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Abstract
Network-level analysis based on anatomical, pairwise similarities (e.g., cortical thickness) has been gaining increasing atten-
tion recently. However, there has not been a systematic study of the impact of spatial scale and edge definitions on predictive 
performance, which is necessary to obtain a clear understanding of their relative performance. In this study, we present a 
histogram-based approach to construct subject-wise weighted networks that enable a principled comparison across differ-
ent methods of network analysis. We design several weighted networks based on three large publicly available datasets and 
perform a robust evaluation of their predictive power under four levels of separability. An interesting insight generated is that 
changes in nodal size (spatial scale) have no significant impact on predictive power among the three classification experi-
ments and two disease cohorts studied, i.e., mild cognitive impairment and Alzheimer’s disease from ADNI, and Autism 
from the ABIDE dataset. We also release an open source python package called graynet to enable others to leverage the novel 
network feature extraction algorithms presented here. These techniques and toolbox can also be applied to other modalities 
due to their domain- and feature-agnostic nature) in diverse applications of connectivity research. In addition, the findings 
from the ADNI dataset are replicated in the AIBL dataset using an open source machine learning tool called neuropredict.

Keywords  Cortical thickness · Graph theory · Early prognosis · Mild cognitive impairment · Alzheimer · Model 
comparison · Histogram distance · Magnetic resonance imaging

Introduction

Network-level analyses have become one of the dominant 
techniques to process and analyze different neuroimaging 
modalities, including functional MRI (task- and resting-state 
fMRI), and diffusion MRI. One of the most routine network 
analyses performed is the extraction of individual connectiv-
ity matrices e.g. to characterize the structure and function 
of the brain, as well as to develop markers of dysfunction 
in various brain disorders. Owing to their broad applica-
bility and success, similar approaches have been developed 
in the structural MRI (sMRI) also (Raamana et al. 2015). 
Translation of such powerful techniques to the sMRI, and 
a systematic evaluation of their methodological robustness, 
would help assess clinical utility, esp. in the development 
of computer-aided diagnostic (CAD) techniques for deadly 
brain disorders like the Alzheimer’s disease (AD) (Alzhei-
mer’s Association 2017).

Data used in the preparation of this article was obtained from: 
(1) Alzheimer Disease Neuroimaging Initiative (ADNI) and (2) 
the Australian Imaging Biomarkers and Lifestyle flagship study 
of ageing (AIBL) funded by the Commonwealth Scientific and 
Industrial Research Organization (CSIRO) which was made 
available at the ADNI database (www.loni.usc.edu/ADNI). 
The ADNI and AIBL researchers contributed data but did not 
participate in analysis or writing of this report.
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Although there has been great progress in the last few 
decades in accurately characterizing AD as well as its 
progression (Weiner et  al. 2015, 2017), its translation 
to improvement of clinical trials continues to be a great 
challenge (Cummings et al. 2014). For any preventive or 
disease-modifying therapies to succeed, early prognosis is 
key. Towards this goal, diverse regional and network-level 
analyses of features derived from different neuroimaging 
modalities such as sMRI (Cuingnet et al. 2011; Bron et al. 
2015; Duchesne et al. 2008; Raamana et al. 2014a, b; Dyrba 
et al. 2015), positron emission tomography (PET) (Dukart 
et al. 2011; Herholz et al. 2002; Matthews et al. 2016) and 
resting-state fMRI (Hojjati et al. 2017; Abraham et al. 2017) 
have been developed and are showing great promise in iden-
tifying differences between health and disease in the early 
stages, as well as establishing how they correlate with cog-
nitive measures (Alexander-Bloch et al. 2013; Tijms et al. 
2013). Multimodal predictive modeling methods typically 
demonstrate higher prognostic accuracy (Sui et al. 2011; 
Arbabshirani et al. 2017) in many applications, owing to 
their training based on multiple sets of rich and complemen-
tary information related to disease. However, recent efforts 
in building more sophisticated machine learning strategies 
produced unimodal sMRI methods rivaling the state-of-the-
art multimodal approaches (Weiner et al. 2017). Although 
multi-modal approaches tend to be more sensitive in general 
and offer richer insight, the practical advantages of sMRI 
being non-invasive, cost-effective and widely-accessible in 
the clinic, make sMRI-based CAD methods for early prog-
nosis highly desirable.

Cortical thickness is a sensitive imaging biomarker that 
can be easily derived from sMRI to diagnose AD. However, 
its sensitivity to identify the prodromal subjects (such as 
mild cognitive impairment (MCI)) at risk of progressing to 
AD is limited (Cuingnet et al. 2011). Network-level analysis 
of cortical thickness and gray matter features demonstrated 
its potential to provide novel insights or improve predictive 
power (Raamana et al. 2015), and is gaining in popularity 
(Evans 2013; Wen et al. 2011; Reid and Evans 2013; Lerch 
et al. 2006). Thickness network features offer complemen-
tary information compared to the underlying fiber density 
(Gong et al. 2012), are shown to be disrupted in AD (Kim 
et al. 2016) and have been shown to have potential for early 
prognosis of AD (Raamana et al. 2015; Wee et al. 2012; 
Dai et al. 2012; Kim et al. 2016), as well as for subtype 
discrimination (Raamana et al. 2014a, b), outperforming the 
non-network raw-thickness features.

Network analysis studies in cortical thickness range from.

