the objects, since it relies exclu-
sively on the motion information already provided by the MPEG encoder. Evalua-
tion results show that the algorithm performs well though it is slightly dependent 
on the object shape. Hariharakrishnan et al [8] proposes an algorithm in which the 
tracking is achieved by predicting the object boundary using motion vectors, fol-
lowed by contour update, using occlusion/disocclusion detection. An adaptive 
block-based approach has been used for estimating motion between consecutive 
frames. Here an efficient modulation scheme is used to control the gap between 
frames used for object tracking. The algorithm for detecting occlusion proceeds in 
two steps. First, covered regions are estimated from the displaced frame differ-
ence. Next these covered regions are classified into actual occlusions and false 
alarms using the motion characteristics. Disocclusion detection is also performed 
in a similar manner [8].   

This paper proposes an algorithm for detection and tracking of movement of ob-
jects and persons based on a video sequence processing. Evaluation results show that 
proposed scheme provides a fairly good performance when required to detect relevant 
movements and tracking the motion of objects under analysis.  

2   Proposed Movement and Tracking Detection System 

The proposed system, firstly estimates the motion vectors, using an input video 
frames, which are then filtered to reduce distortion due to noise and deficient illumi-
nation. Next using the estimated motion vectors the movement trace is estimated to 
determine if it is a relevant or irrelevant motion. Finally if the movement is relevant, 
its tracking is carried out until the object left the restricted zone. 

2.1   Motion Vector Estimation 

The motion estimation is carried out dividing, firstly, the actual image at time, t-1, 
into a non-overlapping macro-blocks of 16x16 pixels.  Next in the image frame at 
time t, the algorithm looks for the region that closely matches the macro-block under 
analysis [2].  Taking in account that the time difference in time between two consecu-
tive images in a given frame is relatively small, only is necessary to carry out the  
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analysis in a region slightly larger than the given macro-block.  Here the distance and 
direction that minimizes the criterion given by [5]  
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Where C(x+k,y+l) is the (k,l)th píxel of macro-block (x,y) of the actual frame and 
R(x+i+k.y+j+l) is the macro-block in the position (x+i,y+j) in the reference frame, 
where pjpypip ≤≤−≤≤− .  Then the vector motion magnitude and direction is 

obtained from to actual position (x,y) in the actual frame, to the position (x+i,y+j) in 
which the MAE (i,j) is minimum.   This process is illustrated in Fig. 1. 

 

Fig. 1. Motion vector estimation process 

Several methods have been proposed for motion vector estimation, which are based 
on the MAE (Mean Absolute error) minimization (1), all of them providing similar 
results although their computational complexity presents important differences.  
Among the Hierarchical estimation method presents the less computational complex-
ity and then is one of the most widely used motion vector estimation method.  Here to 
reduce the computational complexity, the image is decimated by 2 using low pass 
filters, reducing in such way the image size.  Thus the position (x,y) in the original 
image becomes the position (x/2,y/2) in the image corresponding to the first decompo-
sition level.  Subsequently a second decomposition level is applied using a low pass 
filter, such that the original (x,y) point becomes the point (x/4,y/4) in the second de-
composition level image [5]. 

After the second decomposition level is performed, the motion vector estimation 
starts in the second decomposition level, in which the image size is 1/16 of the  
original image size, with a macro-block of size 4x4.  Assuming that the point (u2,v2) 
corresponds to the minimum MAE of the actual macro-block, the search of the mo-
tion vector in the decomposition level 1 is carried out in the macro-blocks of 8x8 
whose search start in (x/2+2u2,y/2+2v2), with a search range of [-1,1] around the 
origin pixel.  Finally the motion vector estimation in the level decomposition 0 is 
carried out with macro-blocks of size 16x16, with search starting at point 
/(x+2u1,y+2v1) with a search range equal to [-1,1], around the origin pixel. Here 
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(u1,v1) corresponds to the minimum MAE at the level decomposition 1.  These motion 
vectors consist of horizontal and vertical components which are used to estimate the 
motion vector magnitude and angle.  Finally using these data it is possible to deter-
mine in the movement is relevant or not. Figure 2 illustrate this process. 

 

Fig. 2. Hierarchical motion vector estimation algorithm 

Several times the estimated motion vectors only represent abrupt illumination 
changes in the image or small vibrations of the camera used to capture the image 
sequence, resulting in wrong movement estimation if these distortions are not cancel 
or at least reduced.  To this end, the estimated motion vectors are filtered using a one 
dimensional median filter as shown in Fig. 3, before the overall movement estimation.  
This allows to cancel most motion vectors that no provides useful information, such 
as those due to illumination changes, background movement, etc.  This process is 
shown in Fig. 3. 

