
ORIGINAL RESEARCH
ADULT BRAIN

Application of Deep Learning to Predict Standardized
Uptake Value Ratio and Amyloid Status on 18F-Florbetapir

PET Using ADNI Data
F. Reith, M.E. Koran, G. Davidzon, and

G. Zaharchuk, for the Alzheimer0s Disease Neuroimaging Initiative

ABSTRACT

BACKGROUND AND PURPOSE: Cortical amyloid quantification on PET by using the standardized uptake value ratio is valuable for
research studies and clinical trials in Alzheimer disease. However, it is resource intensive, requiring co-registered MR imaging data
and specialized segmentation software. We investigated the use of deep learning to automatically quantify standardized uptake
value ratio and used this for classification.

MATERIALS AND METHODS: Using the Alzheimer’s Disease Neuroimaging Initiative dataset, we identified 2582 18F-florbetapir PET
scans, which were separated into positive and negative cases by using a standardized uptake value ratio threshold of 1.1. We trained
convolutional neural networks (ResNet-50 and ResNet-152) to predict standardized uptake value ratio and classify amyloid status.
We assessed performance based on network depth, number of PET input slices, and use of ImageNet pretraining. We also assessed
human performance with 3 readers in a subset of 100 randomly selected cases.

RESULTS:We have found that 48% of cases were amyloid positive. The best performance was seen for ResNet-50 by using regres-
sion before classification, 3 input PET slices, and pretraining, with a standardized uptake value ratio root-mean-square error of
0.054, corresponding to 95.1% correct amyloid status prediction. Using more than 3 slices did not improve performance, but
ImageNet initialization did. The best trained network was more accurate than humans (96% versus a mean of 88%, respectively).

CONCLUSIONS: Deep learning algorithms can estimate standardized uptake value ratio and use this to classify 18F-florbetapir PET
scans. Such methods have promise to automate this laborious calculation, enabling quantitative measurements rapidly and in set-
tings without extensive image processing manpower and expertise.

ABBREVIATIONS: AD ¼ Alzheimer disease; ADNI ¼ Alzheimer’s Disease Neuroimaging Initiative; AUC ¼ area under the curve; ROC ¼ receiver operating
characteristic; SUVR ¼ standardized uptake ratio value; SPM ¼ Statistical Parametric Mapping; RMSE ¼ root-mean-square error; PPV ¼ positive predictive value;
NPV ¼ negative predictive value

Alzheimer disease (AD) has a large clinical impact and contin-
ues to increase in prevalence.1 While clinical judgment is

essential to make the diagnosis of AD, the use of physiologic bio-
markers can play an important role in ambiguous cases or to track
the status of disease over time. One hallmark pathology of AD is

the deposition of amyloid beta.2-4 Besides the measurement of bio-
markers in CSF,5 a widespread method to detect amyloid plaques
is the use of PET. Recent studies6,7 have shown that the radiophar-
maceutical 18F-AV-45 (florbetapir) can be used to detect amyloid
beta deposition in PET scans in vivo and noninvasively, as it exhib-
its high affinity-specific binding to amyloid plaques.

PET imaging assessment is often performed solely in a qualita-
tive fashion, where scans are classified as positive or negative

depending on whether there is visual uptake of amyloid tracer in
the cerebral cortex. However, if quantification is desired, several

steps of processing are usually needed. For example, co-registered
MR imaging scans may be used to identify relevant brain regions

for the purposes of segmentation. One popular method for quanti-
tatively assessing amyloid is based on cortical amyloid beta load in
4 regions (frontal, anterior/posterior cingulate, lateral parietal, and

lateral temporal cortex), normalized by uptake in the whole cere-
bellum, a metric known as the standardized uptake value ratio
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(SUVR).8,9 While straightforward conceptually, in practice this is a

laborious task, requiring precise co-registration, segmentation, and

intensive quality control that can take many hours per case, and

which is prone to errors.
We show that we can automate amyloid SUVR measure-

ment by using a deep network and then use this to perform clas-
sification. Our approach does not require MR imaging, by using
data from the PET scan only. We show that the performance is
comparable to more complicated current state-of-the-art meth-
ods10,11 with an accuracy of over 95%, and we explore the im-
portance of the number of input PET slices and pretraining
with ImageNet. Finally, we show that while this task is feasible
for human readers, the trained network is more accurate.

