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Clustering is a prominent unsupervised learning technique. In the literature, many plane
based clustering algorithms are proposed, such as the twin support vector clustering
(TWSVC) algorithm. In this work, we propose an alternative algorithm based on projection
axes termed as least squares projection twin support vector clustering (LSPTSVC). The pro-
posed LSPTSVC finds projection axis for every cluster in a manner that minimizes the
within class scatter, and keeps the clusters of other classes far away. To solve the optimiza-
tion problem, the concave-convex procedure (CCCP) is utilized in the proposed method.
Moreover, the solution of proposed LSPTSVC involves a set of linear equations leading to
very less training time. To verify the performance of the proposed algorithm, several exper-
iments are performed on synthetic and real world benchmark datasets. Experimental
results and statistical analysis show that the proposed LSPTSVC performs better than exist-
ing algorithms w.r.t. clustering accuracy as well as training time. Moreover, a comparison
of the proposed method with existing algorithms is presented on biometric and biomedical
applications. Better generalization performance is achieved by proposed LSPTSVC on clus-
tering of facial images, and Alzheimer’s disease data.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

Twin support vector machine (TWSVM) [15] is one of the most efficient techniques for classification [35,25] and regres-
sion problems [24,42]. Applications of TWSVM range from protein localization [44] to classification of breast cancer [20], EEG
signals [31], and Alzheimer’s disease [32]. The formulation of TWSVM consists of two constrained optimization problems.
These kind of constrained optimization problems have been used in many applications such as non-linear systems with full
state constraints [26]. Here, a radial basis function neural network is used to approximate the non-linear function. Also, fuzzy
based adaptive control methods are proposed for non-linear systems with full state constraints [37,27]. In the recent times,
TWSVM has become a major area of research for classification problems [43]. In TWSVM, twin hyperplanes are constructed
for binary classification by solving a pair of quadratic programming problems (QPPs). Many novel models based on TWSVM
are proposed by researchers to improve its performance such as fuzzy based models [4,16,28], and with different loss
. As such,
riting of
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functions [41]. Some SVM based models are also proposed to deal with tensor data [10]. However, least squares twin support
vector machine (LSTSVM) [17] is a significant improvement on TWSVM in terms of computation cost. LSTSVM solves a sys-
tem of linear equations rather than QPPs as in TWSVM. A robust energy-based least squares TWSVM (RELS-TSVM) has been
proposed by Tanveer et al. [39]. RELS-TSVM [39] incorporates the structural risk minimization principle, and solves a system
of linear equations. A recent comprehensive evaluation of 8 variants of TWSVM based classifiers [38] along with 179 clas-
sifiers is reported on 90 UCI benchmark datasets. For the 17 different families of datasets, RELS-TSVM emerged as the
top-ranked classifier. A novel approach based on projection axes rather than classifying hyperplanes is proposed as projec-
tion twin support vector machine [5], and extended for regression problems in [24,50]. To improve the computation cost,
Shao et al. [34] proposed an efficient least squares projection twin support vector machine (LSPTSVM). LSPTSVM has been
used for various classification problems [48,22]. However, all the above mentioned algorithms are supervised learning algo-
rithms, needing information about true labels in the training process.

For unsupervised learning i.e., where the labels of training data are unknown, algorithms like k-means clustering [14], and
fuzzy c-means (FCM) [2] clustering are proposed in the past. In FCM, clustering is performed based on distance from cluster
centres with fuzzy membership value for each cluster. However, plane based clustering algorithms are also proposed, such as
the k-plane clustering (kPC) algorithm [3]. In kPC, a plane is constructed for each cluster by solving an eigenvalue problem.
Some other plane based clustering algorithms are proposed in [33,28]. In 2015, Wang et al. [45] proposed an unsupervised
algorithm termed as twin support vector clustering (TWSVC), improving the proximal plane clustering algorithm [33]. To
include regularization in TWSVC, a twin bounded support vector clustering (TBSVC) is proposed [1], leading to improved
generalization performance. In order to reduce the computation cost of TWSVC, least squares twin support vector clustering
(LSTWSVC) is formulated in [16]. In LSTWSVC, a set of linear equations is solved instead of QPPs. A fuzzy least squares twin
support vector clustering (FLSTWSVC) [16] is also proposed by including fuzzy membership values for the data points.