Because the amount of noisy motion vectors is relatively small in comparison 
with the correctly estimated motion vectors, as well due to the fact that the noisy 
vectors are continuous ore similar among them, as happen with the actual motion 
vectors, the noisy motion vectors can be easily distinguish form the remaining ones.  
On the other hand, because the motion vectors are estimated one by one it is not 
necessary to create a temporal register, to be use during the filtering process [5].  
Thus after the noisy vectors have been eliminated, the information generated by 
objects moving in no relevant directions is cancelled, based on the fact that move-
ment direction is different to that of the security zone.  This fact allows the pro-
posed algorithm to measure the relevance level, according to their position in the 
scene.  Thus a motion vector is eliminated if its position does not change after sev-
eral video sequences or if the motion direction is opposite the restricted zone, as 
shown in Fig, 4.    
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Fig. 3. Motion vectors filtering process 

 

Fig. 4. Relevant movement detection in the direction of the restricted zone 

2.2   Trajectory Estimation  

Once the motion vectors have been estimated, it is necessary to estimate other impor-
tant parameters such as: the speed, direction and movement tracking of the moving 
object present in the video sequence.  To this en firstly it can be used the information 
provided by the motion vector to estimate the movement angle to classify the move-
ment in, either, relevant or not relevant.  To this end, we can take in account that a 
relevant movement is that in which the people enter or intend to enter into the re-
stricted zone.  This fact implies that, according with the video camera position, the 
motion vectors angles must be between 200 and 340 degrees.   This fact takes in ac-
count that a movement in not relevant if it takes place inside the restricted zone, or if 
its direction is from inside to outside the restricted zone. 

Other important factor that must be consider to obtain an accurate estimation of the 
motion vectors is the camera position, because it allows to obtain constant motion 
vectors, with similar magnitude during all trajectory, avoiding detection errors.  This 
fact also allows that a person magnitude may be represented using among 9 to 13 
motion vectors.  A correct distance also allows adding some divisions to measure the 
movement importance and be able to track the position of a given object during a 
determined time; as well as to add several counters to determine the number of  
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Fig. 5.  Tracking ability of proposed algorithm 

persons that are generating relevant movements, as well as the direction of these 
movements. 

2.3   Movement Tracking  

Other important issue is the tracking of the generated relevant movement, which 
means that not only is important to determine if the movement a relevant move-
ment has been produced, but also to have the ability to track the movement of the 
person generating it until the go out of the restricted zone.  The min difficulty to 
track the object movement using a sequence of successive images is the object 
localization in the image sequences, especially when the movement of them is 
relatively faster than the images rate.  For these reason, the tracking systems usu-
ally uses moving models that intend to predict the variations of the image due to 
possible movements present in the object trajectory.  Although these methods 
provide fairly good results, they may be computationally complex.  Thus to re-
duce the computational complexity, the object is divided in NXM non overlap 
blocks.  Next using the motion vector estimation described above, the movement 
of each corner is estimated. Once the motion vectors are obtained, the tracking of 
object motion in each frame is obtained as the resultant vector of all individual 
motion vectors in such frame.  Finally to obtain a smoother trajectory the result-
ing vector in the previous step is filtered using a low pass filter.  

3   Evaluation Results 

The proposed system was evaluated using computer simulation using a Power Mac 
G4, with a data bus speed of 167MHz, a CPU of 1.25GHz ad 1.25GB of RAM mem-
ory.  The video sequences used to evaluate the proposed algorithm were previously 
recorded with a resolution of 640x480 pixels per image.  The obtained results show 
that the proposed algorithm is able to accurately detect the relevant movements and 
correctly tract the person u object motion.  
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Fig. 6. Detection performance of proposed algorithm, here in the fourth and fifth image there 
are a relevant movement 

 

Fig. 7.  Two persons moving to the restricted zone 

4   Conclusions 

This paper proposed an automatic movement detection system, using a video se-
quence, based on the motion vector estimation, which are filtered to eliminate the 
noisy and distorted vectors, due to illumination variations and background movement. 
Proposed algorithm is also to discriminate between relevant and non relevant move-
ments which allows only take in account the movements whose direction is from 
outside to inside the restricted zone.  Using also a motion vector estimation the algo-
rithm is also able to tract the trajectory of a given person whose movement is from 
inside to outside of the restricted zone.    
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Abstract. In this paper, we proposed a new method for Steganogra-
phy based on deceiving χ2 algorithm. Since the cover image coefficients
and stego image coefficients histograms have sensible difference for pur-
poses of statistical properties, statistical analysis of χ2-test reveals the
existence of hidden messages inside stego image .We are introducing the
idea for hiding messages in the cover image. It causes that DCT (Discrete
Cosine Transforms) coefficient histogram not having remarkable modifi-
cation before and after embedding message. As a result, the identifying
of hidden message inside an image is impossible for an eavesdropper
through χ2-test. In fact, the proposed method increases the Steganog-
raphy security against χ2-test, but the capacity of embedding messages
decreases to half.