1.	 group-wise studies building networks based on group-
wise covariance/correlation in cortical thickness (Evans 
2013; He and Chen 2007; Lerch et al. 2006), which may 
be used to characterize the properties of these networks 

(such as small-worldness) as well as provide useful 
insight into network-level changes between two diagnos-
tic groups e.g. healthy controls (CN) and Alzheimer’s 
disease (AD),

2.	 studies building individual subject-wise graphs based 
on within-subject ROI-wise (pairwise) similarity met-
rics (Raamana et al. 2015; Tijms et al. 2012; Wee et al. 
2012; Dai et al. 2012; Kim et al. 2016) to enable pre-
dictive modeling. These studies resulted in disease-
related insights into network-level imaging biomarkers 
and improved accuracy for the early prognosis of AD. 
However, these studies are based on distinctly different 
parcellation schemes of the cortex, vastly different ways 
of linking two different regions in the brain, and datasets 
differing in size and demographics.

Insights derived from various brain network studies 
showed considerable variability in reported group differ-
ences (Tijms et al. 2013), and widely accepted standards 
for network construction are yet to be established (Stam 
2014). There have been recent efforts into understanding the 
importance and impact of graph creation methods, sample 
sizes and density (van Wijk et al. 2010; Phillips et al. 2015). 
However, these studies have been restricted to the choice 
of group-wise correlation methods to define the edges, 
or limited to understanding the group-wise differences in 
selected graph measures. But such important methodological 
analyses have not been performed in the context of building 
individual subject-wise predictive modeling. Hence, there is 
no clear understanding of the impact of different choices in 
subject-wise network construction and their relative predic-
tive performance.

Given their potential for the development of accurate 
early prognosis methods (Raamana et al. 2015; Raamana 
et al. 2014a, b) demonstrated by outperforming non-network 
raw-thickness features, and the wide-accessibility of sMRI, 
thickness-based networks deserve a systematic study in 
terms of

1.	 how does the choice of edge weight or linking criterion 
(correlation He and Chen 2007), similarity Raamana 
et al. 2015) affect the performance of the predictive 
models? See Table 4 for more details.

2.	 how does the scale of parcellation (size and number of 
cortical ROIs) affect the predictive performance?

These questions, analyzed in our systematic study, 
can reveal important tradeoffs of this emerging theme of 
research. In this study, we present a methodological com-
parison of six different ways of constructing thickness-
based, subject-wise networks and present classification 
results under varying levels of separability. We start with 
the classic CAD problems i.e. discriminating AD from CN, 
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and mild cognitive impairment (MCI) subjects (converting 
to AD in ~ 18 months) from CN in the ADNI dataset. In 
order to test whether the results from this methodological 
study generalize to different datasets, diseases and separa-
bilities, we also study the Australian Imaging, Biomarker & 
Lifestyle Flagship Study of Aging (AIBL) and the Autism 
Brain Imaging Data Exchange (ABIDE) datasets. Based on 
these three large publicly available datasets, we show that 
the predictive power of single-subject morphometric net-
works, based on cortical thickness features, is insensitive 
to spatial scale or edge weight. This is an important finding 
given we were not only able to replicate these results on an 
independent dataset, but also replicate them in the presence 
of a different disease and in a different age group.

Methods

In this section, we describe the datasets we study in detail, 
along with a detailed description of the preprocessing and 
the associated methods.

ADNI dataset

Data used in the preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu). The primary goal of 
ADNI has been to test whether serial magnetic resonance 
imaging (MRI), positron emission tomography (PET), other 
biological markers, and clinical and neuropsychological 
assessment can be combined to measure the progression 
of mild cognitive impairment (MCI) and early Alzheimer’s 
disease (AD). For up-to-date information, see www.adni-
info.org.

We downloaded baseline T1 MRI scans (n = 671) from 
the ADNI dataset (Jack et al. 2008), which has quality-con-
trolled Freesurfer parcellation (version 4.3) of the cortical 
surfaces provided in the ADNI portal (Fischl and Dale 2000; 
Fischl et al. 2002). The parcellation and cortical thickness 

values downloaded were carefully visually inspected by the 
first author PRR for errors in geometry and range. This QC 
process was rigorous to include a large number of cross-sec-
tion slices with contours of pial and white surfaces overlaid 
on the sMRI image in all 3 views. We have also employed 
external surface views that facilitate easy inspection and 
identification of any topological defects as well as ana-
tomical accuracy of the Freesurfer labels as a whole. When 
noticeable errors were found, we eliminated those (n = 24) 
subjects, and no manual editing and corrections were per-
formed. The thickness features from the remaining subjects 
for the control (CN) and AD groups (effective n = 647) com-
prised the first set of subjects for our analysis in this study. 
The second set of subjects with a slightly lower level of 
separability (MCI subjects converting to AD in 18 months, 
denoted by MCIc) were chosen to match the benchmark-
ing study (Cuingnet et al. 2011) as closely as possible (to 
enable comparison to the many methods included) based on 
the availability of their FS parcellation from ADNI and our 
quality control results. The demographics for the two sets 
are listed in Table 1.

AIBL dataset

In order to study whether the results from the ADNI data-
set in this study generalize to another independent dataset, 
we have downloaded the Australian Imaging, Biomarker 
and Lifestyle Flagship Study of Ageing (AIBL) dataset 
(Ellis et al. 2009), which contained similar (but not identi-
cal) patient groups and diagnostic categories. The down-
loaded subjects were processed with Freesurfer v6.0. The 
number of Alzheimer’s subjects we could download from 
AIBL (denoted by AD2) at baseline were n = 64, and we 
randomly selected 100 healthy controls (CN4) for this 
study, whose subject IDs are shared in the Appendix. The 
resulting cortical parcellations were visually quality con-
trolled by PRR with VisualQC (v0.4.1) (Raamana 2018; 
Raamana and Strother 2018b). This QC process was rig-
orous to include a large number of cross-sectional slices 

Table 1   ADNI I Demographics

All statistics here are displayed in mean (SD) format.
a ADNI: Only MMSE is significantly different between CN1 and AD with p < 0.05.
b ADNI: Controls and MCI converters are chosen to match the benchmark samples presented in (Cuingnet 
et al. 2011) as closely as possible allowing for exclusions due to quality control.