MATERIALS AND METHODS
Patient Data
We obtained all available 18F-AV-45 (florbetapir) PET scans
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) as
of August 2019. From the available data, we used the “advanced
search” function to select the following data (“AV45 Coreg, Avg,
Std Img and Vox Siz, Uniform Resolution”), which represents the
co-registered average of the 20 minute acquisition that was then
resized to have a uniform voxel size, with a uniform size of 160�
160 in-plane and 96 axial slices. We downloaded all available
scans in Neuroimaging Informatics Technology Initiative file for-
mat, as well as the UC Berkeley AV45 analysis to obtain SUVR
(“SUMMARYSUVR_WHOLECEREBNORM”) for each case, a
number which ranged roughly between 0.8 and 2.0.10,11 This cal-
culation for each case requires many separate postprocessing steps,
including registration to the patient’s MR imaging by using
Statistical Parametric Mapping (SPM; http://www.fil.ion.ucl.ac.uk/
spm/) software, skull-stripping, and cortical and subcortical ROI
segmentation by using FreeSurfer (http://surfer.nmr.mgh.harvard.
edu), and then the use of a weighted mean to calculate the final
SUVR value with respect to a specific reference region. A histo-
gram of distribution values can be viewed in Fig 1. Joshi et al12 pro-
posed that a cutoff of 1.11 can be used to classify scans into
amyloid positive and negative cases, because this value exceeds the
upper 95% confidence interval for healthy subjects.

Deep Learning Implementation
Our code was implemented in Python by using PyTorchr
(https://pytorch.org/).13 We chose a residual neural network14 as
our deep learning architecture. We chose a neural network depth
of 50 layers, also referred to as ResNet-50. To identify whether a
deeper network could improve performance, we also assessed
performance by using a deeper convultional neural network with
152 layers (ResNet-152). The standard ResNet architecture ends
with a layer for distinguishing 1000 differing classes. We changed
this number to 2 classes when our aim was to predict amyloid sta-
tus (classification), and used a log softmax activation function
with a loss function based on negative log likelihood:

L ¼ � 1
n

Xn
i¼1

log ŷðiÞ
� �

To modify ResNet for prediction of the SUVR (regression),
the last, fully connected layer was changed to a single output
only that is linear without any subsequent activation function.
This output was then used to calculate a mean squared error
loss:

L ¼ 1
n

Xn
i¼1

yðiÞ � ŷðiÞ
� �2

During training, Adam15 was used to optimize the neural net-
work’s parameters based on its loss via back propagation. We
investigated various hyper-parameters for training and settled on
an initial learning rate of 0.0001, 30 epochs, and a 10x decrease of
learning rate every 10 epochs. The batch size was set to 32. Based
on our data, 1 epoch resulted in 65 iterations. Experiments were
run on a Stanford high-performance computing server with 32
CPU cores and 6 Nvidia GK210 graphics processors. Training
ResNet-50 and ResNet-152 with the use of 1 graphics processor
took 22 and 38minutes, respectively. We additionally researched
the potential benefits of transfer learning16,17 by fine-tuning
ResNet weights that were pretrained by using the ImageNet dataset
of natural images.18 When using ImageNet weights, we adjusted
the standard deviation and mean of each channel to match the dis-
tribution of ImageNet data.

FIG 1. A, The input to ResNet consists of 3 or more input channels. In the case of 1 section prediction, the section is copied to all 3 color chan-
nels. If 3 slices are used as input, each color channel has an individual section. The input layer can be modified to include more slices as well. The
convultional neural network can be used to predict amyloid status directly or to measure SUVR (regression). B, Histogram of all SUVR values
from the cases included in this study (n¼ 2582).
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We also modified the ResNet architecture to accept a higher
number of slices for input by altering the first convolutional layer.
The original first layer transforms 3 input channels into 64 feature
channels via 7 � 7 convolutional filters. We adjusted this layer to
accommodate the number of input channels we desired. When
using randomly initialized weights, we followed the standard
PyTorch initialization routine for ResNet.13 When using pretrained
ImageNet weights, we copied the 3-channel weights to the multiple
of input channels we created. Because activations get added up, we
divided the copied channel weights by number of copies created.
When extending from 3 to 9 channels for example, we would divide
the weights of all input channels by 3 because the activations of all
input layers get added up for 1 convolution. This way, simply copy-
ing the 3-channel input to the additional channels added would
result in the same activation map. We did not use 3D convolutions,
as the selected slices were not adjacent and as we wanted to com-
pare pretrained ImageNet weights.

