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Abstract

Disease status can naturally be classified into three or more ordinal stages

rather than just being binary stages. Many works have been done for the esti-

mation and inference procedure regarding three ordinal disease stages, which

are non-disease, early disease, and full disease stages. The early disease stage

can be very important for therapeutic intervention and prevention potentiality.

As a diagnostic measure, sensitivity to the early disease stage is often used. In

this article, we propose confidence intervals for the sensitivity to early disease

stage based on given target specificity for non-disease stage and target sensitiv-

ity to full disease stage using both empirical likelihood (EL) and adjusted EL

procedures. We compare the performance of the proposed EL confidence inter-

vals with other procedures in our simulation study. The proposed procedures

are further applied to Alzheimer's Disease Neuroimaging Initiative data set.
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1 | INTRODUCTION

The performance of diagnostic tests in identifying different diseases is frequently studied in statistics. Usually the
considered diseases are of binary class. Many statistical procedures have been developed related to binary diseases such
as sensitivity, specificity, positive predictive values, negative predictive values, receiver operating characteristic (ROC)
curve, Lorenz curve, Gini index, kappa statistic, and so forth. Among them, ROC curves are studied extensively. Sum-
mary measures for ROC curves are area under the curve (AUC), partial AUC and Youden index, and so forth.1,2,3 Ordi-
nal disease stages with more than two classes are studied for some diseases. Increased awareness on the adversity of
different diseases makes the studies of these disease stages, especially the early disease stage, of more interest.

Early disease stage plays a significant role in prevention and therapeutic intervention for the diseases with multiple
stages. Being able to correctly identify diseases at early stages increases the chance of an effective treatment. In some sit-
uations taking extra caution, therapeutic measures and dietary or behavioral controls help to prevent or to delay the
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onset of the diseases. In this way, the early detection can prevent extensive complications of diseases and reduce expen-
ditures on expensive medications.

There are several diseases where the studies of early disease stage play a vital role. For example, chronic kidney dis-
ease (CKD) has an increased prevalence worldwide. There are five stages to CKD, whereas stage 1 and stage 2 are con-
sidered as early stages. Taking some cautious measures like treatment of high-blood pressure, glycaemic control,
cessation of smoking, diatery control and exercise, and so forth, during the early stages of CKD can slow down the pro-
gression of the disease and reduce the associated risks of cardiovascular events, kidney failure, and death.4,5 Another
disease with high prevalence is type I diabetes. It is a chronic disease, which causes insulin dependence. Over time, the
disease can cause lethal complications. The early stage of type I diabetes is being emphasized by researchers for the
early diagnosis and prevention purposes. Effective interventions at presymptomatic stages of type I diabetes may delay
the progression to symptomatic type I diabetes.6 Alzheimer's disease (AD) is one of the most common cause of demen-
tia. Detection at an early disease stage appears to be very important to take precautions and to lessen the adverse effect
of the disease.7,8,9 Among other diseases, for which early disease stages are studied are multiple sclerosis, heart disease,
different cancers like breast cancer, ovarian cancer or lung cancer, and so forth. Multiple sclerosis develops gradually
and starting of treatment in early stage is highly recommended.10 Early detection increases the survival rate in cancer
patient and can save lives for heart diseased patients as well.

An extension of ROC curve for ordinal three stage diseases is ROC surface, which is used for observing the perfor-
mance of biomarkers in identifying three stages of the disease. Volume under the surface (VUS) is studied as a
summary measure. There have been several developments on VUS or ROC surface. For example, nonparametric
Mann–Whitney U-statistic based variance estimation for the VUS,11 generalization of three-class classification and
ROC hyper-surface construction for ordered multi-class classification problem,12 kernel smoothing estimation for VUS
with an application to liver cancer data,13 nonparametric calculation of VUS and parametric three-way ROC surface
analysis using MATHEMATICA,14 and so forth. Luo and Xiong15 developed a useful R package to calculate and analyze
three-group classification problem. An application to neuropsychological markers for AD is also illustrated by them.
SAS can also be used to estimate VUS with different parametric and nonparametric approaches.16 Xiong et al.17 pro-
posed a general linear mixed model for the clustered ordinal diagnostic group. The model incorporates the dependency
or correlation on the diagnostic marker. It also allows the use of covariates and missing data.

In the analysis of diagnostic test accuracy, trade-offs exist between the sensitivity and the specificity. By changing
cut-off values, we can find the varying combination of sensitivity and specificity. One of the convenient procedures to
choose the cut-off or the combination of sensitivity and specificity is by considering a target specificity. Thus, the inter-
val estimation for the sensitivity for given specificity level is of interest. Zhou and Qin18 and Qin et al.19 incorporated
empirical likelihood (EL) and bootstrap procedures to improve the accuracy of the confidence interval estimation for
the sensitivity, whereas Tian20 proposed interval estimation for the sensitivity for a combination of markers at fixed
level of specificity. Dong et al.,21 Dong and Tian22 proposed different parametric and nonparametric approaches along
with an EL approach to the estimation and the construction of confidence intervals for the sensitivity to the early dis-
ease stage at the given specificity level. More nonparametric developments like jackknife EL confidence interval in the
related area such as ROC curve, AUC, ordinal dominance curve, VUS and Youden index are observed.23,24,25,26,27,28

Since the development of EL by Owen,29 it has been playing an important role in statistical inference procedures.
EL is a nonparametric approach that allows us to use likelihood methods, where no assumption is required for the fam-
ily of underlying distributions. The empirical distribution of the data plays the central role in such inference proce-
dures. EL has the flexibility of performing different types of statistical analysis and inference procedures, whereas
different other nonparametric methods fail to have the flexibility. More details can be found in Owen.30,31 In this arti-
cle, we propose two EL approaches for the sensitivity to early disease stage for given target specificity and target sensi-
tivity to full disease stage.

