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Abstract

Introduction: In Alzheimer’s disease, asymptomatic patients may have amyloid depo-

sition, but predicting their progression rate remains a substantial challenge with impli-

cations for clinical trial enrollment. Here, we demonstrate an artificial intelligence

approach to use baseline clinical information and images to predict changes in quan-

titative biomarkers of brain pathology on future images.

Methods: Patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) who

underwent positron emission tomography (PET) with the amyloid radiotracer 18F-

AV45 (florbetapir)were included.We identified importantbaselinePET image features

using a deep convolutional neural network based on ResNet. These were combined

with eight clinical, demographic, and genetic markers using a gradient-boosted deci-

sion tree (GBDT) algorithm to predict future quantitative standardized uptake value

ratio (SUVR), anestablishedbiomarkerof brain amyloiddeposition.Weused thismodel

to better identify individuals with the highest positive change in amyloid deposition

on future images and compared this to typical inclusion criteria for clinical trials. We

also compared the model’s performance to other methods such as multivariate linear

regression and GBDTwithout imaging features.

Findings: Using 2577 PET scans from 1224 unique individuals, we showed that the

GBDT with deep image features was significantly more accurate than the other

approaches, reaching a root mean squared error of 0.0339 ± 0.0027 for future SUVR

prediction. Using this approach, we could identify individuals with the highest 10%

SUVR accumulation at rates 2- to 4-fold higher than by random pick or existing inclu-

sion criteria.

Discussion: Predicting quantitative biomarkers on future images using machine learn-

ing methods consisting of deep image features combined with clinical data may allow

better targeting of treatments or enrollment in clinical trials.
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1 INTRODUCTION

While correct diagnosis of a disease entity is required to select appro-

priate therapies, knowledge about the disease evolution and prognosis

is also important. For example, some diseasesmight be self-limited and

require minimal or no interventions. Other diseases might have faster

and more virulent time courses, pushing providers to consider higher

risk or more invasive therapies. Furthermore, prognosis information

plays a critical role in patient discussions and resource planning.While

radiology has so far focused largely on diagnosis, an opportunity exists

to use radiological information to risk-stratify patients regarding dis-

ease prognosis.

Dementia is one condition for which prognosis is especially impor-

tant. Understanding the likelihood and rate of progression of this dis-

ease would be extremely helpful, not only for individual patients and

families, but also to plan clinical trials. Alzheimer’s disease (AD) trials

face significant challenges with enrollment.1,2 Being able to selectively

recruit patients likely to progress quickly, based in part on brain imag-

ing biomarkers such as amyloid and tau deposition, could significantly

impact the design, duration, and cost of clinical trials.

Deep learning has shown much promise in classifying patients and

predicting their future disease trajectories.3–6 It has also been used

at the image level to transform images, either for better image recon-

struction or the synthesis of desired contrasts (i.e., predicting com-

puted tomography [CT] from magnetic resonance imaging [MRI] to

enable MR-based positron emission tomography [PET] attenuation

correction7–9). Combining these two approaches would allow predic-

tion of future image-based biomarkers, such as regional radiotracer

uptake. In this study, we combined clinical, genetic, and imaging fea-

tures at baseline and then used these to identify individuals at highest

riskof rapidbiomarkerprogression, in this case thequantitative change

in amyloid beta protein deposition on future imaging studies. Using

data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), we

show that a model combining deep learning–derived image features

and gradient-boosted random forest regression outperforms existing

methods, that the baseline imaging features play a large role in detect-

ing fast progressors, and that this can be used to enrich cohorts with

fast progressors.