We split the data into random subsets for training (80%,
n¼ 2066) and testing (20%, n¼ 516), ensuring that all samples of
1 specific subject are in 1 subset only to avoid training and testing
on the same individuals. We normalized the data before we fed it
into the neural network as follows: we subtracted the mean and
divided by the standard deviation of each channel individually.
When using 1 section only, we chose section 50 out of 96 (slices
are zero indexed). Section 50 was chosen as it is a central brain
section covering the deep gray regions and cortex of many differ-
ent brain lobes, ideal for assessing amyloid uptake in cortex.
When training ResNet with 3 slices, we chose slices with a dis-
tance of 10 to the original section, in our case slices 40, 50, and
60. We also tested a distance of 20, as well as a distance of 40. In
this preliminary test, a distance of 10 yielded the best result. For
an input of 9 slices, we sampled linearly spaced slices from the
entire PET scan. To this end, slices 10, 20, 30, 40, 50, 60, 70, 80
and 90 were selected. For 27-section input, the slices used were: 0,
3, 7, 10, 14, 17, 21, 25, 28, 32, 35, 39, 42, 46, 50, 53, 57, 60, 64, 67,
71, 75, 78, 82, 85, 89 and 93. Training was performed 5 times
with different “seeds,” meaning that each distinct experiment
varies with respect to train/test splits, initializations, and the

order of training batches, to allow us to understand variability in
the network.

Comparison with Human Readers
To establish the accuracy of expert human readers on this task,
we enlisted 3 readers (neuroradiologist, joint nuclear medicine/
radiology resident, and nuclear medicine physician), all of whom
have been certified to read amyloid PET scans. They were asked
to read 100 randomly selected cases from the test set as positive
or negative, based only on the single gray-scale center section
image as described previously. They were also timed on this task.
We then compared the human readers’ performance with respect
to the ground truth by using the binarized SUVR threshold
method. Additionally, human performance was compared with
ResNet-50, initialized via ImageNet weights, and by using the
regression approach.

Statistical Analysis
The metrics for each experiment are an average over 5 seeded
runs. If not stated otherwise, we calculate metrics based on test
set prediction performance. Accuracy is calculated based on the
standard threshold of 0.5 for binary classification, and at an
SUVR threshold of 1.11 for regression. Calculation of sensitivity,
specificity, positive predictive value (PPV), and negative predic-
tive value (NPV) are calculated based on the stated thresholds.
To statistically compare the different models on accuracy, sensi-
tivity, and specificity, we constructed a linear mixed-effects model
to determine the effects of model type (binary classification
directly or with regression), depth of network (ResNet-50 versus
ResNet-152), use of ImageNet pretraining (yes, no), and number
of input slices (1, 3, 9, and 27).

RESULTS
In the 2582 18F-florbetapir PET scans, the mean SUVR value was
1.19 [IQR 1.01–1.36] (Fig 2). When differentiated by amyloid sta-
tus by using the SUVR 1.11 threshold, 49.8% of samples were
amyloid positive. The samples were acquired from 62 different
sites and 40 different types of scanners.

FIG 2. ROC curves test results. A, shows performance for 1-section and 3-section input data for binary classification. B, displays performance for
1- and 3-section classification via regression. All configurations use pretrained ImageNet weights.
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Single Section Prediction: Binary Amyloid Status
Classification
Instead of using regression, in this section we present results of
training simply on the binarized categories (positive/negative) based
on SUVR (Table 1). Using ResNet-50 with random weights and a
single section as input, we achieved a training set accuracy of
99.95% (0.05% SD) and a test set accuracy of 92.8% (1.2% SD).
Maximizing Youden J statistic yields an index of 0.865. The mean
sensitivity and specificity are 89.8% and 95.9%, respectively. The
area under the receiver operating characteristic curve (AUC ROC)
is 0.974. Using ImageNet pretrained weights slightly improved
results, achieving an accuracy of 93.4%. AUC ROC increased to
0.982, while the Youden J statistic slightly increased to 0.876.
Sensitivity increased from 89.8% to 91.2%. Specificity was essentially
unchanged by pretraining: 95.7% versus 95.9%.

Single Section Prediction: Regression for Amyloid
Classification
For random weight initialization, regression converges to a root-
mean-square error (RMSE) for SUVR prediction of 0.108 (0.014
SD). Translating this performance into amyloid status prediction
by using the 1.11 cutoff value, we achieve a test set accuracy of
85.7% (2.2% SD), with Youden J statistic of 0.775 (0.044 SD).
Significantly better results were achieved by using ImageNet initi-
alization: an RMSE of 0.059 (0.005 SD) and a test accuracy of
93.8% (1.0% SD). The Youden J statistic reaches 0.896 (0.017 SD)
and the AUC is 0.986 (0.007 SD). Details are found in Online
Table 1.