In contrast to plane based techniques, projection based algorithms minimize the variance of projected data [50] from cen-
tre points of the different classes. Motivated by the work on LSPTSVM, we propose a novel projection based clustering algo-
rithm termed as least squares projection twin support vector clustering (LSPTSVC). The idea of LSPTSVC is to minimize the
scatter of the cluster from its centre, while keeping rest of the data points far away on both sides of the cluster as shown in
Fig. 1. Moreover, the solution of LSPTSVC is obtained by solving a set of linear equations, leading to lesser computation time.
To solve the optimization problem of LSPTSVC, we use the concave-convex procedure (CCCP) [49]. There is no need of any
optimization toolbox for the solution of proposed LSPTSVC. For computational efficiency, we use only one projection axis
[48] for each cluster in LSPTSVC. The main contributions of this work are as follows:

� A novel projection based clustering algorithm is proposed as an alternative to plane based clustering algorithms.
� In contrast to plane based clustering algorithms like TWSVM and LSTWSVM, proposed LSPTSVC constructs a set of pro-
jection axes for the clusters.
� Formulation of the proposed LSPTSVC is presented for linear and non-linear transformation of data.
� Theoretical analysis is presented on the initialization and convergence of LSPTSVC.
� Performance comparison of the proposed LSPTSVC is presented on synthetic and real world benchmark datasets.
� Computational efficiency of the proposed LSPTSVC is demonstrated on large scale datasets.
� To justify the applicability of the proposed algorithm on real world applications, proposed LSPTSVC is applied on biomet-
ric and biomedical datasets. LSPTSVC is tested on image data for clustering of faces, and facial expressions. Moreover,
LSPTSVC is applied for clustering of MRI (magnetic resonance imaging) data of Alzheimer’s disease.
Fig. 1. Clustering by proposed LSPTSVC.
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The rest of the paper is organized as follows: Section 2 gives a brief overview of the related work, while Section 3 presents
the formulation and analysis of the proposed LSPTSVC. The experimental results are shown in Section 4. Lastly, Section 5
gives the conclusions of the paper with future directions.

The mathematical notations used in this work are as follows: All vectors are assumed as column vectors. Xi is a matrix
containing data points belonging to cluster ‘i’ of size mi � n and, �Xi is a matrix containing rest of the data points of size

mi � n. Total number of data points are represented by m ¼PN
i¼1mi, where N is total number of clusters. The 2-norm of a

vector x and matrix X is represented by kxk and kXk respectively.

2. Related work

In this section, we briefly discuss the formulation of a classification algorithm i.e., LSPTSVM [34], and a clustering algo-
rithm i.e., TWSVC [45].

2.1. Least squares projection twin support vector machine (LSPTSVM)

Linear LSPTSVM [34] generates two non-parallel hyperplanes based on the following optimization problems:
min
w1

1
2w

T
1S1w1 þ c1

2

Xm2

q¼1
nq
� �2 þ c3

2 kw1k2

s:t: wT
1x

2ð Þ
q �wT

1
1
m1

Xm1

p¼1
x 1ð Þ
p þ nq ¼ 1; q ¼ 0;1; . . . ;m2;

ð1Þ
min
w2

1
2w

T
2S2w2 þ c2

2

Xm1

p¼1
gp

� �2
þ c4

2 kw2k2

s:t: � wT
2x

1ð Þ
p �wT

2
1
m2

Xm2

q¼1
x 2ð Þ
q

 !
þ gp ¼ 1; p ¼ 0;1; . . . ;m1;

ð2Þ
where ci; i ¼ 1; . . . ;4 are positive parameters, and n;g are slack variables. The matrices S1 and S2 are written as
S1 ¼
Xm1

p¼1
x 1ð Þ
p �

1
m1

Xm1

p¼1
x 1ð Þ
p

 !
x 1ð Þ
p �

1
m1

Xm1

p¼1
x 1ð Þ
p

 !T

; ð3Þ

S2 ¼
Xm2

q¼1
x 2ð Þ
q �

1
m2

Xm2

q¼1
x 2ð Þ
q

 !
x 2ð Þ
q �

1
m2

Xm2

q¼1
x 2ð Þ
q

 !T

: ð4Þ
Now, QPP (1) can be written using matrices of data points in the objective function [34],
L ¼ 1
2w

T
1S1w1 þ c1

2 k � X2w1 þ 1
m1

e2eT1X1w1 þ e2k2

þ c3
2 kw1k2;

ð5Þ
where e1; e2 are vectors of ones of appropriate dimensions.
Setting the gradient of Eq. (5) w.r.t. w1 equal to 0 and solving, we get
w1 ¼ S1
c1
þ �X2 þ 1

m1
e2eT1X1

� �T
�X2 þ 1

m1
e2eT1X1

� �
þ c3

c1
I

� ��1

X2 � 1
m1

e2eT1X1

� �T
e2;

ð6Þ
where I is identity matrix of appropriate dimension.
Similarly, w2 is calculated as
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w2 ¼ � S2
c2
þ X1 � 1

m2
e1eT2X2

� �T
X1 � 1

m2
e1eT2X2

� �
þ c4

c2
I

� ��1

X1 � 1
m2

e1eT2X2

� �T
e1:

ð7Þ
For a testing sample xt , the class is determined as follows,
class xtð Þ ¼ argmin
i¼1;2

wT
i xt �wT

i
1
mi

Xmi

k¼1
x ið Þ
k

�����
�����: ð8Þ
2.2. Twin support vector clustering (TWSVC)

TWSVC [45] generates twin non-parallel clustering hyperplanes by solving the following optimization problem.
min
wjþ1

i
; bjþ1

i
; njþ1

i

1
2 kXiw

jþ1
i þ bjþ1

i ek2 þ c1eTn
jþ1
i

s:t: T j�Xiw
jþ1
i þ bjþ1

i ej
� �

P e� njþ1i ; njþ1i � 0;

i ¼ 0;1; . . . ;N;

ð9Þ
where c1 > 0 is the penalty parameter, T(.) is the Taylor series expansion, and njþ1i is the slack variable, j ¼ 0;1; . . ., and e is
vector of ones of appropriate dimension.

By using the subgradient [6] of j�Xiw
j
i þ bj

iej w.r.t. wj
i and bj

i and the Taylor series expansion [45,16], we get
min
wjþ1

i
; bjþ1

i
; njþ1

i

1
2 kXiw

jþ1
i þ bjþ1

i eik2 þ c1eTn
jþ1
i

s:t: diag sign �Xiw
j
i þ bj

ie
� �� �

�Xiw
jþ1
i þ bjþ1

i e
� �

P e� njþ1i ; njþ1i � 0:
ð10Þ
The dual problem of QPP (9) is written as
min
k

1
2 k

TB ATA
� ��1

BTk� eTk

s:t: 0 6 k 6 c1e;
ð11Þ
where B ¼ diag sign �Xiw
j
i þ bj

ie
� �� �

�Xi e
	 


;A ¼ Xi e½ �, and k is the vector of Lagrange multipliers.

The hyperplane for each cluster is found using the following equation,
wjþ1
i bjþ1

i

h iT
¼ ATA
� ��1

BTk; i ¼ 0;1; . . . ;N: ð12Þ
3. Proposed algorithm

In this section, we present the formulations of proposed least squares projection twin support vector clustering (LSPTSVC)
for linear and non-linear case. We further discuss the initialization and convergence of LSPTSVC.

The idea of proposed scheme is illustrated in Fig. 1, where a projection axis is generated to cluster the data points. Pro-
posed LSPTSVC minimizes the scatter of a cluster, while keeping the data points of other clusters far away. We also include
the regularization term in the objective function to control the structural risk of the model [7]. The regularization term also
helps in avoiding the ill-conditioning of the matrices for calculating the inverse [1].

3.1. Linear LSPTSVC

The optimization problem of linear LSPTSVC is described as
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min
wjþ1

i

1
2

Xmi

p¼1
wjþ1

i

� �T
x ið Þ
p � wjþ1

i

� �T
1
mi

Xmi

p¼1
x ið Þ
p

 !2

þ c1
2

Xmi

q¼1
njþ1iq

� �2
þ c2

2 kwjþ1
i k2

s:t: wjþ1
i

� �T
x ið Þ
q � wjþ1

i

� �T
1
mi

Xmi

p¼1
x ið Þ
p

�����
�����þ njþ1iq ¼ 1;

q ¼ 0;1; . . . ;mi; i ¼ 0;1; . . . ;N;

ð13Þ
where c1; c2 > 0 are parameters, wjþ1
i represents the weight vector of jþ 1ð Þth iteration, j ¼ 0;1; . . ., and the slack variable is

represented by njþ1iq . The data points of a cluster, and rest of the clusters are represented by x ið Þ
p and x ið Þ

q respectively. Here, N is
the number of clusters, and mi ¼ m�mið Þ.

The QPP (13) is formulated by setting an objective function that minimizes intra class variance, while maximizing the
inter class distance using the constraints. To solve this optimization problem, we use the concave-convex (CCCP) procedure
[49]. Thus, the objective function of QPP (13) can be rewritten as
min
wjþ1

i

1
2 wjþ1

i

� �T
Siw

jþ1
i þ c1

2

Xmi

q¼1
njþ1iq

� �2
þ c2

2 kwjþ1
i k2

s:t: T �Xiw
jþ1
i � 1

mi
�eieTi Xiw

jþ1
i

��� ���� �
þ njþ1iq ¼ �ei;

ð14Þ
where T :ð Þ is the first order Taylor series expansion, ei and �ei represent the vector of ones of size p and q respectively. The
matrix Si is written as
Si ¼
Xmi

p¼1
x ið Þ
p � si

� �
x ið Þ
p � si

� �T
; ð15Þ
where si ¼ 1
mi

Pmi

p¼1
x ið Þ
p is the centre point of each cluster. Eq. (15) can be rewritten as
Si ¼ Xi � eisTi
� �T