Keywords: Steganography, cover image, stego image, χ2-test.

1 Introduction

Information hiding is a recently developed technique in the information security
field and has received significant attention from both industry and academia [1].
Steganography is one technique for hiding information with heavy application
in military, diplomatic, and personal area [2]. In the past, people used hidden
tattoos or invisible ink to convey Steganographic contents. Today, computer and
network technologies provide easy-to-use communication channels for Steganog-
raphy [3,4]. In today’s digital world, invisible ink and paper have been replaced
by much more versatile and practical covers for hiding messages inside media
such as digital documents, images ,video, and audio files. The digital image is
one of the most popular digital mediums for carrying covert messages. There are
two main branches Steganography and digital watermarking [1]; the modifica-
tions are in spatial domain for the watermarking, and in the frequency domain
for the Steganography. The information-hiding process in a Steganographic sys-
tem begins by identifying a cover medium’s redundant bits (bits which can be
modified without destroying that medium’s integrity) [5].Then this redundant
bits are replaced with the data by the hidden messages. In space-hiding sys-
tems, one simple method is that of least significant bit Steganography or LSB

E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 1062–1069, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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embedding. LSB embedding has the merit of simplicity, but suffers from a lack
of robustness, and it is easily detectable [6,7]. Steganography goal is to keep hid-
den message inside an image undetectable, but Steganographic systems for the
reason of their invasive nature leave detectable traces in the statistical properties
cover medium. Modifying the cover medium changes its statistical properties, so
eavesdroppers can detect the distortions in the resulting stego medium’s statisti-
cal properties. To accommodate a secret message, the original image, also called
the cover-image, is slightly modified by the embedding algorithm. As a result,
the stego-image is obtained [8,9]. Each Steganographic communication system
consists of an embedding algorithm and an extraction algorithm. The system is
secure if the stego images do not contain any detectable artifacts due to message
embedding. It means the stego images should have the same statistical properties
as the cover images [10]. Three different aspects in information-hiding systems
contend with each other: capacity, security, and robustness [11]. Capacity refers
to the amount of information which can be hidden in the cover medium, security
refers to an eavesdropper’s inability to detect hidden information, and robust-
ness refers to the amount of modification the stego medium can withstand before
an adversary can destroy the hidden information [3]. Steganography strives for
high security and capacity, which often entails that the hidden information is
fragile. While digital watermarking is mainly used for copyright protection of
electronic products [12,13,14] and its primary goal is to achieve a high level
of robustness. For Steganography to remain undetected, the unmodified cover
medium must be kept secret, because if it is exposed, a comparison between the
cover and stego media immediately reveals the changes. The plan of this paper
is given by a brief review of JPEG image format in Section2. In Section 3, we
present Steganographic systems. After reviewing statistical analysis in Section4,
we present out proposed method in Section 5. In Section 6 we summarized the
results.

2 JPEG Image Format

The format of cover-image is important because it significantly influences the
design of the stego system and its security. There are many advantages using
images in JPEG format as carrier-image in steganographic applications. JPEG
[15] is a popular and widely-used image file format and has become a de facto
standard for network image transmission. If we apply JPEG (Joint Photographic
Experts Group) images for data hiding; the stego-image will draw less attention
of suspect than that with most other formats. JPEG format operates in a DCT
transform space and is not affected by visual attacks [16]. The JPEG image
format uses a discrete cosine transform (DCT) to transform successive 8×8 pixel
blocks of the image into 64 DCT coefficients each. The DCT coefficients F (u, v)
of an 8×8 block of image pixels f(x, y) are given by equation (1):

F (u, v) = α(u) · α(v)
7∑

x=0

7∑
y=0

f(x, y) cos[
(2x+ 1)uπ

16
] cos[

(2y + 1)vπ
16

]. (1)
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Afterwards, the equation (2) quantizes the coefficients:

FQ(u, v) = round
F (u, v)
Q(u, v)

. (2)

Q(u, v), is a 64-element quantization table. (This table is given in reference [18]).
We can use the least-significant bits of the quantized DCT coefficients, for which
FQ(u, v) �=0 and �=1, are used as redundant bits into which the hidden message
is embedded [17]. For more information about JPEG, the reader is referred to
[18].

