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ABSTRACT Automated brain segmentation is an active research domain due to the association of various
neurological disorders with different regions of the brain, to help medical professionals in prognostics
and diagnostics. Traditional techniques like atlas-based and pattern recognition-based methods led to the
development of various tools for automated brain segmentation. Recently, deep learning techniques are
outperforming classical state-of-the-art methods and gradually becoming more mature. Consequently, deep
learning has been extensively employed as a tool for precise segmentation of brain regions because of
its capability to learn the intricate features of the high-dimensional data. In this work, a network for the
segmentation of multiple brain regions has been proposed that is based on 3D convolutional neural networks
and utilizes residual learning and dilated convolution operations to efficiently learn the end-to-end mapping
from MRI volumes to the voxel-level brain segments. This research is focused on the segmentation of up to
nine brain regions including cerebrospinal fluid, white matter and gray matter as well as their sub-regions.
Mean dice scores of 0.879 and 0.914 have been achieved for three and nine brain regions, respectively by
using the data from three different sources. Comparative analysis shows that our network gives better dice
scores for most of the brain regions than state-of-the-artwork. Moreover, the mean dice score of 0.903,
obtained for eight brain regions segmentation with MRBrains18 dataset, is better than 0.876 which was
achieved in the previous work.

INDEX TERMS Brain segmentation, convolutional neural networks, magnetic resonance imaging,
volumetric segmentation.

I. INTRODUCTION

The domain of medical imaging analysis encompasses a
variety of tasks ranging from tumor detection, tumor seg-
mentation to organ and multi-organ segmentation. Segmen-
tation amongst all has gained a reputation as one of the
leading problems in this area as it helps in the detection,
analysis and treatment of the organ or tissue-related prob-
lems [1]. Brain segmentation is important for the analy-
sis of different brain regions as volume, surface area and
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morphology of them have found to be linked with various
neurological disorders such as Parkinson’s and Alzheimer’s
diseases [2]-[4]. The precise segmentation of different brain
regions and tissues is usually a prerequisite for the detec-
tion and diagnosis of various neurological disorders. The
importance of brain segmentation can be realized through
the fact that various conferences such as MICCAI [5] hold
challenges for it, and they have continuously been held for
so many years now. Over the past years, many techniques
have been experimented to segment brain for finding the
most accurate -results and even today it stands to be a
hard task.
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Manual segmentations are very time consuming and sus-
ceptible to variability, so researchers have moved towards the
development of automated techniques. Initially, atlas-based
segmentation or pattern-recognition based methods were
extensively used for segmentation problems, but mostly
atlas-based ones [6]-[15]. For atlas-based methods, the image
at hand is mapped onto pre-defined atlas for that specific task.
Although, atlas-based methods obtain good segmentation
results and are generally robust to certain anomalies, however,
their dependability on population-specific atlases might limit
their applicability to the dataset that is not well represented
by the atlas. Due to this, it becomes difficult to segment
brain tissue/region types accurately. Moreover, atlas-based
methods are suboptimal if the patient population in the dataset
is significantly different from the atlas. In this case, these
approaches are unable to perform well due to variability in
brain morphology among patients. To overcome these limita-
tions, pattern recognition approaches were proposed that use
spatial, intensity or other information in atlas space as fea-
tures for the segmentation of different regions [13], [16]-[18].
These afore-mentioned methods require explicit information
or features for tasks at hand.

In view of the limitations of manual, atlas-based or pat-
tern recognition-based segmentation methods, researchers
have moved towards using deep learning architectures.
Deep learning based segmentation methods are capable of
self-learning and can generalized well over large amounts
of data [19], [20]. Deep learning architectures are gradually
becoming more mature and are outperforming classical state-
of-the-art methods. The performance of deep learning meth-
ods depends on the availability of training datasets to achieve
generalization.

Convolutional Neural Networks (CNN) have known to be
useful in various computer-vision tasks including but not
limited to image recognition, object detection, classification
and segmentation. CNNs learn the features in a hierarchal
manner through multiple convolutions across multiple layers
and do not need any predefined features or spatial informa-
tion. The convolutional layers learn the spatial spacing and
their generalizability through training [21]-[23]. So, CNNs
have been used by various researchers for the segmentation of
brain regions by varying the architecture as per task. By deep
learning methods, the brain has been successfully segmented
into three major regions: Cerebrospinal Fluid (CSF), Gray
Matter (GM) and White Matter (WM). Many sub-regions 8§,
25, 134, etc. have also been segmented whilst using variations
of CNNs [24]-[26].

Deep learning has most prevalently been used for the two-
dimensional images but as medical images are acquired in
three-dimensional volumes, 3D CNNs have become the latest
technique for the segmentation problems in the medical imag-
ing domain [25], [27]. 3D images tend to incorporate spatial
information which gets lost if 2D patches of those volumes
are used. Hence this study presents a deep learning technique
based on 3D CNN for segmentation of three and nine regions
of the brain including WM, GM, CSF and their sub-regions.
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Il. RELATED WORK

Initially, research was focused on the segmentation of three
major regions of the brain i.e. GM, WM and CSF. Tools like
FreeSurfer [28] and FSL [29] have been used for the segmen-
tation of the afore-mentioned regions using atlas-based meth-
ods. However, due to their time consumption, researchers
have moved towards deep learning. Even within deep learn-
ing, two-dimensional architectures have been used exten-
sively. So, for brain segmentation, the research started with
the 2D CNNs leading to the usage of 3D architectures.