At best performance, we misclassified approximately 25 of
the 516 amyloid scans that were evaluated in the test set. For the
method with best prediction (ie, regression, pretrained weights,

3 slices), we evaluated the errors in these cases and found that
SUVR value predictions were generally very close to the SUVR
1.11 threshold cutoff and that the predictions of the model were
still very close to ground truth. This may reflect the inherent
noise in the measurement to some extent. We found that the
highest RMSE (worst regression predictions) appeared in high
SUVR ground truth values (.1.6). Looking at the amyloid sta-
tus positive data in the test set, we find that 12% have SUVR
greater than 1.6. A higher RMSE (0.117) was seen in these cases.
We furthermore find that the top 10% largest RMSE regression
errors had an average ground truth SUVR of 1.40. This lower
accuracy for high SUVR values is not relevant to amyloid status
prediction as all these cases are well over the binarization
threshold.

Comparison of Different Models
Details of the mixed-effects model are shown in Table 2. There
was no effect of a deeper network (152 versus 50 layers).
However, there was an effect of the classification method (with
regression being superior to direct binarization), pretraining
(superior by using initialization with ImageNet weights), and
number of input slices (see below). The ResNet-50 model by
using regression, pretraining, and 3 slices as input was the best
model. The analysis on input slices showed no differences
among the different cases (1, 3, 9, or 27 slices) for specificity.
For accuracy and sensitivity, there were significant differences
between 1 and 9 or 27 slices, but no differences between 3 and 9
or 27 slices, making 3 section input the optimal choice. This is
detailed in Online Table 2. Figure 3 shows performance for dif-
ferent combinations of pre-training, input slices, and tasks (bi-
nary classification vs. regression). Online Table 3 shows the

Table 1: Various test metrics for binary classification. Performance reflects mean of 5 separate seeded runs
Binary Classification Accuracy Sensitivity Specificity PPV NPV ROC AUC
1 section, random
initialization

92.83% (1.16%) 89.76% (2.11%) 95.87% (0.43%) 95.61% (0.68%) 90.34% (1.69%) 0.9735 (0.0095)

1 section, pretrained 93.41% (1.13%) 91.07% (2.39%) 95.69% (0.72%) 95.55% (0.46%) 91.48% (2.00%) 0.9815 (0.0059)
3 sections, random
initialization

92.40% (0.86%) 90.24% (1.05%) 94.56% (0.92%) 94.32% (1.17%) 90.59% (0.82%) 0.9782 (0.0072)

3 sections,
pretrained

93.88% (0.78%) 91.52% (1.40%) 96.23% (0.94%) 96.14% (0.64%) 91.80% (1.71%) 0.9850 (0.0044)

9 sections, random
initialization

93.14% (0.95%) 90.79% (2.19%) 95.39% (1.77%) 95.26% (1.81%) 91.28% (1.12%) 0.9821 (0.0064)

9 sections,
pretrained

93.14% (0.69%) 91.75% (1.77%) 94.43% (1.85%) 94.43% (1.62%) 92.01% (1.18%) 0.9843 (0.0038)

27 sections, random
initialization

93.84% (1.04%) 92.23% (1.88%) 95.40% (1.54%) 95.31% (1.48%) 92.49% (1.46%) 0.9831 (0.0062)

27 sections,
pretrained

93.45% (0.64%) 90.67% (1.58%) 96.17% (1.19%) 96.01% (1.15%) 91.17% (0.86%) 0.9858 (0.0041)

The numbers in parentheses represent SD.

Table 2: Linear mixed-effects model analysis of different methods for classifying amyloid PET imaging

Factor
Accuracy Sensitivity Specificity

Odds Ratio P Value Odds Ratio P Value Odds Ratio P Value
Type (ResNet-50 vs. -152) 0.96 (0.89–1.03) .258 0.916 (0.82–1.02) .112 1.00 (0.89-1.11) .944
Method (binary classification vs. regression first) 0.79 (0.70–0.89) ,.001 0.54 (0.45–0.63) ,.001 1.24 (1.03–1.50) .024
Initialization (random vs. pretrained) 0.33 (0.30–0.37) ,.001 0.45 (0.38–0.53) ,.001 0.22 (0.19–0.26) ,.001
Slices (1 vs. 3) 1.17 (1.08–1.26) ,.001 1.15 (1.03-1.28) .012 1.22 (1.10–1.36) ,.001

Parenthesis refer to 95% confidence intervals for odds ratios.

4 Reith � 2020 www.ajnr.org



performance of the ResNet-152 network in detail. Online Table
4 shows details of the linear mixed-effects model related to the
number of input slices.