Xi � eisTi
� �

: ð16Þ

The QPP (14) can be rewritten by substituting the constraints in the objective function as
L ¼ 1
2 wjþ1

i

� �T
Siw

jþ1
i þ c1

2 k � T �Xiw
jþ1
i � 1

mi
�eieTi Xiw

jþ1
i

��� ���� �
þ �eik2

þ c2
2 kwjþ1

i k2:
ð17Þ
Now, the value of the Taylor series expansion is written by using the subgradient [6] of �Xiw
j
i � 1

mi
�eieTi Xiw

j
i

��� ��� w.r.t. wj
i [16] as
T X
�
iw

jþ1
i � 1

mi
e
�
ieTi Xiw

jþ1
i

��� ���� �
¼ diag sign X

�
iw

j
i � 1

mi
e
�
ieTi Xiw

j
i

� �� �
X
�
iw

jþ1
i � 1

mi
e
�
ieTi Xiw

jþ1
i

� �
:

ð18Þ
Substituting the value of T(.) in Eq. (17), we get
L ¼ 1
2 wjþ1

i

� �T
Siw

jþ1
i þ c2

2 kwjþ1
i k2þ

c1
2 k � diag sign �Xiw

j
i � 1

mi
�eieTi Xiw

j
i

� �� �
�Xiw

jþ1
i � 1

mi
�eieTi Xiw

jþ1
i

� �
þ �eik2:

ð19Þ
Solving the gradient of Eq. (19) w.r.t. wjþ1
i and equating to 0, we get
Siw
jþ1
i þ c2w

jþ1
i þ c1G

T
i Giw

jþ1
i � �ei

� �
¼ 0;

where Gi ¼ diag sign �Xiw
j
i � 1

mi
�eieTi Xiw

j
i

� �
�Xi � 1

mi
�eieTi Xi

� �
:

� ð20Þ
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Solving Eq. (20) for wjþ1
i , we get
wjþ1
i ¼ GT

i Gi þ Si
c1
þ c2
c1

Ii

� ��1
GT

i
�ei: ð21Þ
For a testing sample xt , the label y is determined by the following formula,
y xtð Þ ¼ arg min
i¼1;2;...;N

wT
i xt �

1
mi

eTi Xiwi

����
����: ð22Þ
For the initialization of the labels, nearest neighbour graph (NNG) [45] algorithm is used in LSPTSVC. The algorithm for linear
LSPTSVC is shown in Alg.1.

Algorithm1 Linear LSPTSVC

1: Inputs :
1.1 Unlabelled data X 2 Rn.

2: Initialization :

2.1 Label assignment: Y0  NNG Xð Þ.
2.2 Initialize weight vector w0

i for each cluster i ¼ 0;1; . . . ;N:
w0

i ¼ Eigenvector Sið Þ, for smallest eigenvalue of Si.
3: CCCP process :

3.1 For each cluster i, calculate wjþ1
i for j ¼ 0 using the initial weight vector w0

i .

3.1.1 wjþ1
i ¼ LSPTSVC X;wj

i

� �
using Eq. (21).

3.1.2 if (kwjþ1
i �wj

ik > tolerance)
j ¼ jþ 1
go to step 3.1.1

3.1.3 else
go to step 4

4: Assign cluster labels :
4.1 Assign new labels to the data points for each cluster i.

4.1.1 Ykþ1 ¼ Decision function X;wið Þ using Eq. (22), initially with k ¼ 0.
4.1.2 if kYkþ1 � Ykk – 0ð Þ

k ¼ kþ 1
go to step 3

4.1.3 else
go to step 5

5: Output :
Return data labels Y, and projection vectors wi; i ¼ 0;1; . . . ;N.
3.2. Non-linear LSPTSVC

The optimization problem of non-linear LSPTSVC is described as
min
wjþ1

i

1
2 wjþ1

i

� �T
Ziw

jþ1
i þ c1

2

Xmi

q¼1
njþ1iq

� �2
þ c2

2 kwjþ1
i k2

s:t: T K �Xi;M
T

� �
wjþ1

i � 1
mi
�eieTi K Xi;M

T
� �

wjþ1
i

��� ���� �
þ njþ1iq ¼ �ei;

q ¼ 0;1; . . . ;mi; i ¼ 0;1; . . . ;N;