3 Steganographic Systems

There are five popular Steganographic algorithms which hide information in
JPEG images [19]:

– JSteg: Its embedding algorithm sequentially replaces the least-significant bit
of DCT coefficients with the message’s data. The algorithm does not require
a shared secret; as a result, anyone who knows the Steganographic system
can retrieve the message hidden by JSteg [1].

– JSteg-Shell: It compresses the image contents before embedding the data
with JSteg. JSteg-Shell uses the stream cipher RC4 (Ron’s code #4 or Riv-
ets) for encryption [20].

– JPHide: Before the content is embedded, it is Blowfish [21], encrypted with
a user-supplied pass phrase.

– Outguess: Outguess 0.1 is a Steganographic system which improves the en-
coding step by using a PRNG to select DCT coefficients at random, and
Outguess 0.2, which includes the ability to preserve statistical properties
[22].

– F5 algorithm: In F5 instead of replacing the least-significant bit of a DCT
coefficient with message data, it decrements the absolute value of DCT coef-
ficients in a process called matrix encoding. As a result, there is no coupling
of any fixed pair of DCT coefficients [10,23].

4 Statistical Analysis

Statistical tests can reveal if an image has been modified by Steganography by
testing whether an image’s statistical properties deviate from a norm. Westfield
and Pfitzmann observe that for a given image, the embedding of encrypted data
changes the histogram of its color frequencies [19]. In the following, we clarify
their approach and show how it applies to the JPEG format. In their case, the
embedding process changes the least signification bits of the colors in an image.
The colors are addressed by their indices in the color table. If ni and n∗

i are the
frequencies of the color indices before and after the embedding respectively, then
the following relation is likely to hold

|n2i − n2i+1| ≥ |n∗
2i − n∗

2i+1|. (3)
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In other words, the embedding algorithm reduces the frequency difference be-
tween adjacent colors. In an encrypted message, zeros and ones are equally dis-
tributed. Given uniformly distributed message bits, if n2i > n2i+1 , then pixels
with color 2i are changed more frequently to color 2i + 1 than the pixels with
color 2i + 1 are changed to color 2i. The same is true in the case of the JPEG
data format. Instead of measuring the color frequencies, we observe differences
in the frequency of the DCT coefficient. Figure (1) displays the histogram before
and after a hidden message has been embedded in a JPEG image [3,22]. A χ2

- test used to determine whether the observed frequency distribution yi in the
image matches a distribution which shows distortion from embedding hidden
data [4]. Although we do not know the cover image, we know that the sum of
adjacent DCT coefficients remains invariant, which lets us compute the expected
distribution y∗i from the stego image .We then take the arithmetic mean,

y∗i =
n2i + n2i+1

2
. (4)

To determine the expected distribution and compare it against the observed
distribution

yi = n2i. (5)

The χ2 value for the difference between the distributions is given as

χ2 =
ν+1∑
i=1

[
(yi − y∗i )2

y∗i
]. (6)

Where ν are the degrees of freedom that is, one less than the number of different
categories in the histogram [3].

5 Proposed Method

Indeed, after doing Steganography inside an image, χ2 algorithm is operated
on the basis of sensible modification which will increase the difference between
∆n, and ∆n∗. n2i is DCT coefficient frequency in 2i before of the embedding
messages,and n∗

2i is DCT coefficient frequency in 2i after of the embedding mes-
sages.

∆n = n2i − n2i+1, ∆n∗ = n∗
2i − n∗

2i+1 . (7)

We propose a new method in this article to endure that the differences between
n2i and n2i+1 don’t have remarkable changes before and after embedding mes-
sage. In this approach, two sequential DCT coefficients hide only one message
bit. In this method, the hiding capacity is reduced to half as compared with
JSteg. At first, we arrange DCT coefficients to (2i, 2i+1) groups in terms of i
(see table 1).

In study of each group, we will realize that with LSB modification, each mem-
bers of group, changes its own group and no member of one group conveys to
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Fig. 1. Frequency histograms. Sequential changes to the (a) original and (b) modified
image’s least-sequential bit of discrete cosine transform coefficients tend to equalize the
frequency of adjacent DCT coefficients in the histograms [3].

Table 1. Grouping the of two adjacent DCT coefficients according to i

Group1 Group2 Group3 Group4 .....
2i 2 4 6 8 .....

2i+1 3 5 7 9 .....