Diagnostic group N Females Age MMSEa

Dataset 1: ADNI
Healthy controls (CN1) 224 109 75.79 (4.99) 29.11 (1.01)
Alzheimer’s disease (AD) 188 89 75.22 (7.49) 23.29 (2.04)
Dataset 2: ADNI
Healthy controls (CN2, for MCI)b 159 85 76.07 (5.33) 29.17 (0.98)
MCI converters to AD in 18 months (MCIc) 76 33 74.67 (7.35) 26.47 (1.86)

http://www.adni-info.org
http://www.adni-info.org
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with contours of pial and white surfaces overlaid on the 
sMRI image in all 3 views, with the ability to zoom in to 
the voxel-level to ensure anatomical accuracy of the pial 
and white surfaces. In addition, the VisualQC interface 
presents 6 views of the external surface view of pial sur-
face which facilitates easy inspection and identification 
of any topological defects as well as anatomical accuracy 
of the Freesurfer labels as a whole. This QC process was 
employed to remove subjects with inaccurate parcellations 
or any other errors that render them unusable for analyses 
in this study. We would like to note that VisualQC is the 
most comprehensive QC tool for Freesurfer parcellations, 
and hence this process may be sensitive to catching the 
parcellation errors compared to that on the non-interactive 
tool employed on the ADNI dataset. This resulted in a 
usable subset of 51 AD2 and 80 CN3 subjects. Demo-
graphics of the subjects analyzed are presented in Table 2.

Motivated by intention to improve reproducibility 
and maximize the value of this study by employing open 
source tools when possible, we have employed graynet 
(Raamana and Strother 2017, 2018) to compute the net-
work-level features, and neuropredict (Raamana 2017) 
to evaluate their predictive utility. While this change of 
software libraries would add another interesting level of 
robustness check for the results presented here, we must 
note that this change in technology stack may lead to some 
differences in numerical estimates e.g. in AUC estimates 
when comparing across different datasets e.g. ADNI vs. 
AIBL. However, given the technology employed is the 
same for a given dataset, the performance estimates within 
the dataset will be perfectly commensurable for posthoc 
statistical analyses.

ABIDE dataset

In order to study whether the conclusions drawn from the 
ADNI dataset generalize to a very different disease cohort, 
we obtained the Freesurfer parcellations (version 5.1) from 
the Autism Brain Imaging Data Exchange (ABIDE) preproc-
essed dataset made available freely on the ABIDE website 
(Craddock et al. 2013). A random subset of cortical parcel-
lations (n = 227) have been visually inspected by PRR for 
errors in geometry estimation and value ranges (using the 
same in-house tools and processed used on the ADNI data-
set) to eliminate any subjects showing even a mild chance 
of failure. From the passing subjects (n = 226), we randomly 
selected 200 subjects (100 samples per diagnostic group) 
whose demographics are presented in Table 3 and the sub-
ject IDs are listed in the Appendix. Owing to the random 
selection, they come from multiple sites, which is akin to the 
ADNI dataset used in this study. Previous research (Abra-
ham et al. 2017) showed that the site heterogeneity has little 
or no impact on the predictive accuracy of network-level fea-
tures derived from task-free fMRI data. The distribution of 
the sites represented in this study are shown in Appendix D.

Feature extraction

In the following sections, we describe the steps involved in 
the extraction of weighted networks based on T1 MRI scans 
of the different subjects in the two independent datasets.

Alignment and dimensionality reduction

Cortical thickness features studied here were obtained from 
the Freesurfer parcellations (gray and white matter sur-
faces). They were then resampled to the fsaverage atlas and 
smoothed at fwhm = 10 mm to reduce the impact of noise. 
This is achieved by Freesurfer`-qcache` processing option, 
which registers each of the subjects to the fsaverage atlas 
(provided with Freesurfer) to establish vertex-wise corre-
spondence across all the subjects.

Table 2   AIBL demographics

All statistics here are displayed in median (SD) format.

Diagnostic group N Females Age MMSE

Healthy controls (CN4) 80 44 73 (6.99) 29 (1.26)
Alzheimer’s disease (AD2) 51 32 73 (7.37) 22 (5.4)

Table 3   ABIDE I demographics

*FIQ and VIQ are significantly different between CN3 and AUT with p  < 0:05
FIQ Full IQ standard score, VIQ Verbal IQ standard score, PIQ Performance IQ standard score

Dataset 3: ABIDE

Diagnostic Group N Females Age FIQ* PIQ VIQ*

Healthy controls (CN3) 100 17 17.27 (7.68) 109.10 (12.35) 105.64 (12.74) 111.89 (13.52)
Autism (AUT) 100 9 15.82 (5.93) 103.49 (14.68) 104.57 (14.68) 101.36 (15.86)
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Cortical subdivision

