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IMPORTANCE Genetic studies of Alzheimer disease have focused on the clinical or pathologic
diagnosis as the primary outcome, but little is known about the genetic basis of the preclinical
phase of the disease.

OBJECTIVE To examine the underlying genetic basis for brain amyloidosis in the preclinical
phase of Alzheimer disease.

DESIGN, SETTING, AND PARTICIPANTS In the first stage of this genetic association study, a
meta-analysis was conducted using genetic and imaging data acquired from 6 multicenter
cohort studies of healthy older individuals between 1994 and 2019: the Anti-Amyloid
Treatment in Asymptomatic Alzheimer Disease Study, the Berkeley Aging Cohort Study, the
Wisconsin Registry for Alzheimer’s Prevention, the Biomarkers of Cognitive Decline Among
Normal Individuals cohort, the Baltimore Longitudinal Study of Aging, and the Alzheimer
Disease Neuroimaging Initiative, which included Alzheimer disease and mild cognitive
impairment. The second stage was designed to validate genetic observations using
pathologic and clinical data from the Religious Orders Study and Rush Memory and Aging
Project. Participants older than 50 years with amyloid positron emission tomographic (PET)
imaging data and DNA from the 6 cohorts were included. The largest cohort, the
Anti-Amyloid Treatment in Asymptomatic Alzheimer Disease Study (n = 3154), was the PET
screening cohort used for a secondary prevention trial designed to slow cognitive decline
associated with brain amyloidosis. Six smaller, longitudinal cohort studies (n = 1160) provided
additional amyloid PET imaging data with existing genetic data. The present study was
conducted from March 29, 2019, to February 19, 2020.

MAIN OUTCOMES AND MEASURES A genome-wide association study of PET imaging amyloid
levels.

RESULTS From the 4314 analyzed participants (age, 52-96 years; 2478 participants [57%]
were women), a novel locus for amyloidosis was noted within RBFOX1 (β = 0.61, P = 3 × 10−9)
in addition to APOE. The RBFOX1 protein localized around plaques, and reduced expression
of RBFOX1 was correlated with higher amyloid-β burden (β = −0.008, P = .002) and worse
cognition (β = 0.007, P = .006) during life in the Religious Orders Study and Rush Memory
and Aging Project cohort.

CONCLUSIONS AND RELEVANCE RBFOX1 encodes a neuronal RNA-binding protein known to be
expressed in neuronal tissues and may play a role in neuronal development. The findings of
this study suggest that RBFOX1 is a novel locus that may be involved in the pathogenesis of
Alzheimer disease.
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A lzheimer disease (AD) is a complex polygenic disease
with high heritability. Genome-wide association stud-
ies (GWAS) have identified more than 25 risk loci that

highlight amyloid processing, lipid metabolism, endocyto-
sis, and innate immunity as important biological factors in the
development of AD.1,2 While much of the genetic work on AD
has focused on clinical diagnosis as the primary outcome, AD
is heterogeneous and has a long preclinical phase when brain
amyloid deposition accumulates before the onset of cogni-
tive impairment.3

The development of amyloid positron emission tomo-
graphic (PET) imaging tracers has provided a biomarker for
diagnosis and risk assessment enabling in vivo detection of
fibrillar amyloid-β before the onset of symptoms.4 The ap-
proval by the US Food and Drug Administration of additional
ligands facilitated the application of amyloid PET imaging in
clinical practice and in research.5 Advancing this biomarker,
Jack et al6 proposed a model in which brain amyloid-β depo-
sition precedes the onset of neurodegeneration and cogni-
tive dysfunction. This model also implied that an amyloid-β
biomarker, such as PET imaging, could identify individuals at
the highest risk for AD long before the diagnosis. Several pre-
vious genetic investigations of brain amyloidosis using amy-
loid PET imaging have found an association with the APOE
locus.7-11 However, to our knowledge, there has been no con-
sistent confirmation of other loci.

Therapeutic efforts have begun to shift focus toward iden-
tifying and treating individuals in the preclinical phase of
disease before onset of neurodegeneration and cognitive de-
cline. Using a PET biomarker of brain amyloidosis to screen par-
ticipants, the Anti-Amyloid Treatment in Asymptomatic Alz-
heimer Disease (A4 Study) clinical trial screened more than
4000 asymptomatic older individuals with amyloid PET
imaging, of whom 1169 had elevated amyloid levels and were
eligible for a prevention trial.12,13 Clinical information and DNA
from these at-risk, asymptomatic study participants pro-
vided an opportunity to identify novel genetic associations with
brain amyloidosis during the preclinical phase of disease. In
addition, the analyses of such data could provide insight into
the mechanisms underlying cerebral amyloid accumulation.