Along with the difficulty of satisfying the underlying distribution assumption, parametric approaches to confidence
interval estimation have some other disadvantages. It requires formulation and estimation of variance of the parameter
of interest, which becomes complicated for different situations. Existing methods for the construction of confidence
interval for the sensitivity to early disease stage either utilize parametric approach, EL approach with scaled chi-square
distribution of the test statistic or bootstrap procedures. While the EL approaches with scaled chi-square approximation
still requires the calculation of variance of the parameter. The proposed EL approach, which utilizes profiling out the
nuisance parameters, does not have such complications. As a data driven and computationally intensive procedure,
the profile EL may face difficulty in attaining the convergence in some situations. An improvement to the procedure,
the adjusted EL approach was proposed by Chen et al.32 The procedure confirms to attain the convergence. We propose

2 RAHMAN ET AL.



an adjusted EL confidence interval for the sensitivity to the early disease stage. We compared the performance of our
proposed approaches with an existing EL approach, which use bootstrap variance estimation (ELB), and with percentile
bootstrap approach (PB) using simulation studies and real data applications.

The organization of the rest of the article is as follows. We discuss the formulation of a sensitivity to early disease
stage, nonparametric approaches to estimate the sensitivity and existing approaches to construct confidence intervals in
Section 2. The new method for the proposed confidence interval using profile empirical likelihood (PEL) is described in
Section 3. In Section 4, the proposed adjusted EL approach is illustrated. Our extensive simulation studies are carried
out in Section 5. Application of the procedures to ADNI data set is given in Section 6. Concluding remarks and discus-
sions are stated in Section 7. The proofs of theorems are provided in the Appendix A.

2 | SENSITIVITY TO THE EARLY DISEASE STAGE

Let X ,Y ,Z be observations of diagnostic tests from non-diseased, early diseased and diseased individuals, respectively,
with corresponding distribution functions F Xð Þ, G Yð Þ, and H Zð Þ: For the given thresholds c1 and c2, where c1 < c2, we
assume that a subject is considered as diseased if the corresponding test value is greater than c2, is considered as non-
diseased if corresponding test value is smaller than c1 and as early diseased otherwise (i.e., test value between c1 and
c2). Let P1, P2, and P3 be correct classification rates for non-disease, early disease and full disease stages, respectively.
Then, we define the specificity and the sensitivities as

P1 ¼P X < c1ð Þ¼F c1ð Þ¼ 1�SF c1ð Þ,
P2 ¼ P c1 <Y < c2ð Þ¼G c2ð Þ�G c1ð Þ¼ SG c1ð Þ�SG c2ð Þ,

P3 ¼P Z> c2ð Þ¼ 1�H c2ð Þ¼ SH c2ð Þ:
ð1Þ

Here SF ,SG and SH are corresponding survival functions of non-diseased, early diseased and fully diseased observa-
tions, respectively. Thus we can define the thresholds as c1 ¼F�1 P1ð Þ¼ S�1

F 1�P1ð Þ and c2 ¼H�1 1�P3ð Þ¼ S�1
H P3ð Þ: P2,

the sensitivity to the early disease stage, can be expressed as a function of P1, the specificity and of P3, the sensitivity
for the full disease stage.

P2 ¼ P2 P1,P3ð Þ¼G c2ð Þ�G c1ð Þ¼G H�1 1�P3ð Þ� ��G F�1 P1ð Þ� �
: ð2Þ

For the given P1, and P3, P2 can be viewed as the ROC surface on three-dimensional space P1,P3,P2ð Þ.

2.1 | Nonparametric estimation

We assume that there are n1 observations from the non-diseased population as Xi; i¼ 1,…,n1f g with corresponding
empirical distribution function Fn1 �ð Þ and empirical survival function SF,n1 �ð Þ, respectively. From the early diseased
population, there are n2 observations as Yj; j¼ 1,…,n2

� �
with Gn2 �ð Þ as the empirical distribution function and

SG,n2 �ð Þ as the empirical survival function, respectively. From the fully diseased population, there are n3 observations
as Zk; j¼ 1,…,n3f g with Hn3 �ð Þ as the empirical distribution function and SH,n3 �ð Þ as the empirical survival
function respectively. We define S�1

F,n1 rð Þ¼F�1
n1 1� rð Þ≔X 1�rð Þn1ð Þ, S�1

G,n2 rð Þ¼G�1
n2 1� rð Þ≔Y 1�rð Þn2ð Þ, S�1

H,n3 rð Þ¼
H�1

n3 1� rð Þ≔Z 1�rð Þn3ð Þ, and where X ið Þ, Y jð Þ, Z kð Þ are corresponding order statistic and a denotes the largest integer
smaller than a for any real number a. The above definitions will provide an estimate of c1 as F�1

n1 P1ð Þ¼ S�1
F,n1 1�P1ð Þ

and an estimate of c2 as H�1
n3 1�P3ð Þ¼ S�1

H,n3 P3ð Þ: The estimator of P2 is defined as follows,

bP2 P1,P3ð Þ¼Gn2 H�1
n3 1�P3ð Þ

� �
�Gn2 F�1

n1 P1ð Þ
� �

: ð3Þ

From a probability perspective, an alternative trimmed Mann–Whitney U-statistic is given as follows,
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bP2 P1,P3ð Þ¼ 1
n2

Xn2
j¼1

Vj P1,P2ð Þ, ð4Þ

where Vj P1,P2ð Þ≔ I F�1
n1 P1ð Þ≤Yj ≤H�1

n3 1�P3ð Þ
n o

:

Reference 33 proposed an adjustment to the estimation by

bP2 P1,P3ð Þ¼
Pn2

j¼1Vj P1,P2ð Þþ z21�α=2=2

n2þ z21�α=2

: ð5Þ

2.2 | Existing approaches

An existing approach to construct 100 1�αð Þ% confidence interval is the PB approach. The PB confidence interval is as
follows,

bP2
b
α=2ð Þ,bP2

b
1�α=2ð Þ

� �
, ð6Þ

where bP2
b
αð Þ is the 100αð Þth percentile of bootstrap resample estimates.

