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A B S T R A C T   

Artificial intelligence (AI)-based diagnostic systems provide less error-prone and safer support to clinicians, 
enhancing the medical decision-making process. This study presents a smart and reliable healthcare framework 
for detecting Alzheimer’s disease (AD) progression. Early detection of AD before the onset of clinical symptoms is 
the most crucial step in starting timely treatment. To predict the conversion of cognitively normal patients to 
those with AD, three-dimensional 3D magnetic resonance imaging (MRI) whole-brain neuroimaging methods 
have been extensively studied. However, depending on the 3D volume, this method is computationally expen
sive. To solve this problem, we used an approximate rank pooling method originally designed for video action 
recognition with a 3D MRI volume to obtain a compressed representation of multiple two-dimensional (2D) MRI 
slices. This study proposes a hybrid multimodal CNN-BiLSTM deep model for AD progression detection, in which 
the resulting dynamic 2D images are fused with cognitive features. Moreover, a novel explainable AI approach is 
proposed to provide visual explanations using the resulting longitudinal 2D dynamic images. Temporal expla
nations were provided by visualizing the affected brain regions captured using longitudinal 2D MRIs. By utilizing 
a sample of 1,692 subjects with multimodal data from the Alzheimer’s Disease Neuroimaging Initiative dataset, 
our method was assessed using a 10-fold cross-validation process. The model achieved an area under the receiver 
operating characteristics curve (AUC) of 94% using longitudinal 2D three-time-step dynamic image data. The 
fusion of 2D dynamic images with cognitive features enhanced the performance by 2% in terms of the AUC. 
Patients who gradually develop AD, show changes in various brain regions. For such patients, our system 
highlights the critical role of the hippocampus, medial amygdala, caudal hippocampus, and lateral amygdala at 
the initial time steps. In the late stages of AD, the system detects abnormalities in extra brain regions such as the 
medial temporal gyrus, superior temporal gyrus, fusiform gyrus, and caudal hippocampus; indicating that pa
tients have completely progressed to AD.   

1. Introduction 

Cognitive decline and memory loss are prominent hallmarks of 
Alzheimer’s disease (AD) that develop over time. AD has a significant 
impact on approximately 50 million individuals worldwide [1]. The 
number of AD cases is projected to increase to 75 million by 2030 and 

reach a 135.5 million by 2050 [1]. AD has a high financial burden, with 
global expenses estimated at $604 billion in 2010 [2]. In addition, 
caring for people with AD can have a physical and emotional impact on 
families and caregivers. The pathology of AD is characterized by several 
years of preclinical progression before the onset of clinical symptoms, 
which makes a timely diagnosis difficult. Mild cognitive impairment 
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(MCI), a precursor of AD, has an annual conversion rate of 10-25% [3]. 
Early identification of MCI before the onset of irreversible cognitive 
damage is imperative for preventive interventions. However, the high 
subjectivity and variability of cognitive and neuroimaging biomarkers 
make diagnosis challenging. Researchers have successfully used ma
chine learning (ML)-based methodologies to address this challenge. 
Equipped with sophisticated computational capabilities and the ability 
to learn from complex data patterns, ML algorithms can efficiently 
identify subtle alterations in cognitive and neuroimaging biomarkers 
that may go unnoticed by human assessment [4]. Such applications of 
ML have demonstrated encouraging potential for the early diagnosis of 
MCI and the prediction of progression to AD. Bron et al, [5] organized 
the CADDementia challenge, which aimed to benchmark and compare 
various classification algorithms for three diagnostic groups, namely 
AD, MCI, and normal cognition (NC), employing a multicenter dataset. 
The algorithms were assessed using a test set of 354 magnetic resonance 
imaging (MRI) scans, and the algorithm with the best performance 
yielded an area under the receiver operating characterestics (ROC) 
curve (AUC) of 78.8%. The study involved 15 research teams and 
leveraged feature extraction strategies that encompassed voxel-based 
morphometry or a fusion of features including volume, cortical thick
ness, shape, and intensity. Zang et al. [6] proposed a hybrid diagnostic 
method based on a deep convolutional neural network (CNN) and a 
support vector machine (SVM) to classify early (E)MCI versus NC based 
on 120 three-dimensional (3D) sMRI images from the Alzheimer’s Dis
ease Neuroimaging Initiative (ADNI). The VGG16 CNN was trained on 
two-dimensional (2D) slice images using a transfer learning technique. 
Deep features were extracted and fused for least absolute shrinkage and 
selection operator (LASSO) feature selection and SVM classification, 
resulting in improved classification performance and reduced training 
time. This method overcomes the limitations of traditional ML and 
promotes the development of computer-aided EMCI diagnostics using 
volumetric sMRI features. Chang et al. [7] presented an eight-layer deep 
CNN model that addressed the issue of insufficient data samples by 
separating the training data from the original data. The model also 
utilized batch normalization technology to normalize the input of each 
layer into a mini-batch, which improved the gradient reliability and 
accelerated learning convergence. The study implemented a dropout 
method to alleviate overfitting and computational consumption and 
outperformed six state-of-the-art approaches in terms of accuracy. 

The primary basis for AD research is neuroimaging, especially MRI 
[8,9]. Although MRI is a crucial neuroimaging modality for detecting 
AD, combining it with other modalities can provide a complete picture 
of the patient’s condition and improve the accuracy of the progression 
model. Disease diagnosis based on unimodal medical data may affect the 
overall diagnosis of a patient’s potential cognitive behavior because of 
the lack of available knowledge for clinicians. However, multimodal 
systems can produce complete insights, comprehensive results, and 
consistent behaviors [10], making them more accurate and acceptable 
diagnostic systems for the medical community than single-mode sys
tems. Numerous studies have employed multimodal data, utilizing 
cognitive scores such as the Mini-Mental State Examination (MMSE) and 
Alzheimer’s Disease Assessment Score (ADAS), along with neuro
imaging, to detect the progression of AD [11]. The image fusion 
approach proposed by Song et al. [12] combines gray matter informa
tion from different types of neuroimaging data such as MRI and positron 
emission tomography (PET) to generate an integrated input training 
data. To assess the effectiveness of various modalities in AD classifica
tion tasks, simple and multi-scale 3D CNN models were developed. Ex
periments from this study demonstrated that multimodal fusion, with its 
robust representation of information, can enhance the disease identifi
cation process and accommodate a diverse set of deep neural networks. 
This model achieves the highest classification accuracy (95%). Xu et al. 
[13] proposed a weighted multimodal SRC system that combined 
training data from multiple sources such as MRI and other variants of 
PET scans and investigated its accuracy and robustness for people with 

cognitive impairments. The experimental results reported in this study 
suggest that our method outperforms all other state-of-the-art multi- 
modal classification algorithms in the AD domain. Huang et al. [14] 
suggested a sparse composite linear discriminant analysis (LDA) model 
to identify disease-related brain regions using multimodal data such as 
MRI and PET. In this approach, the LDA parameters are divided into two 
parts: a common parameter shared by all data sources and a parameter 
unique to each data source. In this way, they were able to analyze all 
data sources together and use their strengths. Thus, we obtained highly 
accurate diagnostic results for the AD domain. Gray et al. [15] trained a 
random forest model (RF) for normal cognition (NC)vs. mild cognitive 
impairment (MCI) vs. AD classes using four modalities: fluorodeox
yglucose FDG-PET, MRI, cerebrospinal fluid (CSF), and genetic features. 
While all these studies obtained data from only one baseline visit with no 
further data collection, the utilization of multimodal data for the disease 
diagnostic process could be enhanced if researchers considered the time 
dimension of the collected data. This allows them to investigate the 
impact of changes in a progressive manner over time and potentially 
improve classification efficacy. The most essential information charac
terizing the progress of a disease is eliminated if subsequent time in
tervals are omitted from a given dataset [16]. 

The assessment of neurodegenerative diseases, particularly AD, 
which is a severe form of chronic cognitive impairment, greatly benefits 
from the management and analysis of time-series data. Moreover, dis
tinguishing between the CN and AD based solely on baseline or single- 
visit data poses a significant challenge in the analysis of degenerative 
brain diseases [17]. For instance, Alvi et al. [18] proposed a novel 
approach for detecting patients with MCI by integrating conventional 
ML and deep learning (DL) algorithms. Their framework included the 
use of gated recurrent unit and long short-term memory (LSTM) models 
as feature extractors. The extracted features were then fed into the 
support vector machine (SVM) and k-nearest neighbors (KNN) models to 
distinguish between patients with CN and those with MCI. They used a 
publicly available electroencephalogram (EEG) dataset and pre- 
processed the data by applying an average filter to remove unwanted 
signals. This study reported a classification accuracy of 95% for distin
guish between the MCI and CN classes. Lei et al. [19] proposed a DL- 
based model to identify patients with early MCI based on longitudinal 
data. To accomplish this, they first constructed a brain function con
nectivity network consisting of a similarity group network to effectively 
reconstruct brain networks. The data collected from the brain networks 
were further processed using an LSTM network with self-attention to 
utilize more refined features, thereby improving the detection of 
diseased patients. The authors utilized the ADNI longitudinal data with 
two-fold steps covering 1 year. Lee et al. [20] predicted the trans
formation of a patient from a cognitively impaired to AD state using 
multimodal longitudinal data with varying time steps. They proposed a 
gated recurrent unit (GRU) model that effectively captures the temporal 
relationships within each modality in longitudinal data and predicts the 
progression to AD. This study reported a maximum accuracy of 81%. El- 
Sappagh et al. [21] introduced a two-stage hybrid deep neural network 
(DNN) model that utilized an LSTM module. The initial stage involved 
classifying the health status of the patients into NC, MCI, or AD. Sub
sequently, the second stage involved utilizing a regression model to 
predict the conversion time for patients with progressive (p)MCI to AD. 
Multimodal data in building DL-based diagnostic systems lead to the 
development of medically intuitive models, as demonstrated in previous 
studies. Also, 3D volumetric data such as CT and MRI have been used in 
many studies since the introduction of DL technologies into the medical 
domain. The volumetric nature of such data carries a large amount of 
useful information that can be beneficial for identifying disease pa
thology. However, models designed to process 3D data are computa
tionally intensive, making them impractical for many real-world 
scenarios [22]. Furthermore, previous studies have mainly focused on 
enhancing the performance of relevant systems, ignoring the interpret
ability of decisions made by these systems. 
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Medical professionals are reluctant to accept "black-box" models 
from the ML community that present high accuracy using test data; 
however may not perform as well using real-world data [23]. The model 
must justify a specific diagnosis, making explainable artificial intelli
gence (XAI) systems an essential development in this domain [24]. A 
fully integrated XAI system can clarify the internal workings of decision- 
making processes with the aim of engaging a wider community. New 
European data protection legislation prohibits the use of black box 
models in several areas, particularly in the medical field, and experts in 
the field oppose decisions made by systems that cannot be retracted 
[25]. In order to gain the trust of physicians and encourage professionals 
to consider the recommendations of an artificial intelligence (AI) sys
tem, transparency is a crucial aspect. Transparency allows medical 
professionals to make treatment decisions based on their experience and 
judgment. Sometimes, people are unable to explain or justify their de
cisions, as many scholars have suggested. However, explainability plays 
a vital role in ensuring the safe, reliable, and fair use of AI while enabling 
its practical application in real-life scenarios. Medical research utilizing 
XAI has indicated that a visual explanation of selected features used in 
the decision-making process of the model provides impressive results 
[26]. AD diagnosis in existing studies has focused on classifying the 
condition as a task, with little attention paid to the time aspect of the 
data, using a single data modality or BL data. Existing studies on 
developing DL models that can provide explanations include the iden
tification of explanatory feature maps via methods such as saliency maps 
or Class Activation Maps (CAMs). However, these techniques remain 
limited in representing the temporal dynamics associated with sequen
tial data [27]. Gradient base-class activations such as CAMs are not 
readily applicable in the medical field because of their inability to 
provide voxel-level details of infected brain regions over time, which is a 
critical point in diagnosing neurodegenerative diseases such as AD. 

This paper presents a hybrid DL framework comprising a lightweight 
deep convolutional neural network (DCNN) to extract deep features and 
combine them with bidirectional (Bi)LSTM to detect the progression of 
AD. The DCNN module provides a 2D summary image of the entire 3D 
MRI volume that represents the anatomical structure of the brain tissue 
of a patient. A summary image of the 3D MRI volume was generated by 
applying the temporal rank pooling technique[28], which compresses 
the spatial and inter-slice relationships of the 3D MRI volume into a 
single 2D image, known as a dynamic image. A 2D dynamic image was 
initially extracted from the 3D MRI volume at each time step of the 
patient’s longitudinal data such as baseline (BL), month 6 (M6), and 
month 12 (M12), which were further processed using a CNN module to 
extract high-level representative features. The extracted sequence of 
deep features was subsequently passed through a Bi-LSTM module to 
learn the progressive deterioration of brain tissues across multiple time 
steps and predict the patient’s health status at 48 months. In addition to 
the DL framework, we explore the effect of using multimodal data by 
incorporating the patient’s cognitive scores from the baseline time step 
alongside the CNN-BiLSTM deep features. This integration aims to 
leverage additional information to obtain more accurate predictions. 
Furthermore, our study introduces XAI’s unique solution for the chro
nological display of attention maps, which highlights the decline in 
brain tissue over time. This feature allows for a visual representation of 
the focused regions of the model and provides interpretability. Despite 
the limited existing literature addressing the longitudinal interpret
ability of networks, we extended the capabilities of our framework by 
incorporating a dedicated module that monitors spatial differences in 
the brain over time. This enhancement helps improve the accuracy of 
diagnosing AD cases. To achieve this, we employed a guided Grad-CAM 
technique that produced voxel-specific activation maps during each 
time step of 2D MRI slices. These maps provide valuable insights into 
areas of the brain that contribute to the predicted progression of AD. By 
combining DL techniques, multimodal data integration, and XAI-driven 
visualization, this study contributes to advancing the understanding and 
diagnosis of AD. Our findings can be summarized as follows:  

• We propose a hybrid CNN-BiLSTM model that incorporates the 
concept of dynamic 2D images in a smart healthcare system to detect 
Alzheimer’s disease progression in the time domain using longitu
dinal MRI volumes.  

• Our DL architecture combines a summary of the 2D images extracted 
from each 3D MRI volume at longitudinal time steps (BL, M06, and 
M12). We fused these images with the patient’s cognitive scores to 
predict AD progression at 48 months. By integrating both structural 
and functional changes, our multimodal approach enhances accu
racy and captures the intricate interactions between brain regions 
and cognitive functions. 