Methods
In this genetic association study, participant data were ac-
quired during the screening process in the A4 Study.12,13 We
also included other cohort studies: the Alzheimer Disease Neu-
roimaging Initiative (ADNI), the Berkeley Aging Cohort Study,
the Wisconsin Registry for Alzheimer’s Prevention (WRAP), the
Biomarkers of Cognitive Decline Among Normal Individuals:
the BIOCARD cohort, and the Baltimore Longitudinal Study of
Aging (BLSA). Vanderbilt University and Columbia University
institutional review boards approved the data analyses. The
present study was conducted from March 29, 2019, to Febru-
ary 19, 2020. This study followed the Strengthening the Re-
porting of Genetic Association Studies (STREGA) reporting
guideline for genotyping, population stratification, haplo-
type modeling, Hardy-Weinberg equilibrium, and replication.14

We also describe how the participant data were selected, how
quantitative traits were harmonized before analyses, the sta-
tistical methods used, and the sources of data.

The A4 Study clinical trial began screening in 2014, re-
cruiting healthy adults aged 65 to 85 years with amyloid PET
imaging.12,13 The ADNI study was launched in 2003 and has
included more than 1500 participants aged 55 to 90 years with
normal cognition, mild cognitive impairment, or AD. In 2001,
WRAP began recruiting participants aged 40 to 65 years who
had a parent with autopsy-confirmed or clinically verified
AD.15,16 The BIOCARD study enrolled middle-aged partici-
pants who were cognitively intact; 75% of the participants had
a first-degree relative with AD. The study began in 1995,
stopped in 2005, and was reestablished in 2009, with annual
clinical and cognitive assessments.17 The neuroimaging sub-
study of the BLSA began in 1994 and included participants
without dementia aged 59 to 85 years who had up to 10 years
of prospective data collection at baseline.18 Amyloid imaging
with PET and carbon 11 Pittsburgh Compound B (C11PiB) was
introduced into the study in 2005.19 The Berkeley Aging Co-
hort Study began enrolling cognitively normal individuals re-
cruited from the local community in 2005. For the amyloid PET
imaging GWAS, we filtered each data set to individuals older
than 50 years who had amyloid PET imaging (either C11PiB or
florbetapir) and genetic data available for analysis. Informed
consent was obtained from participants in each study.

To validate genetic findings, we used autopsy data from
the Religious Orders Study and Rush Memory and Aging Proj-
ect (ROS/MAP), which were 2 harmonized longitudinal stud-
ies enrolling older adults without dementia who underwent
annual clinical evaluations and organ donation at death.20 Both
studies were approved by an institutional review board of Rush
University Medical Center. All participants in ROS/MAP signed
an informed consent, an Anatomical Gift Act form, and a re-
pository consent that allows their data to be repurposed. The
Rush Alzheimer Disease Center resource sharing hub (https://
www.radc.rush.edu/) and the Accelerating Medicines
Partnership–AD Knowledge Portal (syn3219045) provided
access to the data and are available on request with a data use
agreement.

Key Points
Question Is RBFOX1 associated with brain amyloidosis, as
measured by positron emission tomographic imaging, in early and
preclinical Alzheimer disease?

Findings In this genetic association study, a meta-analysis of
amyloid positron emission tomographic imaging data collected on
4314 participants in 6 studies noted genome-wide significant
associations with single-nucleotide variants in a novel locus,
RBFOX1, as well as in APOE. In addition, reduced expression of
RBFOX1 appeared to be associated with increased amyloid burden
and global cognitive decline during life.

Meaning In this study, RBFOX1 appeared to be a novel locus
associated with positron emission tomographic imaging–derived
brain amyloidosis and may be involved in the pathogenesis of
Alzheimer disease.
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Genotyping was performed in each study on different plat-
forms. Data from all cohorts underwent a quality control21 pro-
cess to filter variants not successfully genotyped (missing >5%),
out of Hardy-Weinberg equilibrium (P > 1 × 10−6), or with low
minor allele frequency (<1%). Participants were excluded for
poor genotypic efficiency (missing >1% of variants) if re-
ported and genotyped sex differed if cryptic relatedness was
identified (removed second-degree or closer relatives) or if
large-scale differences in ethnicity/race were identified by prin-
cipal component detection. After these filters, imputation was
performed using the European samples from the HRC r1.1.2016
reference panel (Build 37 Assembly 19) and SHAPEIT phasing
on the Michigan imputation server.22 Postimputation geno-
type data were filtered for imputation quality (R2 >0.9) and mi-
nor allele frequency (<1%). A summary of the quality control
process performed on each data set is reported in eTable 1 in
the Supplement.