In this regard, a hybrid architecture of CNNs was proposed
by de Brebisson et al. [26], which used three 2D patches
and one 3D patch to segment 134 anatomical regions of the
brain. 3D spatial information around each voxel, as well as
2D information in each plane (axial, coronal and sagittal),
was utilized. Convolutional layers along with max pooling
layers were utilized to extract and downscale features that
were eventually combined through fully-connected and soft-
max layers. Also, to ensure refined segmentation, centroid
distances between regions and voxels were used. The initial
segmentation of the image was learned through the first net-
work, then centroid distances were computed and the image
along with centroids was given as input to full network for
results and again centroid was re-calculated using the refined
segmentation. The improved performance was achieved with
the help of this additional input of centroids. In this work,
0.725 dice score was achieved for MICCAI multi-atlas label-
ing challenge dataset.

2D CNNs were used by Zhang et al. [30] to segment CSF,
GM and WM of MRI scans of infants since the distinction
between these regions of infants is not distinct as adults.
In research presented by Moeskops et al. [31], volumes from
three different regions of the body were used for segmentation
whilst using a single network. An average dice score of
around 0.80 was achieved by segmenting 6 tissues from MIC-
CAI 2012 multi-atlas labeling challenge. In another study,
2D CNNs were utilized by Moeskops et al. [24] to segment
8 regions of the brain. Five different datasets for volumes
of infants, young adults and aging adults were used. Their
system was able to classify eight sub-regions and three major
regions of the brain better than any previous work.

The usage of 3D CNNs in brain segmentation tasks has
not been very prevalent except in recent years. The concept
of residual learning into a 3D network was extended by
Chen et al. [27], who introduced 3D residual neural net-
works. Residual learning strengthens the feature represen-
tation by using skip connections and adding the output of
the preceding layer to its succeeding layer to enhance perfor-
mance. This network produced a better dice score than that
of the top ten teams on multi-modality volumes of MRBrains
2013 challenge. 2D, 2.5D and 3D patches of volumes were
utilized by Milletari et al. [32] for segmentation. The feature
vector was produced by the fully-connected patch of each
dimension. The patch and the distance of voxel from where
the patch was collected to the corresponding centroid in
volume were stored in the database. To segment a new
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instance, the fully-connected features were used to identify
K-nearest neighbors in the database based on feature vectors.
After identifying the neighbors, the distances stored in the
database were used to perform localized segmentations. Bet-
ter results were achieved than VNet for brain segmentation
task.

A 3D CNN was employed by Wachinger et al. [25] to
perform segmentation of structured MRI scans by using
multi-task learning and Condition Random Fields (CRF)
to enhance performance. Better results were achieved than
FreeSurfer and FSL for segmentations of 25 regions with
a mean dice score of 0.897. Another 3D CNN based net-
work architecture was presented by Wong et al. [33] that used
exponential logarithmic loss function to segment 19 brain
regions. The skip connections and deep supervision were
employed in the network to improve the efficiency of 3D seg-
mentations. The exponential logarithmic loss function helped
to learn the brain regions that differ in their sizes, morphology
and complexity.

AssemblyNet was developed by Coupé et al. [34] for the
segmentation of 132 brain regions. This network was made
of two assemblies of U-Nets that shared knowledge among
the neighboring U-Nets. The features learned by the first
assembly were refined by the second assembly. The majority
voting scheme was used to obtain the final decision. The
model was evaluated on the MRI images from three differ-
ent datasets and 0.733 dice score was obtained. Similarly,
patch-based 3D CNN was employed by Ganaye et al. [35] to
segment eight regions of the brain. The network consisted of
encoding and decoding layers for feature extraction and label
reconstruction, respectively. To learn more robust features,
transition layers and batch-normalization were used in every
convolution layer. T1, T2-FLAIR and T1-IR scans were used
to train and evaluate the model. Their model ranked 1st in
the MRBrainS18 challenge at the MICCAI 2018. The litera-
ture review on the segmentation of brain regions using deep
learning techniques has been summarized in Table 1.

Besides brain tissue and region segmentation, there are
other studies on deep learning-based semantic segmentation
for medical images. In this regard, Yang et al. [49] presented
a method for the segmentation of left atrium (LA) and pul-
monary veins using the Late Gadolinium-Enhanced Cardiac
MRI (LGE-CMRI). The method was based on deep learning
utilizing convolutional long-short term memory (convLSTM)
based sequential learning and dilated residual learning to
segment both heart sub-structures from LGE-MRI images
obtaining a dice score of 0.897£0.053. Similarly, a recent
study [50] was presented for the automatic segmentation
of high-intensity scar tissue and left atrium anatomy in the
3D LGE-CMR images of atrial fibrillation patients. For the
segmentation of both scar and left atrium, a method based on a
multi-view-two-task (MVTT) recursive attention model was
proposed, which consists of three subnetworks incorporating
multi-view learning, convLSTM and attention mechanism.
The mean dice scores of 93% and 87% were obtained for LA
anatomy and scar, respectively.
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Computer-aided diagnosis of brain tumors is also an active
field of study in medical imaging. In this regard, over the
years research has been carried out for not only the classi-
fication and detection [51]-[53] of brain tumor types but also
their segmentation [54], [55] using deep learning methods.
An automatic method for brain tumor segmentation from 3D
MRI images was proposed by Dong et al. [56]. The devel-
oped method was based on U-Net based deep CNN and was
evaluated on Multimodal Brain Tumor Image Segmentation
(BRATS 2015) datasets achieving promising results. Prostate
segmentation is another research area in medical imaging
based semantic segmentation. Liu et al. [S7] presented a deep
learning based algorithm for automatic prostate zonal seg-
mentation. The developed algorithm was based on CNN and
was able to segment the peripheral zone (PZ) and prostatic
transition zone (TZ) on T2-weighted MRI images. The model
was developed using MRI scans obtained from 250 patients
and tested on 63 patients. The dice similarity coefficient were
0.74+0.08 and 0.86£0.07 for PZ and TZ, respectively. The
results were comparable to other methods for prorate zones
segmentation.