Table 2. This table indicate the new coefficient replacement according to the message
bit to be 0 or 1

Message Bit New Coefficient
0 (2i,2i) or (2i+1,2i)
1 (2i,2i+1) or (2i+1,2i+1)

other group. In JSteg method, applying Steganography algorithm and transfer-
ring the coefficients in each group changes the difference between ∆n, and ∆n∗in
group. So eavesdroppers will be able to recognize the existence of message. To
avoid of this subject, we introduce a new approach to minimize the difference
between ∆n, ∆n∗. First of all, we obtain in each group, and we examine the
coefficients of each group separately two by two. According to the value of two
coefficients and the hiding message, ∆n and ∆n∗ two coefficients are replaced by
two new coefficients. With due attention to a message bit to be 0, or 1, we create
the table (2) for new coefficients. These two coefficients are chosen optional for
hiding message.

For example, we assume i be equal to 4 ( i = 4), and two sequential coefficients
equal to (9, 8). For the purpose of a hiding message bit with zero value, we can
replace (8, 8) or (9, 8) according to table (2). There are three cases in choosing
(8, 8) or (9, 8) in the example.
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Table 3. General convert method

Old Coefficient1 Old Coefficient2 message ∆n and ∆n∗ New Coefficient1 New Coefficient2
2i 2i 0 ∆n > ∆n∗ 2i 2i
2i 2i 0 ∆n = ∆n∗ 2i 2i
2i 2i 0 ∆n < ∆n∗ 2i+1 2i
2i 2i 1 ∆n > ∆n∗ 2i 2i+1
2i 2i 1 ∆n = ∆n∗ 2i 2i+1
2i 2i 1 ∆n < ∆n∗ 2i 2i+1
2i 2i+1 0 ∆n > ∆n∗ 2i 2i
2i 2i+1 0 ∆n = ∆n∗ 2i+1 2i
2i 2i+1 0 ∆n < ∆n∗ 2i+1 2i
2i 2i+1 1 ∆n > ∆n∗ 2i 2i+1
2i 2i+1 1 ∆n = ∆n∗ 2i 2i+1
2i 2i+1 1 ∆n < ∆n∗ 2i+1 2i+1

2i+1 2i 0 ∆n > ∆n∗ 2i 2i
2i+1 2i 0 ∆n = ∆n∗ 2i+1 2i
2i+1 2i 0 ∆n < ∆n∗ 2i+1 2i
2i+1 2i 1 ∆n > ∆n∗ 2i 2i+1
2i+1 2i 1 ∆n = ∆n∗ 2i 2i+1
2i+1 2i 1 ∆n < ∆n∗ 2i+1 2i+1
2i+1 2i+1 0 ∆n > ∆n∗ 2i+1 2i
2i+1 2i+1 0 ∆n = ∆n∗ 2i+1 2i
2i+1 2i+1 0 ∆n < ∆n∗ 2i+1 2i
2i+1 2i+1 1 ∆n > ∆n∗ 2i 2i+1
2i+1 2i+1 1 ∆n = ∆n∗ 2i+1 2i+1
2i+1 2i+1 1 ∆n < ∆n∗ 2i+1 2i+1

Table 4. Result of running χ2-test over cover image, stego image (JSteg method),
Stego image (proposed method)

χ2for cover image χ2for stego image(JSteg method) χ2 for stego image(proposed method)
1 140 10 136
2 329 10 316
3 611 11 508
4 360 11 340
5 511 14 463
6 227 14 197
7 245 14 223

1-If ∆n > ∆n∗ , it means that the frequency of eights is less than its frequency
in the cover image. So that, it should be convert one 9 to one 8.There for, we use
(8, 8). As a result, one occurrence of the nines is decreased and it is increased
to 8.

2 - If ∆n is ∆n∗, it means that we don’t need to change the number of eights
and nines, then new coefficients are same (9, 8).

3 - If ∆n < ∆n∗ ,it means that the frequency of eights is more than its
frequency in the cover image. Thus, it should convert one 8 to one 9. Because
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in transmitting this message, there isn’t any (9, 9) then we use (9, 8).Using this
step stop the difference between ∆n , and ∆n∗ to get higher. We show general
convert method (approach) in table (3).