• To analyze longitudinal MRI data and gain insight into AD progres
sion, we developed a novel XAI technique. This technique enables 
the generation of visual representations of time-related features, and 
aids physicians in tracking changes in patients over time. Addition
ally, our model exhibited high diagnostic performance, making it 
suitable for implementation as a decision support system in the 
healthcare industry. 

Our model was extensively tested on the ADNI dataset using various 
settings. We performed comprehensive analyses to compare its perfor
mance with well-known DL architectures, such as ResNet50 [29], 
VGG16 [30], DenseNet121 [31], and EfficientNetB0 [32]. The results 
demonstrate that our model consistently outperforms all other models 
across multiple evaluation metrics and different scenarios. This paper 
proceeds as follows: In Section 2, we present the materials and methods; 
Section 3 outlines our proposed framework; Section 4 presents and an
alyzes our experimental outcomes; in Section 5, we demonstrate and 
evaluate our XAI method for detecting AD progression. Section 6 com
pares the proposed framework with existing state-of-the-art techniques; 
Section 7 discusses the limitations of the proposed system;finally, Sec
tion 8 concludes the discussion and suggests directions for future 
research. 

2. Materials and methods 

The development of our proposed AD progression detection method 
involved fusing 2D dynamic images produced from the 3D MRI volume 
of a patient’s cognitive scores (CS) into a DL-based model consisting of a 
CNN combined with an LSTM model. Fig. 1 illustrates the workflow of 
the proposed framework. 

2.1. Dataset 

The dataset used in this study was obtained from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI), which is a widely recognized 
open-source platform for research purposes [33]. Established in 2003 as 
a public–private partnership, the ADNI received an initial capital budget 
of $60 million allocated for a 5-year period. The primary objective of 
this program was to explore the feasibility of using serial MRI and PET 
scans along with other clinical assessments, biomarkers, and neuropsy
chological evaluations to track MCI progression and identify early in
dicators of neurodegenerative diseases. The early detection of AD 
progression using crucial biomarkers is benificial for physicians and 
researchers to develop novel therapies and enhance treatment effec
tiveness. It is worth noting that, unlike widely known datasets, such as 
the National Alzheimer’s Coordinating Center (NACC) [34], Open Ac
cess Series of Imaging Studies (OASIS) [35], and Minimal Interval 
Resonance Imaging in Alzheimer’s Disease (MIRIAD) [36], the ADNI 
program gathered patient data at regular 6-month intervals. In addition, 
all MRI volumes underwent standard pre-processing, as depicted in the 
image pre-processing section shown in Fig. 1. 

In this study, 1,692 (564 × 3) MRI volumes were collected at three 
distinct time points: BL, M06, and M12. Our model aimed to predict the 
change in patient status after a 3-year period, based on the final 
assessment visit, which occurred in month 48. The dataset consisted of 
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3T T1-weighted anatomical sequences acquired using the volumetric 3D 
MPRAGE protocol, featuring a voxel size of 1 × 1 × 1 mm. The study 
included 564 participants, of which 282 consistently exhibited cognitive 
normality (CN) at each time point. Among these subjects, 100 

individuals initially classified as CN at baseline experienced progression 
to AD within a three-year period, specifically at month 48 (M48) and 
starting from month 12 (M12). In contrast, 182 subjects consistently 
displayed AD symptoms throughout all visits. To form a comprehensive 

Fig. 1. A hybrid deep CNN-BiLSTM model for AD progression detection.  
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AD class, we combined 100 participants who converted from CN to AD 
with 182 participants diagnosed with AD. The collective AD class is 
comprised of 282 individuals. Within this group, 182 subjects had AD 
from baseline to M48, and an additional 100 subjects transitioned from 
CN to AD at M48. This characteristic of the dataset aligns with similar 
studies [37,38] that designed their datasets to capture the progressive 
patterns of AD across longitudinal time steps. This sets these studies 
apart from many existing ones that treat AD as a binary classification 
task, distinguishing between CN and AD subjects. 

While the goal of this study may align with existing research, our 
approach is distinct in terms of detecting whether a patient will progress 
towards AD or remain cognitively normal, based on the longitudinal 
time steps of their data. This unique perspective distinguishes our 
analysis and provides important insights for predicting AD progression. 
In addition to structural brain imaging (sMRI), this study explored the 
significance of CS as vital biomarkers. Several key scores were evalu
ated, including the unweighted sum of 13 items from the ADAS Cogni
tive Subscale (ADAS-Cog13), Functional Assessment Questionnaire 
(FAQ), Mini-Mental State Examination (MMSE), and Rey’s Auditory 
Verbal Learning Test (RAVLT). Moreover, well-established biomarkers, 
such as apolipoprotein E4 (APOE4) and hippocampal volume were 
considered. These features have been widely employed in academic 
studies and clinical practice owing to their relevance and diagnostic 
value. Table 1 presents the initial statistical features of the study 
participants. 

2.2. Generating dynamic 2D images 

Recent advancements in AI-based health-care systems are mainly 
centered on comprehending the content within 3D MRI slicesbut do not 
necessarily prioritize the modeling of inter-slice dynamics [9]. This is 
accomplished using a strategy in which 3D volumes are treated as a 
sequence of frames. Subsequently, specialized models are trained to 
refine the essential information vital for resolving specific problems, 
such as diagnosing a particular brain disorder. A notable proportion of 
studies harness the capabilities of the 3DCNN model to facilitate the 
acquisition of spatiotemporal filters, which play a crucial role in opti
mizing the system’s recognition ability [6,39]. These methods have 
achieved remarkable accuracy in disease identification. Their primary 
objective was to distinguish between healthy controls and diseased pa
tients rather than to create a concise representation of a patient’s 
volumetric data without losing valuable information. In contrast, dy
namic images encode data in a general and content-agnostic manner, 
resulting in a long-term, robust representation of pixel-level changes 

[40]. In the case of MRI volumes, this novel representation condenses 
the voxel information encompassed in all 3D MRI slices into a single 
image [41]. Our experiments demonstrate the potency, efficiency, and 
simplicity of dynamic image representation in the context of 3D MRI 
volumes, particularly within the DL domain. To generate a dynamic 2D 
image for the entire 3D MRI volume, we adopted the temporal rank 
pooling (TRP) technique. 

TRP is a technique proposed by Fernando et al. [28] to obtain dy
namic 2D images for video-based action recognition task. According to 
their work, a video is represented as a ranking function for its I1, I2, I3 … 
IT frames. ψ(It) ∈ Rd represents the d-dimensional feature vector for 
each individual It frame in the input video. VT = 1

t
∑t

T =1ψ(IT ) repre
sents the average time of the features to time t and the score is assigned 
by the rank function S(t|d) = 〈d, Vt〉 to each time t, where d ∈ Rd 

represents a vector of trainable parameters. The significance of each 
frame in the video is reflected by the ranking assigned to the learnable 
parameters, d. Later times are associated with larger scores as more 
frames are accumulated for the average so that q > t implies 
q > t → S(q|d) > S(t|d). The constraints for the ranking problem can be 
represented as convex optimization problems using the RankSVM 
formula: 

d* = ρ(I1, I2, I3⋯, It) = argmin E(d) (1)  

E(d) =
λ
2
||d‖2

+
2

T (T − 1)
∑

q>t
max{0, 1 − S(q|d) + S(t|d)} (2)  

The RankSVM formula involves a quadratic regularization term and a 
hinge loss term for computing incorrect rankings assigned to q > t pairs. 
Specifically, the quadratic regularization term minimizes the complexity 
of the SVM model by penalizing large coefficients, whereas the hinge 
loss term ensures that the SVM model produces the correct rankings for 
any given pair. In other words, the hinge loss term counts the number of 
incorrect rankings and penalizes the SVM model. Note that a pair is 
correctly classified if the difference in scores between the two frames is 
greater than or equal to one. This is known as minimum margin 
constraint. The RankSVM formula can be used to generate dynamic 
images; however, it is computationally expensive. To address this issue, 
Bilen et al. [28] proposed a fast approximate rank-pooling strategy that 
uses a simple rank function to approximate the exact rank pooling. 
Specifically, they use a modified version of the temporal rank pooling 
formula as shown in the equation below: 

ρ̂(I1, I2, I3⋯, It;ψ) =
∑T

t=1
αt .ψ (It) (3)  

The given equation shows how to calculate the temporal average of 
frames to time t using the symbol ψ (It). The coefficients αt associated 
with each frame are calculated as 2t − T − 1. This method allows the 
efficient and effective extraction of temporal features from video data, 
which is useful for tasks such as action recognition and object tracking in 
the AI/DL domain. In the proposed study, we used a fast approximate 
rank polling strategy to generate dynamic 2D images from a 3D MRI 
volume. In the 3D MRI volumes, the z dimension served as the temporal 
dimension in the video file. Along with many other biomarkers for AD 
diagnosis, one such biomarker is the abnormal state of peptides and 
proteins in the cerebrospinal fluid (CSF) of AD patients [42]. In the AD 
diagnostic process, CSF is collected and tested using a medical process 
called a lumber puncture. When analyzing AD using MRI, the disturbed 
CSF is irregular in shape and size compared with the CSF in a normal 
person’s brain. Fig. 2 shows an example of dynamic 2D image from a 3D 
MRI volume for each class of patient, that is, CN, patients who pro
gressed from a CN state to AD (i.e., converted patients), and AD. The AD 
patient in Fig. 2 shows an irregular shape in the CSF compared to the CN 
and converted patients. The same applied to the dynamic image of the 
Converted Patient. 

Table 1 
Initial statistical features of the participating subjects in this study.  

Features (Mean ± SD) CN Converted AD 

FAQ 69.26 ± 40.48 103.34 ± 51.58 159.74 ± 107.62 
FDG 0.30 ± 00.50 0.50 ± 0.50 0.88 ± 0.72 
MMSE 04.13 ± 05.87 03.63 ± 02.48 9.62 ± 03.64 
MoCA 07.60 ± 31.41 0.37 ± 00.99 15.77 ± 24.63 
APOE4 01.10 ± 00.75 0.30 ± 00.68 0.27 ± 00.76 
ADAS-Cog13 06.34 ± 04.09 07.15 ± 03.14 20.64 ± 7.59 
RAVLT 28.01 ± 08.20 29.42 ± 00.81 22.64 ± 07.47 
RAVLT learn 43.36 ± 14.07 42.59 ± 07.64 21.37 ± 08.80 
RAVLT forgetting 08.65 ± 10.22 05.57 ± 02.12 02.57 ± 04.45 
CDRSB 41.36 ± 139.11 12.53 ± 12.48 35.72 ± 49.10 
TAU 937.21 ± 663.5 488.15 ± 535.1 532.0 ± 401 
PTAU 225.61 ± 248.8 128.96 ± 122.64 300 ± 209.16 
Hippocampus 11.70 ± 29.18 93.82 ± 61.60 31.29 ± 92.90 

FAQ = Functional assessment questionnaire; MMSE = Mini-mental state ex
amination; FDG = F-fluorodeoxyglucose; MoCA = Montreal cognitive assess
ment; APOCE = apolipoprotein E gene; ADAS-Cog = Alzheimer’s Disease 
Assessment Scale-Cognitive subscale; RAVLT = Rey Auditory Verbal Learning 
Test; CDRSB = Clinical Dementia Rating scale Sum of Boxes; TAU = Tubulin 
associated unit; PTAU = Phosphorylated TAU. 
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2.3. Deep convolutional neural networks 

In this study, we used deep convolutional neural networks (DCNN) to 
generate high-level representative features of the brain tissues from 
dynamic 2D images. CNNs are an advanced form of artificial neural 
networks (ANNs) that automatically engineer data features. CNNs 
combine low-level features with abstract high-level features to create a 
generalized feature space for the input data samples. Compared with 
conventional approaches, CNNs have shown better results in several 
detection and recognition tasks. A CNN imitates the human visual cortex 
to memorize and learn the visual cues and features appearing in an 
image, thereby creating an effective representation of data. The CNN 
model exhibits three main characteristics: local connectivity, parameter 
sharing, and invariant representation. The nature of a CNN significantly 
reduces the computational complexity required to analyze high- 
dimensional data, thus simplifying complex tasks. The main compo
nents of the CNN models are convolution, pooling and a fully connected 
layer. The input image is processed in our model, starting with the 
extraction of deep features using a convolutional layer. The pooling 
layer reduces the dimensions of the resulting feature map before it 
passes through the BiLSTM network. Finally, the output of the LSTM was 
fed into a dense neural network before producing the final prediction 

score. 

2.4. Long-short term memory 

ANNs capable of processing and interpreting sequential input data 
are known as recurrent neural networks (RNNs), and are commonly 
employed in natural language processing tasks [43]. These networks are 
mainly designed to analyze long-text datasets while preserving any 
contextual information they contain, which is crucial for performing 
tasks such as time-series prediction, text synthesis, text categorization, 
and machine translation. Although RNNs are adept at capturing 
sequential temporal attributes, they face the problem of vanishing gra
dients, which makes it challenging for them to learn long sequential 
dependencies from training data. Consequently, learning long sequen
tial dependencies from the training data is a challenging task for RNNs. 
LSTM is an improved version of RNN that addresses the problem of 
vanishing and exploding gradients. The internal mechanism of LSTM 
uses cell units called gates, which regulate the flow of information be
tween layers. These gates are responsible for determining which se
quences are important for preservation and which sequences are less 
important and can be eliminated. In simple LSTM, the hidden state ht ,

and memory cell Ct, are functions of their previous statuses, ht− 1, 

Table 2 
Architectural design of the proposed CNN-BiLSTM model.  