Human Reader Evaluation
An example of 10 of the 100 randomly selected reader cases is
shown in Fig 4 to give a sense of the data that are being input to
the network and that the human readers had available for analy-
sis. The 3 readers performed well on the task, with accuracy of
86%, 89%, and 90%, respectively (Table 3). This compared with
an accuracy of 96% for the ResNet-50, single section input, pre-
trained, regression model. All 4 deep network “misses” in this
dataset were cases where the ground truth SUVR was very close
to the 1.11 cutoff value, within 0.03 U in all cases. There were
8/100 cases in which all 3 readers classified the case opposite to
the ground truth SUVR classification (6 positive and 2 negative
cases based on SUVR ground truth). In these cases, the network
classified them correctly 87.5% of the time (7/8 cases). The mean
time for the humans to assess the 100 cases was 8.2 minutes.

DISCUSSION
In this work, we demonstrate that the use of deep learning has tre-
mendous potential to simplify analysis of 18F-florbetapir PET
scans, with the best models yielding greater than 95% accuracy on
a large, balanced collection of studies collected at multiple sites and
on multiple scanners. This is of value because it can help inform
visual readings, allowing a fairly accurate assessment in the absence
of human expertise. It should also enable more rapid quantitative
assessment, which is useful for large-scale studies and longitudinal
analysis. We have shown that a single central section is sufficient
for high performance and that increasing the number of slices used
as inputs to the model accrues only modest improvements. We
demonstrated that if the network is set up as a regression task (ie,
predicting SUVR and then from that classifying into positive and
negative cases), that pretraining with ImageNet natural images can
improve performance and improve training stability. Envisioning
this as a regression task also allows a quantitative measure of error
to ground truth, allowing the network to be more accurate across a
wide range of SUVR values, not just those near the SUVR thresh-

old that separates positive and negative
cases. As such, it can be applied to cases
across the severity spectrum, where
classification may not change but
quantitative variation in cortical amy-
loid uptake is present. Lastly, we found
that increasing the capacity of the net-
work from 50 to 152 layers did not
appreciably improve performance,
making this a memory efficient pro-
cess. It is possible that if more data
become available, a more complex
model might show benefits, a common
trend in deep learning classification
tasks.19

Measurement of quantitative corti-
cal amyloid uptake is important to
both validate visual reads as well as to
assess longitudinal changes over time.
Currently, this requires a laborious
process that includes MR imaging-
based cortical and cerebellar segmen-
tation by using FreeSurfer, typically
requiring hours to days of processing
time and human interaction, followed
by co-registration of PET images into
the MR imaging native space. Direct
prediction is much more efficient, as
evidenced by our network requiring

Table 3: Comparison of prediction performance for 100 randomly selected test set samples
Clinical Evaluation ResNet-50 Reader 1 Reader 2 Reader 3 All Readers
Accuracy 96.00% 90.00% 86.00% 89.00% 90.00%
Sensitivity 95.83% 85.42% 77.08% 87.50% 85.42%
Specificity 96.15% 94.23% 94.23% 90.38% 94.23%
PPV 95.83% 93.18% 92.50% 89.36% 93.18%
NPV 96.15% 87.50% 81.67% 88.68% 87.50%
Time 0:03min 8:00min 9:30min 6:58min 24:28min

FIG 4. Examples of PET scans used for single section prediction. The top number represents the
prediction of the network while the bottom number is the ground truth manual SUVR measure-
ment from the ADNI data base.

FIG 3. Classification performance as a function of number of input slices. All results reflect the
average of 5 seeded runs.
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3 seconds to process 100 cases. As larger AD trials become the
norm, this improved efficiency should be of benefit to rapidly
assess outcomes and to reduce the costs of clinical trials.

It was surprising to us that adding more PET slices did not sig-
nificantly improve performance. This suggests there is informa-
tion on a single axial section located near the middle of the brain
that enables the prediction of SUVR (which requires information
from outside this section). This has the advantage of reducing the
storage needs and preprocessing of PET, while also limiting the
amount of data required by the model for training. It might even
allow for thin-ring detectors that are being developed as MR
imaging inserts for PET/MR imaging to be used.20 Our clinical
reader study suggests that humans were not as good at extracting
this information from a single section, with even consensus reads
showing inferior performance compared with the model. Of inter-
est, there were 8 cases in which all 3 readers disagreed with the
ground truth SUVR classification; in 7 of these, the model classi-
fied the case correctly. The human readers tended to call positive
cases with atrophy as negative, a known challenge with amyloid
interpretation. The model could therefore be useful to support
and potentially improve expert decisions with regard to binary
amyloid reading, though this would require more study.