Medical images are acquired in three-dimensional vol-
umes, therefore, 3D CNN has been prevalently employed for
the automatic segmentation tasks. 2D CNN fail to extract vol-
ume and context information from adjacent slices which may
be useful for precise segmentation. Some studies [50], [58]
utilized the attention mechanism to learn intra and inter-slice
features and context information from 2D slices to per-
form medical imaging segmentation tasks. On the other
hand, the use of 3D CNN for three-dimensional images
tend to incorporate spatial information which gets lost if
2D patches of those volumes are used. 3D CNN work by
using three-dimensional convolutional kernels to make pre-
dictions from the volumetric patch of a scan. Their ability to
extract inter-slice information lead to improved performance
in various studies [59]-[61]. Similarly, the mechanism of
dilated convolutions [62] and residual learning [63] have been
utilized to perform segmentation tasks with improved perfor-
mance. Dilated convolutions aggregate multi-scale contex-
tual information without losing resolution. Considering the
advantages of these techniques, our aim in this study is to
combine dilation and residual learning mechanisms in a 3D
CNN to perform volumetric segmentation.

The benefit that deep learning has provided besides time-
consumption is that it made it feasible to segment more than
a hundred anatomical regions of the brain as they follow a
hierarchal feature learning. Nevertheless, even if multi-region
segmentation of the brain has become possible, the precision
is still a problem even with three basic regions as the dice
score is usually near 90 but not over that. So, this paper
focuses on the segmentation tasks of three and nine regions
of the brain. Considering all the previous research and the
amount of post or parallel processing that has to be employed
for refined segmentation, we intend to demonstrate that with
3D CNNs, dilated convolutions and residual learning, better
results can be achieved.
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TABLE 1. A literature review on brain regions segmentation using deep learning techniques.

Study Dataset Sample Size Brain Methods Results and Evaluation
Regions
(de Brebisson and Montana, MICCAI 2012 35 MRI 134 2D CNN MDC =0.725
2015)[26]
(Zhang et al., 2015)[30] Private 10 MRI 3 2D CNN MDC =85.0
(Chen et al., 2016)[27] MICCAI MRBrainS 15 MRI 3 3D CNN, M_Score = 39
VoxResNet
(Moeskops et al., 2016a)[24] Private 22 MRI 8 2D CNN MDC 00822’7,0 (-)9.?2, 0.84,
(Milletari et al., 2017)[32] Private 55 MR, US 14 2D, 2.5D, 3D MDC = 0.85
34 CNN
(Wachinger et al., 2018)[25] MICCAI Multi-atlas 30 MRI 25 3D CNN, MDC =0.897
labeling Deep NAT
(Ganaye et al., 2018)[35] MICCAI 2012 35 MRI 135 Multi-Resolution MDC =0.748
(2D, 3D) CNN
(Kushibar et al., 2018)[36] MICCAI 2012, IBSR 18 35+18 MRI 14,32 2.5D CNN MDC = 0.869, 0.843
(Wong et al., 2018)[33] Private 43 MRI 19 3D CNN, ELL MSD =0.82
(Kushibar et al., 2019)[37] MICCAI 2012, IBSR 18 35+18 MRI 14 2.5DCNN MDC =0.792, 0.742
(Roy et al., 2019)[38] MALC-15 [40][35], 15+29+13+1 33 Bavesian MDC =0.88, 0.78, 0.91,
ADNI-29, CANDI-13 8 MRI 'ykN AT 0.84
[41][26], IBSR-18 Quic
(Jogetal., 2019)[41] Buckner, Siemens13, 20+13+14+( 13 MDC = 0.94
GE14 13+24) MRI PSACNN
(Coupé et al., 2019)[34] OASIS, colin27 cohort, 45+19 MRI 132 AssemblyNet, MDC =0.733
CANDI 3D U-Net, NNTL
(Chen et al., 2019)[42] ISLES-2018, MRBrainS- 94+62+5 3 MDC =0.829
2013 (DWI, T1, OctopusNet,
TI-R, T1- Hyper fusion
FLAIR) yp
MRIL CT
(Xie and Wen, 2019)[43] BrainWeb, MRBrainS (T1, T2, PD, 3 MDC =0.9866, 0.8702
FLAIR, IR) LSTM-MA
MRI
(Lietal., 2019)[44] MRBrainS 5(T1, Tl- 3 DC = GM 0.864, WM
IR, T2- 0.897, CSF 0.849
FLAIR) MMAN
MRI
(Dolz et al., 2019)[45] iSEG 2017, MRBrainS T1, TI-IR, 3 HyperDense-Net, DC =GM 0.86, WM
2013 T2-FLAIR 3D CNN 0.89, CSF 0.83
(Luna and Park, 2019)[46] MRBrainS18 30 (TL, T1- 8 MDC = GM 0.86, BG
IR, T2- 3D CNN, 0.83, WM 0.882, WMH
FLAIR) 3D U-Net 0.65, CSF 0.837, VT
MRI 0.93,CB 0.94, BS 0.91
(Ahn et al., 2019)[47] MRBrainS18 7 (T1, TI-IR, 8 2D CNN, ResNet, MDC =0.876
T2-FLAIR) DenseNet, U-Net
MRI ’
(Anand and Anand, ADNI, OASIS, 1096+918+5 13 OIU = 0.7744, 0.7720
2020)[48] MRBrainS13, +7 (T1, Tl, - Deeplab-V3+
MRBrainS18 IR, T2- Segmentation
FLAIR) Model, DCNN
MRI