ð23Þ
where c1; c2 > 0 are parameters, j ¼ 0;1; . . ., and njþ1iq represents the slack variable, T :ð Þ is the first order Taylor series expan-

sion, K :;MT
� �

is the kernel function [48], and M ¼ X1;X2; . . . ;XN½ �. The matrix Zi is written as
Zi ¼
Xmi

p¼1
K x ið Þ

p ;MT
� �

� zi
� �

K x ið Þ
p ;MT

� �
� zi

� �T
; ð24Þ
where zi ¼ 1
mi

Pmi

p¼1
K xp ið Þ;MT
� �

. Now, Eq. (24) can be rewritten as
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Zi ¼ K Xi;M
T

� �
� eizTi

� �T
K Xi;M

T
� �

� eizTi
� �

: ð25Þ
Now, QPP (23) can be written by using the constraints in the objective function as
L ¼ 1
2 wjþ1

i

� �T
Ziw

jþ1
i þ c1

2 k � T K �Xi;M
T

� �
wjþ1

i � 1
mi
�eieTi K Xi;M

T
� �

wjþ1
i

��� ���� �
þ �eik2

þ c2
2 kwjþ1

i k2:
ð26Þ
Substituting the value of T(.) in (26) for the CCCP procedure, we get
L ¼ 1
2 wjþ1

i

� �T
Ziw

jþ1
i þ c2

2 kwjþ1
i k2þ

c1
2 k � diag sign K �Xi;M

T
� �

wj
i � 1

mi
�eieTi K Xi;M

T
� �

wj
i

� �� �
K �Xi;M

T
� �

wjþ1
i � 1

mi
�eieTi K Xi;M

T
� �

wjþ1
i

� �
þ �eik2:

ð27Þ
Now, solving the gradient of (27) w.r.t. wjþ1
i and equating to 0, we get
Ziw
jþ1
i þ c2

2 w
jþ1
i þ c1U

T Uwjþ1
i � �ei

� �
¼ 0;

where Ui ¼ diag sign K �Xi;M
T

� �
wj

i � 1
mi
�eieTi K Xi;M

T
� �

wj
i

� �� �
K �Xi;M

T
� �

� 1
mi
�eieTi K Xi;M

T
� �� �

;

ð28Þ
Solving Eq. (28) for wjþ1
i , we get
wjþ1
i ¼ UT

i Ui þ Zi

c1
þ c2
c1

Ii

� ��1
UT

i
�ei: ð29Þ
The above equation involves matrix inversion of order m�m. This leads to high computation time for datasets having very
large m as compared to number of features. In order to reduce the computation cost of calculating the inverse, we use the
Sherman–Morrison–Woodbury (SMW) formula [11]. We can write Eq. (29) as
wjþ1
i ¼ UT

i Ui þ c2
c1

Ii þ DT
i Di

c1

 !�1
UT

i
�ei; ð30Þ
where D ¼ K Xi;M
T

� �
� eizTi

� �
. Now, using the SMW formula in (30), we obtain the following expression
wjþ1
i ¼ A�1i � A�1i UT

i Ii þ UiA
�1
i UT

i

� ��1
UiA

�1
i

� �
UT

i
�ei; ð31Þ
where A�1i ¼ c1
c2

Ii � DT
i c2Ii þ DiD

T
i

� ��1
Di

� �
. For calculating wjþ1

i , instead of computing inverse of size m�mð Þ, we need to

compute one inverse of size mi �mið Þ, and other of size m�mið Þ � m�mið Þ;8i ¼ 1;2; . . . ;N.
For a testing sample xt , the label y is determined as follows,
y xtð Þ ¼ arg min
i¼1;2;...;N

wT
i K xt ;M

T
� �

� 1
mi

eTi K Xi;M
T

� �
wi

����
����: ð32Þ
The algorithm for non-linear LSPTSVC is shown in Alg. 2.

Algorithm2 Non-linear LSPTSVC

1: Inputs :
1.1 Unlabelled data X 2 Rn.
1.2 Kernel matrix K obtained using kernel function.

2: Initialization :

2.1 Label assignment: Y0  NNG Kð Þ.
(continued on next page)
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⇑ (continued)

Algorithm2 Non-linear LSPTSVC

2.2 Initialize weight vector w0
i for each cluster i ¼ 0;1; . . . ;N:

w0
i ¼ Eigenvector Zið Þ, for smallest eigenvalue of Zi.

3: CCCP process :

3.1 For each cluster i, calculate wjþ1
i for j ¼ 0 using the initial weight vector w0

i .

3.1.1 wjþ1
i ¼ LSPTSVC K;wj

i

� �
using Eq. (31).

3.1.2 if (kwjþ1
i �wj

ik > tolerance)
j ¼ jþ 1
go to step 3.1.1

3.1.3 else
go to step 4

4: Assign cluster labels :
4.1 Assign new labels to the data points for each cluster i.