Only limited prior literature exists demonstrating deep learn-
ing performance for this task, in much smaller datasets. For exam-
ple, Kang et al21 showed in a small cohort of 176 patients that they
could train a VGG network to classify amyloid status with 89%–
92% accuracy, though the ground truth in these cases was deter-
mined by a (single) visual read by using the brain amyloid plaque
load criteria. Cattell et al22 showed 96% accuracy in a group of 264
studies by using predefined image intensity gradients combined
with a support vector machine with the ground truth defined visu-
ally by 3 readers. Most other studies applying deep learning to the
ADNI data base have focused on using PET imaging (FDG and
amyloid) to predict clinical categories (normal, mild cognitive
impairment, AD, etc.).23-26 While this is surely interesting, clinical
assessments are known to be subjective, as evidenced by the recent
results of the Imaging Dementia-Evidence for Amyloid Scanning
(IDEAS) trial.27 Predicting a relevant quantitative feature such as
SUVR is objective and could find use in data mining, clinical trial
assessments, and longitudinal analysis.

There are several limitations to this work. While it is by far the
largest study of this task, it is unclear whether the conclusions of
the paper might change as more data become available (ie, deeper
networks may in fact perform better given enough data). Also, the
network here is not predicting a clinical judgment, but rather in-
formation that could be obtained analytically from the data itself,
begging the question of whether a deep learning–based method is
required for this task. The analytic process is extremely time-con-
suming and requires considerable expertise in image processing;
the current method could be immediately used by sites without
these capabilities. Furthermore, many research centers do not rou-
tinely acquire MR imaging scans and there may be challenges in
co-registering PET images to older MR imaging scans of the
patient, because there may be interval changes, particularly in brain
atrophy. Finally, we cannot determine precisely why the perform-
ance is so good and what the remaining limitations might be; this
is a problem inherent to deep learning, where visualization of the

network’s inner workings is a known challenge.28 Some prelimi-
nary work we did looking at saliency maps showed that the net-
work broadly uses the entire image, rather than focusing on the
cortical ribbon as might be expected. However, given that the esti-
mates of errors in SUVR due to the co-registration step in the tra-
ditional postprocessing methods (0.03–0.07) is on the same level of
that found by using the pretrained deep learning method (0.04–
0.06), showing any improvement on this metric might be limited
by the ground truth accuracy.29

CONCLUSIONS
We have trained multiple deep networks showing the ability to
classify and estimate SUVR on 18F-florbetapir PET imaging with
good accuracy by using the large ADNI dataset. Such methods
have promise for automating this laborious calculation, enabling
quantitative measurements rapidly and in settings without exten-
sive image processing manpower and expertise.

ACKNOWLEDGMENTS
Data collection and sharing for this project was funded by the
Alzheimer's Disease Neuroimaging Initiative (ADNI) (National
Institutes of Health Grant U01 AG024904) and DOD ADNI
(Department of Defense award number W81XWH-12–2-0012).
ADNI is funded by the National Institute on Aging, the National
Institute of Biomedical Imaging and Bioengineering, and through
generous contributions from the following: AbbVie, Alzheimer’s
Association; Alzheimer’s Drug Discovery Foundation; Araclon
Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company;
CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli
Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and
its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare;
IXICO Ltd.; Janssen Alzheimer Immunotherapy Research &
Development, LLC.; Johnson & Johnson Pharmaceutical Research
& Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.;
Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack
Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.;
Piramal Imaging; Servier; Takeda Pharmaceutical Company; and
Transition Therapeutics. The Canadian Institutes of Health
Research is providing funds to support ADNI clinical sites in
Canada. Private sector contributions are facilitated by the
Foundation for the National Institutes of Health (www.fnih.org).
The grantee organization is the Northern California Institute for
Research and Education, and the study is coordinated by the
Alzheimer’s Therapeutic Research Institute at the University of
Southern California. ADNI data are disseminated by the Laboratory
for Neuro Imaging at the University of Southern California.

Disclosures: Greg Zaharchuk—RELATED: Grant: Stanford ADRC, Human-centered
AI program*; Provision of Writing Assistance, Medicines, Equipment, or
Administrative Support: Nvidia, Comments: GPU donation*; UNRELATED: Grants/
Grants Pending: various NIH projects, GE Healthcare, Bayer Healthcare*; Payment
for Development of Educational Presentations: GE Healthcare; Stock/Stock
Options: Equity, Subtle Medical. *Money paid to institution.