MDC = Mean Dice Coefficient, M_Score = Rank DC + Rank HD + Rank AVD, ELL = Exponential Logarithmic Loss, PSACNN = Pulse Sequence
Adaptive Convolutional Neural Network, NNTL = Nearest Neighbor Transfer Learning, CT = Computed Tomography, LSRM-MA = LSTM with Multi-
Modality and Adjacency Constraint, MMAN = Multi-modality Aggregation Network, IOU = Intersection-Over-Union.

ill. METHODOLOGY

Two segmentation tasks were performed in this work. The
first task was the segmentation of the brain into three regions
including GM, WM and CSF. And the second task was to
segment brain into nine regions namely WM, CSF, Cortical
Gray Matter (¢cGM), Brain Stem (BS), Cerebellum (CB),
Basal Ganglia (BG), White Matter Lesions (WML), Ventri-
cles (VT) and Infarction (INF). This section discusses the data
sources and the deep learning architecture used for this study.
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A. DATASET
MRI brain scans were acquired from various databases
and were preprocessed to be used for segmentation tasks.
In the dataset, there were a total of 90 MRI scans;
34 scans from Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [64], [65], 21 scans from MRBrain18 challenge [66]
and 35 scans from MICCAI 2012 challenge [67].

For three brain regions, a segmentation dataset of 76 MRI
scans was prepared that contained images from ADNI,
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FIGURE 1. The proposed network architecture for 3D image segmentation.

MICCAI 2012 challenge and T1 weighted images from
MRBrainl8 challenge. Since MRI scans provided by
MRBrainl8 challenge contained segmented images, how-
ever, the remaining dataset was manually segmented to obtain
labels for three brain segments. For this purpose FSL tool-
box [29] was used and segmented data was generated in
two steps. Firstly, automated brain extraction was performed
by using FSL-BET [68], [69] for extracting brain voxels
and removing non-brain regions/tissues such as skull and
neck tissues from images. Secondly, brain scans were seg-
mented into 3 regions (CSF, WM and GM) using FSL-FAST
tool [70]. An algorithm based on expectation-maximization
and hidden Markov random field was used by FSL-FAST to
produce three segmentations of the whole brain by correcting
non-homogeneities in intensity values. After this, the seg-
mentations generated by FSL-FAST were manually corrected
using ITK-Snap tool [71]. The details of the dataset for 3 brain
segments have been presented in Table 2.

TABLE 2. Dataset for 3 brain regions segmentation.
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Dilated Convolution,
d = dilation factor

segmentation (cortical gray matter, cerebrospinal fluid in the
extra-cerebral space, white matter, basal ganglia, ventricles,
brain stem, white matter lesions, cerebellum and infarction).
For the segmentation task of nine brain regions, registered
T1 weighted and FLAIR images were used. Data augmenta-
tion was also employed that included rotation by —10° to 10°,
translation by 0.9 to 1.1 and scaling by —10% to 10%.
Data augmentation was performed by using SimpleITK [72]
python library. The details of the dataset for 9 regions of the
brain have been given in Table 3.

TABLE 3. Dataset for 9 brain regions segmentation.

Dataset Image Sequence Modality Preprocessing
Count Properties
ADNI 34 170x256x256 ~ MP-RAGE Brain
@1x1x1mm T1- extraction and
TR=2300, Weighted brain
TE=min full segmentation
echo
MICCAI 35 256x334x256 ~ MP-RAGE Brain
2012 @]1x1xImm T1- extraction and
challenge TR=10, TE=6 Weighted brain
segmentation
MRBrains 7 256x256x192 T1- No
18 @1x1x1mm, Weighted
challenge TR=7.9,
TE=4.5
Total 76

For nine brain regions, the dataset of MRBrains18 chal-
lenge was used, as it provided MRI scans from 7 subjects in 5
different modalities (FLAIR, IR, registered IR, T1 weighted
and registered T1 weighted). However, data from 3 modalities
(T1 weighted, registered T1 weighted and FLAIR) was used
in this study. There were 21 images in total along with their
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Dataset Image Sequence Modality  Preprocessing
Count Properties
7 240x240x48 Registered No
@0.958x0.958 Tl
x3mm, Weighted
TR=7.9, TE
=45
7 240x240x48 FLAIR No
@0.958x0.958
x3mm,
. TR = 11000,
MRBrains18 TE = 125
21 - Registered Rotation 10
T1 °, Translation
Weighted, 10%, Scaling
FLAIR 1.1
21 - Registered  Rotation -10 °,
Tl Translation -
Weighted, 10%, Scaling
FLAIR 0.9
Total 56

B. PROPOSED DEEP LEARNING ARCHITECTURE:
HIGH3DSEGNET

In this work, a method is presented for the volumetric image
segmentation of cortical and subcortical regions of the brain.
Our method is based on 3D convolutional neural networks
and utilizes the concepts of skip connections, residual learn-
ing and dilated convolutions for efficiently learning the end-
to-end mappings from MRI volumes to voxel-level brain
segments. The architecture of the proposed network has been
shown in Figure 1.
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The network contains 19 convolutional layers. In each
convolutional layer, 3 x 3 x 3-voxel convolutions are applied,
except for the last layer. Due to the small 3D convolutional
kernels, the network has relatively fewer parameters. In the
first five convolutional layers, 16 convolutional kernels are
employed to learn low-level features from images. To learn
features at multiple scales, dilated convolutions [73] are
applied by gradually increasing the dilation factor as the
layers go deeper.