Amyloid PET Imaging Acquisition
Protocols for amyloid acquisition differed by site (eTable 2 in
the Supplement). The A4 Study is a large, multisite trial with
florbetapir F 18 (18F) amyloid PET imaging data acquired 50 to
70 minutes postinjection. ADNI 18F-florbetapir and C11PiB data
were acquired using a dynamic 3-dimensional scan on vari-
ous scanner platforms with four 5-minute frames acquired 50
to 70 minutes postinjection. Berkeley C11PiB data were ac-
quired using a full dynamic protocol for 90 minutes (35 total
frames) in a scanner (ECAT EXACT HR+ PET; Siemens). BIO-
CARD and BLSA C11PiB data were acquired on a scanner (GE
Advance; GE Healthcare) using a 70-minute dynamic proto-
col. Similarly, WRAP C11PiB data were acquired on a scanner
using a dynamic 70-minute protocol (ECAT EXACT HR+; Sie-
mens). In all studies, images were reconstructed, averaged,
spatially aligned, interpolated, and smoothed using study-
specific pipelines. Mean standard uptake value ratio and
distribution volume ratio calculations varied by site; all sites
used whole or gray matter cerebellum as the reference
region.

Harmonization of Amyloid Data
Harmonization was performed from composite cortical val-
ues within each site. To ensure that all amyloid values were
on the same scale, we applied a gaussian mixture model23 using
a modification of a recently developed harmonization
algorithm.24 Gaussian mixture models were estimated among
individuals who were cognitively normal within each cohort,
and the mean (SD) was applied to the entire sample. In all cases,
a 2-component model fit the data, confirming that global amy-
loid PET imaging followed a bimodal distribution reflecting
amyloid-negative and amyloid-positive groups. Mean stan-
dard uptake value ratios were scaled and normalized using
the mean and SD estimated from the predicted amyloid-
negative gaussian distribution. The harmonization appropri-
ately overlaid all data sets onto a common scale (eFigure 1 in
the Supplement). As noted in the original harmonization
manuscript, C11PiB has a larger dynamic range compared
with 18F-florbetapir ligands, including a higher ceiling and
wider distribution, particularly among amyloid-positive

individuals.24 Consistently, we observed higher values
among the harmonized C11PiB samples. An alternative
approach to harmonization is to use the characteristics of
both gaussian distributions to transform all C11PiB values to
18F-florbetapir values.24 As a sensitivity analysis, we per-
formed harmonization using this full transformation and
compared results.

Data on RNA sequencing from the dorsolateral prefrontal
cortex of individuals participating in ROS/MAP were used for
validation of candidate genes from the GWAS analysis. De-
tails of the RNA sequencing methods have been published
previously.25

Autopsy measures of β-amyloid were quantified in ROS/
MAP using immunohistochemistry.26 Immunohistochemis-
try estimates of amyloid (anti-Aβ) were quantified from 8 brain
regions, including the angular gyrus, hippocampus, entorhi-
nal, inferior temporal, calcarine, middle frontal, superior
frontal, and anterior cingulate cortices.

In ROS/MAP, a comprehensive neuropsychological proto-
col was completed at each study visit. For the present analy-
sis, we leveraged both a global composite measure of cogni-
tion, quantified previously based on z scores from 17 total
tests that assess 5 different cognitive domains (semantic
memory, episodic memory, perceptual orientation, percep-
tual speed, and working memory)27 and the Mini-Mental
State Examination.28

Additional human brain tissues from Vanderbilt Univer-
sity Medical Center were obtained from decedents with AD
(n = 5) and age-matched controls (n = 5) after approval of the
Vanderbilt University Medical Institutional Review Board.
Fixed tissue was sectioned at 50 μm on a vibratome (Leica Bio-
systems) to produce floating sections. Antigen retrieval was
performed by heating sections to 95 °C in a borate buffer for
20 minutes. Sections were photobleached for 48 hours using
a light-emitting diode microarry (HTG Supply), blocked in bo-
vine serum albumin, 4%, and incubated with the primary an-
tibody (anti-RBFOX1; Atlas, 1:100; Cathepsin B; R&D, 1:500; or
pan-neurofilament; Biolegend, 1:150) overnight. After wash-
ing, sections were incubated with a conjugated secondary an-
tibody (Alexa Fluor; Abcam, 1:1000) for 4 hours and then were
washed, counterstained with methoxy-X04 (100 μM; Tocris)
to identify amyloid-β and tau aggregates, and mounted to slides
(Prolong Glass Antifade Mountant; Invitrogen). Images were
produced on a laser scanning confocal microscope (LSM710;
Zeiss) using ×20 or ×63 objectives and a minimum resolution
of at least 1024 × 1024 pixels. Images then were processed
(ImageJ).29,30

Statistical Analysis
Genome-wide association studies were completed using
PLINK, version 1.931 and R, version 3.6.2 (R Project for Statis-
tical Computing), with additive coding and the harmonized
continuous amyloid PET metric set as a quantitative out-
come. Genome-wide association studies were completed in
each cohort separately. Covariates included age, sex, and the
first 3 principal components to account for unmeasured popu-
lation stratification. Meta-analyses of all results were per-
formed using the inverse-weighted method in METAL.32

Research Original Investigation Association Between Common Variants in RBFOX1 and Brain Amyloidosis in Alzheimer Disease

1290 JAMA Neurology October 2020 Volume 77, Number 10 (Reprinted) jamaneurology.com

© 2020 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ by a SCELC - University of Southern California User  on 10/27/2020