In order to avoid the curse of dimensionality and to reduce 
the computational burden, the atlas has been subdivided 
using a surface-based, patch-wise parcellation technique 
originally presented in (Raamana et al. 2015). This tech-
nique is based on Freesurfer parcellation which consists 
of 34 ROIs per hemisphere, which vary in size (number of 
vertices) greatly. In order to obtain uniform sized patches, 
we subdivide each of these ROIs into smaller patches, 
while respecting the anatomical boundaries of each ROI. 
Here, we use an adaptive version wherein the patch-size 
is controlled by number of vertices (denoted by m = verti-
ces/patch), instead of choosing a globally fixed number of 
patches (say 10) per Freesurfer APARC label regardless of 
its size (which can vary widely resulting in vastly different 
patch sizes within the same subject). As we change m, the 
subdivision of the cortical labels is performed purely on the 
existing mesh, and neither the geometrical parcellation itself 
nor the vertex density are modified. Here, m can be taken as 
the size of the graph node (imagine the node as a small patch 
within different Freesurfer labels). Alternatively, m can be 
seen as the spatial scale of the graph analysis, whose impact 
is being assessed for different values of m. When m is small 
(say 100), this results in large number (273) of total patches 
(sum of number of patches for each aparc label) across the 
whole cortex, whereas it results in only 68 patches when it 
is very high (m = 10,000), as such a large patch covered the 
full extent of all the 68 Freesurfer APARC labels currently 
defined on fsaverage cortical parcellation. We have analyzed 
the following values of m = 1000, 2000, 3000, 5000, and 
10,000, which resulted in the following total number of non-
overlapping patches in the whole cortex: 273, 136, 97, 74 
and 68, respectively.

Network computation

Construction of thickness networks in their early form were 
based on group-wise correlations (He and Chen 2007). Our 
previous publications based on cortical thickness (Raamana 
et al. 2015; Raamana et al. 2014a, b) and other interesting 
studies on gray matter density (Tijms et al. 2012; Wee et al. 
2012) extend the earlier approaches to individualized sub-
ject-wise network extraction methods. Many of these previ-
ous studies relied on summarizing the thickness distribution 
in a given ROI (e.g. using mean within the entire Freesurfer 
label as in Tijms et al. 2012) or within a patch [Freesurfer 
label subdivided further as in Raamana et al. (2015)], before 
constructing the networks. Although such approaches reduce 
the dimensionality and provide us with smooth features, they 
do not utilize the rich description and variance of the dis-
tribution of features. Moreover, studies thus far computed 
characteristic features from a binary network (by applying an 
optimized threshold Raamana et al. 2015) or using a vector 
representation of weighted graphs (vector of distances in the 
upper triangular part of the edge weight matrix, as they are 
symmetric Tijms et al. 2012). Here, to enable a principled 
comparison across the different edge weights (and to avoid 
the optimization of an arbitrary threshold required to bina-
rize the edge weight matrix), we study weighted-networks 
only, whose derivation is described below.

HIstogram WEighted NETworks (HiWeNet)

In this section, we describe the method employed in con-
structing the HIstogram WEighted NETworks (HiWeNet) 
based on cortical thickness. First, to improve the robustness 
of the features, 5% outliers from both tails of the distribution 
of cortical thickness values are discarded from each patch 
at a given scale m (see Appendix for more information). 
The residual distribution is converted into a histogram by 

Table 4   Variety of edge weights analyzed in this study

This table presents the list of edge weights compared in this study. Notation: each patch is indexed by i or j. For patches i and j, M, μ and σ are 
the median, mean and standard deviation of the within-patch distribution of vertex-wise thickness values; hi is the normalized histogram of a 
given distribution. N is the number of bins in the histogram, which is fixed at N = 100 bins.; ⍴ is the Pearson correlation coefficient between two 
vectors of equal length.

Type of base representation Type of edge weight metric Acronym Mathematical definition

Summarized (median/mean in a patch) Similarity (Raamana et al. 2015) MD |Mi −Mj|
exp(similarity) EMD

e
−

(�i−�j )
2

2(�i+�j )

Raw distribution Wilcoxon ranksum statistic RS Ranksum test statistic
Normalized histogram Histogram correlation HCOR � (hi, hj)

Χ2 statistic CHI2
2

N∑
k=1

hi(k)−hj(k)

hi(k)+hj(k)

2

Histogram intersection HINT ∑N

k=1
min (hi(k), hj(k))
∑N

k=1
hi(k)
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binning into uniformly spaced n = 100 bins. Then the histo-
gram counts are normalized using

for k = 1: N, where hi is the histogram of patch i. This method 
(illustrated further in Fig. 1) enables the computation of the 
pairwise edge-weight (distance between the histograms, 
denoted by EW) for the two patches i and j irrespective of 
the number of vertices in the two patches. A variety of his-
togram distances as listed in Table 4 are studied in this paper 
to analyze their impact on predictive power.

To analyze the relative benefit of HiWeNet, we com-
pare the histogram-based methods to three commonly used 
inter-nodal weights based on descriptive summary statis-
tics (denoted as MD, EMD and RS in Table 4). Once the 
edge weight matrix is computed (which is symmetric), we 
extract the upper-triangular part of the matrix and vectorize 
it (of length n*(n−1)/2, where n is the number of patches 
on the cortex for a given number of vertices/patch m). The 
vectorized array of edge weights (VEW) forms the input 
to the classifier. Each element of VEW corresponds to a 
unique edge in the connectivity matrix of pairwise edges. 
In addition, in Appendix C, we present and analyze the per-
formance of an alternative network-representation method, 
based on grand mean histogram.

Note on test–retest reliability

The reliability of this network approach developed in 
HiWeNet (pairwise distances between ROIs) boils down to 
the reliability of the method to measure cortical thickness 
at the vertex-level, as the remaining parts of the algorithm 

h
i
(k) =

h
i
(k)

∑N

k=1
h
i
(k)

are deterministic. Several studies have previously shown that 
cortical thickness estimation (and Freesurfer as a tool) have 
high test–retest reliability (Han et al. 2006; Iscan et al. 2015) 
and that the brain-behavior relationships e.g. between corti-
cal thickness and cognitive performance are stable across 
different sessions, scanner platforms and field strengths 
(Dickerson et al. 2008). In addition, given our choice of 
employing distance between thickness distributions over 
relatively large patches (1000 vertices or more), small 
changes in thickness (e.g. 0.2 mm) would be absorbed into 
the distance calculations, and hence are unlikely to change 
the results presented herein.