4.1.1 Ykþ1 ¼ Decision function K;wið Þ using Eq. (32), initially with k ¼ 0.
4.1.2 if kYkþ1 � Ykk – 0ð Þ

k ¼ kþ 1
go to step 3

4.1.3 else
go to step 5

5: Output :
Return data labels Y, and projection vectors wi; i ¼ 0;1; . . . ;N.
Lemma 3.1. Let X 2 Rm�n; S 2 Rn�n;m > n. Then, S ¼ X � esð ÞT X � esð Þ is a positive semidefinite matrix, where s ¼ 1
m

Pm
p¼1

xTp.

Proof: Let T ¼ X � esð Þ. Then, S ¼ TTT is a symmetric matrix.
Now, for any w 2 Rn,
wTSw ¼ wTTTTw

) wTSw ¼ kTwk2 � 0:
ð33Þ
Therefore, S is positive semidefinite.

Theorem 3.1. Let X 2 Rp�n;m > n, and S ¼ X � esð ÞT X � esð Þ. Then, the global minimum of:
min
w

wTSw

s:t: wTw ¼ 1;
ð34Þ
is obtained for any eigenvector w of S with minimum eigenvalue. The minimum value of (34) is positive iff S is positive definite or
equivalently iff rank X � esð Þ ¼ n.

Proof: Firstly, we write the Lagrangian of Eq. (34),
L ¼ wTSw� k wTw� 1
� �

: ð35Þ

Now, we use the Karush-Kuhn-Tucker (K.K.T.) optimality conditions,
@L
@w
¼ Sw� kw ¼ 0; ð36Þ

@L
@k
¼ wTw� 1 ¼ 0: ð37Þ
From (36) and (37), we get
k ¼ wTSw: ð38Þ

Putting the value of k in (36), we get
Sw ¼ wTSw
� �

w; ð39Þ
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which is equivalent to
Sw ¼ kw; ð40Þ

where k ¼ wTSw, which is to be minimized in Eq. (34). Hence, the smallest eigenvalue of S gives the eigenvectorw to achieve
global minimum of (34) [3].

Remark 1. If S 2 Rn�n is positive definite, then S is non-singular.

Theorem 3.2. Let X 2 Rp�n;G 2 Rq�n; S ¼ X � esð ÞT X � esð Þ 2 Rn�n, and I 2 Rn�n is the identity matrix. Then, the matrix

GTGþ S
c1
þ c2

c1
I

� �
is invertible 8c1; c2 > 0.
Proof: Here, GTG and S are positive semidefinite matrices from Lemma 3.1, and c2
c1
Ii is positive definite for c1; c2 > 0. Also,

for any vector w 2 Rn;w– 0, the sum of a positive semidefinite and positive definite matrix is always positive definite as
shown below:

Let A and B be a positive definite and positive semidefinite matrix respectively. Then, for any vector w 2 Rn;w – 0,
wTAw > 0; ð41Þ
wTBw � 0; ð42Þ
Adding (41) & (42), we get
wTAwþwTBw
� �

> 0; ð43Þ
wT Aþ Bð Þw > 0: ð44Þ
Therefore, the square matrix GTGþ Si
c1
þ c2

c1
I

� �
is always non-singular (Remark 1), and thus invertible.

3.3. Convergence

Proposed LSPTSVC described in Alg. 1 and 2 converges in a finite number of steps. This is because CCCP method always
finds a local minimum, and thus converges as discussed in [49]. Moreover, in the cluster assignment process, every data
point is assigned to closest hyperplane [3]. So, the overall objective function cannot increase. Thus, the algorithm converges
based on any of the following terminating conditions:

(i) Same labels assigned to data points in two consecutive iterations.
(ii) Non-decrease in the overall objective function.

3.4. Time complexity

In comparison to TWSVC which solves large sized QPPs to solve the clustering problem, proposed LSPTSVC only needs to

solve sets of linear equations. The time complexity of solving the QPP in linear TWSVC is O N mið Þ3
� �

form ¼ mi þmi samples,

N classes and mi constraints, i ¼ 1;2; . . . ;N. The complexity of calculating the matrix inverse is about O Nn3
� �

[1]. So, the

complexity of TWSVC becomes O N m3
i þ n3

� �� �
. In case of non-linear TWSVC, the complexity for QPP is O Nm3

i

� �
, where mi

is the number of constraints, and for inverse is about O Nm3
� �

. Therefore, the complexity becomes O N m3
i þm3

� �� �
. The time

complexity of TBSVC is same as TWSVC.
The solution of linear LSPTSVC requires the inversion of N matrices of size n� n. Thus, the time complexity of solving the

inverses in Eq. (21) is O Nn3
� �

. In the non-linear case, Nmatrix inverses of sizemi, andmi need to be calculated. Therefore, the

time complexity is O N m3
i þm3

i

� �
; i ¼ 1;2; . . . ;N

�
. The time complexity of LSPTSVC is lower than TWSVC which leads to lesser

training time. LSTWSVC has similar time complexity as LSPTSVC, except the fact that it needs to calculate the bias. Conse-
quently, the number of linear equations in LSPTSVC is less than LSTWSVC by one equation.