6 Conclusion and Result

Our proposed algorithm is applied on 16 different images. We present their re-
sults in table (4). In second column, we obtain χ2 value for cover the image.
In third column we calculated χ2 value for stego image using the JSteg method
[3,16]. As we observe a high difference between the second and third columns. As
a result, χ2 -test can recognize the existence of hidden message in stego image.
In forth column, χ2 values was calculated with our new method. Comparison
with the second column show the sensible modification and it means that χ2

values remain nearly fixed and shows deceit of χ2 algorithm with this method.
The existence of message is not revealed in stego image and indeed, this method
support the system security against χ2-test.
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Abstract. In this paper, we propose a novel Hardware/Software (HW/SW) co-
design approach for near real time implementation of high-resolution recon-
struction of remote sensing (RS) imagery using an efficient network of systolic 
arrays (NSA). Such proposed NSA technique is based on a Field Programmable 
Gate Array (FPGA) and implements the image enhancement/reconstruction 
tasks of the intelligent descriptive experiment design regularization (DEDR) 
methodology in an efficient concurrent processing architecture that meets the 
(near) real time imaging systems requirements in spite of conventional compu-
tations. Finally, the results of the HW/SW co-design implementation in a Xilinx 
Virtex-4 XC4VSX35-10ff668 for the reconstruction of real world RS images 
are reported and discussed.  

Keywords: Remote Sensing, Hardware/Software Co-Design, Network of Sys-
tolic Arrays. 

1   Introduction 

The newer techniques for image reconstruction/enhancement used in high resolution 
remote-sensing (RS) and radar imaging are computationally expensive [1],[2]. There-
fore, these techniques are not suitable for a (near) real time implementation with cur-
rent digital signal processors (DSP) or personal computers (PC).  The descriptive 
experiment design regularization (DEDR) approach for RS image enhance-
ment/reconstruction has been detailed in many works; here we refer to [3],[4] where 
such an approach is adapted to the remote sensing (RS) applications with the use of a 
synthetic aperture radar (SAR) considered in this paper.   

The scientific challenge of this study is to solve the enhanced/reconstruction RS 
imaging problems in context of the (near) real time computing via employing the 
software/hardware co-design paradigm. 

The innovative contribution that distinguishes our approach from the previous 
studies [4],[5],[6] is twofold. First, we address a new unified intelligent descriptive 
experiment design regularization (DEDR) methodology and the HW/SW Co-Design 
technique for (near) real time enhancement/reconstruction of the remote sensing (RS) 
imagery. Second, the network of Systolic Arrays (NSA) implements the DEDR meth-
odology tasks in a computationally efficient fashion that meets the (near) real time 
imaging system requirements. 
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Finally, we report some simulation results and discuss the implementation per-
formance issues related to (near) real time enhancement of the large-scale real-world 
RS/SAR imagery indicative of the significantly increased performance efficiency 
gained with the developed HW/SW co-design. 

2   Background 

In this section, we present a brief summary of the Descriptive Experiment Design 
Regularization Method (DEDR) previously defined in [3]. Let us consider the 
measurement data wavefield u(y)=s(y)+n(y) modeled as a superposition of the echo 
signals s and additive noise n that assumed to be available for observations and 
recordings within the prescribed time-space observation domain Y∋y, where 
y=(t,p)T defines the time-space points in the observation domain Y=T×P. The model 
of observation wavefield u is specified by the linear stochastic equation of observa-
tion (EO) of operator form [3]: u=Se+n; e∈E; u,n∈U; S:E→U. Next, we take  
into account the stochastic operator-form of the observation equation (EO) vector 
formwhere 

u = eS~  + n = Se + ∆e  + n,                                          (1)  

where the matrix S~  = S + ∆ , represents the nominal signal formation operator SFO 
and e, n, u represent the zero-mean vectors. These vectors are characterized by the 
correlation matrices: Re = D = D(b) = diag{b} (a diagonal matrix with vector b at its 

principal diagonal), Rn, and Ru = < +SRS e
~~ >p(∆ ) + Rn, respectively, where <⋅>p(∆ ) 

defines the averaging performed over the randomness of ∆  characterized by the un-
known probability density function p(∆ ).Vector b is composed of the elements, bk = 
<ekek

*> = <|ek|
2>;  k = 1, …, K, and is referred to as a K-D vector-form approximation 

of the SSP.  
We refer to the estimate, b̂ , as a discrete-form representation of the desired SSP 

i.e. the brightness image of the wavefield sources distributed over the pixel-formatted 
object scene remotely sensed with an employed array radar/SAR. Thus, one can seek 
to estimate b̂  = { eR̂ }diag  given the data correlation matrix Ru pre-estimated by some 

means, e.g. via averaging the  correlations over  J  independent snapshots [3]  

uR̂ = Y = 
Jj∈

aver {u(j)u
+

(j)} = ( ) ( )1
(1/ )

J

j jj
J +

=∑ u u ,                         (2) 

and by determining the solution operator that we also refer to as the signal image 
formation operator (SO) F such that 

b̂  = { eR̂ }diag = {FYF+}diag .                                         (3) 

A family of the DEDR-related algorithms for estimating the SSP was derived by [3] 
as follows.   
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2.1   Robust Spatial Filtering Algorithm  