2 METHODS

2.1 Imaging information

Weobtained all available 18F-AV45 (florbetapir, Avid Lilly) PET studies

from ADNI as of August 2019. All scans were downloaded in Neu-

roimaging Informatics Technology Initiative (NIFTI) file format along

with theUniversity of California (UC) Berkeley AV45 analysis to obtain

a standardized uptake value ratio (SUVR) values based on a reference

region consisting of cerebellum, brainstem/pons, and eroded white

matter (SUMMARYSUVR_COMPOSITE_REFNORM).10–12 Higher

SUVR reflects more amyloid deposition in supratentorial cortical

regions. For amyloid positivity, we used an SUVR threshold of 0.79

RESEARCH INCONTEXT

1. Systematic Review: We reviewed the literature of

biomarker prediction with machine learning models dur-

ing the development of this work (August 2020) and

references to relevant work are included. Works com-

bining deep learning–derived imaging features combined

with clinical and genetic data to predict a future imaging

biomarker were found to be lacking. Specifically, no stud-

ies capable of predicting future amyloid deposition were

identified.

2. Interpretation: This study showed that combining deep

learning–derived imaging features with clinical, demo-

graphic, and genetic information could be used to accu-

rately predict the change in amyloid deposition.Using this

method, it was possible to identify the fastest amyloid

accumulatorswith amuch higher frequency than by using

existing techniques.

3. Future Directions: Identifying patients with rapid amy-

loid accumulation will enable better selection for clinical

trials and personalized targeting of therapies, once avail-

able. The method is general, with the framework likely

applicable to other future biomarker prediction tasks.

as suggested by the ADNI researchers. We selected all patients with

multiple scans and calculated the interval SUVR change from baseline

(ΔSUVR).

2.2 Clinical and genetic information

For model development, we also included several clinical and genetic

features, including patient age, sex, weight, baseline cognitive test-

ing scores, and apolipoprotein E (APOE) gene status. Two cognitive

testswere included: theMini-Mental State Examination (MMSE)13 and

the Functional Activities Questionnaire (FAQ) total score.14 We also

included the polymorphic expression of the APOE gene,15 as the APOE

genotype is known to strongly affect amyloid deposition.16 To assess

performance of the model in different clinical cohorts, we examined

clinical status using the Clinical Dementia Rating (CDR) score if it was

made±50 days of the baseline PET scan.

2.3 Prediction models

2.3.1 Linear regression

Weperformedmultivariate regressionusing the StatsModels library 17

in Python, which fits the following equation:

yi = 𝛽0 constant + 𝛽1xi1 + 𝛽1xi2 +⋯+ 𝛽nxin



REITH ET AL. 3 of 8

F IGURE 1 Overview of ResNet-50 training procedure. Three central slices are fed into the input color channels. The ResNet algorithm is
modified to perform regression on standardized uptake value ratio (SUVR) rather than classification. Finally, for the testing ofΔSUVR prediction,
we extract 2048 deep features, the results of the average pool operation (scalar values)

2.4 Deep learning

We trained a convolutional neural network (CNN) to predict amy-

loid PET SUVR,18 using methods described in Reith et al.19 Of note,

the CNN is not trained to predict future SUVR change, but instead

learned image features associated with baseline SUVR. In brief, the

ResNet-50 architecture20 was used. Network input was three cen-

trally located slices. Standard ResNet ends with a layer for distin-

guishing 1000 differing classes, but we modified it for SUVR pre-

diction (a regression task). The final layer was changed to a sin-

gle output without an activation function. The cost function was the

mean squared error between predicted and true SUVR using the

ADAM optimizer.21 We applied the best-performing hyperparame-

ters for training on current SUVR19 and settled on an initial learn-

ing rate of 0.0001, 30 epochs, with 10x decrease of learning rate

every 10 epochs. Training time was 22 minutes. The model was pre-

trained using the ImageNet dataset of natural images.22 After train-

ing, we used PyTorch to extract the last layer’s activations. This

resulted in 2048 numbers (features) for each individual PET scan (Fig-

ure 1).

Becauase the goal was to predict SUVR change based on baseline

patient information and the ResNet-50-derived features, we trained

this network on baseline images only. The training set consisted of

1441 amyloid PET scans (610 baseline scans of subjects used subse-

quently for testing, 489 baseline scans of subjects with only a single

PET study, and 342 scans from 125 subjects with multiple scans). We

used a cross-validation testing design (described later) such that none

of the follow-up scans used for training were from patients that were

evaluated for ΔSUVR in the test set. A smaller ResNet training dataset

consisting of 831 scans was also tested to demonstrate the effect of

larger training sets and the details and results are found in the support-

ing information. The test set consisted of follow-up amyloid PET scans

not used in training (n=1136 scans from610 subjects; details in Figure

S2 in supporting information).