Dong and Tian22 proposed another nonparametric approach that utilizes bootstrap variance estimation to the EL
approach, where the EL ratio test statistic approximately follows scaled chi-square distribution. Dong and Tian22

established the following result

rP1,P2,P3 l P2ð Þ! χ21,

where l P2ð Þ¼�2logr P2ð Þ, r P2ð Þ is the EL ratio and

rP1,P2,P3 ¼
σ2bUi

n2σ2bP2

:

Then, the 100 1�αð Þ% ELB confidence interval can be constructed as follows

I αð Þ¼ P2 P1,P3ð Þ : r�P1,P2,P3
l P2ð Þ≤ χ21 αð Þ

n o
, ð7Þ

where χ21 αð Þ is the upper α–quantile of χ21 distribution and an estimate of scale constant is,
r�P1,P2,P3

¼ bP2 1�bP2

� �
= n2bσ2bP2

� �
:22 For the ELB method, bσ2bP2

is estimated from b¼ 500 bootstrap resamples.

3 | EMPIRICAL LIKELIHOOD METHOD FOR THE SENSITIVITY

Let X1,…,Xn1 , Y 1,…,Yn2 , and Z1,…,Zn3 be three independent samples from non-diseased, early diseased and fully dis-
eased individuals' test results with distribution functions F, G, and H, respectively. For given values of P1, P3, the
hypotheses are

H0 :

F�1 P1ð Þ¼ c1,

H�1 1�P3ð Þ¼ c2,

G H�1 1�P3ð Þð Þ�G F�1 P1ð Þð Þ¼P2 P1,P3ð Þ,

0B@
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which are equivalent to

H0 :

F c1ð Þ¼ P1,

H c2ð Þ¼ 1�P3,

P c1 <Y < c2ð Þ¼P2 P1,P3ð Þ:

0B@

To generalize the hypotheses, we denote

h1 X ,c1ð Þ¼ h1 Xð Þ¼ I X < c1ð Þ,
h2 Z,c2ð Þ¼ h2 Zð Þ¼ I Z> c2ð Þ,
h3 Y ,c1,c2ð Þ¼ h3 Yð Þ¼ I c1 <Y < c2ð Þ:

0B@

Suppose that p1,…,pn1 are the probabilities at X1,…,Xn1 with all pi >0 and
Pn1

i¼1pi ¼ 1: Similarly, let q1,…,qn2 be the
probabilities at Y 1,…,Yn2 for all qj >0,

Pn2
j¼1qj ¼ 1: We also assume r1,…,rn3 be the probabilities at Z1,…,Zn3 for all

rk >0,
Pn3

k¼1rk ¼ 1: The above hypotheses can be expressed as

Pn1
i¼1 h1 Xið Þ�P1ð Þpi ¼ 0,Pn3
k¼1 h2 Zkð Þ�P3ð Þrk ¼ 0,Pn2
j¼1 h3 Yj

� ��P2 P1,P3ð Þ� �
qj ¼ 0:

0B@

We denote hT X ,Y ,Zð Þ¼ h1 Xð Þ,h2 Zð Þ,h3 Yð Þð Þ, ΘT ¼ P1,P3,P2 P1,P3ð Þð Þ, and OT ¼ 0,0,0ð Þ: We express the above
hypotheses using the vector notation as follows,

Xn1
i¼1

Xn2
j¼1

Xn3
k¼1

h Xi,Yj,Zk
� ��Θ

� �
piqj rk ¼O, ð8Þ

where c1,c2,P2 P1,P3ð Þð Þ is the unknown parameter and c1,c2 are contained in the function h X ,Y ,Zð Þ: Then the EL is
given by

L c1,c2,P2 P1,P3ð Þð Þ¼ sup
pi,qj,rk

Yn1

i¼1

Yn2

j¼1

Yn3

j¼1
piqj rk
� �

: pi >0,qj >0,rk >0
n

Xn1

i¼1
pi ¼ 1,

Xn2

j¼1
qj ¼ 1,

Xn3

k¼1
rk ¼ 1,Xn1

i¼1

Xn2

j¼1

Xn3

k¼1
h Xi,Yj,Zk
� ��Θ

� �
piqj rk ¼O

o
:

ð9Þ

The likelihood ratio can be constructed by taking into account of the fact that unconstrained maximum of the likeli-
hood is attained at pi ¼ 1=n1; i¼ 1,…,n1,qj ¼ 1=n2; j¼ 1,…,n2,rk ¼ 1=n3;k¼ 1,…,n3: The EL ratio can be expressed as
follows,

R c1,c2,P2 P1,P3ð Þð Þ¼ sup
pi,qj,rk

Yn1

i¼1

Yn2

j¼1

Yn3

j¼1
n1n2n3piqj rk
� �

: pi >0,qj >0,rk >0
n

Xn1

i¼1
pi ¼ 1,

Xn2

j¼1
qj ¼ 1,

Xn3

k¼1
rk ¼ 1Xn1

i¼1

Xn2

j¼1

Xn3

k¼1
piqj rk h Xi,Yj,Zk

� ��Θ
� �¼O

o
:

ð10Þ

The logarithm of the EL ratio is re-expressed as follows
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logR c1,c2,P2 P1,P3ð Þð Þ¼ sup
pi,qj,rk

Xn1

i¼1
log n1pið Þþ

Xn2

j¼1
log n2qj
� �

þ
Xn3

k¼1
log n3rkð Þ

� �
:

n
pi >0,qj >0,rk >0,

Xn1

i¼1
pi ¼ 1,

Xn2

j¼1
qj ¼ 1,

Xn3

k¼1
rk ¼ 1,Xn1

i¼1

Xn2

j¼1

Xn3

k¼1
piqj rk h Xi,Yj,Zk

� ��Θ
� �¼O

o
:

ð11Þ

The Lagrangian expression of the constrained optimization problem is

L pi,qj,rkγ,η,λ
� �

¼
Xn1
i¼1

log n1pið Þþ
Xn2
j¼1

log n2qj
� �

þ
Xn3
k¼1

log n3rkð Þþ γ
Xn1
i¼1

pi�1

 !
þη

Xn2
j¼1

qj�1

 !
þ ζ

Xn3
k¼1

rk�1

 !

