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Background: The characterizing symptom of Alzheimer disease (AD) is cognitive

deterioration. While much recent work has focused on defining AD as a biological

construct, most patients are still diagnosed, staged, and treated based on their

cognitive symptoms. But the cognitive capability of a patient at any time throughout this

deterioration reflects not only the disease state, but also the effect of the cognitive decline

on the patient’s pre-disease cognitive capability. Patients with high pre-disease cognitive

capabilities tend to score better on cognitive tests that are sensitive early in disease

relative to patients with low pre-disease cognitive capabilities at a similar disease stage.

Thus, a single assessment with a cognitive test is often not adequate for determining the

stage of an AD patient. Repeated evaluation of patients’ cognition over time may improve

the ability to stage AD patients, and such longitudinal assessments in combinations with

biomarker assessments can help elucidate the time dynamics of biomarkers. In turn, this

can potentially lead to identification of markers that are predictive of disease stage and

future cognitive decline, possibly before any cognitive deficit is measurable.

Methods and Findings: This article presents a class of statistical disease progression

models and applies them to longitudinal cognitive scores. These non-linear mixed-effects

disease progression models explicitly model disease stage, baseline cognition, and the

patients’ individual changes in cognitive ability as latent variables. Maximum-likelihood

estimation in these models induces a data-driven criterion for separating disease

progression and baseline cognition. Applied to data from the Alzheimer’s Disease

Neuroimaging Initiative, the model estimated a timeline of cognitive decline that spans

∼15 years from the earliest subjective cognitive deficits to severe AD dementia.

Subsequent analyses demonstrated how direct modeling of latent factors that modify

the observed data patterns provides a scaffold for understanding disease progression,

biomarkers, and treatment effects along the continuous time progression of disease.

Conclusions: The presented framework enables direct interpretations of factors that

modify cognitive decline. The results give new insights to the value of biomarkers

for staging patients and suggest alternative explanations for previous findings related

to accelerated cognitive decline among highly educated patients and patients on

symptomatic treatments.

Keywords: cognitive decline, dementia, Alzheimer disease, disease staging, biomarkers, disease progression

modeling, progression curves, cognitive reserve
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FIGURE 8 | Estimated trajectories for patients with and without cholinesterase inhibitor treatment (top) and corresponding distribution of number of observed

ADAS-Cog scores at corresponding predicted disease times. The trajectories are aligned at predicted month 0 that corresponds to the average cognitive stage of

cognitively normal individuals that are not treated with cholinesterase inhibitors at baseline.

more sophisticated, but still largely centered on an assumption
of a linear rate of decline (e.g., illustrated in Figure 1 in Stern,
2012). The prevailing hypothesis within the field of cognitive
reserve research is that, compared to individuals with low
cognitive reserve, individuals with high cognitive reserve have
higher pre-disease cognitive scores and that their brains tolerate
a higher load of neuropathology before cognitive decline is
seen. At a sufficiently high level of neuropathology, cognitive

ability reaches its floor for all participants. If the timescale
of neuropathological buildup is similar across individuals, this
suggests that individuals with high cognitive reserve will have to
decline a wider range of cognitive scores in a shorter time, thus
leading to an accelerated rate of decline (Stern, 2012).

The analyses in the present article clearly illustrate that rate of
cognitive decline as measured on ADAS-Cog is not constant but
increases over the course of AD. Thus, findings of an increased
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FIGURE 9 | Predicted disease month for training and test datasets. Top row displays predicted disease-time alignment of observed ADAS-Cog total score trajectories

based on baseline biomarker data and patient baseline status; bottom row displays predicted disease-time alignment of trajectories based on baseline ADAS-Cog

total score, baseline biomarker data, and patient baseline status.

rate of decline in a certain group of patients using slope models
could either be because the group of patients has accelerated
decline, because they are at a later disease stage, or a combination.
The proposed disease progression model seeks to align cognitive
trajectories on a disease timeline, and thus it allows one to
separate the hypothesized mechanisms of cognitive decline. The
best model that adjusted for effects of age at baseline, sex, and
length of education on, respectively, disease stage, rate of decline,
and cognitive deviation found that all three factors affected all
three disease measures except for disease stage, which was not
affected by length of education.