Layer Name Kernels 
(

Kernel size
Dropout

) Output size 

Input − − 110× 110× 1 
Block1 

⎛

⎜
⎜
⎝

Conv2D
Conv2D

MaxPooling
Dropout

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

3 × 3 × 1,8
3 × 3 × 1,8

2 × 2
0.2

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

8 × 110 × 110
8 × 110 × 110
8 × 110 × 110
8 × 55 × 55

⎞

⎟
⎟
⎠

Block2 
⎛

⎜
⎜
⎝

Conv2D
Conv2D

MaxPooling
Dropout

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

3 × 3 × 1,16
3 × 3 × 1,16

2 × 2
0.2

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

8 × 55 × 55
16 × 55 × 55
16 × 55 × 55
16 × 27 × 27

⎞

⎟
⎟
⎠

Block3 
⎛

⎜
⎜
⎜
⎜
⎝

Conv2D
Conv2D
Conv2D

MaxPooling
Dropout

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

3 × 3 × 1,32
3 × 3 × 1,32
3 × 3 × 1,32

2 × 2
0.3

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

32 × 27 × 27
32 × 27 × 27
32 × 27 × 27
32 × 13 × 13

⎞

⎟
⎟
⎠

Block4 
⎛

⎜
⎜
⎜
⎜
⎝

Conv2D
Conv2D
Conv2D

MaxPooling
Dropout

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

3 × 3 × 1,64
3 × 3 × 1,64
3 × 3 × 1,64

2 × 2
0.3

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

64 × 13 × 13
64 × 13 × 13
64 × 13 × 13
64 × 6 × 6

⎞

⎟
⎟
⎠

FlattenLayer − − 13826 
BiRNN Layer 

(
#LSTM layers
#LSTM cells

) (
1

512

) 1024 + 14 

Fully connected Layer 
(

#of Dense units
Activation funtoin

) (
128

ReLU

) 128 

Fully connected Layer 
(

#of Dense units
Activation funtoin

) (
64

ReLU

) 64 

Output Layer 
(

#of Dense units
Activation funtoin

) (
1

Sigmoid

) 1  

Fig. 2. A dynamic 2D image from CN, Converted and AD classes at BL ~ M12 time step.  
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and Ct− 1, and the input vector Wt . The hidden state of each location (ht)

considers only the forward context without considering the backward 
context, as shown in Eq. (4): 

Ct, ht = gLSTM(Ct− 1, ht− 1,Wt) (4)  

In our proposed framework, we used a bi-directional LSTM that con
siders forward and backward sequences simultaneously to capture the 
interdependencies in both directions. BiLSTM uses two parallel channels 
simultaneously, eventually concatenating hidden states into a single 
vector. The BiLSTM formula is as follows: 

Ct
→
, ht
→

= gLSTM
(
Ct− 1
̅̅→

, ht− 1
̅̅→

,Wt

)
(5)  

Ct
←
, ht

←
= gLSTM

(
Ct− 1

←
, ht− 1

←
,Wt

)
(6)  

The parameters are shared in both the forward and backward LSTMs. 

[ hn
̅→

, h1
←

] represents the entire sequence, and n represents the length of 

each sequence. ht = ht
̅→

+ ht
← 

represents the concatenated feature vector 
of the forward and backward LSTM, respectively, at position t. Thus, 
both the forward and backward sequences were considered 
simultaneously. 

2.5. Model explainability 

Grad-CAM is a technique used in computer vision and DL algorithms 
to visualize regions of an image that are relevant for a specific class 
prediction. In Grad-CAM, gradients flow backward through the network 
and are used to compute attention weights or relevance scores for each 
spatial location in a convolutional feature map. These weights are then 
combined withthe feature map values to obtain class activation maps, 
highlighting the regions most relevant to the predicted class. However, 
Grad-CAM treats both positive and negative gradients equally, which 
can result in noisy and less interpretable visualizations. In contrast, 
Guided Grad-CAM is an upgraded version of Grad-CAM that addresses 
the aforementioned limitations by incorporating a guided back
propagation technique [43]. The guided backpropagation process con
siders only positive gradients during backpropagation and blocks 
negative gradients. This was achieved by modifying the ReLU activation 
function in the network by setting the negative gradients to zero. By 
backpropagating only positive gradients, guided Grad-CAM produces 
more focused and visually appealing visualizations, emphasizing the 
regions that positively contribute to the prediction. In neuroimaging 
analysis, the accurate identification of voxels affectected by a certain 
disease is crucial. To acquire information on the exact voxels involved in 
accurate diagnostic prediction in the model, we employ the guided 
Grad-CAM technique. The following are the mathematical representa
tions of the Grad-CAM and Guided Grad-CAM techniques. 

Grad-CAM Equations: 
α(k) = 1

H×W
∑

i
∑

j ∂Yc

∂A (i, j, k)// Attention weights 
M = ReLU(

∑
kα(k)A(k) )// Class activation map 

Guided Grad-CAM Equations: 
G(i, j, k) = ∂Yc

∂A (i, j, k)if ∂Yc

∂A (i, j, k) > 0, else0// Guided gradients 
α(k) = 1

H×W
∑

i
∑

jG(i, j, k)// Attention weights 
M = ReLU(

∑
kα(k)A(k) )// Class activation map 

In both Grad-CAM and guided Grad-CAM, α(k) represents the 
attention weights (or relevance scores) for each spatial location (i, j) in 
the kth channel of the final convolutional layer. The class activation map 
M was obtained by multiplying these attention weights by the corre
sponding feature map values A and applying the ReLU activation 
function. 

We calculated attention maps for each time step to determine the 
extent of brain damage occurring at a specific point in time. To 
accomplish this, gradients were initially computed using a guided grad- 

cam technique and then overlaid onto the dynamic images for each time 
step. Fig. 6 presents the explainable output feature maps for each time 
step, illustrating the progressive atrophy of brain damage over time. 
Further details regarding the proposed framework, including the pre- 
processing of MRI volumes and the architectural design of the model, 
are discussed in the subsequent sections. 

3. Proposed framework 

We proposed an efficient network architecture to detect AD pro
gression using compressed 2D representations of 3D MRI volumes from 
longitudinal data. The proposed network is an end-to-end CNN-BiLSTM 
model that calculates deep features for each time step and detects a 
progression pattern in the extracted deep features using bidirectional 
LSTM. The CNN module for the proposed network extracts the deep 
features using each time step, thatis , baseline, M06, and M12, and then 
passes each feature vector to the BiLSTM module, which captures the 
temporal features in each sequence and detects whether the subject is 
progressing towards AD or remains cognitively normal. In addition, we 
investigated the efficiency of multimodal data, that is, CS features fused 
with the output of the BiLSTM network, before they are classified using a 
deep neural network. To summarize, the propseod framework comprises 
of four stages. Stage1 performs the basic preprocessing steps and dy
namic image creation from the MRI volume; stage 2 performs deep 
feature extraction from the dynamic 2D image; stage 3 performs tem
poral feature learning via the LSTM model and data fusion of multi
modalities; and stage 4 performs a visual explanation of the AD 
progression using the proposed time series visual explainability 
approach. 

3.1. Image preprocessing and dynamic image creation 

The pre-removal of irrelevant information from the raw MRI volume 
during the preprocessing stage facilitates the comparison of different 
brain scans. To achieve this goal, the autorecon1 command from the 
FreeSurfer tool [44] was applied to perform the essential pre-processing 
steps on the raw MRI volumes. FreeSurfer is a software suite that is 
commonly used to analyze and visualize structural and functional neu
roimaging data. FreeSurfer provides an autorecon-all command that 
performs cortical reconstruction, including white mater and gray mater 
segmentation, surface generation from segmented data, and spherical or 
flattened representation of cortical surfaces. Autoerecon1 is a subset of 
autorecon-all, which performs motion correction, intensity normaliza
tion, and skull stripping. In our case, after performing auteorecon1, the 
output volume was further registered to MNI152 using FLIRT to align 
each image to the common template space and simplify the process of 
comparing different images. It has been shown in the literature that non- 
preprocessed volumes can significantly reduce the performance of the 
DL model because the skull variance is treated as noise in the MR slices. 
Next, we focused on the coronal slices of each MRI volume because they 
carry the most discriminating AD-related information in brain tissues 
[45]. Of the 256 coronal slices in each 3D MRI volume, 110 were 
collected from the middle of the 3D volume, eliminating the very top 
slices that carry less structural information about the tissues involved in 
AD. We then passed this newly created volume of size (110× 110× 110) 
through the dynamic rank-pooling algorithm discussed in Section 2.2. In 
this way, we compressed all temporal information from the 3D volume 
into a single 2D image while preserving structural information about the 
brain tissues. The dynamic 2D image was then processed through the 
DCNN to learn the spatial hierarchies of the deep features at each lon
gitudinal time step of the training data ( BL, BL ~ M06, and BL ~ M12). 

3.2. Features learning using a convolutional neural network 

The proposed framework encompasses an end-to-end CNN-BiLSTM 
network that serves as the core of the AD progression detection model. 
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This network was designed to extract deep features from 2D dynamic 
images and leverage the temporal information captured by the BiLSTM 
network. The architectural design of each submodule in the proposed 
hybrid DL framework was designed to ensure efficient processing of the 
most representative deep features, thereby enabling the accurate 
detection of AD progression. In designing the proposed hybrid DL 
framework, we searched for the optimal DL architecture through a 
combination of experimentation and architectures proposed literature 
[17,20,46,47]. Our objective was to strike a balance between model 
complexity and performance improvement. We followed a systematic 
experimental process to set different parameter values. We performed a 
wide array of experiments and varied individual parameters such as the 
number of convolution layers, number of kernels in each convolution 
layer, and number of LSTM layers in the LSTM module, while observing 
their effects on different aspects of the model’s performance. After 
completing this initial phase, we employed a Bayesian optimizer to fine- 
tune additional parameters, including the number of recurrent units 
within the LSTM head, the dropout rate at different layers, and the 
learning rate. This sophisticated optimization process contributed 
significantly in refining the performance of our model. 

The CNN module, which was responsible for deep feature extraction, 
was composed of ten convolution layers and four max-pooling layers 
organized in blocks (refer to Fig. 1). The purpose of these blocks was to 
progressively capture and refine the most relevant features at each layer, 
while also reducing the spatial dimension of the input data as the 
network deepened. The first block consisted of two consecutive convo
lution layers, with each layer employing eight kernels. These convolu
tion layers were followed by a max-pooling layer, which was responsible 
for down-sampling the spatial dimensions, and a dropout layer with a 
Bayesian optimized threshold value of 0.2, which helped prevent over
fitting by randomly dropping a fraction of the connections during 
training. Similarly, the second block comprised two convolution layers, 
each equipped with 16 kernels, followed by a max-pooling layer and a 
dropout layer with a threshold value of 0.2. The third block incorporated 
three convolution layers, each utilizing 32 kernels. Following the 
convolution layers, a max-pooling layer and a dropout layer with a 
threshold value of 0.3 to enhance regularization. The last block, which 
was designed to capture the most intricate features, was constructed 
using three convolution layers, each employing 64 kernels. As in the 
previous blocks, a max-pooling layer and a dropout layer with a 
threshold value of 0.3 were incorporated. 

At each convolutional layer, a 3 × 3 convolutional kernel was uti
lized, which has been proven effective in capturing spatial patterns in 
various computer vision tasks. The ReLU activation function was applied 
after each convolution layer to introduce non-linearity, thereby enabling 
the model to learn complex representations. It is noteworthy that the 
max-pooling layer was not applied after every convolutional layer. 
Instead, it was used after every two convolutional layers. This configu
ration aimed to retain the spatial features and enable the network to 
learn a broader range of spatial information from dynamic 2D images. 
However, this approach can lead to longer training times and increased 
risk of overfitting the model to the training data. To address potential 
overfitting, a dropout layer was introduced after each convolutional 
block. These dropout layers served as regularization techniques by 
randomly deactivating a portion of neurons during training, thereby 
preventing them from relying accessively heavily on specific features 
and promoting more robust learning. 

Following the convolutional layers, the output from the last con
volutional layer at each time step was reshaped into a single- 
dimensional column vector. This column vector, with size N, repre
sented the compressed and abstracted deep features at each time step 
(BL, M6, and M12). These time-dependent column vectors were then 
passed through a Bi-LSTM network, which aimed to capture the tem
poral dependencies and progressive deterioration of brain tissues over 
time. 

3.3. Sequence learning and multimodal data fusion via RNN 

The deep sequences obtained from the CNN module were further 
processed using the BiLSTM network, as discussed in the previous sec
tion. The objective of this step was to capture the temporal dependencies 
across longitudinal time steps. In this study, the Bi-LSTM module was 
configured with a single layer comprising 512 LSTM cells in the Bi-LSTM 
layer, which operated in both forward and backward directions. To 
introduce non-linearity into the CNN output data within the LSTM layer, 
a hyperbolic tangent (tanh) activation function was applied. This acti
vation function enabled the Bi-LSTM module to learn complex temporal 
patterns from the deep sequences. After passing through the BiLSTM 
layers, the outputs from both the forward and backward LSTM layers 
were concatenated into a single vector. This merging operation resulted 
in the formation of the output of the overall Bi-LSTM subnetwork. The 
cumulative output from the BiLSTM module was then fused with the CS 
feature of the patients as, listed in Table 1. This fusion or combination of 
the Bi-LSTM outputs with the CS feature allows for the incorporation of 
additional relevant patient-specific information into the predictive 
model. 

The combined feature set, consisting of the Bi-LSTM output and CS 
features, was subsequently processed using a dense neural network. This 
network comprised two hidden layers: one with 128 units and the other 
with 64 units. The purpose of these hidden layers was to extract higher- 
level representations and features from the combined input data. The 
specific number of units in each hidden layer was chosen to strike a 
balance between model complexity and performance. Finally, the output 
of the last hidden layer, which was a 64-dimensional vector, was passed 
through a single-unit output layer. The output layer was equipped with a 
sigmoid activation function that squashed the output value between 
zero and one. This output score served as an indicator of the model’s 
prediction, where values closer to zero suggested a prediction for a pa
tient with CN, whereas values closer to one indicated progression to AD. 
By employing this comprehensive architecture, the model leveraged the 
strengths of both the CNN and Bi-LSTM modules to learn and represent 
important temporal and patient-specific features. Additionally, by 
incorporating state-of-the-art XAI methodologies, we conducted further 
analysis of the proposed network, facilitating a comprehensive explo
ration of its internal operations. To achieve transparency in the decision- 
making process, our XAI method generated attention maps for each 
stage of the input data, highlighting the active regions of the brain. A 
detailed technical discussion is presented in subsequent sections. 

3.4. Spatial and temporal explainability 

The attention maps generated by the proposed network played a vital 
role in explaining the DL model. Attention maps play a pivotal role in 
understanding DL models [48] and offer insights into their decision- 
making processes [49]. These maps visually highlight the areas of 
input data on which the model focuses, providing the reasoning behind 
its decisions. Used in domains like image recognition and medical di
agnostics [50,51], attention maps reveal what influences the model’s 
predictions. They act as interpretable guides, fostering transparency and 
trust in the model’s decisions by exposing biases and enhancing the 
alignment with human intuition [52]. For more details on attention map 
explainability, readers are referred to the following study [51]: Utilizing 
the guided Grad-CAM technique, the proposed network generates 
attention maps that provide insights into the explainability of the DL 
model. At each stage of the analysis, involving 2D compressed repre
sentations of the MRI slices, the attention maps provided detailed voxel- 
level representations of the activation map. Furthermore, in addition to 
the 2D representation of the highlighted brain tissues, we showcased a 
3D view of the same activated brain regions, highlighting different brain 
regions from a 3D perspective. The 3D-rendered brain surface shown in 
Fig. 6 was generated using a technique called surface reconstruction, 
which involves combining a set of 3D points to form a surface mesh. This 
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mesh can then be rendered using various 3D graphics techniques to 
create realistic visualizations of the brain. Fig. 6 presents a detailed 
visualization of the 2D attention maps and 3D rendered brain surface, 
offering an illustrative representation of the infected regions contrib
uting to the disease identification process in the framework. 