�λT
Xn1
i¼1

Xn2
j¼1

Xn3
k¼1

h Xi,Yj,Zk
� ��Θ

� �
piqj rk:

In the above constrained optimization problem, γ, η, ζ, and λ are Lagrange multipliers and λT ¼ λ1,λ2,λ3ð Þ: From the
standard Lagrange multipliers method, we have optimal values as

pi ¼
1

n1þ λ1 h1 Xið Þ�P1ð Þ ;
Xn1
i¼1

pi ¼ 1,

qj ¼
1

n2þ λ3 h3 Yj
� ��P2

� � ;Xn2
j¼1

qj ¼ 1,

rk ¼ 1
n3þ λ2 h2 Zkð Þ�P3ð Þ ;

Xn3
k¼1

rk ¼ 1:

The values of λ can be obtained using numerical search procedures. c1 and c2 are implicit in the function h �ð Þ: The
EL ratio function in Equation (11) contains c1 and c2, which are not of our interest. We can profile out the two nuisance
parameters simultaneously, and obtain the optimal value. Using the profile EL over c1 and c2, we have

�2logR P2 P1,P3ð Þð Þ¼�2maxc1,c2 logR c1,c2,P2 P1,P3ð Þð Þ½ �
¼�2logR bc1,bc2,P2 P1,P3ð Þð Þ:

We establish Wilk's theorem for the EL as follows,

Theorem 1. We assume that n1=n2 ! ρ1, 0 < ρ1 <∞ and n3=n2 ! ρ2, 0 < ρ2 <∞: The density functions of F,
G, and H are positive and continuous at c1 and c2. At the true value P20 P1,P3ð Þ of P2 P1,P3ð Þ,
�2logR P20 P1,P3ð Þð Þ!D χ21 as min n1,n2,n3ð Þ!∞,

where χ21 is chi-square distribution with one degree of freedom.
An EL confidence interval with 100 1�αð Þ% nominal level is constructed as follows

I αð Þ¼ P2 P1,P3ð Þ :�2logR P2 P1,P3ð Þð Þ≤ χ21 αð Þ� �
,

where χ21 αð Þ is the upper α-quantile of χ21:

4 | ADJUSTED EMPIRICAL LIKELIHOOD METHOD

We have denoted, hT X ,Y ,Zð Þ¼ h1 Xð Þ,h2 Zð Þ,h3 Yð Þð Þ, we also have denoted that ΘT ¼ θ1,θ2,θ3ð Þ¼ P1,P3,P2 P1,P3ð Þð Þ
and OT ¼ 0,0,0ð Þ. Our hypotheses using vector notation are expressed as follows,
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Xn1
i¼1

Xn2
j¼1

Xn3
k¼1

h Xi,Yj,Zk
� ��Θ

� �
piqj rk ¼O: ð12Þ

For the adjusted EL, let us denote.
H1i ¼H1 Xið Þ¼ h1 Xið Þ�θ1; i¼ 1,…,n1 and H1 n1þ1ð Þ ¼�a1

Pn1
i¼1 H1i=n1ð Þ¼�a1H1n1 ,

H2k ¼H2 Zkð Þ¼ h2 Zkð Þ�θ2;k¼ 1,…,n3 and H2 n3þ1ð Þ ¼�a3
Pn3

k¼1 H2k=n3ð Þ¼�a3H2n3 ,
H3j ¼H3 Yj

� �¼ h3 Yj
� ��θ3; j¼ 1,…,n2 and H3 n2þ1ð Þ ¼�a2

Pn2
j¼1 H3j=n2
� �¼�a2H3n2 :

Here as ¼max 1,log nsð Þ=2ð Þ;s¼ 1,2,3: The adjusted empirical log likelihood ratio function is as follows,

logRa c1,c2,P2 P1,P3ð Þð Þ¼ sup
pi,qj,rk

Xn1þ1

i¼1
log n1þ1ð Þpið Þþ

Xn2þ1

j¼1
log n2þ1ð Þqj
� ��n

þ
Xn3þ1

k¼1
log n3þ1ð Þrkð Þ

�
: pi >0,qj >0,rk >0,

Xn1þ1

i¼1
pi ¼ 1,

Xn2þ1

j¼1
qj ¼ 1,Xn3þ1

k¼1
rk ¼ 1

Xn1þ1

i¼1

Xn2þ1

j¼1

Xn3þ1

k¼1
piqj rk H1i,H2k,H3j

� �T ¼O
o
:

ð13Þ

We profile out nuisance parameters c1 and c2 and obtain adjusted log-likelihood ratio as follows:

�2logRa P2 P1,P3ð Þð Þ¼�2maxc1,c2 logR
a c1,c2,P2 P1,P3ð Þð Þ½ �

¼�2logRa bc1,bc2,P2 P1,P3ð Þð Þ:

We follow the similar derivations like �2logR P2 P1,P3ð Þð Þ:
The Wilk's theorem for the adjusted EL is established as follows,

Theorem 2. We assume that n1=n2 ! ρ1, 0 < ρ1 <∞ and n3=n2 ! ρ2, 0 < ρ2 <∞: The density functions of F,
G, and H are positive and continuous at c1 and c2. At the true value P20 P1,P3ð Þ of P2 P1,P3ð Þ,
�2logRa P20 P1,P3ð Þð Þ!D χ21 as min n1,n2,n3ð Þ!∞:

An adjusted EL (AEL) confidence interval with 100 1�αð Þ% nominal level is constructed as follows

Ia αð Þ¼ P2 P1,P3ð Þ :�2logRa P2 P1,P3ð Þð Þ≤ χ21 αð Þ� �
:

5 | SIMULATION STUDY

To examine the performance of the proposed confidence intervals, we generated data from normal, beta and combina-
tion of gamma, log-normal and Weibull distributions with specificity as 0:8 and sensitivity to the full disease stage as
0:8: We calculated confidence intervals using profile empirical likelihood procedure (PEL), the EL procedure using
scaled chi-squared distribution with variance estimation from the bootstrap procedure (ELB), the adjusted empirical
likelihood procedure (AEL) and the PB procedure. Each simulation was repeated 1000 times and average values of the
results were reported. We used 500 bootstrap times for each of the bootstrap procedures. (Figures 1–4)