2.5 Gradient boosting decision tree

To combine clinical/genetic features and deep imaging features, we

used a gradient boosting decision tree (GBDT) algorithm, specifically

the LightGBM implementation, to predict SUVR change.23,24 Details of

the training procedure can be found in the supporting information.

We testedGBDTmodelswith andwithout deep learning–basedPET

features to assess the importance of the images. TheGBDTmodel with

activations is based on the ResNet training we performed as described

above (8 clinical + 2048 deep features). To determine the importance

of deep activations, we tested two additional models. One type used

the same GBDT in which the true deep activations were replaced with

random numbers, reflecting no impact of the imaging features (8 clin-

ical + 2048 random activations). These random numbers were drawn

from a normal distribution consistent with the mean and variance of

the ResNet features themselves. The second method was to train a

GBDTusing only the eight available clinical features. A schematic of the

different machine learning (ML) methods can be found in Figure S1 in

supporting information. More details of the GBDT models are also in

the supporting information.

2.6 Data analysis

We analyzed GBDT performance via root mean squared error (RMSE)

for ΔSUVR in all follow-up scans (1136 scans in 610 individuals). We

performed 5-fold cross-validation and present the average RMSE. For

cross-validationpurposes,wedivideour dataset into five distinct parts.

Each part has its unique subjects, meaning no subject can be found in

more than one of the five distinct parts, guaranteeing that there is no

subject shared by both the training and test sets. We analyzed the sta-

tistical significance of model design choices with linear mixed effects

models and Wilcoxon rank sum tests, as appropriate. For these mea-

sures, we compared the squared error ofML system predictions.
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F IGURE 2 Training and test set performance. Root mean-squared error (RMSE) between prediction and the trueΔSUVR (standardized uptake
value ratio) is shown, so lower values represent better model performance. The gradient-boosted decision tree (GBDT) using the image-based
activations had the best performance.

Toassess thepractical valueof theseSUVRpredictions,wealsoused

them to select subjects with the highest SUVR changes. The rationale

is that these patients might be desirable candidates for clinical trials

assessing the impact of an amyloid-lowering agent. We identified the

top 10% of cases (61 individuals) with the highest ΔSUVR. In subjects

with multiple follow-up scans, we selected the scan with the maximum

ΔSUVR. We assessed the performance of multivariate linear regres-

sion, GBDTwithout imaging features, and GBDTwith imaging features

by calculating the % of these top progressors also predicted by the

model. For example, a random selection would lead to a 10% “hit rate,”

while themodels should be able to improve upon this if they aremaking

more accurate predictions.

We also comparedmodel performancewith othermethods of selec-

tion in two ways. The first is to randomly select patients that meet

a specific criterion. We included the following groups for these tests:

amyloid positive at baseline (n = 313), presence of at least one APOE

ε4 allele (n = 237), mildly positive amyloid patients (defined as base-

line SUVR between 0.79 and 0.95; n = 156), amyloid positive with

at least one APOE ε4 allele (n = 178), and mildly amyloid positive

subjects with at least one APOE ε4 allele (n = 70). We also exam-

ined the various models’ performance in pre-selected groups often

targeted in clinical trials, specifically: mildly positive amyloid patients

(as defined above) and subjects with mild dementia (baseline CDR

0.5; n = 229). Because these latter datasets start from a smaller

denominator, the task was to identify the top 20% fastest true ΔSUVR
progressors.

3 RESULTS

3.1 Patient cohort

The baseline demographics and clinical features of the 610 unique

subjects with 1136 follow-up scans are summarized in Table 1. The

time horizon of the follow-up predictions was as follows: 1 to 3 years

(n= 553), 3 to 5 years (n= 354), and 5+ years (n= 227).