Unlike the previous volumetric segmentation networks, for
example, 3D U-net [59], that uses down- and up-sampling
to learn hierarchical image features increasing computational
cost; in this study, dilated convolutions has been used to com-
pute features with high spatial resolution. To mathematically
describe the dilated convolution for input feature map I with
N channels and to up-sample the convolutional kernels with
the dilation factor d, the output feature map O is generated
as:

N—1 2 2

2
Oxy = Z Z Z Z Wik ndvid), (v+jd). +kd)n - (1.1)

n=0 i=0 j=0 k=0

where x, y, z denote spatial locations of volumes and W
denotes kernels. The dilated convolution conserves spatial
resolution of the images and creates a receptive field of
(2d+1)3 voxels. Therefore, in the later layers dilated convo-
lutions are applied and kernels have been dilated by a factor
of 2 in the layers six to nine, dilated by a factor of 4 in the
layers ten to thirteen and dilated by a factor of 8 in the layers
fourteen to seventeen, respectively. The convolutional layers,
that employ dilated kernels, learn middle and high-level fea-
tures from images.

Residual connections [63], [74] have been applied between
two consecutive convolutional layers throughout the network
to allow the fusion of features from different scales and
to improve the information propagation. To mathematically
describe this, if the input from the L-layer to the residual
block is x1, then the output x;. 1 from the residual block is:

Xr+1 = xp +f(xp,wr) (1.2)

where f (xz, wr ) is the non-linear function. By stacking resid-
ual blocks, the output xN form the last layer can be denoted
by:
N-1
Xy =xp+ > flw) (1.3)
i=L
Within each residual block, each convolutional layer is
associated with a batch-normalization layer [75] and a Recti-
fied Linear Unit (ReLU) layer, arranged in a pre-activation
order [63]. The second-last layer is a convolutional layer
without any dilation and employs 64 kernels. The last layer
in the network applies 1 x 1 x 1 convolutions. The learned
features from the last layer are passed to the softmax layer
to output predicted probabilities over all labels. The mean
dice coefficient [61] was used as a loss function for the
volumetric image segmentation task. Let the image volume
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is denoted by {xv}vV: | and the L-label segmentation map is
denoted by {)’v},‘,/:p where V represents number the of voxels
and y, € {1,2,3,...,L} then the mean dice coefficient can
be expressed as:

\4
L 2 Z 3(yy = DSoft max;(x,)

1 =
D(tw). vh =7 :

Vv Vv
=13 [8(yy =112 + Y- [Soft max;(x,)]?
v=1

v=1

(1.4)

where § denotes Dirac delta function, Soft max;(x,) repre-
sents the softmax classification score of x, over the 1-class.
During training, the mean dice coefficient is maximized.

IV. RESULTS AND DISCUSSION

Our network was trained and evaluated on a combination
of three datasets i.e. MICCAI 2012 challenge, ADNI and
MICCAI MRBrainS18 challenge. Furthermore, two segmen-
tation tasks were performed i.e. segmentation of 3 brain
regions and segmentation of 9 brain regions. The network
architecture for volumetric segmentation of MRI scans was
designed in the same way as shown in Figure 1. The imple-
mentation was done using Python and especially TensorFlow
and NiftyNet [76] library. All the experiments were con-
ducted on an Intel(R) Core i5 system with 16GB RAM and a
ZOTAC 11GB GPU.

A. SEGMENTATION RESULTS

For the segmentation task of three brain regions, there were
total samples of 76 images from three different sources,
as shown in Table 2. For the segmentation task of nine brain
regions, there were total samples of 56 images that included
augmented images and images of 2 different modalities from
the MICCAI MRBrainS18 challenge as illustrated in Table 3.
In the training process of the network, all the weights were
randomly initialized in a normal distribution with mean 0 and
standard deviation 1. The learning rate was initialized with a
value as 1e-03 and Adam optimizer was used. The dataset
was split for training, validation and evaluation with 70%,
20% and 10% ratios, respectively. The network showed better
convergence and speedy learning capabilities. However, since
the network did not down-sample the inputs and number
of kernel filters were increased by a certain factor, space
complexity was higher. In the experiments, patch size of
88 x 88x88 was used. The quantitative results in terms of
Dice Score (DS), Jaccard Score (JC), Symmetric Volume
Difference (SVD) and Volumetric Overlap Error (VOE) of
each brain structure obtained for both segmentation tasks
have been shown in Table 4.

The proposed method was evaluated on MRI images from
different sources. Since the training data was limited and
there were chances of over-fitting. Firstly, suitable hyper-
parameters of the network were searched in various experi-
ments. After, parameter tuning, the network was trained using
the dataset and optimal hyper-parameters. The training of
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TABLE 4. Results for segmentation tasks of 3 and 9 brain regions.

Regions DS JS SVD  VOE
Dice scores for 3 brain regions segmentation task
Cerebrospinal Fluid (CSF) 0.896 0.812 0.104 0.188

Gray Matter (GM) 0.872 0.773 0.128 0.227
White Matter (WM) 0.872 0.773  0.128  0.227
Average Dice Score 0.879 0.784 0.121  0.216

Dice scores for 9 brain regions segmentation task
White Matter Lesions (WML)  0.844 0.730  0.156  0.270
Cerebrospinal Fluid (CSF) 0906 0.828 0.094 0.172
Cortical Gray Matter (cGM) 0.879 0.784 0.121 0.216

White Matter (WM) 0.864 0.761 0.136  0.239
Basal Ganglia (BG) 0.839 0.723 0.161 0.277
Ventricles (VT) 0937 0.881 0.063 0.119
Cerebellum (CB) 0973 0947 0.027 0.053
Brain Stem (BS) 0982 0965 0.018 0.035
Infraction (INF) 0.999 0.998 0.001 0.002
Average Dice Score 0914 0.842 0.086 0.158

the network was performed until the dice coefficient stopped
improving and validation loss stopped decreasing. After this,
the testing data was used for evaluation and prediction. The
accuracy of segmentation was evaluated by using mean dice
score measure. The dice score for each sample in the testing
dataset was calculated and an average is computed across all
the samples in the testing dataset. The box plots in Figure 2
and Figure 3 represent the distribution of dice scores of each
brain structure over the validation dataset for three and nine
regions segmentation tasks, respectively.