The usage of a smoothing function can improve the coverage accuracy of EL confidence intervals. We used the fol-
lowing function to smooth the indicator function:

Iε x,x�ð Þ¼ I x ≤ x�ð Þ¼
1, if x ≤ x� � ε

0:5�3 x�x�ð Þ
4ε

þ x� x�ð Þ3
4ε3

, if x� � ε< x ≤ x� þ ε

0, if x > x� þ ε,

0BB@
where ε>0: This is the second order kernel smoothing function. More details can be found in Chen and Hall.34
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(A) (B)

(C) (D)

(E) (F)

FIGURE 1 Density plots of the biomarkers from different disease groups for the simulation studies
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For the first set of simulations, we considered using normal distribution (simulation 1). When we considered true
value of P2 ¼ 0:5, non-diseased observations were generated from N 0,1ð Þ, early diseased observations were generated
from N 2:5,1:12ð Þ and the diseased observations were generated from N 3:69,1:22ð Þ: For the second set of simulations,
we considered the true value of P2 ¼ 0:8: Non-diseased observations were generated from N 0,1ð Þ, early diseased obser-
vations were generated from N 3:5,1:12ð Þ and the diseased observations were generated from N 5:5,1:22ð Þ: The results
are displayed in Table 1. The PEL procedure provides coverage probabilities closer to 0.95 level with few instances of
under coverage probabilities and no significant over coverage probability. The PEL procedure results in the smallest
average length of the interval in most of the situations. The ELB procedure performs better than other procedures in
few situations. The procedure provides no considerable under coverage probability, but frequently leads to over

(30, 30, 30) (50, 50, 50) (100, 100, 100) (50, 30, 30) (100, 50, 50) (100, 100, 50)

PEL

ELB

AEL

PB

Average length for P2=0.5

Sample sizes for non−diseased, early diseased and diseased groups

A
ve

ra
ge

 le
ng

th

0.
0

0.
2

0.
4

0.
6

0.
8

(30, 30, 30) (50, 50, 50) (100, 100, 100) (50, 30, 30) (100, 50, 50) (100, 100, 50)

PEL

ELB

AEL

PB

Average length for P2=0.8

Sample sizes for non−diseased, early diseased and diseased groups

A
ve

ra
ge

 le
ng

th

0.
0

0.
2

0.
4

0.
6

0.
8

(30, 30, 30) (50, 50, 50) (100, 100, 100) (50, 30, 30) (100, 50, 50) (100, 100, 50)

Coverage probability for P2=0.5

Sample sizes for non−diseased, early diseased and diseased groups

C
ov

er
ag

e 
pr

ob
ab

ili
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(30, 30, 30) (50, 50, 50) (100, 100, 100) (50, 30, 30) (100, 50, 50) (100, 100, 50)

Coverage probability for P2=0.8

Sample sizes for non−diseased, early diseased and diseased groups

C
ov

er
ag

e 
pr

ob
ab

ili
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 2 Plots of average length (smaller is better) and coverage probability (closer to 0.95 is better) for simulation results from

normal distribution (corresponding to Table 1)
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FIGURE 3 Plots of average length (smaller is better) and coverage probability (closer to 0.95 is better) for simulation results from beta

distribution (corresponding to Table 2)
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coverage probability and wider length compared to the PEL procedure. The AEL procedure produces good coverage prob-
ability but wider average length and the PB procedure provides over coverage probability and wider average length.

We performed two sets of simulations considering data from beta distribution (simulation 2). For true value of P2 ¼
0:5, we generated data from β 1,6ð Þ, β 6,6ð Þ, and β 9:6,6ð Þ for non-diseased, early diseased and fully diseased individuals,
respectively. For the true value of P2 ¼ 0:80, we generated data from β 1,6ð Þ, β 9,6ð Þ, and β 20:4,6ð Þ for non-diseased,
early diseased and fully diseased individuals, respectively. The results are presented in Table 2. In terms of coverage
probability, the proposed PEL method provides closer to 0.95 level compared to other procedures in most of the situa-
tions. When comparing the average length, we observe that the PEL procedure results in wider average length com-
pared to the ELB procedure for P2 ¼ 0:5, whereas for P2 ¼ 0:8, the PEL procedure has better performance. Both the
AEL and the PB procedures result in over coverage probability and wider length.

We also considered three different distributions for the three-disease groups (simulation 3). For this set of simula-
tions, the non-diseased individuals were generated from gamma distribution G 6,12ð Þð Þ, the early diseased individuals
were generated from log-normal distribution LN 1:5,0:5ð Þð Þ: For P2 ¼ 0:5, the diseased observations were generated
from Weibull distribution with parameters a,bð Þ¼ 4,6:6ð Þ and for P2 ¼ 0:8, the diseased observations were generated
from Weibull distribution with parameters a,bð Þ¼ 4,10ð Þ: The results are displayed in Table 3. We observe that the
PEL procedure performs very closely to or better than the ELB procedure in terms of coverage probability in most of
the situations for P2 ¼ 0:5, whereas the PEL procedure leads to better coverage probability in all the situations for P2 ¼
0:8: In terms of average length, we observe some instances where the ELB procedure performs better and some
instances where the PEL procedure performs better for P2 ¼ 0:5, whereas PEL performs better in the majority of the sit-
uations for P2 ¼ 0:8: For smaller P2, both ELB and PEL procedures are competitive whereas for higher P2, the PEL pro-
cedure performs better. The AEL procedure performs better than the PB procedure in terms of average length. Both the
AEL and the PB procedures lead to over coverage probability in most of the considered situations.

6 | APPLICATION TO REAL DATA

Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative
(ADNI) database (http://adni.loni.usc.edu). The ADNI was launched in 2003 as a public–private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic
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FIGURE 4 Plots of average length (smaller is better) and coverage probability (closer to 0.95 is better) for simulation results from

mixture of gamma (non-disease), log-normal (early disease), and Weibull (disease) distributions (corresponding to Table 3)
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resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early AD.