4. Experiments and results 

The experiments in this study were performed using an NVIDIA 
TITAN GTX GPU with 12 GB of memory, and the proposed models were 
implemented using the TensorFlow 2.0 library. The proposed model was 
trained in an end-to-end manner with the Adam optimizer at the best 
learning rate of 0.0001, as suggested by the Bayesian optimizer, while 
the remaining parameters such as momentum, and weight decay were 
maintained at their default values [53]. The total loss was computed 
using a binary cross-entropy function. To achieve optimal performance, 
the size of the input image was specified as 110 × 110 × 1 in the gray
scale image, and the number of images per batch was set to 32. The 
model was trained using a stratified 10-fold cross-validation approach in 
which the training data were divided into 75 % for the training set and 
25 % for validation set at each fold. The model was initially trained for 
80 epochs to determine the optimal number of parameters for LSTM 
units, dropout threshold, and a learning rate. After obtaining the optimal 
number of parameters using the Bayesian optimizer, the model was 
trained for 150 epochs using fine-tuned parameters for each fold. The 
training process was further constrained by applying an early stopping 
technique to prevent unnecessary training, which could potentially 
result in the overfitting of the model. The stratified N-fold method 
ensured a balanced number of samples in each batch. This approach also 
facilitates the calculation of several performance metrics, including 
mean accuracy, mean AUC, mean F1 scores, mean precision, and mean 
recall [54]. Moreover, to ensure a fair comparison, all hyperparameters 
were set in the same manner for all other comparative models. 

To examine in contrast to the proposed network, we compared its 
results with ResNet50, VGG16, DenseNet121, and EfficientNetB0, which 
are among the most powerful DL models in the scientific community. 
The selection criterion for the comparative models was based on as 
analysis of how different architectural designs of the CNN models affect 
the detection of AD progression. We observed that a wide range of 
medical studies, particularly on the classification of medical images, has 
used shallow models that rely on hand-designed features such as shape, 
color and texture [55,56]. However, the main problem with these ap
proaches is that the extracted features are low-level and do not represent 
the concept of a high-level problem domain. In addition, the general
izability of these models is poor. However, deep models have been 
successful in various domains, including medical and non-medical do
mains, owning to their significant success. They are particularly known 
as excellent feature extractors; therefore, using them to classify medical 
images avoids complicated and expensive feature engineering processes. 
The comparative models used in this study are state-of-the-art frame
works with excellent performance in image classification and image 
recognition tasks. 

AlexNet first won the challenge of ImageNet, which is an image 
classification task. Subsequently, the DL-based approach began to 
explode and achieve breakthroughs in various domains, including 
speech recognition, language translation, and disease classification. 
Following AlexNet, other models, such as VGGNet and ResNet, have 
improved the limitations of deep CNN models, such as the problems of 
vanishing and exploding gradients. The VGG network introduces blocks 
of convolutional layers with smaller 3 × 3 kernels throughout the 
network. This architectural design achieves a dual purposes of reducing 
the number of overall learnable parameters and improving network 
accuracy. The ResNet model further improves accuracy by introducing a 
skip connection. These connections allow the network to skip one or 
more layers, which helps to address the vanishing gradient problem. 
This mechanism creates a shortcut path for the gradient flow through 

the network. In the DenseNet model, the gradinet flow problem was 
solved by introducing dense connections. 

Dense connections are a key feature of the DenseNet architecture, in 
which each layer is connected to all preceding layers. This dense con
nectivity pattern allows feature maps of earlier layers to be used directly 
by later layers, promoting feature reuse and improving the gradient 
flow. Specifically, the output feature maps of each layer are combined 
with the feature maps of all the preceding layers and forwarded as inputs 
to the next layer. This helps maintain the diversity of feature maps across 
the network, which can prevent overfitting and improve accuracy. In the 
case of EfficientNet, the problems of model overfitting and high accu
racy are handled differently. EfficientNet employs a complex scaling 
method that systematically scales the depth, width, and resolution of a 
network. The network depth increases with the addition of more layers, 
and its width increases with the number of filters in each layer. This 
method ensures that the network can learn more complex features 
without compromising computational efficiency. The unique architec
tural design of EfficientNet makes it suitable for numerous applications. 
Because these networks use powerful features and represent the capa
bilities of deep CNN models, we chose them as the baseline models 
against which we tested the proposed CNN-Bi-LSTM model. 

We conducted multiple experiments to examine the impact of 
various factors on AD progression. Fig. 3 illustrates the role of longitu
dinal and multimodal data in AD diagnosis. The experiments conducted 
in this study encompassed single-modality medical data, multi-modality 
medical data, longitudinal data analysis of individual patients, and 
different architectural DNN designs. In the following sections, we pre
sent the experimental setup, which addresses the aforementioned key 
points in the following pipeline: 1) Progression detection utilizing a 
single modality of longitudinal data such as 2D dynamic images, with 
diverse architectural designs like backbone feature extractors, and 2) 
Progression detection using multiple modalities of longitudinal data 
such as 2D images plus CS with diverse architectural designs as back
bone feature extractors. 

4.1. Evaluation metrics 

To assess the generalizability of the proposed framework to training 
data, we conducted a thorough evaluation using various performance 
metrics. These metrics included accuracy, precision, recall, F1 score, and 
AUC. Each metric is defined mathematically using the following 
equation: 

The accuracy metric quantifies the proportion of correctly identified 
samples (CN/AD) in the predicted data. It is calculated by dividing the 
sum of true negatives (TN) and true positives (TP) by the total number of 
samples (TS). 

Accuracy =
(TN + TP)

TS
(7)  

Precision denotes the ratio of accurately classified patients with AD (TP) 
to the total number of predicted positive samples (AD). Its computation 
is achieved by dividing TP by the sum of TP and false positives (FP): 

Fig. 3. The experimental route map with single and multimodal data of the 
proposed framework. 
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Precision =
TP

TP+ FP
(8)  

The recall metric, often referred to as the sensitivity or true-positive rate, 
represents the ratio of correctly classified patients with AD (TP) to the 
total number of patients with AD in the dataset. This was determined by 
dividing TP by the sum of TP and false negatives (FN): 

Recall =
TP

TP+ FN
(9)  

The F1 score served as a combined measure of precision and recall, 
providing a weighted average that accounted for both metrics. Its 
calculation involves multiplying precision and recall and then dividing 
the result by the sum of precision and recall, multiplied by 2: 

F1 − score = 2*
Precision*Recall
Precision+ Recall

(10) 

Finally, the AUC was used to assesses the performance of the model 
across various classification thresholds, characterizing the relationship 
between the true positive and false positive rates. The evaluation results 
of the model at different thresholds were represented by the AUC score. 
In the equation above, TP refers to true positives, FP refers to false 
positives, TN represents true negatives, and TS corresponds to the total 
number of samples. 

4.2. Single modality-based detection of AD progression 

In Experiment 1, several well-known DL models were evaluated to 
determine their effectiveness in detecting AD progression. The DL 
models used in this study included ResNet50, VGG16, DenseNet121, 
EfficientNet, and the proposed network. Each model was used as a 
feature extractor for the time steps (BL, M6, and M12), with deep fea
tures from each time step processed using Bi-LSTM to detect AD pro
gression. Deep feature extraction and sequence learning methods are 
discussed in detail in Sections 3.2 and 3.3, respectively. We also 
compared the output performance of each model with that of the pro
posed network. The primary objective of Experiment 1 was to examine 
the effectiveness of a single data modality, specifically MRI, in detecting 
AD progression . To achieve this, we computed several evaluation 
metrics, including the accuracy, precision, recall, F1 score and, AUC 
averages, to conduct a comprehensive assessment of each model. 
Furthermore, we have included a separate section dedicated solely to 
comparing the achieved AUC of each model. This analysis aimed to 
evaluate the impact of augmenting the training dataset with longitudi
nal time steps on the network stability. 

4.2.1. Evaluation results using a dynamic 2D image 
Table 3 presents the statistics of the various evaluation metrics 

collected for each comparative model trained on a single training mo
dality such as dynamic 2D images. Initially, each comparative model 
was evaluated using a single time step of the training data, BL only, 
which was then combined with subsequent time steps, BL + M06 and BL 
+ M06 + M12. In this study, the ADNI dataset was composed of three- 
time steps of longitudinal MRI data collected for each patient at 6- 
months intervals. By including additional time points in the training 
data, the model should theoretically enhance the disease identification 
process, as it can observe more time-series data for the same patient, 
reflecting the progressive patterns of the disease diagnostic process. 

Table 3 presents the achieved performance of each model at different 
time steps, namely, BL, BL + M06 and BL + M06 + M12. The results 
indicated that when trained on BL data, EfficientNet exhibited the 
highest performance, with a mean performance of accuracy = 0.89 ±
0.02, AUC = 0.91 ± 0.02, F1 score = 0.88 ± 0.03, precision = 0.89 ±
0.04, and recall = 0.87 ± 0.03. The proposed network followed closely 
with the second-best accuracy, recording a mean accuracy of 0.83 ±
0.03, mean AUC of 0.84 ± 0.02, mean F1 score of 0.82 ± 0.03, mean 

precision of 0.85 ± 0.03, and mean recall of 0.81 ± 0.04. DenseNet121 
outperformed ResNet50 and VGG16, although it reported a lower ac
curacy in BL than of EfficientNet and the proposed network. 

When trained with two-time steps of the training data, BL + M06 all 
models demonstrated a notable enhancement in accuracy. Among the 
comparative models, EfficientNet outperformed all others, reporting an 
average accuracy of 0.91 ± 0.03, AUC of 0.92 ± 0.02, F1 score of 0.90 
± 0.03, precision of 0.91 ± 0.03 and recall of 0.89 ± 0.04. However, our 
proposed network outperformed EfficientNet in the average precision 
score, reporting 0.93 ± 0.03. This suggests that the proposed network 
may be a better choice when precision is a critical metric. Moreover, 
with two-time step training data, ResNet50 surpassed VGG16 and ach
ieved an accuracy similar to that reported by DenseNet121. ResNet50 
showed a rapid improvement in accuracy when training with two-time 
steps of the training data, compared to training with BL data alone. 
The average performance reported by ResNet50 at BL + M12 are as 
follows: accuracy = 0.82 ± 0.02, AUC = 0.82 ± 0.05, F1 score = 0.80 ±
0.04, precision = 0.83 ± 0.03 and recall = 0.84 ± 0.02. The improve
ment in the reported accuracies with longitudinal time steps of the 
training data refers to the model’s ability to capture progressive patterns 
from multiple time steps. 

To further test the diagnostic abilities of the models, we trained each 

Table 3 
Evaluation results for various backbone models using dynamic 2D images.  

Backbone 
network 

Time 
Steps 

Accuracy AUC F1 
Score 

Precision Recall 

ResNet50 [29] BL 0.75 ±
0.03 

0.83 
±

0.04 

0.79 
±

0.03 

0.83 ±
0.05 

0.74 
± 0.04 

BL ~ 
M06 

0.82 ±
0.02 

0.82 
±

0.05 

0.83 
±

0.04 

0.83 ±
0.03 

0.84 
± 0.02 

BL ~ 
M12 

0.85 ± 
0.04 

0.84  
± 
0.04 

0.85  
± 
0.06 

0.87 ± 
0.06 

0.86  
± 0.05 

VGG16 [30] BL 0.77 ±
0.04 

0.76 
±

0.04 

0.76 
±

0.03 

0.79 ±
0.04 

0.73 
± 0.03 

BL ~ 
M06 

0.78 ±
0.02 

0.80 
±

0.04 

0.76 
±

0.05 

0.82 ±
0.05 

0.72 
± 0.06 

BL ~ 
M12 

0.84 ± 
0.04 

0.85  
± 
0.03 

0.83  
± 
0.04 

0.86 ± 
0.04 

0.84  
± 0.04 

DenseNet121  
[31] 

BL 0.79 ±
0.3 

0.79 
±

0.03 

0.78 
±

0.02 

0.82 ±
0.02 

0.75 
± 0.03 

BL ~ 
M06 

0.83 ±
0.03 

0.82 
±

0.02 

0.81 
±

0.03 

0.83 ±
0.02 

0.81 
± 0.04 

BL ~ 
M12 

0.88 ± 
0.04 

0.89  
± 
0.03 

0.87  
± 
0.03 

0.87 ± 
0.04 

0.86  
± 0.30 

EfficientNet  
[32] 

BL 0.89 ±
0.02 

0.91 
±

0.02 

0.88 
±

0.03 

0.89 ±
0.04 

0.87 
± 0.04 

BL ~ 
M06 

0.91 ±
0.03 

0.92 
±

0.02 

0.90 
±

0.03 

0.91 ±
0.03 

0.89 
± 0.03 

BL ~ 
M12 

0.90 ± 
0.04 

0.90  
± 
0.04 

0.88  
± 
0.02 

0.88 ± 
0.06 

0.88  
± 0.03 

Proposed 
Network 

BL 0.83 ±
0.03 

0.84 
±

0.04 

0.82 
±

0.03 

0.85 ±
0.03 

0.81 
± 0.04 

BL ~ 
M06 

0.90 ±
0.03 

0.90 
±

0.03 

0.90 
±

0.04 

0.93 ±
0.03 

0.87 
± 0.03 

BL ~ 
M12 

0.92 ± 
0.03 

0.94  
± 
0.03 

0.93  
± 
0.03 

0.95 ± 
0.02 

0.93  
± 0.02 

Bold text indicates the best results. 
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model with three longitudinal time steps, including BL, M06, and a 
follow-up visit of month 12 (M12) training data ( BL + M06 + M12), and 
evaluated their performance. Our proposed network outperformed all 
comparative models with an average performance of accuracy = 0.92 ±
0.03, AUC = 0.94 ± 0.03, F1 score = 0.93 ± 0.04, precision = 0.95 ±
0.02 and recall = 0.93 ± 0.03. Interestingly, ResNet50, VGG16, and 
DenseNet121 continued to improve in accuracy in the same incremental 
manner, as they showed improved accuracy with single- and two-time 
steps of training data. However, EfficientNet reported the worst accu
racy when combined with three-time steps of training data, indicating 
unstable behavior. The model was unable to report the expected 
behavior and showed a significant degradation in the achieved perfor
mance. By combining the training data from the three-time steps, the 
model achieved an accuracy of less than 90%, compared with the ac
curacies achieved in the previous time steps, which were greater than 
90%. The findings indicate that the proposed network outperformed all 
other comparative models in terms of achieving accuracy using three 
longitudinal time steps, except for EfficientNet, which displayed un
stable behavior. The results of this study suggest that models that can 
capture longitudinal patterns from multiple time steps provide improved 
diagnostic capabilities for a given prediction task. 