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2020.1760?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2020.1760
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2020.1760?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2020.1760
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2020.1760?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2020.1760
http://www.jamaneurology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2020.1760


Results were restricted to variants present in all cohorts.
Significance was set a priori to P = 5 × 10−8. The R packages
EasyStrata,33 qqman,34 and Metafor35 were used for data vi-
sualization, with additional variant-level visualization com-
pleted using LocusZoom.36

We used RNA sequencing data from ROS/MAP to vali-
date candidate genes or loci. First, we assessed the associa-
tion between gene expression and amyloid-β using linear
regression. Immunohistochemistry measures of amyloid-β
were square root transformed before analysis. Covariates
included age at death, sex, and postmortem interval. For
analyses of longitudinal cognitive performance, we per-
formed a mixed-effects regression model with the same
covariates. The interval (years prior to death) and intercept
were entered as both fixed and random effects in all longitu-
dinal models.

Results
Clinical data for the 3154 individuals in the A4 Study included
those whose race/ethnicity was determined genetically to be
non-Hispanic white (n = 2960), African American (n = 89), and
Hispanic (n = 105). In addition, 6 amyloid PET data sets with par-
ticipants of non-Hispanic white ethnicity (n = 1160) were ana-
lyzed (Table 1). Together, the participants ranged from age 52
to 96 years; 2478 of the participants (57%) were women. With
the exception of the 2 ADNI cohorts, 99% of the participants had
normal cognition; with those cohorts added, cognition was
normal in 90% of the participants. Analysis of variance of
each demographic variable indicated significant differences
across the cohorts (Table 1). For example, percent women
(F8,4305 = 10.8, P < .001), age (F8,4305 = 58.5, P < .001), and per-
cent APOE-positive (F8,4305 = 3.2, P < .001) were significantly dif-
ferent between groups.

Combining GWAS statistics and harmonized PET imaging
amyloid data from each cohort, we completed a meta-
analysis of all 6 studies to identify novel genetic associations
with brain amyloid levels (n = 4314). We observed a robust as-
sociation with brain amyloidosis at the APOE locus (top single-
nucleotide variant [SNV; formerly SNP]: rs6857, β = 1.67,
P = 5.79 × 10−132), similar in magnitude to previous reports.7-11

To determine whether other genes in the APOE region
contributed to the association, we performed conditional analy-
ses covarying for APOE ε4 and APOE ε2 status. All associa-
tions in the region were no longer significant (eFigure 2 in the
Supplement).

We observed a novel risk locus on chromosome 16p.13.3
(top SNV: rs56081887, β = 0.61, P = 3 × 10−9) that included
RBFOX1 (Figure 1A and B). Ten SNVs within RBFOX1 reached
genome-wide significance in meta-analysis; the top 2 are dis-
played in Table 2. RBFOX1 variants were associated with in-
creased amyloid levels in all data sets except for Hispanic in-
dividuals in the A4 Study (Figure 1C); however, the small
sample size of the Hispanic cohort and the observation that a
higher proportion of amyloid-positive individuals were His-
panic (40%) compared with the African American cohort (16%)
precluded firm conclusions. All genome-wide significant SNVs
in RBFOX1 were in moderate to high linkage disequilibrium
(non-Hispanic white r2 all >0.84; African American r2 all >0.53).
Results for all variants with P < 19 × 10−5 are presented in
eTable 3 in the Supplement. The corresponding QQ-plot is pre-
sented in eFigure 3 in the Supplement. There was no compel-
ling evidence for an interaction with APOE ε4. Results were
consistent when applying the alternative harmonization
algorithm.

To validate and augment genetic findings, we analyzed
RNA sequencing data from the prefrontal cortex in 600 indi-
viduals from the ROS/MAP study (Table 3). Lower levels of
RBFOX1 messenger RNA (mRNA) in prefrontal cortex were as-

Table 1. Amyloid PET GWAS Participant Characteristics by Data Set

Characteristic

Mean (SD)a

A4 NHW A4 AA A4 Hispanic ADNI ADNI Berkeley BIOCARD BLSA WRAP
Amyloid acquisition 18F-florbetapir 18F-florbetapir 18F-florbetapir 18F-florbetapir C11PiB C11PiB C11PiB C11PiB C11PiB

No. of participants 2960 89 105 623 88 172 44 144 89

Women, No. (%) 1768 (60) 63 (71) 63 (60) 279 (45) 27 (31) 101 (59) 28 (64) 91 (63) 58 (65)

Normal cognition,
No. (%)

2960 (100) 89 (100) 105 (100) 217 (33) 63 (72) 172 (100) 44 (100) 138 (96) 87 (98)

Age, y 71.4 (4.8) 70.3 (4.6) 71.9 (4.9) 74.6 (7.6) 76.5 (7.3) 74.4 (6.4) 70.8 (6.1) 77.2 (7.9) 67.3 (6.2)

APOE4 carriers,
No. (%)