AD is one of the leading causes of dementia. It is a degenerative disease of brain. Three stages of the disease were
considered as non-diseased or healthy control, early stage and advanced stage of AD. CDR and MMSE scores along
with clinical measures were used to classify the subjects into different disease groups. Subjects with MMSE scores
24–30, CDR of 0, nondepressed, non-MCI, and non-demented were classified as normal. MCI subjects were identified
with MMSE scores between 24 and 30, memory complaint, objective memory loss measured by education adjusted
scores on Wechsler Memory Scale Logical Memory II, CDR of 0.5, the absence of significant levels of impairment in
other cognitive domains, essentially preserved activities of daily living, and an absence of dementia. Patients were
classified with mild AD if they have MMSE scores between 20 and 26, CDR of 0.5 or 1.0, and meets NINCDS/ADRDA
criteria for probable AD. The details can be found in the study protocol (http://adni.loni.usc.edu/wp-content/
uploads/2010/09/ADNI_GeneralProceduresManual.pdf). We considered three prospective biomarkers or diagnostic
procedures such as ADAS13 score, FDG and the ratio Tau/AB42 (at 24 month visit). Box plots of the markesr for the
three disease stages can be found in Figure 5. We considered the specificity to non-disease stage and sensitivity to the
full disease stage as 0.8 and 0.8, respectively. We calculated sensitivities to the early disease stage and constructed
confidence intervals for the sensitivities. The results are displayed in Table 4. We observe that ADAS13 score has bet-
ter sensitivity, which is higher than that of other two biomarkers. The confidence intervals for ADAS13 are signifi-
cantly higher than zero. Hence, ADAS13 score is a better diagnostic procedure compared to other two biomarkers in
identifying the early stage of AD. There is a shorter confidence interval using proposed PEL approach compared to
other approaches for ADAS13 score. For other two biomarkers, we observe very close lengths of the confidence inter-
vals using different approaches. Thus, the proposed procedure performs satisfactorily in real data application.

To observe the performance of ADAS13 score in different situations, we considered other two different values for
the target specificity to the non-disease stage P1ð Þ and target sensitivity to the full disease stage P3ð Þ. For the target P1

as 0.83 and P3 as 0.83, estimated sensitivity to the early disease stage P2ð Þ for ADAS13 is 0.416 with the PEL CI as
0:350,0:466ð Þ, for FDG, estimated P2 is 0.007 with 95% PEL CI as 0:006,0:081ð Þ, for the ratio Tau/AB42 estimated P2 is
0.054 with 95% PEL CI 0:002,0:151ð Þ: For the target P1 ¼ 0:7 and P3 ¼ 0:7, the estimated P2 for ADAS13 is 0.628 with
95% PEL CI as (0.582, 0.658), for FDG the estimated sensitivity is 0.290 with 95% PEL CI as (0.216, 0.375), for the ratio
Tau/AB42, the estimated sensitivity is 0.352 with 95% PEL CI as (0.202, 0.476). Hence, ADAS13 performs better

TABLE 1 Coverage probability (and average length) of 95% confidence intervals for normally distributed samples

(n1, n2, n3) PELa ELBb AELc PBd

P2 ¼ 0:5

(30, 30, 30) 0.949 (0.532) 0.955 (0.513) 0.957 (0.560) 0.962 (0.594)

(50, 50, 50) 0.942 (0.424) 0.963 (0.427) 0.955 (0.439) 0.975 (0.471)

(100, 100, 100) 0.944 (0.294) 0.949 (0.313) 0.944 (0.299) 0.961 (0.331)

(50, 30, 30) 0.948 (0.521) 0.964 (0.510) 0.956 (0.550) 0.965 (0.593)

(100, 50, 50) 0.949 (0.412) 0.962 (0.418) 0.958 (0.426) 0.979 (0.465)

(100, 100, 50) 0.938 (0.357) 0.941 (0.376) 0.944 (0.367) 0.968 (0.413)

P2 ¼ 0:8

(30, 30, 30) 0.934 (0.392) 0.964 (0.396) 0.956 (0.427) 0.971 (0.488)

(50, 50, 50) 0.943 (0.311) 0.966 (0.316) 0.943 (0.322) 0.976 (0.362)

(100, 100, 100) 0.934 (0.212) 0.957 (0.227) 0.934 (0.217) 0.965 (0.248)

(50, 30, 30) 0.955 (0.389) 0.972 (0.397) 0.957 (0.432) 0.960 (0.483)

(100, 50, 50) 0.960 (0.311) 0.968 (0.312) 0.961 (0.323) 0.967 (0.355)

(100, 100, 50) 0.931 (0.261) 0.957 (0.280) 0.931 (0.268) 0.972 (0.317)

Note: 95% confidence intervals using.
aEmpirical likelihood procedure.
bScaled chi-square procedure using bootstrap variance estimation.
cAdjusted empirical likelihood procedure.
dBootstrap procedure using percentiles.
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TABLE 2 Coverage probability (and average length) of 95% confidence intervals for beta distributed samples

(n1, n2, n3) PELa ELBb AELc PBd

P2 ¼ 0:5

(30, 30, 30) 0.965 (0.499) 0.965 (0.492) 0.976 (0.527) 0.972 (0.533)

(50, 50, 50) 0.964 (0.397) 0.955 (0.390) 0.975 (0.412) 0.971 (0.422)

(100, 100, 100) 0.954 (0.286) 0.943 (0.284) 0.959 (0.293) 0.966 (0.296)

(50, 30, 30) 0.954 (0.485) 0.959 (0.476) 0.974 (0.515) 0.978 (0.544)

(100, 50, 50) 0.963 (0.387) 0.959 (0.382) 0.969 (0.402) 0.963 (0.415)

(100, 100, 50) 0.951 (0.334) 0.948 (0.334) 0.958 (0.345) 0.963 (0.360)

P2 ¼ 0:8

(30, 30, 30) 0.968 (0.350) 0.971 (0.364) 0.979 (0.381) 0.967 (0.426)

(50, 50, 50) 0.954 (0.287) 0.971 (0.283) 0.960 (0.299) 0.970 (0.316)

(100, 100, 100) 0.953 (0.202) 0.943 (0.204) 0.962 (0.207) 0.958 (0.216)

(50, 30, 30) 0.959 (0.332) 0.965 (0.361) 0.970 (0.382) 0.970 (0.421)

(100, 50, 50) 0.959 (0.284) 0.961 (0.284) 0.968 (0.296) 0.965 (0.315)

(100, 100, 50) 0.970 (0.238) 0.952 (0.237) 0.976 (0.246) 0.970 (0.264)

Note: 95% confidence intervals using.
aEmpirical likelihood procedure.
bScaled chi-square procedure using Bootstrap variance estimation.
cAdjusted empirical likelihood procedure.
dBootstrap procedure using percentiles.