TABLE 1 Baseline demographics and SUVR of the 610 patients

Clinical feature Value, mean±SD, (IQR)

Age (yrs) 73.1±7.4 (67.9, 78.1)

Sex 46.4% female, 53.6%male

Weight (kg) 78.3±15.8 (68.0, 87.0)

APOE ε2/ε2 0.2%, ε2/ε3 9.7%, ε3/ε3 49.3%, ε2/ε4
1.9%, ε3/ε4 32.1%, ε4/ε4 6.7%.

FAQtotal 2.4±4.7 (0, 2.0)

MMSE 27.4±3.4 (26.0, 30.0)

Baseline SUVR 0.84±0.14 (0.74, 0.96)

CDR 0: 39.9%, 0.5: 55.1%, 1: 4.1%, 2: 0.7%,

3: 0.3%

Delta time (yrs) 3.5±1.6 (2.0, 4.3)

ΔSUVR 0.016±0.038 (-0.0085, 0.037)

Abbreviations: APOE, apolipoprotein E; CDR, Clinical Dementia Rating;

FAQ, Functional ActivitiesQuestionnaire; GBDT, gradient-boosted decision

tree; IQR, interquartile range; MMSE, Mini-Mental State Examination; SD,

standard deviation; SUVR, standardized uptake value ratio.

Notes Delta time andΔSUVR are based on 1136 follow-up data points used

for training and testing the GBDTs. Please note that the CDR values were

not used for model training or testing but used to compare performance in

clinically relevant subgroups

3.2 ΔSUVR prediction

Visual presentation of the performance of each model is shown in Fig-

ure 2. For multivariate linear regression, we found an average RMSE

of 0.0364 ± 0.0007 and 0.0382 ± 0.004 on the training and test sets,

respectively. The weights and significance of each feature are shown

in Table S1 in supporting information. In contrast, using the GBDTwith

the same inputs (8 clinical features)without deep activations, we found

slightly better performance (RMSE 0.0296 ± 0.0007 train, 0.0355 ±

0.0003 test). Using random activations in place of the deep activa-

tions, the model heavily overfits the training set (0.0024 ± 0.0003)

but had worse performance on the test set (0.0369 ± 0.0003). For the

GBDT model incorporating the deep imaging activations, we saw the
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F IGURE 3 A, Root mean-squared error (RMSE) for predictingΔSUVR (standardized uptake value ratio) at different time periods after
baseline. Overall performance decreases for predictions farther in the future. The gradient-boosted decision tree (GBDT) with activations was
always the best-performingmodel. B, Test set RMSE for predictingΔSUVR in different patient subsets. Again, the GBDTwith activations always
performed best.

best performance (0.0090±0.0004 train, 0.0339±0.0003 test).While

the performance difference between train and test for the GBDT with

imaging activations suggests residual overfitting, applying regulariza-

tion did not improve test set performance, and of course, the ultimate

proof of their superiority is their better performance on the held-out

test set. Therewas significantly better performanceof theGBDTmodel

with activations compared to the GBDT model that used dummy acti-

vations (P< 2.35e-9) or the GBDTmodel that only used the eight clini-

cal features (P<0.00388),measured using theWilcoxon rank sum test.

Weadditionally compared the correlationbetweenΔSUVRpredictions
and ground truth changes, shown in Figure S3 in supporting informa-

tion. Similar to the findings of RMSE, the worst performing method is

linear regression (correlation coefficient R = 0.21), while the best per-

formingmethod is GBDTwith deep activations (R= 0.47).

We analyzed model performance for the various time horizons of

prediction (Figure 3). Two follow-up scans were excluded, as they were

performed less than a year frombaseline. In the shortest timeframe (1–

3 years), accuracy was highest for all ML algorithms. This performance

decreases slightly in the 3- to 5-year and 5+-year time frames. In all

cases, GBDTwith activations performed best.

GDBTwith activations also performed better inmany different sub-

sets of the full cohort used in clinical trials. Results for initially amyloid-

negative patients, amyloid-positive patients, patients with at least one

APOE ε4 allele, and patients with mild cognitive impairment (CDR 0.5)

are shown in Figure 3. In initially amyloid-negative patients, perfor-

mance was similar between the different models, but for the other

groups, the GBDTmodel with activations performed better.