1057 (36) 33 (37) 33 (31) 255 (41) 45 (51) 48 (28) 14 (32) 39 (27) 35 (39)

Amyloid
(standardized)

1.4 (2.5) 0.49 (1.5) 2.2 (4.5) 2.7 (3.4) 3.9 (3.0) 1.8 (4.1) 2.0 (4.5) 3.9 (6.4) 2.7 (5.1)

NC participants
only

1.4 (2.5) 0.49 (1.5) 2.2 (4.5) 1.4 (2.8) 2.2 (2.6) 1.8 (4.1) 2.0 (4.5) 3.5 (6.1) 2.3 (4.7)

AD participants
only

NA NA NA 5.2 (3.1) 5.1 (2.7) NA NA 15.3 (11.3) NA

Abbreviations: A4, Anti-Amyloid Treatment in Asymptomatic Alzheimer Disease
screening cohort; AA, African American; AD, Alzheimer disease;
ADNI, Alzheimer Disease Neuroimaging Initiative; BIOCARD, Biomarkers of
Cognitive Decline Among Normal Individuals cohort; BLSA, Baltimore
Longitudinal Study of Aging; GWAS, genome-wide association studies;
NA, not applicable; NC, normal cognition; NHW, non-Hispanic white;

PET, positron emission tomographic; C11PiB, Pittsburgh Compound B;
WRAP, Wisconsin Registry for Alzheimer’s Prevention.
a Analysis of variance indicated significant differences (P < .001) across cohorts

for all demographic categories.
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sociated with a higher amyloid β burden (β = −0.008, P = .002)
(eFigure 4 in the Supplement). Associations remained signifi-
cant when covarying for differences in cell type composition

across samples (eTable 4 in the Supplement). Lower RBFOX1
mRNA levels were also associated with poorer global cogni-
tive performance at the final visit before death (β = 0.007,

Figure 1. Association of 2 Single-Nucleotide Variants in the RBFOX1 Gene With Amyloid Levels

rs56081887 meta-analysis, P = 3 × 10–9C
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P = .006) and a faster rate of global cognitive decline across
all study visits (β = 0.001, P = 4 × 10−5) (eFigure 5 in the Supple-
ment). Expression of RBFOX1 explained 1.5% of the variance
in cognitive trajectories beyond covariates and remained sta-
tistically significant when covarying for amyloid and tau, which
explained 5% and 15% of variance in cognitive trajectories, re-
spectively. When assessing the results of the Mini-Mental State
Examination for clinical interpretation, an SD decrease in
RBFOX1 was associated with an annual 0.2-point decrease in
the Mini-Mental State Examination score.

In the microscopic evaluation, RBFOX1 protein localized
to neurons in control brains and colocalized with neuropil
threads inside dystrophic neurites surrounding amyloid
plaques in AD brains (Figure 2). In addition, we observed some
colocalization of RBFOX1 with neurofibrillary tangles in AD.
Both observations support a potential role for RBFOX1 in AD
pathogenesis.

Discussion
The goal of this investigation was to examine the genetic ba-
sis of brain amyloidosis in preclinical AD. Using a collection of
6 publicly available data sets in a meta-analysis, we repli-
cated the previously reported association between APOE and
brain amyloidosis. In addition, we identified a novel locus on
chromosome 16p13.3, RBFOX1, which encodes ataxin-2–
binding protein, an RNA-binding protein. In support of the
genetic findings reported herein, evidence for an association
between variants in the RBFOX1 locus and AD were observed
in an African American GWAS of AD (rs79537509, P = 5.3 × 10−7)
(B. Kunkle, PhD, written communication, September 19, 2019),
in a family-based study,37 and in a study of cerebral glucose
metabolism in ADNI.38

Previous studies have used amyloid PET imaging to in-
vestigate the genetic basis of brain amyloidosis. A meta-

analysis of 3 PET-PiB GWAS (n = 983) showed an association
with APOE but no other genome-wide significant loci.8 In con-
trast, using 18F-florbetapir PET imaging within the ADNI co-
hort, 2 GWAS studies by Ramanan et al10,11 reported associa-
tions between brain amyloidosis and APOE and 2 other loci in
a cross-sectional and longitudinal analysis, respectively: BCHE
(butyrylcholinesterase) and IL1RAP (interleukin-1 receptor ac-
cessory protein). Although we observed an association for the
BCHE SNV (rs509208, P = .007), the association was solely
driven by the ADNI cohort. Therefore, neither previous locus
was detected in the present study. The small sample size of pre-
vious studies likely limited the ability to detect the associa-
tion with RBFOX1.