Based on the available context, it is important to highlight that 
although all models achieved acceptable accuracy, they displayed high 
variance and stability issues, as indicated by the fluctuations in their 
standard deviations. This unstable behavior was probably due to the 
presence of noise in the training data. However, after integrating the CS 
features with the longitudinal MRI data during the training process, we 
observed an improvement in the stability of each model, which was 
evident in the subsequent experiment. 

4.2.2. Model comparison using dynamic 2D images 
The effectiveness of the proposed model is demonstrated in Fig. 4, 

which shows the impact of incorporating additional time steps such as 
longitudinal data into the training dataset. We limit our discussion and 
comparison of our results to the mean AUC metric due to the limitation 
and homogeneity of the results. Fig. 4 shows the results obtained using 
only MRI data. We collected and compared the mean AUCs of different 

models using different combinations of data: BL, BL ~ M06, and BL ~ 
M12. 

This study found that EfficientNet achieved the highest mAUC score 
with BL of any other comparative model, achieving a 91% AUC score. 
The second-highest mAUC score was reported by proposedNet, with an 
mAUC score of 84%. Interestingly, ReNet50 outperformed VGG16 and 
DenseNet121, with an AUC score of 83%, but it was less accurate than 
that of EfficientNet and proposedNet. At this point, the results suggest 
that, while ReNet50 may perform well in single-time-step training data, 
it may not be the best choice when two-time-step training data are used. 
Furthermore, the study found that, with two-time steps of training data, 
all models except ResNet50 achieved an improvement in their AUC 
scores. VGG16, DenseNet121, and ProposedNet reported noticeable 
improvements of 4%, 3%, and 6%, respectively, whereas EfficientNet 
achieved only 1% improvement. However, ResNet50 did not exhibit 
improved performance with additional training data. 

In BL ~ M06, the mAUC scores for VGG16, DenseNet121, and the 
ProposedNet were 80%, 82%, and 90%, respectively, compared to 76%, 
79%, and 84%, respectively, at the baseline time step. This indicates that 
these models benefited significantly from additional training data. 
However, EfficientNet achieved only a 1% improvement in its mAUC 
score, whereas ResNet50 and DenseNet121 achieved modest improve
ments of 3% and 1%, respectively. In BL ~ M12, all comparative models 
reported a significant improvement in mAUC scores, except for Effi
cientNet, which decreased by 2% after combining training data from the 
three-time steps. By contrast, ProposedNet reported a 4% improvement, 
from 90% to 94% in its mAUC score. Among the other models, Dense
Net121 achieved a significant improvement with three-time steps of 
training data, improving its performance by 7% in terms of the mAUC 
score. ResNet50 and VGG16 also reported improvements of 3% and 5% 
in the BL ~ M12 time step, respectively. 

4.3. Multimodality-based detection of AD progression 

In the second experiment, we explored the effects of the clinical 
scores on the detection of AD progression by combining MRI and CS. 
Assessment of a patient’s cognitive abilities is critical for detecting AD 

Fig. 4. mAUC comparison of deep models using dynamic image in BL, BL ~ M06, and BL ~ M12.  
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progression because cognitive decline is one of the major symptoms 
[38]. The selected features are noteworthy because they are well-known 
medically and have been extensively studied in scientific research. The 
proposed multimodal data fusion approach can effectively integrate 
complementary information from different modalities, thereby enabling 
a complex modality to convey a more comprehensive and refined 
depiction of information that surpasses individual inputs. To evaluate 
the proposed framework using multimodal data, we computed the same 
set of evaluation metrics used in Experiment 1. This provided insights 
into the improved accuracy that occurs when analyzing multiple data 
modalities in disease diagnostic processes. In addition, we examined the 
effect of multimodal data, including longitudinal MRI, on network sta
bility by comparing the AUC of each model. 

4.3.1. Evaluation results using 2D dynamic images + CS 
A detailed analysis of the effect of utilizing multiple training data 

modalities on the detection of AD progression is presented in Table 4. 
The study involved integrating the CS list with MRI data during the 
training phase to better understand disease progression. To ensure the 
reliability and accuracy of the results, the CS scales were acquired at 
baseline, as summarized in Table 2. CS is a critical indicator of an 

individual’s cognitive ability and is used in conjunction with other 
diagnostic biomarkers such as genetic biomarkers and behavioral scores. 
These markers provide valuable insights into disease progression and 
enable clinicians to develop personalized treatment plans for patients. 
Moreover, the multimodal data approach used in this study is a prom
ising technique that can significantly improve the accuracy of AD 
diagnosis and provide reliable progression predictions. 

Table 4 presents the scores obtained for multiple evaluation metrics 
of each comparative model. In the BL, EfficientNet outperformed all 
other comparative models with an average performance of accuracy =
0.94 ± 0.02, AUC = 0.96 ± 0.02, F1 score = 0.93 ± 0.03, precision =
0.95 ± 0.02, and recall = 0.93 ± 0.02. DenseNet and VGG16 achieved 
the second-highest accuracy. However, at the BL timestep, our proposed 
network did not perform well and reported a lower accuracy than that of 
EfficientNet, DenseNet, and VGG16. This can be attributed to the fact 
that the proposed framework was designed to model temporal de
pendencies from longitudinal data, which can not be captured well in a 
single training data time step. Furthermore, an important observation is 
that the results shown in BL were highly stable, exhibiting minimal 
variance (≤2), which highlights the stability of the network with the 
training dataset. 

After training each network with two time steps of longitudinal data 
collected from BL + M06, we observed a significant improvement in the 
overall performance of the proposed model. Our model achieved an 
average accuracy of 0.91 ± 0.02, AUC of 0.90 ± 0.02, F1 score of 0.92 
± 0.01, Precision of 0.91 ± 0.02, and recall of 0.95 ± 0.01, exceeding 
the 90% threshold for each evaluation metric. This significant 
improvement in performance demonstrates the importance of using 
multi-modal data in the disease identification process. EfficientNet 
showed no significant improvement in its overall performance 
compared with that of the other models. The results obtained with 
EfficientNet in BL ~ M06 were either similar to previous time steps (i.e., 
in BL where Accuracy = 0.94 ± 0.02 and precision = 0.95 ± 0.01) or 
degraded in BL ~ M06 (i.e., AUC = 0.91 ± 0.02, F1 score = 0.92 ± 0.01 
and recall = 0.89 ± 0.01), indicating unstable behavior of this model. 
Alternatively, DenseNet121 reported the best performance in BL ~ M06 
compared to that of ResNet50 and VGG16, achieving an accuracy of 0.89 
± 0.02, AUC of 0.88 ± 0.02, F1 score of 0.86 ± 0.02, Precision of 0.88 ±
0.02 and recall of 0.86 ± 0.02. Performance improvements in BL ~ M06 
indicate that the use of longitudinal data from multiple time steps can 
improve the accuracy of disease identification models. 

In the BL~M12, our proposed network once again outperformed 
other comparative models, demonstrating a gradual improvement in 
performance, surpassing a ≥95 % value for each metric. Among Den
seNet121, VGG16, and ResNet50, DenseNet121 achieved the best per
formance, passing the 90% threshold for every metric except recall, 
which was 89%. However, the performance of the EfficientNet model 
continued to degrade, reaching the worst accuracy when three-time 
steps of the training data were combined with the CS. Although this 
model performed well in experiments 1 and 2 in BL, it was unable to 
maintain stable performance when presented with longitudinal data. 
This may be because the model cannot adequately differentiate the 
anatomical differences in brain tissues occurring at different time steps 
and treats the data as a single time step. Additionally, the model showed 
a very high variance with precision and recall ranging between 4 and 5. 

4.3.2. Model comparison using dynamic 2D images + CS 
Fig. 5 presents the results of our study on the effectiveness of 

different comparative models using multimodal longitudinal training 
data (MRI + CS) and the mAUC as a comparison metric. This figure 
provides a clear overview of the performance of the models and the 
improvements obtained using multimodal data in the process of disease 
diagnosis. 

Our findings demonstrate that EfficientNet outperforms other 
comparative models, with an outstanding mAUC score of 96% in the BL 
time step, which is a significant improvement of 5% compared with that 

Table 4 
Comparative analysis of the proposed network and other deep models using 
dynamic 2D images + CS.  

Backbone 
network 

Time 
Steps 

Accuracy AUC F1 
Score 

Precision Recall 

ResNet50 [29] BL 0.82 ±
0.01 

0.80 
±

0.02 

0.83 
±

0.01 

0.84 ±
0.02 

0.83 
± 0.02 

BL ~ 
M06 

0.84 ±
0.02 

0.86 
±

0.01 

0.86 
±

0.02 

0.87 ±
0.02 

0.86 
± 0.02 

BL ~ 
M12 

0.87 ± 
0.01 

0.88  
± 
0.02 

0.89  
± 
0.01 

0.89 ± 
0.01 

0.88  
± 0.02 

VGG16 [30] BL 0.85 ±
0.01 

0.83 
±

0.02 

0.80 
±

0.03 

0.88 ±
0.03 

0.75 
± 0.04 

BL ~ 
M06 

0.80 ±
0.02 

0.81 
±

0.02 

0.83 
±

0.01 

0.87 ±
0.01 

0.78 
± 0.02 

BL ~ 
M12 

0.86 ± 
0.20 

0.87  
± 0.1 

0.86  
± 
0.20 

0.86 ± 
0.01 

0.85  
± 0.20 

DenseNet121  
[31] 

BL 0.87 ±
0.02 

0.85 
± 0.2 

0.82 
±

0.20 

0.86 ±
0.03 

0.80 
± 0.03 

BL ~ 
M06 

0.89 ±
0.02 

0.88 
±

0.02 

0.86 
±

0.02 

0.88 ±
0.02 

0.86 
± 0.02 

BL ~ 
M12 

0.91 ± 
0.02 

0.93  
± 
0.02 

0.92  
± 
0.02 

0.95 ± 
0.01 

0.89  
± 0.04 

EfficientNet  
[32] 

BL 0.94 ±
0.02 

0.96 
±

0.02 

0.93 
±

0.03 

0.95 ±
0.02 

0.93 
± 0.02 

BL ~ 
M06 

0.94 ±
0.02 

0.91 
±

0.02 

0.92 
±

0.01 

0.95 ±
0.01 

0.89 
± 0.01 

BL ~ 
M12 

0.89 ± 
0.03 

0.88 
±

0.02 

0.88  
± 
0.02 

0.89 ± 
0.04 

0.87  
± 0.05 

Proposed 
Network 

BL 0.83 ±
0.02 

0.84 
±

0.01 

0.82 
±

0.01 

0.87 ±
0.02 

0.79 
± 0.02 

BL ~ 
M06 

0.91 ±
0.02 

0.91 
±

0.02 

0.92 
±

0.01 

0.91 ±
0.02 

0.95 
± 0.01 

BL ~ 
M12 

0.95 ± 
0.01 

0.96  
± 
0.01 

0.96  
± 
0.02 

0.97 ± 
0.02 

0.96  
± 0.01 

Bold text indicates the best results. 
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achieved using a single modality. VGG16 and DenseNet reported im
provements of 7% and 5%, respectively, indicating that the use of 
multimodal data can significantly affect the disease identification pro
cess. The proposed network did not show any significant improvement 
in the mAUC score at the BL time step; however, there was a 2% 
improvement in the precision metric. After training the models with 
two-time steps of multimodal longitudinal data, most comparative 
models demonstrated a significant improvement in the mAUC score 
compared with that achieved using two timesteps with a single modal
ity. For BL~M6, ResNet reported a 4% improvement from 0.82 ± 0.05 
to 0.86 ± 0.01, DenseNet reported a 6% improvement from 0.82 ± 0.02 
to 0.88 ± 0.01, and the proposed network reported a 1% improvement, 
increasing from 0.90 ± 0.02 to 0.91 ± 0.02. VGG16 did not result in any 
significant improvement in the mAUC score; however, the recall score 
improved. In BL~M12, all comparative models reported additional 
improvement in the mAUC score compared to that achieved using 
single-modality data in BL~M12. The proposed network and DenseNet, 
VGG16, and ResNet models reported improvements of 2%, 4%, 2%, and 
3%, respectively, in the mAUC scores using MRI + CS longitudinal 
training data. 

In conclusion, most of the comparative models in this study achieved 
significant improvements in overall performance using multimodal 
longitudinal data, highlighting the importance of incorporating multi
modal data for disease identification. In particular, the proposed model 
exhibited a significant improvement in performance when trained with 
multimodal longitudinal data, outperforming the other comparative 
models considered in this study. EfficientNet performed well at baseline 
but did not maintain a stable performance when presented with longi
tudinal data, indicating the importance of designing models that can 
capture temporal dependencies in the data. 

We tested our results using both early and late fusion of multi
modalities to evaluate the proposed model. In early fusion, the CS fea
tures are fused with a feature vector extracted from the CNN model 
before being passed to the LSTM. In late fusion, the output feature vector 
from the LSTM model was concatenated with the CS features and fed 

into a dense layer to distinguish between patients with CN and those 
with AD. Our observation from early fusion was that the proposed LSTM 
model considers CS features as part of deep features, as we did not 
observe any significant effect of these features on the overall accuracy. 
However, for late fusion, the proposed model exhibited a significant 
improvement in the detection accuracy of AD progression. We also 
observed that owing to the lightweight structural design of the proposed 
network and the carefully chosen number of kernels in each convolution 
layer, the proposed model identified infected brain regions very well 
without compromising on the overfitting problem. We also noticed that 
the proposed model showed an improvement in accuracy and stability, 
as it saw an increased number of longitudinal time steps during the 
training process. 