0.9 4 ’:‘

0.8 H

0.7 4

06—

T T 1
CSF GM WM

FIGURE 2. Box plot for segmentation dice scores of 3 brain regions
(CSF = Cerebrospinal Fluid, GM = Gray Matter, WM = White Matter).

For the quantitative evaluation of segmentation results,
the box plots were observed to identify the outliers and dis-
tribution of prediction accuracies. For the segmentation task
of three brain regions, the dice scores were relatively better
without any outliers. This shows that their accuracies were
pretty much close to each other and our model performed
considerably well on predicting all the testing samples. For
nine brain regions, the results were quite different. Cerebel-
lum, brain stem and ventricles segmented well across all the
testing images. These three regions achieved high dice scores
with a few outliers. The infraction was the region obtaining
the highest dice score without any outlier. Although white
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FIGURE 3. Box plot for segmentation dice scores of 9 brain regions
(WML = White Matter Lesions, CSF = Cerebrospinal Fluid, cGM = Cortical
Gray Matter, WM = White Matter, BG = Basal Ganglia, VT = Ventricles,

CB = Cerebellum, BS = Brain Stem, INF = Infraction).

matter lesions, cerebrospinal fluid, cortical gray matter, white
matter and basal ganglia were the brain structures with most
outliers, their dice score was relatively better.

The WHM structure was most challenging to learn among
all the regions. Since these are lesions or abnormalities in
WM and they don’t have predefined size, shape or location.
Most number of outliers are in WML class, however, the aver-
age dice score of this structure is better. Our method worked
best on larger regions such as cerebellum and ventricles and
achieved relatively low scores with irregular and smaller
regions such as WML. However, our segmentation accuracy
even for smaller regions was encouraging, thus overall dice
score across all the testing samples and overall the brain
structures was 0.914. If traditional categorical cross-entropy
measure was used, it would have given more importance to
large brain structures that would have resulted in under- or
over-segmentation. The use of the dice coefficient helped to
avoid such a problem. That’s why our proposed method was
able to perform better segmentation of WML even though it
had the lowest dice score among all the brain regions.

A) Input Image B) Ground Truth

(C) Segmentation

FIGURE 4. Segmentation Results for 3 brain regions; (A) Input image (B)
ground truth (C) Segmentation; (CSF = Cerebrospinal Fluid, GM = Gray
Matter, WM = White Matter).

The brain images and their corresponding regions seg-
mented by our method are illustrated in Figure 4 and Figure 5.
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A) Input Image (B) Ground Truth (C) Segmentation

FIGURE 5. Segmentation results for 9 brain regions; (A) Input image

(B) ground truth (C) Segmentation; (WML = White Matter Lesions, CSF =
Cerebrospinal Fluid, cGM = Cortical Gray Matter, WM = White Matter,
BG = Basal Ganglia, VT = Ventricles, CB = Cerebellum, BS = Brain Stem,
INF = Infraction).

An input image ground truth and predicted segmentation have
been shown. From the input data and ground truths, it was
observed that the brain regions have very complex morphol-
ogy and great variations across slices. These morphological
variations are more evident in the brain images of different
subjects. Brain regions not only have diverse appearances but
also vary in size. A small tissue or region that appears in
fewer slices is difficult to locate and segment automatically.
Moreover, the intensity values of voxels also overlap signif-
icantly across brain tissues. This diversity of brain regions
across slices and subjects makes the segmentation task very
challenging.

Leveraging the advantages of 3D CNNs combined with
the techniques of dilated convolutions and residual learning,
our method uses the spatial information of voxels and effec-
tively segments the brain regions despite their size. In the
segmentation of three brain regions, it was noticed that our
method accurately detected the borders of the brain tissues
and accurately classified the voxels into GM, CSF and WM.
Similarly, in the segmentation of nine brain regions, the brain
regions were effectively segmented. However, there were a
few false positives and false negatives in the results. For
example, a few voxels belonging to some regions, particularly
WM, BG and VT are different from the ground truth. While,
CSF, cGM and WML tissues are quite learned accurately.

Notice that, the dice scores of some regions such as WML
were relatively low compared to larger regions. However,
they were predicted quite well by our model. The reason for
this is their irregular morphology that affects the learning.
Due to this, the dice scores vary significantly across brain
scans, resulting in low overall dice scores. However, due to
the small size of these brain structures, there were a few
incorrect voxels predicted and hence fewer false positives and
false negatives. Contrary to this, the predicted results of the
large regions such as WM and VT contain more misclassified
voxels and appear slightly different from their ground truths.
Although their dice scores are better with fewer outliers, their
large sizes require accurate prediction of a greater number of
voxels than the smaller brain structures. cGM is the largest
brain structure that has been predicted accurately.
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These discrepancies in the results arise due to the over-
lapping and similar nature of voxel intensities. The voxels
in the adjacent brain tissues have nearly similar coordinates.
Some of the brain structures don’t have predefined shapes or
locations or both. Moreover, data is from different sources
and subjects. These images have been acquired with different
scanners and from subjects with different brain disorders. For
example, the dataset acquired from ADNI contained scans
of Alzheimer’s patients. The scans from MRBrains18 were
acquired from multiple patients with different health con-
ditions such as dementia, Alzheimer’s and diabetes as well
as healthy subjects. These images contain varying degrees
of white matter lesions and atrophy. The age of subjects
was also different as patients with neurodegenerative disor-
ders such as dementia and Alzheimer’s are mostly of age
>70. Moreover, neuro-degenerative disorders greatly affect
the brain morphology and shapes of brain structures. The
model had to learn not only the complex brain structures but
also the variations associated with the brains of healthy or
diseased patients. Despite, a few incorrect results, our method
performed quite well for most of the brain regions and small
brain regions have been learned accurately.