RBFOX1 encodes an RNA-binding protein expressed in
muscle, heart, and neurons and is a member of the evolution-
arily conserved Fox-1 family of RNA-binding proteins that bind
to ataxin-2 and regulate alternative splicing.39 In addition,
mammalian RBFOX1 is present in the cytoplasm where it binds
to 3 prime untranslated regions of multiple mRNAs, regulat-
ing their stability.40 RBFOX1 is a highly conserved protein
that can regulate splicing and transcriptional networks in hu-
man neuronal development, particularly in neuronal migra-
tion and synapse network formation within the cerebral
cortex.40,41 In addition to a potential role as the binding pro-
tein for ataxin-2 in spinocerebellar ataxia type 2, deletions
and other structural variants in the RBFOX1 gene increase the
risk of generalized epilepsy, intellectual disability, autism
spectrum disorder, and developmental disorders associated
with aggression.42-44

While the exact mechanisms relating dysfunctional hu-
man RBFOX proteins with various neuropsychiatric disor-
ders are not fully understood, there is evidence for multiple
possible molecular causal pathways. Downregulation of
RBFOX1 leads to destabilization of both nuclear and cytoplas-
mic mRNAs encoding for synaptic transmission proteins and
loss of synaptic function in AD.45,46 RBFOX1 may regulate al-

Table 2. Top 2 Genome-Wide RBFOX1 Variantsa

Single-nucleotide variant Chr:BP MAF Gene Function

Meta-analysis

No. β (95% CI) P value
rs56081887 16:6903160 0.09 RBFOX1 Intron 4314 0.61 (0.41-0.81) 3 × 109

rs34860942 16:6919189 0.09 RBFOX1 Intron 4314 0.59 (0.39-0.80) 8 × 109

Abbreviations: BP, base pair; Chr, chromosome; MAF, minor allele frequency.
a Top 2 outside of APOE.

Table 3. ROS/MAP Participant Characteristics

Characteristic Brain tissue gene expressiona

No. of participants 600

Age at death, mean (SD), y 88.61 (6.64)

Education, mean (SD), y 16.48 (3.51)

Women, No. (%) 384 (64)

Non-Hispanic white, No. (%) 586 (98)

APOE4 carriers, No. (%) 151 (25)

AD, No. (%) 215 (36)

Postmortem interval, mean (SD), h 6.83 (4.86)

Abbreviations: AD, Alzheimer
disease; ROS/MAP, Religious Orders
Study and Rush Memory and Aging
Project.
a Gene expression data were

collected from prefrontal cortex
tissue of participants from
ROS/MAP. Brain amyloid levels were
measured using
immunohistochemistry.
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ternative splicing of APP,47 which may be particularly rel-
evant to the amyloid associations observed in the present
analysis. Alternatively, downregulation of RBFOX1 in AD may
directly affect the stability and abundance of mRNAs that en-
code synaptic transmission proteins.45 Furthermore, be-
cause FOX1 and ataxin-2 are also present in the trans-Golgi
network, a trafficking or recycling mechanism might be im-
plicated. Clearly, additional experimental work will be needed
to clarify the potential role of RBFOX1 in brain amyloidosis and
AD dementia. Aberrant colocalization of disease-associated
proteins has been previously reported in other neurodegen-
erative diseases, such as the TDP-43 protein in amyotrophic
lateral sclerosis and frontotemporal lobar degeneration.48 We
found colocalization of the RBFOX1 protein not only just
around amyloid plaques but also with neurofibrillary tangles.
These results imply that the protein may play a general role
in AD-related proteinopathy.

We also observed associations between variants in the APOE
region and brain amyloidosis, consistent with previous
reports leveraging autopsy measures of neuropathologic
characteristics,49 cerebrospinal fluid biomarkers of
amyloidosis,50 and PET biomarkers of amyloidosis.8,10,11 The lo-
cus surrounding APOE, chromosome 19q13.32, includes a num-
ber of potential genes, such as TOMM40, APOC1, and PVRL2
(eFigure 2 in the Supplement), but conditional analyses indi-

cated that the genetic association was driven by APOE. APOE
is thought to relate to AD through an amyloid clearance path-
way, with APOE ε4 associated with earlier deposition of amy-
loid even during preclinical stages of disease.

Strengths and Limitations
The strengths of this study include the large sample size, the
number of asymptomatic individuals allowing a focus on pre-
clinical disease, and comprehensive validation analyses at the
RNA and protein level. Study limitations include clinical hetero-
geneity across studies, overrepresentation of non-Hispanic white
women with high levels of education, and our reliance on har-
monized data acquired on different scanners and processed in
different ways. Although we limited these factors statistically
when possible, residual confounding cannot be ruled out.

Conclusions
To our knowledge, this is the largest GWAS of PET amyloid
imaging; we report a novel genetic risk locus for brain amy-
loidosis within RBFOX1. Additional evidence at the tran-
script and protein level may further implicate RBFOX1 as a
novel genetic risk locus for brain amyloidosis and a candidate
for early progression in AD.