5. Explainable deep models 

DL-based approaches have become increasingly popular in recent 
years, owing to their ability to automatically learn features and gener
alize across a wide range of applications. However, the complexity of 
such algorithms and, the huge amount of data on which they are trained 
, make it difficult to understand the underlying information in brain 
scans, which leads to specific outputs. Consequently, the decision- 
making process of DL models is often considered a black box. 
Although several efforts have been made to develop XAI methods in 
healthcare to interpret machine predictions, an effective method spe
cifically designed to represent visual changes in brain atrophy observed 
during AD progression using long-term imaging data such as longitu
dinal MRI is still lacking. Therefore, we propose a comprehensive so
lution comprising complementary approaches that offer clear visual 
representations of the reasoning process of the model. Among the pro
posed approaches, one technique generates activation maps at the voxel 
level of dynamic 2D images for each time step of the longitudinal data, 
showing which areas of the brain that are most active during a particular 
classification in a heat map-like visualization. The second technique 
constructs a 3D model of brain tissues in a longitudinal manner, 

Fig. 5. Performance of various deep models on multimodal medical data (dynamic 2D image + CS).  
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representing the activated brain regions for the CN, which progresses to 
AD and AD patients. By combining these techniques, our approach 
presents a distinctive and comprehensive method for comprehending 
the decision-making processes of DL models for detecting AD progres
sion. This, in turn, has the potential to aid the development of more 
efficient diagnostic tools and treatment plans for patients with AD. 

5.1. 3D brain reconstruction and voxel activation 

CT and MRI yield thin volume slices that are not exactly 2D, making 
3D visualization relatively straightforward. Reconstruction and 
rendering of 3D volumes and surfaces is the most common visualization 
technique for these neuroimaging modalities [57]. However, the slicing 
approach does not allow 3D visualization. Two techniques are 
commonly used to visualize such data: surface and volume rendering. 
When rendering surfaces, polygonal surfaces are generated from data
sets and rendered. Unlike conventional geometry-based visualization 
techniques, volume rendering utilizes a color mapping system to render 

elements directly on an image plane, omitting the need for primitive 
shapes. When it comes to depicting surface structures or organs, surface 
rendering is often used, while volume rendering is a more versatile 
method for visualizing internal structures in volume data. Surface 
rendering is a common method of displaying 3D imaging data obtained 
via sectional scanning. This technique can be performed either manually 
or automatically. Manual segmentation involves delineating specific 
brain structures by manually selecting voxels in a template, whereas 
automatic segmentation leverages specialized software, such as Free
Surfer [44], to conduct the entire preprocessing workflow and produce 
detailed anatomical maps. Although manual segmentation offers high 
precision, it requires substantial time and effort from operators. Auto
matic segmentation techniques requiring limited user input do not al
ways perform optimally in complex systems. However, these limitations 
should be carefully considered before making appropriate decisions. 
Therefore, this study used manual mapping of the brain segments, as 
depicted in Fig. 6. 

Once the 2D activation maps are obtained, the explainer rendered a 

Fig. 6. Proposed visual interpretation of the time series (X-axis represents CN, CN converted to AD and AD patients. Y-axis specifies the patient’s health status at 
different time steps (BL, M06, and at M12). 
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3D surface based on the 2D activation maps in several additional pro
cessing steps. First, surface acquisition was initiated, which involved 
gathering brain surface data. This information comprised four cate
gories: vertex ID, vertex position, triangle ID, and vertex index for each 
triangle. This information is stored in a text file in ASCII format. Using 
FreeSurfer, the brain surface was extracted by transforming the vertex 
coordinates into the Montreal Neurological Institute (MNI) template 
space. In the next stage, brain volume data were converted into the 
NIFTI format using volume mapping procedures. These steps included 
processing different types of volume data, ranging from T-maps and Z- 
maps to atlases. In our investigation of neuroanatomical research and 
structure–function relationships, we employed the Brainnetome Atlas 
[58], which consists of 246 areas located in both hemispheres. These 
areas were parcellated based on the atlas-connectivity and functionally 
characterized using meta-data labels obtained from the BrainMap 
database [59]. The labels included the behavioral domain and paradigm 
class, which were identified using forward and reverse inference tech
niques. To identify the brain regions that contributed the most to the 
classification process, the intersection points for each brain were first 
calculated. Subsequently, volume mapping was performed, which con
verted the vertex coordinates of the brain surface into image file voxels 
using various techniques that assigned the vertices to their corre
sponding values. To superimpose the corresponding voxels between the 
3D surface and the image file, an ROI was created, and box-smoothing 
methods were employed for the ROI volume and brain surface. The 
surface was rendered using the MATLAB toolbox BrainNetViewer [60]. 
Fig. 6 displays the activated brain regions for the different classes in a 
longitudinal manner. 

5.2. Time-dependent attention maps of activated brain voxels 

To visualize the significant features that contribute to determining 
the final output class, we leveraged the MedCam Python library [61], 
which specializes in visualizing the attention maps of 2D and 3D deep 
models. We provided library with test data containing the recommended 
labels, which enabled the generation of attention maps. The attention 
maps were then integrated linearly and normalized to enhance their 
interpretability. Next, we superimposed these attention maps onto the 
corresponding dynamic 2D images at each time step. This allowed us to 
identify the regions that played crucial roles in the decision-making 
process. By analyzing the attention maps, we gained insights into how 
the DL model arrived at its findings. Fig. 6 shows 2D slices that incor
porate the voxel details obtained from the MedCam library. These slices 
provide a detailed view of the identified regions. Notably, the dis
tinguishing features between CN individuals, those with AD, and in
dividuals transitioning from CN to AD within a 3-year period are 
highlighted. Furthermore, to provide a comprehensive representation of 
AD progression, we included a 3D-rendered brain surface. This visuali
zation effectively demonstrates the affected brain regions that are 
affected by AD progression. By employing the MedCam library and 
examining the visual results, we gained a deeper understanding of the 
decision-making process of the DL model and the specific features that 
differentiate individuals with CN, AD, and those transitioning between 
these states. 

Activated brain regions of cognitively normal people: The findings of this 
study revealed that certain brain regions have a higher potential to 
distinguish between CN individuals and those with AD. Specifically, the 
rostral Hippocampus [62], medial Amygdala [63], globus Pallidus [63], 
lateral Amygdala [63], area 28/34 (EC, Entorhinal Cortex) [64] and 
caudal area 35/36 [62] (also known as the Parahippocampal Gyrus), 
were found to be the most effective regions for discriminating between 
the two groups. These regions exhibited consistent patterns across all 
time steps (BL, M06, and M12), suggesting that they could serve as 
stable biomarkers for the early diagnosis and monitoring of AD. More
over, the use of such biomarkers has potential implications in the 
development of effective treatments and interventions to manage and 

slow disease progression. By utilizing these specific brain regions, cli
nicians can better assess disease severity and design treatment plans 
tailored to the needs of individual patients. Additionally, the findings of 
this study can be used to develop new diagnostic tools that are more 
accurate and effective than the current methods. 

Infected brain tissues in CN progressed to AD case: The second column 
of Fig. 6 portrays the disease progression in converted patients. In 
contrast to individuals with long-term AD, coverted patients undergo a 
swift transition from a normal state to AD, in contrast to a gradual 
decline in cognitive function. Disease severity was indicated by a rapid 
increase in both the number and volume of affected brain regions over 
time. To identify patients who initially had a CN status but later pro
gressed to AD, the network examined the same regions used to identify 
patients with a CN status at time steps 1, 2, and 3, including the Hip
pocampus [62], Amygdala (medial and lateral) [65] and Para
hippocampal regions [66]. However, as cognitive impairment worsened 
in time step 2, the network detected additional affected regions such as 
medial Amygdala [65], lateral Amygdala [65], dorsolateral Putamen 
[65], caudal Hippocampus [62], rostroventral area 20 (the Fusiform 
Gyrus) [64], Globus Pallidus [63], area 28/34 (EC, Entorhinal cortex) 
[63] and area TL [66]. These regions are associated with memory, 
learning, and attention, and their involvement in the progression of AD 
has been previously reported. Atrophy of more than 50% of the brain 
tissue occurs by time step 3 in patients who have progressed to AD, 
encompassing all regions identified for time steps 1 and 2. The atrophy 
of these brain regions causes a significant decline in cognitive function, 
resulting in the manifestation of AD symptoms. Additional affected re
gions in time step 3 include rostral area 21 and superior temporal Sulcus 
[67], that is, middle temporal Gyrus [68], rostral area 22 [68] and 
lateral area 38 [68], i.e. superior temporal [67]; lateroventral area 37, i. 
e., Fusiform Gyrus [64]; and caudoventral of area 20 [63], intermediate 
lateral area 20 [56], and caudolateral of area 20 [56], that is, the inferior 
temporal Gyrus [52] and caudal Hippocampus [50]. The network de
tects the affected regions and attributes them to AD conversion in pa
tients. Identifying these regions and their correlation with AD can help 
develop effective treatments to slow the disease progression. The dis
covery of these biomarkers has significant clinical implications for early 
AD diagnosis and monitoring, delayed disease onset, and enhanced 
quality of life. 

Infected brain tissues in AD patient: In Fig. 6, the third column displays 
the disease progression of a patient who already had AD on the BL scan. 
The impact of AD on several regions of the brain is evident, including the 
Hippocampus [62], which is known to play a critical role in memory and 
spatial navigation and is typically one of the first regions to show at
rophy in AD patients. The medial Amygdala [51], caudal Hippocampus 
[63], and lateral Amygdala [63] are also affected, indicating that AD has 
a broad impact on the limbic system, which is responsible for emotion, 
behavior, and memory processing. The dorsolateral Putamen [63], 
rostroventral area 20 (Fusiform Gyrus) [62], Globus Pallidus [63], area 
28/34 [63], and area TL (lateral PPHC, posterior Parahippocampal 
Gyrus) [69] are also affected, suggesting that AD significantly affects 
various brain regions involved in memory processing and decision- 
making. Moreover, the proposed network identified several regions as 
influential in BL and BL~M06 in AD patients, including rostral area 21 
and the superior temporal Sulcus (middle Temporal Gyrus) [70], rostral 
area 22 and lateral area 38 (superior temporal Gyrus) [71], Later
oventral area 37 (Fusiform Gyrus) [70], caudoventral area 20 and in
termediate lateral area 20, and caudolateral area 20 (inferior Temporal 
Gyrus) [69] and caudal Hippocampus [63]. These findings have signif
icant implications for the diagnosis and monitoring of AD, as they pro
vide valuable information about the progression of the disease and the 
affected brain regions. 

The proposed approach for visualizing the changes in AD-affected 
brain regions over time is novel and comprehensive. Fig. 6 illustrates 
that in patients with AD who display disease symptoms from the 
beginning, the initial scan reveals most of the brain atrophy. The 
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proposed 3D visual and temporal explanations provide clinicians with 
an intuitive method for tracking the changes in a patient’s condition 
over time. By utilizing the proposed explainability approach involving 
3D and 2D visual temporal details, physicians can intuitively monitor 
changes in a patient’s condition over time. The apparent worsening of 
the patient’s condition at baseline is indicated by numerous affected 
brain regions compared with the brain of a healthy person. As time 
progresses to BL ~ M06, the number of affected regions increases, and 
by BL ~ M12, the situation continues to worsen. The accurate tracking 
of a patient’s condition is facilitated by a proposed explanation that 
highlights the newly affected regions at each time step and allows 
physicians to monitor changes effectively. This approach can help 
physicians to identify the progressive nature of the disease and develop 
appropriate treatment strategies. By monitoring a patient’s condition 
over time and identifying newly affected regions, physicians can adjust 
treatment plans and optimize care to meet a patient’s specific needs. 
Overall, the proposed method has significant implications in improving 
patient outcomes and advancing our understanding of AD. 

6. Comparative analysis with existing techniques 

In this section, we compare the best proposed competitive frame
work for detecting AD progression. It is important to note that all 
comparative studies were evaluated using multiple metrics, including 
precision, recall, F1-score, AUC, and accuracy. This approach enabled us 
to assess the strengths of each study from various perspectives. Addi
tionally, many authors have abstained from publishing the training data 
used in their studies. Consequently, reproducing their published results 
was not unfeasible for us, and as a result, our comparison was conducted 
solely based on the published findings of those authors. The results 
demonstrate that the proposed framework becomes more stable and 
accurate when multimodal longitudinal training data are used. To 
demonstrate the effectiveness of the proposed method, it was compared 
with the most recent methods in the literature. The results are presented 
in Table 5. We observed that the majority of published studies only 
utilized a single slice from the entire MRI volume [70], resulting in the 

loss of crucial information required to ensure the stability of the model 
in predicting the disease. Moreover, processing complete 3D MRI vol
umes as longitudinal data incurs substantial computational cost. The 
suggested approach overcomes these limitations by not only enhancing 
the detection of AD progression, but also yielding more accurate and 
consistent results through the integration of multimodal data. 

For instance, El-Sappagh et al. [38] conducted a study using longi
tudinal data consisting of 15 time-steps to detect AD progression. By 
introducing a novel approach employing a stacked CNN-LSTM model, 
they aimed to predict multiple variables. Despite the promising results 
demonstrated by their proposed model, they overlooked the absence of 
consideration of the temporal gap between the last observed data point 
and the prediction time steps. Failure to account for this temporal gap 
could potentially affect the predictive capabilities of the model, thereby 
emphasizing the necessity for future investigations to address this lim
itation. Abuhmed et al. [46] introduced hybrid deep models that 
leveraged multimodal time-series data spanning 18 months. The pri
mary objectives of their research were to detect the progression of AD 
and predict future cognitive scores. To accomplish these objectives, re
searchers incorporated a diverse array of features including MRI, PET, 
and neuropsychological and cognitive scores. Notably, the authors 
relied on preprocessed features accessible in the ADNI database. They 
reported average precision of 84.68%, recall 84.80%, F1-score 84.73%, 
and accuracy 82.63%. El-Sappagh et al. [47] proposed a cost-efficient 
time-series model that incorporated a range of patient comorbidities, 
including cognitive scores, treatment history, and demographics, to 
detect AD progression. This study employed conventional ML-based 
methods, such as SVM, RF, KNN, decision tree (DT), and logistic 
regression (LR), to achieve the objective of identifying AD progression. 
Zhu et al. [72] employed spatiotemporal features extracted from lon
gitudinal MRI to predict the likelihood of patients with MCI converting 
to AD before the manifestation of clinical symptoms. The authors sug
gested the use of temporally structured TS-SVMs to identify spatiotem
poral features that capture structural transformations in the brain during 
AD progression. Dong et al. [73] presented DeepAtrophy, a system that 
utilizes pairs of longitudinal MRI scans to identify AD progression by 

Table 5 
Comparison of the proposed model and existing literature techniques.  