B. COMPARATIVE ANALYSIS

The achieved results were compared with other methods pro-
posed in the previous studies. Although there are many tools
and methods for the segmentation of GM, WM and CSF and
most of them use atlas-based methods. For the comparison
of results, those studies were identified that have used deep
learning techniques and segmented the same brain regions
that are under consideration in this study.

For the segmentation task of three brain regions, our results
were compared with three recent studies. In this respect,
Zhang et al. [30] presented a method based on 2D CNNs
to segment infant brain scans into three tissue types using
multi-modality MR images. The proposed network architec-
ture employed convolutions, pooling and other operations in
several layers to learn low- and high-level features. Another
method was presented by Nie et al. [77] to segment infant
brain scans into three tissue types. The method was based
on employing fully convolutional networks (FCN) for the
segmentation of three modalities of MR images including
T1, T2 and fractional anisotropy. Initially, the network was
trained with images of each modality separately. And then,
the features learned from each modality were fused together
to get the final segmentation maps.

While, Nguyen et al. [78] used 3D CNNs and Gaussian
mixture models (GMM) to segment GM, WM and CSF.
Firstly, GMM identified voxels that were easy to classify
based on their intensity values. While CNN identified the
voxels that had overlapping intensities. The method was eval-
uated on IBSR 18 dataset and better results were obtained
for GM and WM but significantly lower dice score for CSF.
Although, the aforementioned studies obtained better results,
however, small datasets from healthy subjects were used for
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evaluation that might limit the applicability of these methods
in clinical practices for disease diagnosis and prognosis.

For this study, a relatively large dataset from three different
sources was obtained from healthy as well as patients with
dementia, Alzheimer’s and diabetes. Dice scores of 0.872,
0.872 and 0.896 were obtained for WM, GM and CSF,
respectively by using our method. As compared to previous
studies, our method didn’t achieve the best dice scores for
GM and WM. Since, Alzheimer’s and dementia patients are
characterized by WM microstructural and ischemic changes
as well as cortical atrophy [79], [80], [81]. As a result of this,
our dataset contained MRI scans with varying levels of WM
lesion load and GM atrophy making precise segmentation
of these regions a challenging task. Our method achieved
reasonable dice scores for these two regions and can help to
segment brain tissues of the patients that have been affected
with neurodegenerative diseases. The diversity in the dataset
makes the model more generalized and suitable for clinical
applications related to neurological disorders. Our method
succeeded to achieve the best dice score for CSF and over-
all dice score of 0.879 as compared to other methods. The
detailed results and comparative analysis for the segmenta-
tion results of three brain structures in terms of dice scores
are presented in Table 5.

TABLE 5. Comparison of results for 3 brain regions segmentation.

Study Methods Dice Score Sample Data

WM GM CSF __ Avg. Size Source

(Zhang et 2D CNN 0.864  0.852 0.835 0.850 10 MRI Private
al., data
2015)[30]
(Nie et FCN 0.887  0.873 0.855 0.871 10 MRI Private
al., data
2016)[77]
(Nguyen 3D CNN, 0.90 0.91 0.79 0.866 18 MRI IBSR 18
etal., GMM
2017)[78]
Proposed 3D CNN, 0.872  0.872 0.896 0.879 76 MRI ADNI,
work High3DSe MICCA

g Net 12012,
MRBrai
nsl8

In order to perform comparative analysis for the segmen-
tation task of nine brain regions, the previous studies were
identified. It was observed that most of the work was on
the segmentation of three brain tissues. A few studies have
subdivided the three brain regions into sub-regions. We con-
sidered those studies for comparison that have worked on
brain regions similar to ours. One such study was conducted
by Moeskops et al. that presented a method for the automatic
segmentation of brain tissues. The method was based on
multi-scale CNNs and used T1, T2-FLAIR and T1-IR images
as input. The dataset from the MRBrains13 challenge was
used for performing brain segmentation. Although the data
provided by the challenge contains three brain segments,
however, for their study, these segments were subdivided
into 8 regions including WM, cGM, CB, BS, WMH, Lateral
Ventricular Cerebrospinal Fluid (IvCSF), Basal Ganglia and
Thalami (BGT) and Peripheral Cerebrospinal Fluid (pCSF).
Their method achieved an average dice score of 0.67.
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Moreover, the dice score of 0.85 for cGM, 0.87 for WM,
0.93 for CB, 0.92 for BS, 0.82 for BGT, 0.93 for IvCSF and
0.76 for pCSF were achieved. For the comparison purpose,
we considered the dice scores of cGM, WM, BS and CB only.

Another method was proposed by Luna et al. for the
automatic segmentation of eight brain regions from MRI
images using patch-based 3D CNNs. The network consisted
of encoding and decoding layers for feature extraction and
label reconstruction, respectively. To learn more robust fea-
tures, transition layers and batch-normalization were used
in every convolution layer. T1, T2-FLAIR and T1-IR scans
were used to train and evaluate the model using the dataset
from MICCAI 2018 challenge. Similarly, Ahn et al. [47]
also worked on the segmentation task of eight brain regions.
Their method used the attention module and CNN based
approach. The network consisted of compression and inten-
sity modules to improve feature representation and spatial
attention of pixels. The proposed method was evaluated using
MRBrainS18 dataset.