Figure 2. Microscopy of RBFOX1, Neuropil Threads, and Neurofibrillary Tangles

Control brainA

Alzheimer disease brainB

Alzheimer disease brainC

RBFOX1 Neurofilament Methoxy-X04

RBFOX1 Neurofilament Methoxy-X04 20 μm

20 μm

20 μm

RBFOX1 Cathepsin B Methoxy-X04

A, In postmortem control human
brain tissue, RBFOX 1 (red) is localized
to neurons (neurofilament, green).
B, In Alzheimer disease brain, RBFOX1
localizes to neuropil threads around
β-amyloid plaques (methoxy-X04,
blue). C, In Alzheimer disease brain,
RBFOX1 is present in tau tangles
(arrowheads) and neuropil threads
running through dystrophic neurites
(cathepsin B, green) surrounding
β-amyloid plaques (methoxy-X04,
blue). Insets: cross-section through a
dystrophic neurite showing
lysosomes (green) surrounding a core
of tau (blue) on which RBFOX1 (red) is
enriched. Scale bar is 20 μm. Width of
inset box is 12 μm.
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Martin, RN; Nancy Kowalksi, MS, RNC; Melanie
Keltz, RN; Bonnie S. Goldstein, MS, NP (past
investigator); Kelly M. Makino, BS (past
investigator); M. Saleem Ismail, MD (past
investigator); Connie Brand, RN (past investigator);
University of California, Irvine IMIND: Gaby Thai,
MD; Aimee Pierce, MD; Beatriz Yanez, RN; Elizabeth
Sosa, PhD; Megan Witbracht, PhD; University of
Texas Southwestern Medical School: Kyle Womack,
MD; Dana Mathews, MD, PhD; Mary Quiceno, MD;
Emory University: Allan I. Levey, MD, PhD; James J.
Lah, MD, PhD; Janet S. Cellar, DNP, PMHCNS-BC;
University of Kansas, Medical Center: Jeffrey M.
Burns, MD; Russell H. Swerdlow, MD; William M.
Brooks, PhD; University of California, Los Angeles:
Ellen Woo, PhD; Daniel H.S. Silverman, MD, PhD;
Edmond Teng, MD, PhD; Sarah Kremen, MD; Liana
Apostolova, MD (past investigator); Kathleen
Tingus, PhD (past investigator); Po H. Lu, PsyD
(past investigator); George Bartzokis, MD (past
investigator); Mayo Clinic, Jacksonville: Neill R
Graff-Radford, MBBCH, FRCP (London); Francine
Parfitt, MSH, CCRC; Kim Poki-Walker, BA; Indiana
University: Martin R. Farlow, MD; Ann Marie Hake,
MD; Brandy R. Matthews, MD (past investigator);
Jared R. Brosch, MD; Scott Herring, RN, CCRC; Yale
University School of Medicine: Christopher H.
van Dyck, MD; Richard E. Carson, PhD; Pradeep
Varma, MD; McGill University, Montreal-Jewish
General Hospital: Howard Chertkow, MD; Howard
Bergman, MD; Chris Hosein, MEd; Sunnybrook
Health Sciences, Ontario: Sandra Black, MD; Bojana
Stefanovic, PhD; Chris (Chinthaka) Heyn, BSC, PhD,
MD; U.B.C. Clinic for AD & Related Disorders: Ging-
Yuek Robin Hsiung, MD, MHSc; Benita Mudge, BS;
Vesna Sossi, PhD; Howard Feldman, MD (past
investigator); Michele Assaly, MA (past
investigator); Cognitive Neurology - St Joseph's,
Ontario: Elizabeth Finger, MD; Stephen Pasternack,
MD, PhD; William Pavlosky, MD; Irina Rachinsky, MD
(past investigator); Dick Drost, PhD (past
investigator); Andrew Kertesz, MD (past
investigator); Cleveland Clinic Lou Ruvo Center for
Brain Health: Charles Bernick, MD, MPH; Donna
Munic, PhD; Northwestern University: Marek-
Marsel Mesulam, MD; Emily Rogalski, PhD; Kristine
Lipowski, MA; Sandra Weintraub, PhD; Borna
Bonakdarpour, MD; Diana Kerwin, MD (past
investigator); Chuang-Kuo Wu, MD, PhD (past
investigator); Nancy Johnson, PhD (past
investigator); Premiere Research Institute (Palm
Beach Neurology): Carl Sadowsky, MD; Teresa
Villena, MD; Georgetown University Medical
Center: Raymond Scott Turner, MD, PhD; Kathleen
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Johnson, NP Brigid Reynolds, NP; Brigham and
Women's Hospital: Reisa A. Sperling, MD; Keith A.
Johnson, MD; Gad A. Marshall, MD; Stanford
University: Jerome Yesavage, MD; Joy L. Taylor,
PhD; Steven Chao, MD, PhD; Barton Lane, MD
(past investigator); Allyson Rosen, PhD (past
investigator); Jared Tinklenberg, MD (past
investigator); Banner Sun Health Research Institute:
Edward Zamrini, MD; Christine M. Belden, PsyD;
Sherye A. Sirrel, CCRC Boston University: Neil
Kowall, MD; Ronald Killiany, PhD; Andrew E.