Study #S Mod LT? #T Performance (%) ML Method 

Pre Rec F1-S AUC Acc 

El-Sappagh et al. [38], 
(2021) 

1536 MRI, PET, CS, ASD, NPD Yes 15  94.02  98.42  92.56  -  92.62 Stacked CNN Bi-LSTM 

Abuhmed et al. [46], (2021) 1371 MRI, PET, CS, N, NP, D Yes 4  84.68  84.80  84.73  -  82.63 Bi-LSTM 
El-Sappagh et al. [47], 

(2021) 
1536 MRI, PET, CS, ASD, NPD Yes 15  -  99.99  91.36  -  92.21 RF, DT, LR, SVM, KNN, XGBoost, NB, 

MLP 
Zhu et al. [72], (2021) 151 MRI Yes 5  -  -  -  86.5  85.4 TS-SVM 
Dong et al. [73], (2021) 492 MRI Yes 6  -  -  -  -  88.00 DeepAtrophy 
Ghazi et al. [74], (2021) 1757 MRI, PET, CSF Yes 3  -  -  -  93.40  - Modified LR 
Kang et al. [75], (2021) 798 MRI No 1  -  -  -  -  90.36 EL-CNN 
El-Sappagh et al. [21], 

(2022) 
1371 MRI, CS, D, CSF, NS 

Markers 
Yes 4  94.07  94.07  94.07  -  93.87 2-staged AD progression detection 

Helaly et al. [76], (2022) 1500 MRI No 1  -  -  -  -  94.34 RESU-Net 
Sharma et al. [77], (2022) 2400 MRI No 1  -  -  -  -  95.00 FLS-TWSVM 
Atefe et al. [81], (2022) 210 MRI Yes 3  -  82.00  -  94.00  87.2 EL-CNN 
Kong et al. [39], 2022 370 MRI, PET No 1  -  -  -  -  87.67 AD fusion model 
Zhang et al. [1], (2023) 876 MRI No 1  -  97.83  -  98.34  96.61 MRN-Net 
Guan et al. [78], (2023) 360 MRI No 1  -  69.46  -  75.70  73.54 IADT 
Goel et al. [79], 2023 420 MRI, PET No 1  92.56  95.33  -  -  95.89 RVFL 
Li et al. [80], 2023 446 MRI No 1  -  -  -  -  92.42 GCM-EB2 
Zhentao et al [82]., 2023 275 MRI Yes 2  -  79.97  -  1.53  77.2 VGG-TSwinformer 
Eslami et al. [83], 2023 1123 MRI, PET, CSF Yes 4  -  -  -  -  91.83 ML4VisAD 
Proposed Net (2023) 1692 MRI, CS Yes 3  97.00  96.00  96.00  96.00  95.00 2D-CNN Bi-LSTM 

#S = Number of subjects, Mod = Modalities; LT?= Is longitudinal time steps available?; #T = Number of longitudinal time steps; CS = Cognitive scores; D = De
mographic features; N = Neuropsychiatric features; ASD = Assessment data; NPD = Neuropathological data; NB = Naïve bayes; GBoost = eXtreme Gradient Boosting; 
EL = Ensemble learning; RESU-Net = ResNet-UNET; FLS-TWSVM = fuzzy hyperplane based least square twin SVM; GCM-EB2 = global attention mechanism- 
EfficientNetB2; MRN = Multi relation net; IADT = Interpretable autoencoder model with domain transfer learning; RVFL = Random vector functional link; 
ML4VisAD = Machine Learning for Visualizing AD. 
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deducing the temporal information between paired scans. The authors 
utilized a 50-layer 3D Resnet architecture to construct the proposed 
network and observed considerably higher activation between scan 
pairs with more significant alterations. The researchers employed T1- 
weighted MRI scans and cropped patches solely from the hippocampal 
regions and reported an accuracy of 88%. 

Several studies, [38,46,47,72–74,21] have used longitudinal 
training data across multiple time steps, including MRI, PET, CS and 
other essential patient comorbidities. These studies provide compre
hensive insights into disease analysis. In contrast, several other studies 
[75–77,1,78–80] relied solely on baseline data, neglecting the time se
ries aspect of the training data. These studies lacked longitudinal 
training data for disease analysis and did not adequately explain their 
results. Among the aforementioned studies, only two [47,1] out
performed the proposed framework in terms of the disease identification 
accuracy. Of these two, the superior performance of a study by El-Sap
pagh et al. may be owing to the diverse data modalities and longitudinal 
time steps used in the training data. All these studies provided accept
able accuracy in the disease diagnosis process, but none reported voxel- 
level tissue damage in the decision-making process. Table 5 presents a 
comparison of several metrics, namely, the number of subjects, data 
modalities, availability of longitudinal training data, number of time 
steps, performance achieved, and approach taken in each study. 
Notably, our proposed network surpassed the performances achieved in 
many studies. Given its superior performance and robustness, the pro
posed system can serve as a baseline model for the development of 
advanced healthcare systems targeting the onset of AD. 

Additionally, we used visual representations of brain images to 
explain the time series and justify the model’s decision to identify pa
tients with AD. The proposed XAI technique was designed to track brain 
regions over time, providing valuable information for early detection 
and diagnosis of AD. Various XAI approaches have proven beneficial in 
numerous medical domains for clarifying deep models’ reasoning pro
cesses [84–86]. However, many of these XAI techniques do not provide a 
clear visual representation of brain atrophy observed on MRI images 
during long-term studies for detecting AD progression. The proposed 
technique fills this gap by providing an intuitive and comprehensive 
visualization of changes in brain regions over time, allowing physicians 
to track disease progression ease and accuracy. In particular, our pro
posed XAI technique exhibited superior performance compared to the 
most advanced methods in the literature, making it a promising tool for 
AD management. However, further development is necessary to ensure 
its suitability for implementation in clinical settings. We believe that, 
through continuous research and refinement, our XAI technique has the 
potential to revolutionize the diagnosis and management of AD, 
providing patients with more effective and personalized treatment op
tions. Integrating our model into clinical workflows requires solving 
various technical and ethical problems. Nevertheless, the potential for 
improving the precision and effectiveness of AD diagnosis and man
agement using DL tools appears promising. 

7. Current limitations 

Despite the good performance of the ADNI dataset under various 
conditions, the proposed framework has limitations. The current study 
utilized a single neuroimaging modality, such as MRI. However, for the 
detection of AD progression, the incorporation of multiparametric MRI 
(PET, diffusion tensor imaging, and functional MRI) provides a wealth of 
disease-related information in the diagnostic process. We were unable to 
explore other modalities because of their unavailability. Furthermore, 
we used multimodal data consisting of longitudinal MRI scans and cross- 
sectional cognitive scores. Unfortunately, the absence of cognitive 
scores in a longitudinal capacity hindered our ability to explore them at 
different time points. Additional factors that hindered the improvement 
of the learning performance of our proposed approach included 
compatibility issues related to the longitudinal time steps captured in 

each subject group (i.e., 6 months (BL, M6, M12, etc.)), as well as limited 
public access to these datasets, specifically the MIRIAD, OASIS or AIBL 
datasets. Finally, the primary focus of this study was the visual 
explainability of 2D MRI images and 3D brain surfaces in a longitudional 
manner only, as the second modality (cognitive scores) was based solely 
on the BL timestep. 

8. Conclusions 

In medicine and healthcare, the use of machine learning and data 
mining techniques is immensely beneficial for the early detection and 
diagnosis of numerous diseases. AD is the most severe form of dementia 
and leads to memory loss and cognitive decline. Many medical diag
nostic systems rely primarily on baseline data acquired during the initial 
visit, disregarding the dynamic nature of clinical information. Conven
tional DL models operate as black boxes, making it challenging to 
explain their decision-making processes. Although current DL models 
demonstrate high precision, their practical implementation is hindered 
by the volumetric nature of medical data, which necessitates intensive 
computation and makes it difficult for physicians and regulators to 
verify the predictive results of a given system. In this study, we used an 
approximate rank pooling strategy to generate a single 2D image from a 
whole-brain 3D MRI volume. The resulting 2D dynamic image was a 
compressed representation of the entire 3D MRI volume. Dynamic im
ages were generated longitudionally and were used to detect AD pro
gression. We also propose an efficient CNN-Bi-LSTM model that 
outperformes comparative models in detecting AD progression. The 
effectiveness of each model was evaluated using single-mode data (dy
namic 2D image) and multimodal data (dynamic 2D image + CS) data. 
In addition, we introduce a new technique that renders our model’s 
decisions medically interpretable and acceptable to medical pro
fessionals. For this purpose, we chose a guided grad-cam to visually 
represent influential features by generating heatmaps that highlighted 
the location of the exact voxels in the damaged brain regions, showing 
the features that most influenced the final classification of the system for 
AD progression in this patient. Localization heatmaps showed a large 
influence of the lateral ventricle, limbic system, subregions and other 
disease-affected regions of the cortex. These images are consistent with 
regions that are commonly affected during AD progression. Our future 
research will examine the effectiveness of alternative modalities, 
including cognitive scores in a longitudinal context, and PET neuro
imaging for identifying AD progression. Furthermore, we explored the 
impact of integrating various types of time-series data on model per
formance. While this study introduced a novel explainable 2D approach 
to MRI slices and 3D brain surfaces within time series-data, medical 
professionals tend to favor multiple explanations to increase confidence 
in the model’s results. Therefore, we plan to investigate additional XAI 
techniques in future research that incorporate complementary modal
ities such as PET and diffusion neuroimaging. In future research, we will 
explore the interesting idea of a learnable strategy for temporal rank 
pooling to create a dynamic image. 

CRediT authorship contribution statement 

Nasir Rahim: Conceptualization, Data curation, Software, Formal 
analysis, Visualization, Writing – original draft. Tamer Abuhmed: 
Conceptualization, Methodology, Supervision, Formal analysis, Writing 
– review & editing, Funding acquisition. Seyedali Mirjalili: Conceptu
alization, Investigation, Data curation, Writing – review & editing, 
Visualization. Shaker El-Sappagh: Methodology, Formal analysis, 
Validation, Writing – review & editing. Khan Muhammad: Supervision, 
Formal analysis, Validation, Writing – review & editing. 

Declaration of Competing Interests 

The authors declare that they have no known competing financial 

N. Rahim et al.                                                                                                                                                                                                                                  



Alexandria Engineering Journal 82 (2023) 484–502

501

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This work was supported by the National Research Foundation of 
Korea(NRF) grant funded by the Korea government(MSIT)(No. 
2021R1A2C1011198), (Institute for Information & communications 
Technology Planning & Evaluation) (IITP) grant funded by the Korea 
government (MSIT) under the ICT Creative Consilience Program (IITP- 
2021-2020-0-01821), and AI Platform to Fully Adapt and Reflect 
Privacy-Policy Changes (No. 2022-0-00688). Data used in preparation of 
this article was obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators 
within the ADNI contributed to the design and implementation of ADNI 
and/or provided data but did not participate in analysis or writing of this 
article. 

References 

[1] S. Qasim Abbas, L. Chi, Y.P.P. Chen, Transformed domain convolutional neural 
network for Alzheimer’s disease diagnosis using structural MRI, Pattern Recognit. 
133 (2023), 109031, https://doi.org/10.1016/j.patcog.2022.109031. 

[2] S. Lu, Y. Xia, W. Cai, M. Fulham, D.D. Feng, Early identification of mild cognitive 
impairment using incomplete random forest-robust support vector machine and 
FDG-PET imaging, Comput. Med. Imaging Graph. 60 (2017) 35–41, https://doi. 
org/10.1016/j.compmedimag.2017.01.001. 

[3] B. Lei, et al., Predicting clinical scores for Alzheimer’s disease based on joint and 
deep learning, Expert Syst. Appl. 187 (2022), 115966, https://doi.org/10.1016/j. 
eswa.2021.115966. 

[4] H.K. Bharadwaj, et al., A review on the role of machine learning in enabling IoT 
based healthcare applications, IEEE Access 9 (2021) 38859–38890, https://doi. 
org/10.1109/ACCESS.2021.3059858. 

[5] E.E. Bron, et al., Standardized evaluation of algorithms for computer-aided 
diagnosis of dementia based on structural MRI: The CADDementia challenge, 
Neuroimage 111 (2015) 562–579, https://doi.org/10.1016/j. 
neuroimage.2015.01.048. 

[6] X. Zhang, L. Han, W. Zhu, L. Sun, D. Zhang, An explainable 3D residual self- 
attention deep neural network for joint atrophy localization and Alzheimer’s 
disease diagnosis using structural MRI, IEEE J. Biomed. Heal. Informatics (2021), 
https://doi.org/10.1109/JBHI.2021.3066832. 

[7] X. Jiang, L. Chang, Y.-D. Zhang, Classification of Alzheimer’s disease via eight- 
layer convolutional neural network with batch normalization and dropout 
techniques, J. Med. Imaging Heal. Informatics 10 (5) (2020) 1040–1048, https:// 
doi.org/10.1166/jmihi.2020.3001. 

[8] D. Gupta, U. Kose, V.H.C. Albuquerque, Editorial: Computational methods for 
neuroimaging: challenges and future trends, Front. Comput. Neurosci. 17 (2023), 
https://doi.org/10.3389/fncom.2023.1181169. 

[9] M. EL-Geneedy, H.E.D. Moustafa, F. Khalifa, H. Khater, E. AbdElhalim, An MRI- 
based deep learning approach for accurate detection of Alzheimer’s disease, Alex. 
Eng. J. 63 (2023) 211–221, https://doi.org/10.1016/j.aej.2022.07.062. 

[10] T. Hrishikesh Jaware, V. Ramesh Patil, C. Nayak, A. Elmasri, N. Ali, P. Mishra, 
A novel approach for brain tissue segmentation and classification in infants’ MRI 
images based on seeded region growing, foster corner detection theory, and sparse 
autoencoder, Alex. Eng. J. 76 (2023) 289–305, https://doi.org/10.1016/j. 
aej.2023.06.040. 

[11] S.K. Teh, I. Rawtaer, A.H. Tan, Predictive self-organizing neural networks for in- 
home detection of Mild Cognitive Impairment, Expert Syst. Appl. 205 (2022), 
117538, https://doi.org/10.1016/j.eswa.2022.117538. 

[12] J. Song, J. Zheng, P. Li, X. Lu, G. Zhu, P. Shen, An effective multimodal image 
fusion method using MRI and PET for Alzheimer’s disease diagnosis, Front. Digit. 
Heal. 3 (2021) 19, https://doi.org/10.3389/fdgth.2021.637386. 