REFERENCES
1. Mayeux R, Stern Y. Epidemiology of Alzheimer disease. Cold

Spring Harbor Perspectives in Medicine 2012;2:a006239 CrossRef

6 Reith � 2020 www.ajnr.org

http://www.fnih.org
http://dx.doi.org/10.1101/cshperspect.a006239


2. Hyman B. The neuropathological diagnosis of Alzheimer’s dis-
ease: clinical-pathological studies. Neurobiol Aging 1997;18:S27–
32 CrossRef Medline

3. Braak H, Braak E. Diagnostic criteria for neuropathologic assess-
ment of Alzheimer’s disease. Neurobiol Aging 1997;18:S85–88
CrossRef Medline

4. Cummings BJ, Pike CJ, Shankle R, et al. b-amyloid deposition and
other measures of neuropathology predict cognitive status in
Alzheimer’s disease. Neurobiol Aging 1996;17:921–33 CrossRef
Medline

5. Palmqvist S, Zetterberg H, Blennow K, et al. Accuracy of brain
amyloid detection in clinical practice using cerebrospinal fluid
b-amyloid 42: a cross-validation study against amyloid positron
emission tomography. JAMA Neurol 2014;71:1282–89 CrossRef
Medline

6. Johnson KA, Sperling RA, Gidicsin CM, et al. Florbetapir (F18-AV-
45) PET to assess amyloid burden in Alzheimer’s disease dementia,
mild cognitive impairment, and normal aging. Alzheimers Dement
2013;9:S72–83 CrossRef Medline

7. Camus V, Payoux P, Barré L, et al. Using PET with 18 F-AV-45
(florbetapir) to quantify brain amyloid load in a clinical envi-
ronment. Eur J Nucl Med Mol Imaging 2012;39:621–31 CrossRef
Medline

8. Landau SM, Mintun MA, Joshi AD; Alzheimer's Disease Neuro-
imaging Initiative. Amyloid deposition, hypometabolism, and
longitudinal cognitive decline. Ann Neurol 2012;72:578–86 CrossRef
Medline

9. Landau SM, Lu M, Joshi AD, et al. Comparing positron emission
tomography imaging and cerebrospinal fluid measurements of
b-amyloid. Ann Neurol 2013;74:826–36 CrossRef Medline

10. Mormino EC, Kluth JT, Madison CM, et al. Episodic memory loss
is related to hippocampal-mediated b-amyloid deposition in el-
derly subjects. Brain 2009;132:1310–23 CrossRef Medline

11. Jagust WJ, Landau SM, Shaw LM, et al. Relationships between bio-
markers in aging and dementia. Neurology 2009;73:1193–99 CrossRef
Medline

12. Landau S, Jagust W. Florbetapir processing methods. Alzheimer’s
Disease Neuroimaging Initiative; 2015. https://adni.bitbucket.io/
reference/docs/UCBERKELEYAV45/ADNI_AV45_Methods_JagustLab_
06.25.15.pdf

13. Paszke A, Gross S, Chintala S, et al. Automatic Differentiation in
PyTorch. In: NIPS Autodiff Workshop; 2017

14. He K, Zhang X, Ren S, et al.Deep residual learning for image recog-
nition. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition; 2016;770–78

15. Kingma DP, Ba J, Adam A. Method for stochastic optimization.
arXiv preprint arXiv:14126980; 2014

16. Yosinski J, Clune J, Bengio Y, et al. How transferable are features in
deep neural networks? Advances in Neural Information Processing
Systems 2014;27:3320–28

17. Shin HC, Roth HR, GaoM, et al.Deep convolutional neural networks
for computer-aided detection: CNN architectures, dataset character-
istics and transfer learning. IEEE Trans Med Imaging 2016;35:1285–
98 CrossRef Medline

18. Deng J, Dong W, Socher R, et al. Imagenet: A large-scale hierarchi-
cal image database. In: 2009 IEEE Conference on Computer Vision
and Pattern Recognition IEEE 2009;248–55

19. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep
convolutional neural networks. Advances in Neural Information
Processing Systems 2012;25:1097–1105

20. Levin CS. Promising new photon detection concepts for high-reso-
lution clinical and preclinical PET. J Nucl Med 2012;53:167–70
CrossRef Medline

21. Kang H, Kim WG, Yang GS, et al. VGG-based BAPL score classifi-
cation of 18F-florbetaben amyloid brain PET. BSL 2018;24:418–25
CrossRef

22. Cattell L, Platsch G, Pfeiffer R, et al. Classification of amyloid status
using machine learning with histograms of oriented 3D gradients.
Neuroimage Clin 2016;12:990–1003 CrossRef Medline

23. Choi H, Jin KH. Predicting cognitive decline with deep learning of
brain metabolism and amyloid imaging. Behavioural Brain Research
2018;344:103–09 CrossRef

24. Ding Y, Sohn JH, Kawczynski MG, et al. A deep learning model to
predict a diagnosis of Alzheimer disease by using 18F-FDG PET of
the brain. Radiology 2018;290:456–64 CrossRef