Comparison of predictive utility

In this section, we describe the procedure and techniques 
used to evaluate and compare the predictive power of mul-
tiple variations of the network-level features. Thanks to 
the relatively large sample sizes, particularly for ADNI 
and ABIDE, we could employ a repeated nested split-half 
cross-validation (CV) scheme, with 50% reserved for train-
ing, to maximize the sizes of training and test sets. Moreo-
ver, in each iteration of CV, all the methods are trained and 
assessed on the exact same training and test sets, to “pair” 
the performance estimates. This technique is shown to pro-
duce reliable and stable estimates of differences in predictive 
performance across different methods (Dietterich 1998; Bur-
man 1989; Demšar 2006), instead of pooling multiple sets of 
performance distributions estimated separately on different 
training and test sets for each method independently. This 
setup allows us to compare large numbers of methods and 
their variants simultaneously within each dataset.

Fig. 1   Construction of histogram-distance weighted networks 
(HiWeNet) based on cortical thickness features using edge-weight 
calculations (applicable to HCOR, CHI2 and HINT metrics in 
Table 4). The four smaller subpanels on the left show typical distribu-
tions of cortical thickness values for four random pairs of patches (in 

green and red) in a given subject (shown on cortical visualization on 
right). They demonstrate the means and shape of these distributions 
can vary substantially as you traverse across different pairs of cortical 
patches. The large panel in the middle illustrates the type of binning 
used to construct the histogram from each patch
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Cross‑validation scheme

The comparison scheme employed is comprised of the fol-
lowing steps—for a schematic, see Fig. 7 in Raamana et al. 
(2015):

1.	 Repeated split-half cross-validation scheme, with class-
sizes stratified in the training set (RHsT) (Raamana et al. 
2015), to minimize class-imbalance. This scheme is 
repeated N = 200 times, to obtain the N paired estimates 
of classification performance.

2.	 In each CV run,

a.	 feature selection (from vectorized array of edge 
weights, VEW) on one split (training set of size 
Ntrain) is performed based on t-statistic based rank-
ing (based on group-wise differences in the training 
set only), selecting only the top Ntrain/10 elements. 
The frequency of selection of a particular element 
(which is an edge in the cortical space) over different 
CV trials by the t-statistic ranking is an indication 
of its discriminative utility, and will be visualized to 
obtain better insight into the process.

b.	 Support vector machine (SVM) is chosen as the clas-
sifier to discriminate the two groups in each experi-
ment. SVM is optimized in an additional inner split-
half CV applied to the training set via a grid search. 
We have employed the following ranges of values 
in the grid search for the margin control parameter 
C = 10p; p = − 3: 5 and the kernel bandwidth = 2q; 
q = − 5: 4.

c.	 The optimized SVM is applied on the second split 
(test) to evaluate its performance.

3.	 The process in Step 2 is repeated N = 200 times (Varo-
quaux et al. 2016; Raamana et al. 2015) to obtain 200 
independent estimates for each method being compared.

4.	 In this study, we measure the performance by area under 
the predictive receiver operating characteristic (ROC) 
curve (denoted by AUC), whose distributions for differ-
ent methods are shown in Fig. 6.

The results in this study were produced using Raamana’s 
programming library implemented in Matlab based on the 
built-in statistics and machine learning toolbox.

Open source software

Most of the computational code applied on the ADNI and 
ABIDE datasets had been implemented in Matlab. In order 
to enable other researchers to utilize the methods presented 
here easily without having to pay for expensive Matlab 

licenses, we have re-implemented them in python following 
the best practices of open science. Moreover, we have pro-
cessed the AIBL dataset using the open source alternatives, 
and showed that our results replicate on an independent data-
set, despite differences in the following 3 layers of software.

Quality control via VisualQC

To achieve higher rigor as well as ease of use, we have devel-
oped an interactive version of Freesurfer QC tool, which is 
available as part of the VisualQC package at github.com/
raamana/VisualQC. This tool, applied on AIBL dataset, is 
more sensitive in detecting parcellation errors compared 
to the in-house Matlab tools and other existing protocols 
applied on the ADNI and ABIDE datasets (Raamana et al. 
2020).

Feature extraction via graynet

The core HiWeNet algorithm has been implemented in 
Python and is publicly available at this URL: https​://githu​
b.com/raama​na/hiwen​et (Raamana and Strother 2017). We 
have also published the original Matlab code for the com-
putation of adjacency matrices used for this study, within 
the hiwenet package.

Further, to make this research even more accessible, we 
have implemented the entire workflow of morphometric net-
work extraction as a seamless pipeline called graynet, imple-
mented entirely in Python (Raamana and Strother 2018). 
Using this tool would enable those without much software 
engineering experience to simply run Freesurfer and then 
run graynet to get started with morphometric network analy-
ses. This frees them from the hassle of assembling compli-
cated data, implementing graph theoretical operations and 
managing the pipeline following the best practices, which 
can be a barrier to many laboratories with limited compu-
tational and software expertise. In addition, we employed 
this tool to process the AIBL dataset, and show that pat-
terns in performance comparison across different weights are 
retained compared to those of the original Matlab toolbox.

Evaluating predictive utility via neuropredict

In order to enable a much wider audience (those without 
access to a Matlab license or its expensive statistical learn-
ing toolboxes (each to, or those who do not have the nec-
essary programming skills or machine learning expertise) 
utilize a comprehensive performance evaluation tool, we 
have also built an open source tool called neuropredict 
(Raamana 2017) at github.com/raamana/neuropredict. 
Once the researchers run Freesurfer successfully, they can 
run graynet (Raamana and Strother 2018), which produces 
the necessary single-subject morphometric networks. The 

https://github.com/raamana/hiwenet
https://github.com/raamana/hiwenet
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outputs from graynet in turn serve as direct input to neuro-
predict, which runs the cross-validation scheme described 
in the above section to produce a comprehensive report on 
their predictive power. In addition, we employed this tool 
to evaluate the performance of network features from the 
AIBL dataset (CN4 vs. AD2), matching the techniques and 
specific optimizations to the extent possible. This showed 
that our findings replicated compared to that of the original 
Matlab toolbox, which validates neuropredict as a useful 
open source alternative.