[13] L. Xu, X. Wu, K. Chen, L. Yao, Multi-modality sparse representation-based 
classification for Alzheimer’s disease and mild cognitive impairment, Comput. 
Methods Programs Biomed. 122 (2) (2015) 182–190, https://doi.org/10.1016/j. 
cmpb.2015.08.004. 

[14] S. Huang et al. , Identifying Alzheimer’s disease-related brain regions from multi- 
modality neuroimaging data using sparse composite linear discrimination analysis, 
Adv. Neural Inf. Process. Syst. 24 (2011). 

[15] K.R. Gray, P. Aljabar, R.A. Heckemann, A. Hammers, D. Rueckert, Random forest- 
based similarity measures for multi-modal classification of Alzheimer’s disease, 
Neuroimage 65 (2013) 167–175, https://doi.org/10.1016/j. 
neuroimage.2012.09.065. 

[16] A.V. Savchenko, N.S. Belova, Sequential analysis in Fourier probabilistic neural 
networks, Expert Syst. Appl. 207 (2022), 117885, https://doi.org/10.1016/j. 
eswa.2022.117885. 

[17] A. Rayan, et al., Utilizing CNN-LSTM techniques for the enhancement of medical 
systems, Alex. Eng. J. 72 (2023) 323–338, https://doi.org/10.1016/j. 
aej.2023.04.009. 

[18] A.M. Alvi, S. Siuly, H. Wang, K. Wang, F. Whittaker, A deep learning based 
framework for diagnosis of mild cognitive impairment, Knowledge-Based Syst. 248 
(2022), https://doi.org/10.1016/j.knosys.2022.108815. 

[19] B. Lei et al. , Longitudinal study of early mild cognitive impairment via similarity- 
constrained group learning and self-attention based SBi-LSTM✩, 254 (2022) 
109466, doi: 10.1016/j.knosys.2022.109466. 

[20] G. Lee et al. , Predicting Alzheimer’s disease progression using multi-modal deep 
learning approach, Sci. Rep. 9(1) (2019), doi: 10.1038/s41598-018-37769-z. 

[21] S. El-Sappagh, H. Saleh, F. Ali, E. Amer, T. Abuhmed, Two-stage deep learning 
model for Alzheimer’s disease detection and prediction of the mild cognitive 
impairment time, Neural Comput. Appl. (2022) 1–23, https://doi.org/10.1007/ 
s00521-022-07263-9. 

[22] A. Elhence, V. Kohli, V. Chamola, B. Sikdar, Enabling cost-effective and secure 
minor medical teleconsultation using artificial intelligence and blockchain, IEEE 
Internet Things Mag. 5 (1) (2022) 80–84, https://doi.org/10.1109/ 
iotm.001.2100142. 

[23] S. Aras, P.J.G. Lisboa, Explainable inflation forecasts by machine learning models, 
Expert Syst. Appl. 207 (2022), 117982, https://doi.org/10.1016/J. 
ESWA.2022.117982. 

[24] P.R. Magesh, R.D. Myloth, R.J. Tom, An explainable machine learning model for 
early detection of Parkinson’s disease using LIME on DaTSCAN imagery, Comput. 
Biol. Med. 126 (2020), 104041, https://doi.org/10.1016/j. 
compbiomed.2020.104041. 

[25] A. Holzinger, C. Biemann, C.S. Pattichis, D.B. Kell, What do we need to build 
explainable AI systems for the medical domain? arxiv.org, 2017, [Online], 
Available: http://arxiv.org/abs/1712.09923. 

[26] A. Barredo Arrieta et al. , Explainable Artificial Intelligence (XAI): Concepts, 
taxonomies, opportunities and challenges toward responsible AI, Inf. Fusion 58 
(2020) 82–115, doi: 10.1016/j.inffus.2019.12.012. 

[27] T. Rojat, R. Puget, D. Filliat, J. Del Ser, R. Gelin, N. Díaz-Rodríguez, Explainable 
artificial intelligence (XAI) on TimeSeries data: a survey, 2021, [Online], 
Available: http://arxiv.org/abs/2104.00950. 

[28] H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, Action recognition with dynamic 
image networks, IEEE Trans. Pattern Anal. Mach. Intell. 40 (12) (2018) 
2799–2813, https://doi.org/10.1109/TPAMI.2017.2769085. 

[29] F. Wang et al. , Residual attention network for image classification, in: Proc. - 30th 
IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, 2017-Janua, no. 1, 
2017, pp. 6450–6458, doi: 10.1109/CVPR.2017.683. 

[30] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale 
image recognition, in: 3rd International Conference on Learning Representations, 
ICLR 2015 - Conference Track Proceedings, 2015. Accessed: Oct. 06, 2021. 
[Online], Available: http://www.robots.ox.ac.uk/. 

[31] G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected 
convolutional networks, in: Proceedings - 30th IEEE Conference on Computer 
Vision and Pattern Recognition, CVPR 2017, 2017, pp. 2261–2269, https://doi. 
org/10.1109/CVPR.2017.243. 

[32] M. Tan, Q.V. Le, EfficientNet: rethinking model scaling for convolutional neural 
networks, in: 36th International Conference on Machine Learning, ICML 2019, 
2019, pp. 10691–10700. 

[33] R.C. Petersen, et al., Alzheimer’s disease neuroimaging initiative (ADNI): clinical 
characterization, Neurology 74 (3) (2010) 201–209, https://doi.org/10.1212/ 
WNL.0b013e3181cb3e25. 

[34] D.L. Beekly, et al., The National Alzheimer’s Coordinating Center (NACC) 
database: the uniform data set, Alzheimer Dis. Assoc. Disord. 21 (3) (2007) 
249–258, https://doi.org/10.1097/WAD.0b013e318142774e. 

[35] D.S. Marcus, A.F. Fotenos, J.G. Csernansky, J.C. Morris, R.L. Buckner, Open access 
series of imaging studies: longitudinal MRI data in nondemented and demented 
older adults, J. Cogn. Neurosci. 22 (12) (2010) 2677–2684, https://doi.org/ 
10.1162/jocn.2009.21407. 

[36] I.B. Malone, et al., MIRIAD-public release of a multiple time point Alzheimer’s MR 
imaging dataset, Neuroimage 70 (2013) 33–36, https://doi.org/10.1016/j. 
neuroimage.2012.12.044. 

[37] N. Rahim, S. El-Sappagh, S. Ali, K. Muhammad, J. Del Ser, T. Abuhmed, Prediction 
of Alzheimer’s progression based on multimodal Deep-Learning-based fusion and 
visual Explainability of time-series data, Inf. Fusion 92 (2023) 363–388, https:// 
doi.org/10.1016/j.inffus.2022.11.028. 

[38] S. El-Sappagh, T. Abuhmed, K.S. Kwak, Alzheimer disease prediction model based 
on decision fusion of CNN-BiLSTM deep neural networks, in: Advances in 
Intelligent Systems and Computing, 2021, pp. 482–492, https://doi.org/10.1007/ 
978-3-030-55190-2_36. 

[39] Z. Kong, M. Zhang, W. Zhu, Y. Yi, T. Wang, B. Zhang, Multi-modal data Alzheimer’s 
disease detection based on 3D convolution, Biomed. Signal Process. Control 75 
(2022), https://doi.org/10.1016/j.bspc.2022.103565. 

[40] J. Wang, A. Cherian, F. Porikli, Ordered pooling of optical flow sequences for 
action recognition, in: Proceedings - 2017 IEEE Winter Conference on Applications 
of Computer Vision, WACV 2017, 2017, pp. 168–176, https://doi.org/10.1109/ 
WACV.2017.26. 

[41] X. Xing, et al., Dynamic image for 3D MRI image Alzheimer’s disease classification, 
in: A. Bartoli, A. Fusiello (Eds.), Computer Vision – ECCV 2020 Workshops, 
Springer International Publishing, Cham, 2020, pp. 355–364. 

[42] N.J. Ashton, et al., Cerebrospinal fluid p-tau231 as an early indicator of emerging 
pathology in Alzheimer’s disease, EBioMedicine 76 (2022), https://doi.org/ 
10.1016/J.EBIOM.2022.103836. 

[43] J.T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for simplicity: 
the all convolutional net, in: 3rd International Conference on Learning 
Representations, ICLR 2015 - Workshop Track Proceedings, 2015. 

N. Rahim et al.                                                                                                                                                                                                                                  

http://adni.loni.usc.edu
https://doi.org/10.1016/j.patcog.2022.109031
https://doi.org/10.1016/j.compmedimag.2017.01.001
https://doi.org/10.1016/j.compmedimag.2017.01.001
https://doi.org/10.1016/j.eswa.2021.115966
https://doi.org/10.1016/j.eswa.2021.115966
https://doi.org/10.1109/ACCESS.2021.3059858
https://doi.org/10.1109/ACCESS.2021.3059858
https://doi.org/10.1016/j.neuroimage.2015.01.048
https://doi.org/10.1016/j.neuroimage.2015.01.048
https://doi.org/10.1109/JBHI.2021.3066832
https://doi.org/10.1166/jmihi.2020.3001
https://doi.org/10.1166/jmihi.2020.3001
https://doi.org/10.3389/fncom.2023.1181169
https://doi.org/10.1016/j.aej.2022.07.062
https://doi.org/10.1016/j.aej.2023.06.040
https://doi.org/10.1016/j.aej.2023.06.040
https://doi.org/10.1016/j.eswa.2022.117538
https://doi.org/10.3389/fdgth.2021.637386
https://doi.org/10.1016/j.cmpb.2015.08.004
https://doi.org/10.1016/j.cmpb.2015.08.004
https://doi.org/10.1016/j.neuroimage.2012.09.065
https://doi.org/10.1016/j.neuroimage.2012.09.065
https://doi.org/10.1016/j.eswa.2022.117885
https://doi.org/10.1016/j.eswa.2022.117885
https://doi.org/10.1016/j.aej.2023.04.009
https://doi.org/10.1016/j.aej.2023.04.009
https://doi.org/10.1016/j.knosys.2022.108815
https://doi.org/10.1007/s00521-022-07263-9
https://doi.org/10.1007/s00521-022-07263-9
https://doi.org/10.1109/iotm.001.2100142
https://doi.org/10.1109/iotm.001.2100142
https://doi.org/10.1016/J.ESWA.2022.117982
https://doi.org/10.1016/J.ESWA.2022.117982
https://doi.org/10.1016/j.compbiomed.2020.104041
https://doi.org/10.1016/j.compbiomed.2020.104041
http://arxiv.org/abs/1712.09923
http://arxiv.org/abs/2104.00950
https://doi.org/10.1109/TPAMI.2017.2769085
http://www.robots.ox.ac.uk/
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
http://refhub.elsevier.com/S1110-0168(23)00838-4/h0160
http://refhub.elsevier.com/S1110-0168(23)00838-4/h0160
http://refhub.elsevier.com/S1110-0168(23)00838-4/h0160
https://doi.org/10.1212/WNL.0b013e3181cb3e25
https://doi.org/10.1212/WNL.0b013e3181cb3e25
https://doi.org/10.1097/WAD.0b013e318142774e
https://doi.org/10.1162/jocn.2009.21407
https://doi.org/10.1162/jocn.2009.21407
https://doi.org/10.1016/j.neuroimage.2012.12.044
https://doi.org/10.1016/j.neuroimage.2012.12.044
https://doi.org/10.1016/j.inffus.2022.11.028
https://doi.org/10.1016/j.inffus.2022.11.028
https://doi.org/10.1007/978-3-030-55190-2_36
https://doi.org/10.1007/978-3-030-55190-2_36
https://doi.org/10.1016/j.bspc.2022.103565
https://doi.org/10.1109/WACV.2017.26
https://doi.org/10.1109/WACV.2017.26
http://refhub.elsevier.com/S1110-0168(23)00838-4/h0205
http://refhub.elsevier.com/S1110-0168(23)00838-4/h0205
http://refhub.elsevier.com/S1110-0168(23)00838-4/h0205
https://doi.org/10.1016/J.EBIOM.2022.103836
https://doi.org/10.1016/J.EBIOM.2022.103836


Alexandria Engineering Journal 82 (2023) 484–502

502

[44] B. Fischl, FreeSurfer, Neuroimage 62 (2) (2012) 774–781, https://doi.org/ 
10.1016/j.neuroimage.2012.01.021. 

[45] G. Martí-Juan, G. Sanroma-Guell, G. Piella, A survey on machine and statistical 
learning for longitudinal analysis of neuroimaging data in Alzheimer’s disease, in: 
Computer Methods and Programs in Biomedicine, Vol. 189, Elsevier, Jun. 01, 
2020, pp. 105348, doi: 10.1016/j.cmpb.2020.105348. 

[46] T. Abuhmed, S. El-Sappagh, J.M. Alonso, Robust hybrid deep learning models for 
Alzheimer’s progression detection, Knowledge-Based Syst. 213 (2021), 106688, 
https://doi.org/10.1016/j.knosys.2020.106688. 

[47] S. El-Sappagh, T. Abuhmed, S.M. Riazul Islam, K.S. Kwak, Multimodal multitask 
deep learning model for Alzheimer’s disease progression detection based on time 
series data, Neurocomputing 412 (2020) 197–215, https://doi.org/10.1016/j. 
neucom.2020.05.087. 

[48] W. Wang, J. Shen, Deep visual attention prediction, IEEE Trans. Image Process. 27 
(5) (2018) 2368–2378, https://doi.org/10.1109/TIP.2017.2787612. 

[49] A.M. Hafiz, S.A. Parah, R.U.A. Bhat, Attention mechanisms and deep learning for 
machine vision: a survey of the state of the art, 2021, [Online], Available: htt 
p://arxiv.org/abs/2106.07550. 

[50] S.M. Muddamsetty, M.N.S. Jahromi, A.E. Ciontos, L.M. Fenoy, T.B. Moeslund, 
Visual explanation of black-box model: Similarity Difference and Uniqueness 
(SIDU) method, Pattern Recogn. 127 (2022), 108604, https://doi.org/10.1016/j. 
patcog.2022.108604. 

[51] S. Ali, et al., Explainable Artificial Intelligence (XAI): what we know and what is 
left to attain Trustworthy Artificial Intelligence, Inf. Fusion (2023), https://doi. 
org/10.1016/j.inffus.2023.101805. 

[52] N. Díaz-Rodríguez, J. Del Ser, M. Coeckelbergh, M. López de Prado, E. Herrera- 
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