The importance of various individual features was explored by

removing individual features and measuring the effect on RMSE. In

general, for models without activations, removing baseline SUVR and

delta time made the biggest difference. When deep activations were

used, only delta time omission led to a significant degradation in pre-

diction performance (Figure S4 in supporting information).

3.3 Implications for study selection

We evaluated the ability of the various models to identify the fastest

10% of true amyloid accumulators (Figure 4). The top 10% progressors

had an average change in amyloid SUVR of 0.105 while the other sub-

jects had an average SUVR change of 0.0010.When selecting using lin-

ear regression, we find 19.7% of this group are also in the top 10% of

ground truth patients (sensitivity 0.20, specificity 0.91). This is already

twice thenumber of subjects compared to the expectednumber of sub-

jects selected via random pick. Selection based on GBDT without acti-

vations led to 29.5% identification (sensitivity 0.30, specificity 0.92).

Highest performance was obtained using GBDT with activations, with

37.7%of fast progressors identified, an almost 4x increase in yield com-

pared to a random selection (sensitivity 0.38, specificity 0.93). Further

information about sensitivity and specificity along with positive and

negative likelihood ratios are included in the Table S2 in supporting

information. We see similar results when we limit progressors to cer-

tain time frames.When limited to 1- to 3-year or 3- to 5-year follow-up

scan timeframes, we find an even better relative performance of GBDT
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F IGURE 4 Percentage of ground truth top 61 (top 10%) progressors who are also found in top 61 highest predictedΔSUVR (standardized
uptake value ratio)

TABLE 2 Percentage of fastest amyloid progressors predicted via
various “simple” selectionmethods compared toMLmethods (bolded)

Selectionmethod

% of the 61 top progressors

(top 10%) predicted by

method

Highest FAQtotal score with at

least one ε4 allele
8.2%

Random pick 10.0%

Subjects with at least one ε4 allele 13.5%

Amyloid positive cases with at

least one ε4 allele
15.7%

Amyloid positive cases 16.0%

Mildly amyloid positive cases 19.2%

Multivariate linear regression
without activations

19.7%

Mildly amyloid positive cases with

at least one ε4 allele
25.7%

GBDTwithout activations 29.5%

GBDTwith activations 37.7%

Abbreviations: FAQ, Functional Activities Questionnaire; GBDT, gradient-

boosted decision tree; IQR, interquartile range;ML, machine learning. Italic

boldface text represents themachine learningmethods tested in this study.

with activations compared to GBDT without activations. More detail

can be found in Figure S7 in supporting information.

We compared these results to other ways of selecting fast progres-

sors using the entire cohort. If we randomly select baseline amyloid-

positive subjects, we would correctly predict the top 61 progressors in

16% (50/313 of baseline amyloid-positive subjects). Among the other

methods of choosing fast progressors (at least one APOE ε4 allele,

mildly positive amyloid patients, amyloid positive with at least one

APOE ε4 allele, and mildly amyloid positive subjects with at least one

APOE ε4 allele), best performance is the last group (25.7%), still signifi-

cantly lower than the GBDTwith activations model (Table 2).

We looked at model performance in clinically relevant subgroups.

For mildly positive amyloid patients, of the top 20% fastest progres-

sors, performance increases to 29.0% for linear regression, 41.9%

for GBDT without activations, and 45.2% for GBDT with activations.

For subjects with mild dementia at baseline (CDR 0.5), performance

increases from 41.3% for linear regression, 43.5% for GBDT without

activations, and 60.9% for GBDT with activations. These subjects had

a baseline SUVR of 0.88 (interquartile range [IQR] 0.75, 1.00), similar

to that of the subjects identified by GBDT with activations (0.92 [IQR

0.85, 0.97]). These findings are shown in Figure S5 in supporting infor-

mation.

4 DISCUSSION

In this study, we have extended prior work using neural networks to

predict current SUVR for amyloid PET studies in the ADNI cohort 19 to

predict SUVR in the future.Weaccomplished this by training a network

on longitudinal studies and by including clinical and genetic features.