Budson, MD; Alexander Norbash, MD (past
investigator); Patricia Lynn Johnson, BA (past
investigator); Howard University: Thomas O.
Obisesan, MD, MPH; Ntekim E. Oyonumo, MD, PhD;
Joanne Allard, PhD; Olu Ogunlana, BPharm; Case
Western Reserve University: Alan Lerner, MD; Paula
Ogrocki, PhD; Curtis Tatsuoka, PhD; Parianne
Fatica, BA, CCRC; University of California, Davis –
Sacramento: Evan Fletcher, PhD; Pauline Maillard,
PhD; John Olichney, MD; Charles DeCarli, MD;
Owen Carmichael, PhD (past investigator);
Neurological Care of CNY: Smita Kittur, MD (past
investigator); Parkwood Institute: Michael Borrie,
MB ChB; T-Y Lee, PhD; Rob Bartha, PhD; University
of Wisconsin: Sterling Johnson, PhD; Sanjay
Asthana, MD; Cynthia M. Carlsson, MD, MS; Banner
Alzheimer's Institute: Pierre Tariot, MD; Anna
Burke, MD; Joel Hetelle, BS; Kathryn DeMarco, BS;
Nadira Trncic, MD, PhD, CCRC (past investigator);
Adam Fleisher, MD (past investigator); Stephanie
Reeder, BA (past investigator); Dent Neurologic
Institute: Vernice Bates, MD; Horacio Capote, MD;
Michelle Rainka, PharmD, CCRP; The Ohio State
University: Douglas W. Scharre, MD; Maria Kataki,
MD, PhD; Rawan Tarawneh, MD; Albany Medical
College: Earl A. Zimmerman, MD; Dzintra Celmins,
MD; David Hart, MD; Hartford Hospital, Olin
Neuropsychiatry Research Center: Godfrey D.
Pearlsoinn, MD; Karen Blank, MD; Karen Anderson,
RN; Dartmouth-Hitchcock Medical Center: Laura A.
Flashman, PhD; Marc Seltzer, MD; Mary L. Hynes,
RN, MPH; Robert B. Santulli, MD (past investigator);
Wake Forest University Health Sciences: Kaycee M.
Sink, MD, MAS; Mia Yang, MD; Akiva Mintz, MD,
PhD; Rhode Island Hospital: Brian R. Ott, MD;
Geoffrey Tremont, PhD; Lori A. Daiello, Pharm.D,
ScM; Butler Hospital: Courtney Bodge, PhD;
Stephen Salloway, MD, MS; Paul Malloy, PhD;
Stephen Correia, PhD; Athena Lee, PhD; University
of California, San Francisco: Howard J. Rosen, MD;
Bruce L. Miller, MD; David Perry, MD; Medical
University South Carolina: Jacobo Mintzer, MD,
MBA; Kenneth Spicer, MD, PhD; David Bachman,
MD; St Joseph’s Health Care: Elizabeth Finger, MD;
Stephen Pasternak, MD; Irina Rachinsky, MD; John
Rogers, MD; Andrew Kertesz, MD (past
investigator); Dick Drost, MD (past investigator);
Nathan Kline Institute: Nunzio Pomara, MD;
Raymundo Hernando, MD; Antero Sarrael, MD;
University of Iowa College of Medicine: Delwyn D.
Miller, PharmD, MD; Karen Ekstam Smith, RN;
Hristina Koleva, MD; Ki Won Nam, MD; Hyungsub
Shim, MD; Susan K. Schultz, MD (past investigator);
Cornell University: Norman Relkin, MD, PhD; Gloria
Chiang, MD; Michael Lin, MD; Lisa Ravdin, PhD;
University of South Florida USF Health Byrd
Alzheimer’s Institute: Amanda Smith, MD; Christi
Leach, MD; Balebail Ashok Raj, MD (past
investigator); Kristin Fargher, MD (past
investigator).

Additional Information: The A4 Study and LEARN
Study are led by Dr Reisa Sperling at Brigham and

Women’s Hospital, Harvard Medical School and
Dr Paul Aisen at ATRI, University of Southern
California. The A4 and LEARN Studies are
coordinated by ATRI at the University of Southern
California, and the data are made available through
the Laboratory for Neuro Imaging at the University
of Southern California. The participants screening
for the A4 Study provided permission to share their
deidentified data to advance the quest to find a
successful treatment for Alzheimer’s disease. We
acknowledge the dedication of all the participants,
the site personnel, and all of the partnership team
members who continue to make the A4 and LEARN
Studies possible. The data on the ADNI study are
available at http://www.adni-info.org and the
complete A4 Study Team list is available at https://
a4study.org/a4-study-team/. Biogen Inc provided
support for genotyping of the A4 Study cohort.
Data from the Religious Orders Study and Rush
Memory and Aging Project (ROS/MAP) can be
requested at https://www.radc.rush.edu/. The
PLINK program is available at https://www.cog-
genomics.org/plink/1.9.
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