TABLE 3 Coverage probability of (and average length) 95% confidence intervals for samples from mixture of gamma (non-disease), log-

normal (early disease), and Weibull (disease) distributions

(n1, n2, n3) PELa ELBb AELc PBd

P2 ¼ 0:5

(30, 30, 30) 0.962 (0.461) 0.959 (0.449) 0.967 (0.489) 0.971 (0.453)

(50, 50, 50) 0.950 (0.360) 0.964 (0.361) 0.960 (0.373) 0.947 (0.364)

(100, 100, 100) 0.933 (0.249) 0.947 (0.260) 0.934 (0.254) 0.965 (0.264)

(50, 30, 30) 0.956 (0.461) 0.958 (0.447) 0.966 (0.489) 0.964 (0.510)

(100, 50, 50) 0.941 (0.361) 0.946 (0.360) 0.960 (0.374) 0.968 (0.363)

(100, 100, 50) 0.939 (0.302) 0.957 (0.309) 0.939 (0.310) 0.960 (0.325)

P2 ¼ 0:8

(30, 30, 30) 0.966 (0.368) 0.974 (0.356) 0.975 (0.394) 0.967 (0.426)

(50, 50, 50) 0.964 (0.279) 0.961 (0.282) 0.967 (0.289) 0.970 (0.316)

(100, 100, 100) 0.946 (0.193) 0.964 (0.201) 0.946 (0.197) 0.958 (0.216)

(50, 30, 30) 0.954 (0.377) 0.967 (0.357) 0.967 (0.402) 0.970 (0.421)

(100, 50, 50) 0.955 (0.285) 0.964 (0.283) 0.955 (0.296) 0.965 (0.315)

(100, 100, 50) 0.952 (0.235) 0.958 (0.236) 0.954 (0.241) 0.970 (0.264)

Note: 95% confidence intervals using.
aEmpirical likelihood procedure.
bScaled chi-square procedure using Bootstrap variance estimation.
cAdjusted empirical likelihood procedure.
dBootstrap procedure using percentiles.
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compared to other two considered diagnostic procedures to detect the early stage of AD in terms of sensitivity for differ-
ent target specificities to the non-disease stage and sensitivities to the early disease stage.

7 | DISCUSSION

We propose two EL confidence intervals for sensitivity to the early disease stage. The performance of the proposed PEL
and AEL confidence intervals is investigated using simulation studies in different settings. We compare the perfor-
mance with two other existing nonparametric approaches like EL confidence interval with scaled chi-square

TABLE 4 Estimated sensitivities to the early disease stage and 95% confidence intervals for ADNI data

Diagnostic test Estimated P2 PELa ELBb AELc PBd

ADAS13 0.479 (0.411, 0.524) (0.421, 0.537) (0.411, 0.524) (0.405, 0.528)

FDG 0.078 (0.015, 0.160) (0.026, 0.170) (0.015, 0.160) (0.005, 0.158)

Tau/AB42 0.097 (0.002, 0.251) (0.021, 0.252) (0.002, 0.254) (0.000, 0.234)

Note: 95% confidence intervals using.
aEmpirical likelihood procedure.
bScaled chi-square procedure using Bootstrap variance estimation.
cAdjusted empirical likelihood procedure.
dBootstrap procedure using percentiles.

FIGURE 5 Box plots for considered biomarkers from three disease groups
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distribution using bootstrap variance estimation (ELB), PB procedure, and so forth. The proposed EL confidence inter-
vals perform well in terms of coverage probability and average length of the intervals in different situations. The PB
procedure results in over coverage probability with wider average lengths of the intervals. We compared PB procedure
with other EL procedures and the findings support previous conclusions for similar situations. Dong et al.21 show that
the PB procedure performs better in some situations when compared with other parametric or nonparametric proce-
dures. When the EL is considered, Dong et al.35 have found that the ELB procedure outperforms other existing proce-
dures including the PB method.

The proposed PEL procedure performs better in most of the situations. The proposed AEL procedure provides over
coverage probability for beta distribution (simulation 2). For a normal distribution (simulation 1) and for a mixture of
gamma, log-normal and Weibull distributions (simulation 3), the AEL procedure performs well. The ELB procedure
outperforms other procedures in some instances but provides over coverage probabilities in many situations. We
observe better performance for both PEL and ELB procedures compared to other two procedures, whereas, the ELB
procedure shows a tendency to provide over coverage probability. The PEL procedure shows very few instances of over
coverage probability, some instances of under coverage probability and closer to 0.95 in the majority of the situations.
More simulation studies may be carried out to acquire additional evidences.

There are scopes of improving the computational algorithm and reducing the computational cost. More simulation
studies considering different scenarios and other distributions can be of future interest. The EL inference for the differ-
ence between two sensitivities is also our interest. In the future, we will explore the Bayesian approach to improve cov-
erage probabilities.36
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APPENDIX A

A.1 | PROOF OF THEOREM 1
Proof of the theorem follows from Zhao37 and Owen.31 At Chapter 11.4, of the book,31 it is shown that for multi-sample
case, �2logR converges to a quadratic form after utilizing Taylor's approximation. The quadratic form follows a χ2 dis-
tribution with one degree of freedom when there is only one dimensional parameter. Using this generalization and The-
orem 3.2 of Owen,31 when there are k dimensional parameter of interest θð Þ, �2logR≈Q converges to χ2 distribution
with k degrees of freedom under θ¼ θ0:

We first assume a general case and later we discuss particular situation for this article. For the general case, we want
to estimate θ¼ θ1, � � �,θkð Þ with hypothesized values being θ0 ¼ θ10, � � �,θk0ð Þ and the sample estimate from n1þn2þn3ð Þ
observations being bθ1, � � �,bθk: We partition first l elements and the remaining k� l elements of these vectors such that

Z¼ Z1,Z2ð Þ, where Z1 ¼ bθ1�θ1, � � �,bθl�θl
� �

and Z2 ¼ bθlþ1�θlþ1, � � �,bθk�θk
� �

: We made similar partitioning for

variance–covariance matrix of θ. The variance covariance matrix is described as follows:

V ¼ 1
n1þn2þn3

σ11 σ12 � � � σ1k

σ21 σ22 � � � σ2k

� � � � � � � � � � � �
σk1 σp2 � � � σkk

0BBBBB@

1CCCCCA
¼ 1
n1þn2þn3

V11 V12

VT
12 V22

 !
,

where σi,j= n1þn2þn3ð Þ¼ σj,i= n1þn2þn3ð Þ is the covariance of θi,θj for i, j¼ 1,2,3: Similarly, n1þn2þn3ð Þ�1V11 and

n1þn2þn3ð Þ�1V22 are variance–covariance matrices of Z1 and Z2, respectively. Let B be inverse matrix of V and

assume,

B¼ n1þn2þn3ð Þ B11 B12

BT
12 B22

� 	
:

Then the quadratic form is,

Q¼ n1þn2þn3ð Þ Z1,Z2ð Þ
B11 B12

BT
12 B22

 !
ZT
1

ZT
2

 !
¼ n1þn2þn3ð Þ Z1B11Z

T
1 þZ2B

T
12Z

T
1 þZ1B12Z

T
2 þZ2B22Z

T
2

� �
:

ðA1Þ

The quadratic form follows χ2k under θ¼ θ0. When our interest is on a part of the parameters, new constraint
becomes θ2 ¼ θ20, where θ¼ θ1,θ2

� �
, and θ1 ¼ θ1, � � �,θlð Þ, θ2 ¼ θlþ1, � � �,θkð Þ: We can optimize the likelihood ratio by pro-

filing out l nuisance parameters. When we use the profile empirical likelihood, we minimize �2logR for l parameters.
Thus to minimize the quadratic form over l nuisance parameters, we may take partial derivatives of Q for the parame-
ters in θ1 and set that equal to zero,

B11Z
T
1 þB12Z

T
2 ¼ 0:

Solving for Z1, one obtains

ZT
1 ¼�B�1

11 B12Z
T
2 :

Plugging this into Equation (A1), we have,
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min
θ1, ���,θl

Q¼ n1þn2þn3ð ÞZ2 B22�BT
12B

�1
11 B12

� �
ZT
2 :

Now V22 is the covariance matrix of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1þn2þn3ð Þp

Z2: From the property of the inverse of a square matrix, we
have, V22 ¼ B22�BT

12B
�1
11 B12

� ��1
and it is a k� lð Þ dimensional matrix. Using the Central Limit Theorem,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1þn2þn3ð Þp
Z2 converges to the multivariate normal distribution with covariance matrix V 22 under θ2 ¼ θ20:

Thus, min
θ1, ���,θl

Q!D χ2k�l:.

Under the conditions of the theorem, we consider θ¼ c1,c2,P2ð Þ: We profile out two nuisance parameters c1,c2ð Þ.

�2logR P2ð Þ¼min
θ1,θ2

�2logR θ1,θ2,θ3ð Þf g¼min
c1,c2

�2logR c1,c2,P2ð Þf g:

Hence, according to previous result and Corollary 5 of Qin and Lawless,38 under P2 ¼P20 we have.

�2logR P20ð Þ!D χ21:

A.2 | PROOF OF THEOREM 2
To sketch the proof of the theorem, we first need to show that the �2logRa θ0ð Þ approximates to χ23 distribution. Then
using the similar argument as in the proof of Theorem 1, we can show that, when we profile out the nuisance parame-
ters, the EL converges to χ21 distribution. Let us denote l

a θ0ð Þ¼�2logRa θ0ð Þ: For the adjusted empirical likelihood pro-
cedure, we have,

la θ0ð Þ¼�2
Xn1þ1

i¼1

log n1þ1ð Þpið Þþ �2ð Þ
Xn2þ1

j¼1

log n2þ1ð Þqj
� �

þ �2ð Þ
Xn3þ1

k¼1

log n3þ1ð Þrkð Þ

¼ 2
Xn1þ1

i¼1

log 1þλa1H1 Xið Þ� �þ2
Xn2þ1

j¼1

log 1þ λa3H3 Yj
� �� �þ2

Xn3þ1

k¼1

log 1þ λa2H2 Zkð Þ� �
¼Q1þQ2þQ3:

Now we can show that the expression converges to a sum of three independent χ21: Like Chen et al.,32 we can show
that λa1 ¼Op n�1=2

1

� �
: Here λa1 is the solution of the following equation

0¼ 1
n1

Xn1þ1

i¼1

H1i

1þλa1H1i

¼H1n1 � λa1 bV 1n1 þop n�1=2
1

� �
,

where bV1n1 ¼ n�1
1

Pn1
i¼1H

2
1i: Thus λ

a
1 ≈ bV�1

1n1H1n1 for n1 !∞:

Q1 ¼ 2
Xn1þ1

i¼1

λa1H1 Xið Þ� λa1H1 Xið Þ� �2
=2

n o
þop 1ð Þ

¼
Xn1þ1

i¼1

λa1H1 Xið Þþop 1ð Þ

¼n1H1n1
bV�1
1n1H1n1 þop 1ð Þ:
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Therefore, Q1 converges to χ21: Similarly, we can show that Q2 and Q3 independently converge to χ21: Thus, l
a θ0ð Þ

converges to a sum of three independent χ21 variables, that is, χ23 when min n1,n2,n3ð Þ!∞: Then, following the same
procedure like the proof of Theorem 1, we can show that, �2logRa θð Þ≈Q, where Q is the quadratic form of rank three.
After profiling out two nuisance parameters, �2logRa P20 P1,P3ð Þð Þ converges to χ21:
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