We found that a GBDT that includes clinical, demographic, and genetic

features combined with deep activations created from ResNet-50 had

thebest performance.Weshowed the valueof this quantitatively,mea-

suring the mean error in the prediction of the SUVR change, as well as

on a practical basis, showing that using this approach can identify the

fastest amyloid accumulators in both the entire test dataset as well as

in clinically relevant subpopulations at a 2- to 4x higher rate than ran-

dom selection or other commonly used selection methods. This latter

capability might be useful to enrich research studies that target this

biomarker, such as an amyloid-clearing pharmacological agent, reduc-

ing costs and speeding up clinical trials. Fundamentally, the idea of

using deep learning to combine imaging and clinical information with

the goal of predicting future imaging biomarkers, including the possible

use in patients receiving different treatments, could be a fruitful path-

way towardmore personalizedmedicine.

Prior work in this area with the ADNI dataset has focused on

predicting clinical outcomes.3,25–28 In this study, we take a different
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approach, focusing on predicting a quantitative biomarker which may

be less subject to error compared to clinical evaluations. For exam-

ple, the IDEAS trial showed that the assessments of clinicians diagnos-

ing AD was often inaccurate.28 Predicting the development of a rel-

evant quantitative feature such as SUVR is objective and could find

use in data mining, clinical trial assessments, and longitudinal anal-

ysis. We also believe that using regression (i.e., predicting the con-

tinuous value of an important biomarker) rather than classification

allowed the algorithm to learn more from each individual subject’s

information.

The current study shows the importance of the deep features. In

particular, we show that adding deep features to the GBDT improves

performance for both RMSE and selection of fast progressors.We also

showed that performance improves by obtaining better deep features

by training on a larger number of PET scans (i.e., 1441 vs. 831 subjects),

strongly suggesting that themodel is learning relevant features for this

prediction task. It also highlights the value of large shared datasets

such as ADNI for ML methods using deep learning feature identifica-

tion. We also found that the use of deep features make the model less

dependent on missing clinical, demographic, or genetic data as shown

by the studies in which individual features are selectively removed.

One advantage of combining deep activationswith theGBDT structure

enabled theevaluationof the roleof specific features andhowsensitive

themodels are tomissing data.

This study has several limitations. We did not test our performance

in an external dataset, as significantly sized cohorts with similar infor-

mation and scope to ADNI are not publicly available. It is possible that

a cohort with different baseline distributions of disease or with a dif-

ferent mix of PET scanners might lead to poorer performance. How-

ever, given that ADNI is the largest multicenter cohort of its kind,

at minimum, the weights trained in this model could be used as pre-

training using a transfer learning approach if current performance in

a new cohort is not sufficient. Next, our choice of using the models

to identify the 10% of the cohort with the fastest amyloid accumu-

lation is necessarily arbitrary and meant to demonstrate the value of

the GBDT method in a practical task. Other thresholds will yield dif-

ferent performance. Another limitation is that amyloid levels are not

directly related to cognition, as patients can be amyloid positive with-

out cognitive deficits. Other biomarkers may bemore relevant for pre-

diction, including tau and fluorodeoxyglucose PET andMRI-based cor-

tical thickness in relevant subregions. Amyloid was chosen due to the

fact that more than 2500 cases were available in ADNI, but we sus-

pect that the current framework would enable the prediction of other

biomarkers, given datasets of appropriate size. Finally, we recognize

that the selected eight clinical/genetic features are somewhat arbitrary

and were chosen because they were available for all or most cases

and were felt by the investigators to be relevant to disease progres-

sion. Using these data along with the deep features from the baseline

images, we found good performance for predicting amyloid accumula-

tion. It is certainly possible that using different subsets or othermetrics

andmodels could perform even better, and this would be a fruitful path

for future investigations.

5 CONCLUSION

We trained a ML algorithm to combine deep image features with clini-

cal, demographic, and genetic information to predict future changes in

amyloid deposition. Practically, it was shown to be superior to several

other methods of identifying patients to recognize fast progressors.

This method is adaptable to study other important imaging biomarkers

and to assess the effects of different treatments and may have advan-

tages over models trained to predict clinical endpoints.
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