Consider the white zero-mean noise in observations and no preference to any prior 
model information, putting A = I. Let the regularization parameter be adjusted as the 
inverse of the signal-to-noise ratio (SNR), e.g. α = N0/b0, where b0 is the prior average 
gray level of the SSP, and the uncertainty factor β is attributed to α. In that case the 
SO F is recognized to be the Tikhonov's robust spatial filter:  

FRSF  =  F (1)  =  (S+S + (N0/b0)I )
–1S+.                                  (4)  

2.2   Robust Adaptive Spatial Filtering Algorithm  

Consider the case of an arbitrary zero-mean noise with the composed correlation 
matrix ΣR , equal importance of two error measures, i.e. α = 1, and the solution de-

pendent weight matrix A = D̂  = diag( b̂ ). In this case, the SO becomes the robust 
adaptive (i.e. solution-dependent) spatial filter (RASF) operator: 

 

FRASF =  F(2)  =  (S+ 1−
ΣR S + 1ˆ −D )–1S+ 1−

ΣR .                          (5) 
 

Now, we are ready to proceed with the algorithms transformation into their locally 
recursive format representation [10], in which the data dependencies of the computa-
tions are exposed in a dependence graphs (DG) [11] to represent the parallel charac-
teristics of the algorithms. 

3   Mapping Algorithms onto Systolic Arrays Structures 

An array processor consists of a number of processors elements (PE) and interconnec-
tion links among the PEs. The systolic design maps an N-dimensional dependence 
graph DG into a lower dimensional systolic array. In order to derive a regular SA 
architecture with a minimum possible number of nodes, we employ a linear projection 
approach for processor assignment, i.e., the nodes of the DG in a certain straight line 
are projected onto the corresponding PEs in the processor array represented by the 
corresponding assignment projection vector d . Thus, we seek for a linear order re-
duction transformation T  [10] where 

,
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Π
T

Σ
                                              (6) 

where Π  is a (1 × p)-dimensional vector (composed of the first row of T ) which 
determine the time scheduling and the sub-matrix Σ  of (p – 1) × p dimension (com-
posed of the rest rows of T ), determine the space processor [11]. Now, we proceed to 
construct the SAs structures. 
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Fig. 1. Matrix-vector systolic imple-
mentation: a) Standard DG; b) Sys-
tolic array 

 

Fig. 2. Matrix-matrix systolic implementation 

 

Fig. 3. Convolution systolic implementation: a) 
Standard DG; b) Systolic array 

A. Matrix-Vector Systolic Implementation  

Let us consider a matrix A of size n x n and a vector x of size n x 1, i.e. y = Ax. The 
DG for a standard Matrix-Vector multiplication with a vector schedule of Π =   [1 1]T 

is depicted in Figure 2(a).  Next, we select a projection vector d = [1 0] T. The corre-
sponding systolic array is obtained as we can see in Figure 2(b). The pipelining period 
for this systolic array is one. The number of PEs required by this structure is n. The 
computational time required by this systolic array is 2n-1 clock periods. 

B. Matrix-Matrix Systolic Implementation 

Let A be an m x n matrix and B be an n x k matrix. The product of the matrices is an 
m x k matrix C, i.e. C=AB. The DG of a standard matrix-matrix multiplication  
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algorithm corresponds to a 3-D space representation. In Figure 3, the systolic struc-
ture with the projection direction of d=[0 0 1] T is obtained. This architecture requires 
an array of mk PEs and n+m+k-1 clock periods. 

C. Convolution Systolic Implementation 

Given the vectors u of size n x 1 and w of size m x 1, the DG of the convolution 
algorithm with a systolic schedule vector Π =[1 2]T is presented in Figure 4(a). 
The resulting systolic array considering the projection vector d=[1 0] T is pre-
sented in Figure 4(b). This architecture requires an array of n PEs and n+2m-2 
clock periods. 

4   Hardware/Software Co-design with a Network of Systolic 
Arrays 

The HW/SW co-design is a hybrid method aimed at increasing the flexibility of 
the implementation and improving the overall design process. The all-software 
execution of the RS image formation and reconstruction operations may be inten-
sively time consuming, even using modern high-speed personal computers (PC) 
or any existing digital signal (DSP). In this section, a concise description of a 
HW/SW co-design approach is presented, and its flexibility in performing an 
efficient HW implementation of the SW processing tasks with the NSA design is 
demonstrated. Figure 4 illustrates the pursued HW/SW co-design paradigm. The 
block units of Figure 4 are to be designed to speed up the digital signal processing 
operations of the DR algorithm previously developed to meet the real time imag-
ing system requirements.  