Luna et al. achieved an average dice score of 0.855 and
Ahn et al. achieved 87.60. Since both studies considered eight
brain tissue classes, to have a fair comparison, the results of
eight brain regions were considered. The average dice score
of eight brain regions with our method was 0.903 which was
higher than both studies. Moreover, the dice scores of 0.879
for cGM, 0.839 for BG, 0.864 for WM, 0.844 for WML,
0.906 for CSF, 0.937 for VT, 0.973 for CB, 0.982 for BS
and 0.999 for INF were obtained by using our method. By
observing the results, it was found that our method obtained
best dice scores for cGM, BG, CSF, VT, CB and BS. The
results of other brain structures such as WM and WML were
also encouraging making average dice scores over all the
brain structures higher than previously achieved with any
method. The analysis of results for the segmentation task of
nine brain regions is presented in Table 6. Our results were
compared with the common brain regions in both studies. The
comparative analysis is illustrated in Figure 6.

In this study, a method has been proposed for the automatic
segmentation of various brain structures using 3D CNNs. The
model has been evaluated for the segmentation task of three
and nine brain regions. Contrary to the previous studies that
have segmented eight brain structures, an additional brain
structure i.e. infraction was also considered for segmentation.
It was shown that our brain structures segmentation approach
can be employed to include INF as an additional segmentation
class. Unlike, other methods, the inclusion of INF in our
evaluation didn’t decrease the performance, this structure was
learned quite effectively and obtained the highest dice score
of all the other brain structures. Moreover, another brain
region WML that is challenging to segment, has also been
included in the evaluation. Thus, performing segmentation of
brain tissues, structures and abnormalities at the same time.

In this study, images from three different modalities
(T1 weighted, registered T1 weighted and FLAIR) were used.
It was shown that our method is not limited to the input
modality of brain scans and can effectively work with other
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TABLE 6. Comparison of results for 9 brain regions segmentation.

Study Methods Dice Score Data Source
cGM BG WM WML CSF VT CB BS INF
(Moeskops et al., 2D CNN 0.840 - 0.870 - - - 0910  0.890 - MRBrains13
2018)[82]
(Luna and Park, 2019)[46] 3D CNN, 0.860  0.834 0.882 0.652 0.837 0931 0.939  0.905 -—- MRBrainS18
U-Net
(Ahn et al., 2019)[47] 2D CNN, 0.853  0.839 0.859 0.879 0.830 0918 0.930 0.897 - MRBrainS18
U-Net
Proposed Work 3D CNN, 0.879  0.839 0.864 0.844 0906 0.937 0.973 0.982 0.999 MRBrains18
HighRes3D
Net
1 revealed that our approach can accurately predict brain struc-
0.95 tures with varying degrees of abnormalities, morphologies
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FIGURE 6. Comparative analysis of brain regions segmentation with the
previous studies (WML = White Matter Lesions, CSF = Cerebrospinal
Fluid, cGM = Cortical Gray Matter, WM = White Matter, BG = Basal
Ganglia, VT = Ventricles, CB = Cerebellum, BS = Brain Stem, Avg. DS =
Average Dice Score).

MR modalities. In terms of abnormality detection, it was
observed that our model automatically detected lesions and
infraction despite the image volume belongs to a healthy or
a diseased patient. In clinical applications, a method that can
automatically detect and segment brain structures and lesions
would be beneficial to increase the sensitivity and precision of
diagnosis. Additionally, data generated by such an automatic
method can be used to improve the automatic segmentation
method.

The data used in this study for the segmentation task of nine
brain regions (Table 3) was anisotropic, scans having a voxel
size of 0.958mm x 0.958mm x 3.0mm. The use of 3D CNNs
is advantageous to learn features from isotropic images. Due
to the low quality of anisotropic images, it is difficult for the
network to learn features representing the dataset. Despite the
anisotropic nature of scans used in this study, our method per-
formed well for most of the brain regions. Similarly, motion
and other artefacts were present in the dataset, especially in
ADNI scans. The brain scans with artefacts were removed
from the study in order to limit the influence of these artefacts
on the performance of our model.

The evaluation of the model was performed on MRI
images from different healthy and diseased subjects including
patients with memory impairments. The segmentation results
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and scanners. The proposed model obtained the highest dice
scores for 6 out of 8 brain regions. The average dice score for
the eight brain regions obtained with our model was higher
than the previous work on MRBrains18 dataset. Moreover,
the development of an automatic segmentation method for
brain tissues as well as abnormalities can facilitate the diag-
nosis of brain disorders especially in the aging population
and can help to identify the disease related biomarkers for
prevention and treatment.

V. CONCLUSION

This research targeted medical imaging segmentation prob-
lems, specifically to segment brain into various regions
including cerebrospinal fluid, white matter and gray matter.
Unlike, traditional segmentation methods in medical imaging
that are based on graph theory or atlas-based techniques, this
work was directed towards the use of a 3D deep learning
segmentation algorithm. In this regard, a 3D CNN based
network was employed for two segmentation tasksi.e. 3 and 9
brain regions. For 3 brain regions segmentation task, dice
scores of 0.872, 0.872 and 0.896 were obtained for WM,
GM and CSF, respectively. While, for the segmentation task
of 9 brain regions, dice scores of 0.879, 0.839, 0.864, 0.844,
0.906, 0.937, 0.973, 0.982 and 0.999 were achieved for cGM,
BG, WM, WML, CSF, VT, CB, BS and INF, respectively. Our
network obtained mean dice scores of 0.879 and 0.914 for
three and nine brain regions respectively. Moreover, a mean
dice score of 0.903 obtained for eight brain regions was better
than the previous research. This indicates the promise of
developing medical image segmentation algorithms using 3D
deep learning techniques. In the future, we intend to improve
our network to achieve better results for all the brain regions
under consideration.
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