Results and discussion

Within‑group networks

To obtain better insight into the topology of the networks 
defined above, it is helpful to visualize seed-based net-
works and analyze their connections. A common approach 
to this end involves picking the posterior cingulate gyrus 
(core hub of the default mode network, DMN) as the seed 
and analyzing its connections in healthy controls, and esp. 
how they change for different edge metrics. The seed-
based network visualizations are produced for each edge 
weight method separately for m = 2000, identical to the 
network construction method described in the Methods 
section: compute histogram-distance between the thick-
ness distribution of the seed and all the other ROIs, aver-
aging this edge weight across all the healthy subjects, and 
retaining only the strongest edges (top 5%).

To make the comparison across the three datasets easy, 
they are grouped for each metric e.g. for median difference 
(MD), the comparison is shown below for healthy controls. 
From this figure, we can clearly see a pattern resembling the 

default mode network, in healthy controls from all the three 
samples. This is consistent with the results reported in previ-
ous structural covariance studies (Spreng and Turner 2013; 
Evans 2013; Spreng et al. 2013; Power et al. 2011) (Fig. 2).

To get a sense of how these networks change with differ-
ent EW metric, we show two other networks corresponding 
to HCOR and CHI2 metrics below (each figure is labeled 
with the metric and summary statistic being displayed e.g. 
HCOR mean). This HCOR network loses resemblance to 
the DMN (e.g. loss of edges to superior frontal, banks of 
the superior temporal sulcus, frontal pole, fusiform), and 
the edge weight distribution varies widely across the three 
samples. However, the CHI2 network resembles the DMN 
pattern seen in MD network well, suggesting the similarity 
of the two networks (Figs. 3, 4).

Group‑wise differences

To illustrate the differences between the proposed meth-
ods of computing edge weights, we compute the distribu-
tions of vertex-wise mean thickness values for CN1 and 
AD separately. We then visualize them in the form of a 
matrix of pairwise edge weights at m = 2000, as shown in 
Fig. 5a,b. Each row (say node i) in a given edge-weight 
matrix (from one group say CN1 in Fig. 5a) here refers to 
the pairwise edge weights w.r.t remaining nodes j, j = 1:N. 
As the differences are subtle and spatially distributed, for 
easy comparison between the two classes, we visualize the 
arithmetic differences between the two classes in Fig. 5c.

The visualizations in Fig. 5c offer useful insight into the 
group-wise differences between CN1 and AD, and across 
different edge weight distances. However, visual differences 
do not imply differences in predictive power of features 
extracted these networks of weights. Hence, it is important 

Fig. 2   Seed-based connectivity networks for the MD metric 
(m = 2000), showing average weights across each healthy control 
sample from the three datasets (as labeled). The colors on the edges 
represent the edge weight using a jet colormap (with blues indicating 

the weaker and reds indicating stronger weights). From this figure, 
we can clearly see a pattern resembling the default mode network, in 
healthy controls from all the three samples
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to assess their predictive utility in discriminating AD from 
CN1.

Predictive utility

The RHsT cross-validation scheme is employed for each 
of the three classification experiments from two independ-
ent datasets i.e. CN1 vs. AD, CN2 vs. MCIc and CN3 
vs. AUT. The performance distributions for the different 
combinations are shown in Fig. 6.

Focusing on the top panel (CN1 vs. AD), there are numer-
ical differences in performance among different methods at 
fixed scale (m). However, the pattern remains similar across 
different spatial scales. The MD, EMD, CHI2 and HINT 
methods are consistently outperforming, numerically speak-
ing, the RS and HCOR methods across different values of m. 
Broadly speaking, the patterns of change in AUC in Fig. 6 
within each panel as we move from left to right (going over 
different combinations) are quite similar to the rest, although 
at a different median baseline (at AUC = 0.87 for CN1 vs. 

AD, at AUC = 0.75 for CN2 vs. MCIc and at AUC = 0.6 for 
CN3 vs. AUT).

Statistical significance testing

In order to assess the statistical significance of differences 
among this large set of methods, we performed a nonpara-
metric Friedman test (Dietterich 1998) comparing the per-
formance of the 30 different classifiers (6 methods at 5 spa-
tial scales) simultaneously, for each of the three experiments 
separately. The results from post-hoc Nemenyi test (Demšar 
2006) are visualized in a convenient critical difference (CD) 
diagram (Kourentzes 2016) as shown in Fig. 7.

The left panel in Fig. 7 shows that only the top 6 meth-
ods (with median ranks from 6.96 to 11.35) are statistically 
significantly different from the lowest-ranked methods, at 
α = 0.05, correcting for multiple comparisons. The remain-
ing 24 methods, when compared together simultaneously, 
are not significantly different from each other. Similarly, 
the top-ranked 6 methods are not statistically significantly 

Fig. 3   Network showing edge weights (mean across samples) derived via HCOR metric. Layout of the figure is the same as above for the MD 
network

Fig. 4   Network showing edge weights (mean across samples) derived via CHI2 metric. Layout of the figure is the same as above for MD
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different from each other. We observe a similar pattern in 
the center panel (CN2 vs. MCIc), except only the top 5 are 
statistically significantly different from the lowest ranked 
methods. In the CN3 vs. AUT case, there are no significant 
differences at all, possibly due to rather low performance 
from all the methods to begin with (median AUC across 
methods is around 0.55).