25. Singh S, Srivastava A, Mi L, et al. Deep-learning-based classifica-
tion of FDG-PET data for Alzheimer’s disease categories. In:
13th International Conference on Medical Information
Processing and Analysis. International Society for Optics and
Photonics 2017;10572:105720J

26. Lu D, Popuri K, Ding GW, et al. Multiscale deep neural network
based analysis of FDG-PET images for the early diagnosis of
Alzheimer’s disease. Med Image Anal 2018;46:26–34 CrossRef
Medline

27. Rabinovici GD, Gatsonis C, Apgar C, et al. Association of amyloid
positron emission tomography with subsequent change in clinical
management among Medicare beneficiaries with mild cognitive
impairment or dementia. JAMA 2019;321:1286–94 CrossRef

28. Adebayo J, Gilmer J, Muelly M, et al. Sanity checks for saliency
maps. Advances in Neural Information Processing Systems 2018;31:
9505–15

29. Schwarz CG, Jones DT, Gunter JL, et al. Contributions of impreci-
sion in PET/MRI rigid registration to imprecision in amyloid PET
SUVRmeasurements.Hum Brain Mapp 2017;38:3323–36

AJNR Am J Neuroradiol �:� � 2020 www.ajnr.org 7

http://dx.doi.org/10.1016/S0197-4580(97)00066-3
https://www.ncbi.nlm.nih.gov/pubmed/9330982
http://dx.doi.org/10.1016/S0197-4580(97)00062-6
https://www.ncbi.nlm.nih.gov/pubmed/9330992
http://dx.doi.org/10.1016/S0197-4580(96)00170-4
https://www.ncbi.nlm.nih.gov/pubmed/9363804
http://dx.doi.org/10.1001/jamaneurol.2014.1358
https://www.ncbi.nlm.nih.gov/pubmed/25155658
http://dx.doi.org/10.1016/j.jalz.2012.10.007
https://www.ncbi.nlm.nih.gov/pubmed/23375563
http://dx.doi.org/10.1007/s00259-011-2021-8
https://www.ncbi.nlm.nih.gov/pubmed/22252372
http://dx.doi.org/10.1002/ana.23650
https://www.ncbi.nlm.nih.gov/pubmed/23109153
http://dx.doi.org/10.1002/ana.23908
https://www.ncbi.nlm.nih.gov/pubmed/23536396
http://dx.doi.org/10.1093/brain/awn320
https://www.ncbi.nlm.nih.gov/pubmed/19042931
http://dx.doi.org/10.1212/WNL.0b013e3181bc010c
https://www.ncbi.nlm.nih.gov/pubmed/19822868
https://adni.bitbucket.io/reference/docs/UCBERKELEYAV45/ADNI_AV45_Methods_JagustLab_06.25.15.pdf
https://adni.bitbucket.io/reference/docs/UCBERKELEYAV45/ADNI_AV45_Methods_JagustLab_06.25.15.pdf
https://adni.bitbucket.io/reference/docs/UCBERKELEYAV45/ADNI_AV45_Methods_JagustLab_06.25.15.pdf
http://dx.doi.org/10.1109/TMI.2016.2528162
https://www.ncbi.nlm.nih.gov/pubmed/26886976
http://dx.doi.org/10.2967/jnumed.110.084343
https://www.ncbi.nlm.nih.gov/pubmed/22302960
http://dx.doi.org/10.15616/BSL.2018.24.4.418
http://dx.doi.org/10.1016/j.nicl.2016.05.004
https://www.ncbi.nlm.nih.gov/pubmed/27995065
http://dx.doi.org/10.1016/j.bbr.2018.02.017
http://dx.doi.org/10.1148/radiol.2018180958
http://dx.doi.org/10.1016/j.media.2018.02.002
https://www.ncbi.nlm.nih.gov/pubmed/29502031
http://dx.doi.org/10.1001/jama.2019.2000

	Application of Deep Learning to Predict Standardized Uptake Value Ratio and Amyloid Status on 18F-Florbetapir PET Using ADNI Data
	MATERIALS AND METHODS
	PATIENT DATA
	DEEP LEARNING IMPLEMENTATION
	COMPARISON WITH HUMAN READERS
	STATISTICAL ANALYSIS
	RESULTS
	SINGLE SECTION PREDICTION: BINARY AMYLOID STATUS CLASSIFICATION
	SINGLE SECTION PREDICTION: REGRESSION FOR AMYLOID CLASSIFICATION
	COMPARISON OF DIFFERENT MODELS
	HUMAN READER EVALUATION
	DISCUSSION
	CONCLUSIONS
	REFERENCES