In this study, we select the Microblaze embedded processor (for the restricted 
platform) and the On Chip Peripheral Bus (OPB) [7], [8] for transferring the data 
from/to the embedded processor to/from the NSA as it is illustrated in Figure 4. 
Such the OPB is a fully synchronous bus that connects other separate 32-bit data 
buses. Such system architecture (based on the FPGA XC4VSX35-10ff668 with 
the embedded processor and the OPB buses) restricts the corresponding process-
ing frequency to 100 MHz. 

The crucial issue of this design is the proposed NSA design. With the NSA  
multiple data transfer from the embedded processor data memory to the SAs are 
avoided. Such NSA design guarantee the drastically reduction of the overall computa-
tion time. Finally, the interface unit must employ all the required operational and 
control functions: loading and storing the data to/from the embedded processor and 
data/control parallel transfer through the processor elements in a specific spa-
tial/temporal manner. The system control is performed to guarantee the proper syn-
chronization of the data in the proposed interface and to habilitate the corresponding 
system control of the  SA. 
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Fig. 4. HW/SW Co-design with the proposed NSA design 

 

  
a) b) 

  
c) d) 

Fig. 5. Operational scenario, scene (µ = 15 dB): (a) original scene; (b) degraded uncertain 
scene image formed applying the MSF method; (c) image reconstructed applying the RSF 
algorithm; (d) image reconstructed applying the RASF algorithm 
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5   Simulations and Performance Analysis 

In this study, the simulations were performed with a large scale (512-by-512) pixel 
format image borrowed from the real-world high-resolution terrain SAR imagery 
(south-west Guadalajara region, Mexico [9]). The quantitative measures of the image 
enhancement/reconstruction performance gains achieved with the particular employed 
DEDR-RSF and DEDR-RASF techniques, evaluated via IOSNR metric [3],[6], are 
reported in Table 1 and Figure 5. 

Table 1. Image enhancement of DEDR-related RSF/RASF algorithms 

SNR 
[dB] 

DEDR-regularized 
RSF Method 

DEDR-regularized 
RASF Method 

µ IOSNR [dB] IOSNR [dB] 
5 4.31 7.19 

10 6.15 9.35 
15 7.91 11.01 
20 9.31 13.12 

 

Table 2. Synthesis metrics 

Area of Hardware Cores 
Logic Utilization* 
Slice Registers, Flip Flops and Latches 14% 
LUTs, Logic, Shift Reg. and Dual-RAMs 25% 
BUFGs 12% 
DSP48 35% 

*The reference area is Xilinx Virtex-4 XC4VSX35-10ff668. 
 
Next, the overall timing performances achieved with the proposed approach are re-
ported in Table 3. 

Table 3. Timing performances 

Timing Performance of Hardware Cores 
Maximum Pin delay: 9.15ns 
Average connection delay on the  
10 worst nets: 

9.07 ns 

Maximum Frequency 109.28  MHz 

 
Last, it is compared the required processing time of two different implementation 
techniques as reported in Table 4. In the first case, the general-form DEDR procedure 
implemented in the conventional MATLAB software in a personal computer (PC) 
running at 1.73GHz with a Pentium (M) processor and 1GB of RAM memory and in 
the second case, the same DR-related algorithms were implemented using the pro-
posed FPGA based HW/SW co-design architecture (partitioning the Matlab applica-
tion in SW and HW functions) employing the Xilinx FPGA XC4VSX35-10ff668. 
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Table 4. Comparative time processing analysis 

Method Processing Time [secs] 
 RSF RASF 

Optimized-Form DEDR  
(PC implementation) 

19.70 20.05 

Proposed HW/SW Co-design with NSA 2.42 2.56 

6   Concluding Remarks 

The principal result of this paper is the unified intelligent descriptive experiment design 
regularization (DEDR) methodology and the HW/SW Co-Design technique for enhance-
ment/reconstruction of the remote sensing (RS) imagery using a network of Systolic  
Arrays (NSA) in a computationally efficient fashion that meets the (near) real time imag-
ing system requirements. We do believe that pursuing the addressed HW/SW co-design 
paradigm based on NSAs, one could definitely approach the real time image processing 
requirements while performing the reconstruction of the large-scale real-world RS im-
agery. Finally, the processing time of the DEDR RSF/RASF algorithms were significantly 
reduced up to eight times compared with the computational time of the Optimized-form 
DEDR procedure implemented in the conventional MATLAB software. 
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Gómez, Francisco 113, 129
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Ochoa, Jesús A. Carrasco 497
Olague, G. 774
Olguin-Diaz, Ernesto 910
Oliveira, Elias 661
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Pérez-Meana, Héctor 1005
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