When the comparison is made at a fixed scale m, within 
each experiment, the performance of the 6 different methods 

(simultaneous comparison of 6 methods) for most values 
of m are not statistically significantly different from each 
other, except for m = 1000 (CD diagrams are not shown). 
When the comparison is done for a fixed edge-weight metric 
at different values of m, the performance is not statistically 
significantly different for any m. Also, the top 2 methods are 
MD and EMD networks (based on differences in median and 
mean, respectively) at the highest resolution m = 1000 and 
also at the lowest resolution m = 10,000. This indicates that 

Fig. 5   Edge weights derived from group-wise average thicknesses 
for three definitions of edge weight. a healthy controls (CN1) b Edge 
weights group-wise average in Alzheimer’s disease (AD), both at 
m = 2000. c Arithmetic differences i.e. AD–CN1. The three panels 
in each subfigure show the edge weights from MD, CHI2 and HINT 
methods as defined in Table 4. In each of the panels, we present the 

upper triangular part of the edge-weight matrix (pairwise) computed 
using the corresponding equations in Table  4. We notice there are 
clear differences among the patterns in the three panels. The panels a 
and b appear similar at first glance, but they are sufficiently different 
to be observed in panel c 
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impact of the nodal size on the predictive performance of a 
network method may be insignificant. This result is consist-
ent with the findings of (Zalesky et al. 2010; Evans 2013), 
wherein it was observed that group-wise small-worldness 
and scale-freeness are unaffected by spatial scale.

Most discriminative regions

As noted in our CV section earlier, our method records the 
frequency (across the N CV iterations) of selection (of each 
weighted connection in VEW) from the t-statistic based 
ranking method applied on the training set. This helps us 
gain insight into which pair-wise links have been most fre-
quently discriminative. This pair-wise link frequency can be 
mapped back to individual cortical patches for intuitive visu-
alization, identifying most discriminative regions (MDRs). 
One such visualization, thresholding the importance at 50% 
derived at m = 2000, is shown in Fig. 8. Each color of patch 
on the cortex represents a particular EW metric (labeled 
on the colorbar) that led to its selection, and when multi-
ple methods selected the same region (indicating additional 
importance), we painted it red and labeled it “Multiple”. 
Note the input to the SVM classifier was a vector of edge 
weights (from upper-triangular part of the edge weight 
matrix), and hence the selection of a particular edge leads 

to highlighting both the regions forming the link. Moreover, 
the importance of a particular node (cortical patch) could be 
accumulated from its multiple links, if any.

Figure 8 shows the red MDRs (identified by multiple 
methods as MDR) cover a large cortical area, which is not 
unexpected, given the changes caused by full AD are known 
to be widespread over the cortex. In Fig. 9, we observe the 
MDRs in areas consistently identified with progressive MCI 
or early stage AD such as middle temporal lobe, cingulate 
(anterior and inferior), cuneus and precuneus. Of interest 
here is the clear hemispheric asymmetry to the left, which 
can also be observed to a lesser extent in the MDRs for 
AD in Fig. 8. The MDRs identified in discriminating AUT 
from CN3 are shown in Fig. 10. They appear in the lingual, 
supra-marginal, post- and precentral areas, which are con-
sistent with previous reports on Autism studying the group 
differences in developmental patterns of cortical thickness 
(Smith et al. 2016; Scheel et al. 2011), as well as found to 
be important in other prediction tasks (Moradi et al. 2017).

Replication in AIBL dataset

In order to test whether the results and insights from this 
study on ADNI would generalize to a similar dataset, we 
have analyzed the AIBL dataset (see Table 2). The predictive 

Fig. 6   Classification performance for the different network methods 
(different edge weight metrics at different spatial resolutions of m) in 
discriminating AD (top panel), MCIc (middle panel) and AUT (bot-
tom) panel from their respective control groups under a rigorous CV 
scheme. The data for three experiments come from ADNI, ADNI and 

ABIDE datasets, respectively (see Tables 1 and 2). The performance 
presented here is a distribution of AUC values from 200 randomized 
train/test splits of RHsT (whose median is shown with a red cross-
hair symbol)



2486	 Brain Structure and Function (2020) 225:2475–2493

1 3

utility for different combinations of edge weights and spatial 
scale (m) are shown in Fig. 11. Although there are numeri-
cal differences in performance among different methods at 
fixed scale (m), their pattern remains similar across different 
spatial scales within the same dataset, as was observed in 
Fig. 6 for the ADNI and ABIDE datasets. Based on posthoc 
statistical analyses (in the same fashion described earlier), 
we learn they are indeed not statistically significantly dif-
ferent from each other (the critical difference figure is not 
shown here to save space, as it is a single line connecting 
them all). That lack of significant differences is also true 
either for a fixed m (across different EW), or for a fixed EW 
(across different m).