Moreover, in the initialization process, proposed LSPTSVC only needs to find w. On the other hand, the bias b is also cal-
culated in case of existing plane based clustering algorithms.

3.5. Proposed LSPTSVC vs LSPTSVM

The LSPTSVM [34] is a supervised learning algorithm that performs classification of data points by constructing projection
axes for each class. The decision function shown in Eq. (8) is constructed in a manner to keep the projected data well sep-
arated. However, LSPTSVMminimizes the within class variance of one class, and keeps the scatter of the other class far away
on one side of the axis. This is shown by the constraints of QPP (1).
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We extended the projection axes based approach for unsupervised learning. Proposed LSPTSVC performs clustering by
minimizing the within cluster variance, and keeping the scatter of the other clusters far away on both sides of the axes
as shown in Fig. 1. This is a result of the constraints of QPP (13). Moreover, LSPTSVM solves the optimization problem by
system of linear equations, whereas proposed LSPTSVC solves linear equations in multiple iterations of the CCCP procedure
to obtain the projection axes.

In contrast to LSPTSVM, proposed LSPTSVC involves an initialization procedure for the weights. Since, the scatter matrix S
involved in the projection based algorithms is positive semidefinite, we presented the initialization procedure based on
eigenvalue of S. In terms of time complexity, LSPTSVC requires more computation time than LSPTSVM, since it involves
the CCCP iterative procedure, and mostly deals with multiclass clustering of data. However, proposed LSPTSVC is computa-
tionally more efficient than LSTWSVC. This is analogous to the lesser computation cost of LSPTSVM in comparison to LSTSVM
[34].
4. Experimental results

In this section, performance of the proposed LSPTSVC is compared with existing techniques on the basis of clustering
accuracy and training time. The algorithms used for comparison are FCM [2], kPC [3], TWSVC [45], TBSVC [1], LSTWSVC
[16], and FLSTWSVC [16]. Among these, FCM is a distance based technique using fuzzy memberships, while rest are plane
based algorithms. We use 13 synthetic and 10 real world benchmark datasets to assess the performance of the proposed
model with linear and non-linear kernels. Moreover, the performance of LSPTSVC is compared with existing algorithms
on 12 large scale datasets. Performance comparison on real world applications are also presented viz. clustering of faces,
facial expressions, and Alzheimer’s disease data.

4.1. Data

The synthetic benchmark datasets are downloaded from the website ( https://github.com/deric/clustering-benchmark),
while the real world and large scale datasets are taken from UCI repository [9]. For applications, facial images are down-
loaded from AT&T database (https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html) of AT&T Laboratories
Cambridge, and facial expression data is taken from JAFFE database [21].

All MRI images used in this work were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). ADNI was launched in 2003 as a public–private partnership, led by Principal Investigator Michael W.
Weiner, MD. The main goal of ADNI is to find out the effectiveness of neuroimaging techniques like MRI, positron emission
tomography (PET), other biological markers, and clinical neuropsychological tests to estimate the onset of Alzheimer’s dis-
ease from the state of mild cognitive impairment. For more information, visit www.adni-info.org.

4.2. Experimental setup

All the computations are carried out on a PC running on 64 bit Windows 10 operating system, 3.60 GHz Intel� coreTM i7-
7700 processor, 16 GB of RAM under MATLAB R2008b environment. MOSEK optimization toolbox (http://www.mosek.com)
is used to solve the QPPs in case of TWSVC and TBSVC. The parameter selection is performed using 5-fold cross-validation for
all the methods. For non-linear case, Gaussian kernel is used in all the methods, defined as
K x; yð Þ ¼ exp
�1
2l2 kx� yk2
� �

; ð45Þ
where x and y are vectors and l is a parameter.
In Tables 1 and 2, 50% of total data samples are used for training and rest for testing. The value of the parameters c1; c2 are

selected from the set 10�5;10�4; . . . ;105
n o

, while l is chosen from the set 2�5;2�4; . . . ;25
n o

for all the cases. The tolerance

value for the CCCP process is set as 0.001 in all the algorithms. In FCM, the weighting exponent i.e., m is selected from the set
1:25;1:5;1:75;2f g [2]. In case of large datasets, the value of c1; c2 is fixed as 1 [34], and l is set as 25 for all the algorithms.
The clustering accuracy for l data samples with y labels is measured using the following similarity matrix L 2 Rl�l [45],
L i; jð Þ ¼ 1; if yi ¼ yj
0; otherwise:

�

Now, let Lp is similarity matrix of predicted cluster labels, and La is the similarity matrix of actual labels. Then, the accuracy is
defined as the rand index [45],
Accuracy ¼ n0 þ n1 � l

l2 � l
� 100%; ð46Þ
where n0 is the number of zeros in La and Lp, and n1 is the number of ones in La and Lp.

https://github.com/deric/clustering-benchmark
https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html


Table 1
Performance comparison on clustering accuracy (%), number of mis-clustered data points (# Miss), and training time of the proposed LSPTSVC with existing
algorithms using linear kernel. The Win-Tie-Loss calculation is based on accuracy, and ‘s’ represents time in seconds.