When considering the combination of effects (Figure 7), the
results suggested that higher age at baseline was associated with
lower cognition throughout disease time and a slightly reduced
rate of decline. Women tended to have not only better pre-
disease cognition but also an accelerated decline. Finally, longer
education was associated with slightly faster rate of decline and a
systematically better cognition throughout the disease.

While these findings are largely consistent with previous
findings, they also illustrate that previous results that do not
take the long-term disease trajectories into account may be
systematically biased. In particular, the fact that highly educated
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TABLE 2 | Predictive accuracies of predicted ADAS-Cog total score trajectories for the basic model and the biomarker model both with and without the baseline

ADAS-Cog total score.

Model and data Mean squared error Median absolute error

Training Test Training Test

Basic model (baseline status) 90.0 100.0 (110.6a) 5.48 4.98 (5.01a)

BM model (baseline status + BMs) 58.3 65.1 (69.8a) 4.19 4.21 (4.31a)

Basic model (baseline status + ADAS-Cog) 78.2a 102.7a 3.49a 3.70a

BM model (baseline status + ADAS-Cog + BMs) 53.5a 55.1a 3.29a 3.48a

Predictions were censored to the interval [0, 85] to respect the range of the ADAS-Cog scores.

BM, biomarker.
aBaseline ADAS-Cog measurements excluded in computation of prediction errors.

patients tend to have above-mean cognition throughout the early
stages of disease means that they will meet cognitive cutoffs used
for inclusion criteria in clinical studies longer into their disease
than patients with less education. Because of the accelerated
cognitive decline in the later stages of disease, these patients will
have a much faster rate of decline when using conventional slope
models, but this difference will primarily be due to their later
disease stage.

Symptomatic Medications for Alzheimer
Disease and Cognitive Decline
Cholinesterase inhibitors have consistently shown a symptomatic
benefit in mild to severe dementia due to AD in randomized,
double-blind, placebo-controlled trials (Birks, 2006). It has,
however, been questioned whether long-term treatment with
ChEIs could be harmful (Schneider, 2012). A recent meta-
analysis found that AD patients treated with symptomatic
treatments had a faster rate of cognitive decline (Kennedy et al.,
2018). This could be interpreted as a harmful side effect, but
because the included studies were not randomized with respect
to symptomatic treatments, such causal link cannot be made. An
alternative explanation is simply that ChEIs work—that patients
who are being treated at study inclusion have a cognitive benefit
that, similarly to higher levels of education, means that they meet
inclusion criteria for clinical studies further into their disease.
The optimal disease progression model identified in the model
search did not include effects of ChEI treatment on rate of
decline. Instead, the results of this model showed that patients
treated generally had lower cognition compared to untreated
patients (which points to confounding by indication; patients are
prescribed ChEIs because of their cognitive impairment) and that
their progression was slightly delayed.

Biomarker-Based Disease Staging
The final application of the model examined how a patient’s
biomarker profile at study entry could be used to predict
his/her disease stage. Based on training data used for model
development, a set of five biomarkers were included in the
model. Biomarker profiles considerably improved prediction of
future ADAS-Cog trajectories in the unseen validation dataset,
and inclusion of baseline ADAS-Cog score further improved the
prediction. Among the biomarkers, FDG-PET explained most

variation followed by CSF Aβ1−42/Aβ1−40 and florbetapir SUVr.
Hippocampal volume and plasma NfL explained the least.

This modeling of baseline biomarkers for patients in the
earliest stages of disease takes advantage of the long-term follow-
up that is unique to ADNI. The modeling essentially relies on
hindsight because the patients’ disease stage can only be predicted
with high reliability once a systematic pattern of cognitive decline
has been observed. By using these patterns, the model identified
how combinations of biomarkers could be used to predict disease
stage. The results of the model suggest that biomarker profiles at
a single time point may be used to predict the disease stage of
an individual even in the preclinical phases of disease where no
clinically detectable cognitive impairment is present.

With further validation, these results can be used to define
a space of permissible biomarker profiles to use as inclusion
criteria in clinical trials. Such biomarker-based synchronization
of patient’s disease stage would enable testing a drug in a more
homogeneous population. This would in turn greatly increase the
power of clinical trials in AD where it is common to see extreme
levels of variability in patient trajectories (Cummings et al., 2018;
Ballard et al., 2019).
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