We note that the median AUC (to discriminate AD2 from 
CN4) across all combinations for the AIBL dataset is 0.83. 
This is in the typical range of NC vs. AD performance we 
notice in the Alzheimer’s literature, although lower than that 
noticed in the ADNI1 dataset of 0.87. This slight differ-
ence could be attributed to a number of factors, including 
a slightly different population, different feature extraction 
library (graynet relies on fully python-based stack), different 
machine learning library (scikit-learn based on libsvm vs. 
Matlab’s built-in SVM implementation), and most of all to 
a much smaller sample (n = 131, which is only a third of the 
corresponding ADNI1 subset with n = 412). That said, the 
patterns in performance observed in Fig. 11 i.e. lack of sig-
nificant differences in performance for a fixed spatial scale 

Fig. 7   Critical difference diagram comparing the ranks of differ-
ent classification methods in a non-parametric Friedman test based 
on classification performance results from a rigorous CV evaluation 
method using 200 iterations of holdout. Here, smaller numerical val-
ues for rank implies higher performance. The vertical axis presents 
the ranks (better ranks and methods at the top, and worse ranks and 
methods to the bottom). The performance of any two methods are sta-
tistically significantly different from each other, if their ranks differ 
by at least the critical difference (CD), which is noted on top of each 
of the three panels. If a group of methods (annotations on the left 
within each panel) are connected by a line, they are not statistically 
significantly different from each other. Different colored lines here 
present groups of methods that are not significantly different from 

each other in ranks, each one using a different method as its reference 
point. For example, in the leftmost panel presenting the results from 
CN1 vs. AD experiment, the leftmost blue line connects all the meth-
ods between the highest ranked HINT:m = 1000 (ranked 6.96) to the 
HINT:m = 3000 method (ranked 15.06), including themselves, which 
implies they are not statistically significantly different from each 
other. In the same panel, the highest-ranked HINT:m = 1000 method 
is not connected to RS:m = 1000 (least-ranked 24.38) via any of the 
colored lines—hence they are indeed statistically significantly differ-
ent from each other (difference in ranks higher than CD). The values 
of m = 1000, 2000, 3000, 5000, and 10,000 correspond to the follow-
ing total number of non-overlapping patches in the whole cortex: 273, 
136, 97, 74 and 68, respectively.
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(m), or for a fixed EW, replicate the main patterns from the 
ADNI1 dataset in the AIBL dataset.

Future directions

While we present the results from a large number of experi-
ments (n = 90, 6 edge weights at 5 different scales m for the 
3 datasets) covering two large publicly available datasets, 
two disease and age groups and three different levels of sepa-
rability, there is certainly room for further analysis. Future 
studies could consider additional histogram distances, and 
performing the comparison with different types of classifi-
ers (other than SVM such as linear discriminant or random 
forests).

It is possible that lack of sufficiently large sample size 
could be a contributor to the observed lack of statistically 
significant differences. This might especially be the case 
in challenging classification experiments such as CN3 vs. 

AUT. Moreover, given the multi-site nature of these large 
public datasets, properly accounting for the site and other 
relevant confounds (Raamana 2020) would be worthy of fur-
ther investigation. Such a broadening of scope for the study 
is not only computationally very intensive, but we believe 
studying the above is unlikely to change the conclusions. It 
would be nevertheless useful to quantitatively support it.

It would also be interesting to study the impact of differ-
ent atlas choices (other than fsaverage, such as MNI152), 
parcellation (such as (Destrieux et al. 2010)) and subdivi-
sion schemes (functional or geometric or multimodal) (Eick-
hoff et al. 2015; Glasser et al. 2016), potential neuroimag-
ing artifacts and confounds (Churchill et al. 2015; Lerch 
et al. 2017), but this would be demanding not only compu-
tationally but also in expert manpower for quality control 
(typically unavailable). It would also be quite interesting 
to replicate this study in the context of differential diagno-
sis (Raamana et al. 2014a, b). A cross-modal comparison 
(Reid et al. 2015), in terms of predictive performance, with 

Fig. 8   Visualization of the most discriminative regions as derived 
from the CN1 vs. AD experiment at m = 2000. Due to the distrib-
uted nature of the degeneration caused by AD, we expect the MDRs 
to span a wide area of the cortex as observed here. The color of the 

patch on the cortex represents a particular EW metric (labeled on the 
colorbar) that led to its selection, and when multiple methods selected 
the same region (indicating additional importance), we painted it red 
and labeled it “Multiple”
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network-level features derived from modalities such as task-
free fMRI would also be interesting.

Conclusion

We have studied six different ways of constructing weighted 
networks derived from cortical thickness features, based on a 
novel method to derive edge weights based on histogram dis-
tances. We performed a comprehensive model comparison 
based on extensive cross-validation of their predictive utility 
and nonparametric statistical tests. This has been studied 
under three separabilities (ranging from pronounced, mild 
to subtle differences) derived from three independent and 
large publicly available datasets.

Some interesting results of this study based on the single-
subject classification results are:

•	 the simpler methods of edge weight computation such as 
the difference in median thickness are as predictive as the 
sophisticated methods relying on the richer descriptions 
based on complete histograms.

•	 within a given method, the impact of a spatial scale m 
on predictive performance is not significant. The most 
popular way of computing edge weights in group-wise 
analysis i.e. histogram correlation, is shown to be the 
least predictive of disease-status in the context of indi-
vidualized prediction via HiWeNet.

We have also developed and shared multiple open source 
toolboxes called graynet, visualqc and neuropredict to ena-
ble easy reuse of the methods and best practices presented 
in this study.

Fig. 9   Visualization of the most discriminative regions as derived 
from the CN2 vs. MCIc experiment at m = 2000. MDRs in this exper-
iment identify regions in middle temporal lobe, cingulate (anterior 

and inferior), cuneus and precuneus, which are known to be associ-
ated with progressive MCI and prodromal AD



2489Brain Structure and Function (2020) 225:2475–2493	

1 3

Fig. 10   Visualization of the most discriminative regions as derived from the CN3 vs. AUT experiment at m = 2000. These regions cover the lin-
gual, supra-marginal, post- and precentral areas
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Fig. 11   Classification performance for the different network methods 
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discriminating AD2 from their respective control groups (CN4) from 
the AIBL dataset (see Table 2). The performance presented here is a 
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RHsT. It is clear that AUC for different combinations is quite similar 
to each other (as in Fig.  6 for ADNI and ABIDE datasets). That is 
also true either for a fixed m (and different edge weights) or a fixed 
edge weight (and different values of m)
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