Dataset
(Size, clusters)

FCM
[2]
Accuracy
# Miss
-
Time (s)

kPC
[3]
Accuracy
# Miss
-
Time (s)

TWSVC
[45]
Accuracy
# Miss
c1ð Þ
Time (s)

TBSVC
[1]
Accuracy
# Miss
c1; c2ð Þ
Time (s)

LSTWSVC
[16]
Accuracy
# Miss
c1; c2ð Þ
Time (s)

FLSTWSVC
[16]
Accuracy
# Miss
c1; c2ð Þ
Time (s)

Proposed
LSPTSVC
Accuracy
# Miss
c1; c2ð Þ
Time (s)

Synthetic
3MC

(400 � 2, 3)
51.37
89
-
0.0151

66.3
89
-
0.00008

68.96
80
(100)
0.0191

90.1
18
(10�5, 102)
0.0162

90.1
18
(10�5, 102)
0.00015

89.29
16
(101, 101)
0.0037

96.02
6
(102, 105)
0.00009

Aggregation
(788 � 2, 7)

77.64
152
-
0.1394

79.36
189
-
0.00015

79.97
183
(10�1)
0.2811

78.86
178
(100, 100)
0.2869

80.82
187
(10�3, 10�1)
0.00324

89.62
95
(10�1, 10�1)
0.0418

83.55
149
(101, 105)
0.00185

Compound
(399 � 2, 6)

78.41
72
-
0.0718

73.56
97
-
0.0001

79.88
81
(100)
0.055

80.14
84
(10�1, 10�4)
0.054

79.88
92
(10�3, 10�4)
0.00039

79.76
80
(10�2, 10�2)
0.0077

86.61
51
(10�5, 103)
0.00026

R15
(600 � 2, 15)

92.17
126
-
0.0243

91.4
133
-
0.00019

96.18
64
(10�2)
0.3949

93.49
102
(10�1, 10�3)
0.4091

95.58
75
(10�3, 10�5)
0.00238

97.71
36
(100, 10�5)
0.0486

97.07
48
(100, 104)
0.00123

Zelnik5
(512 � 2, 4)

68.73
112
-
0.0163

78.73
96
-
0.00011

78.43
99
(102)
0.055

95.08
15
(101, 10�1)
0.0472

85.99
58
(10�5, 10�2)
0.00044

82.75
72
(10�5, 10�5)
0.0107

91.4
26
(102, 10�5)
0.00022

2d-4c-no9
(876 � 2, 4)

85.77
114
-
0.0931

77.66
130
-
0.00014

97.49
14
(10�2)
0.1426

96.85
18
(10�1, 101)
0.1436

97.01
17
(10�1, 101)
0.00169

96.37
22
(100, 10�5)
0.0244

98.59
8
(10�3, 102)
0.00084

Longsquare
(900 � 2, 6)

81.67
179
-
0.0114

83.46
159
-
0.00016

84.27
127
(10�5)
0.228

86.47
128
(10�5, 10�1)
0.2248

85.78
130
(10�4, 10�1)
0.00408

90.15
101
(10�2, 10�4)
0.0537

90.93
94
(102, 104)
0.00259

Hepta
(212 � 3, 7)

77.05
43
-
0.006

87.57
38
-
0.00011

99.03
2
(10�3)
0.0268

99.03
2
(10�3, 10�5)
0.0268

98.49
3
(10�3, 10�5)
0.00016

94.9
11
(10�1, 10�2)
0.0031

100
0
(10�3, 100)
0.00015

Zelnik3
(266 � 2, 3)

74.87
31
-
0.0054

81.6
20
-
0.00007

80.25
22
(10�5)
0.0113

80.25
22
(10�5, 10�2)
0.0109

80.25
22
(10�2, 10�2)
0.00009

75.1
30
(10�5, 10�5)
0.0018

83.96
17
(102, 10�5)
0.00006

Pathbased
(300 � 2, 3)

61.71
74
-
0.0156

70.36
48
-
0.00007

71.22
45
(10�1)
0.0135

71.44
45
(10�2, 10�1)
0.0131

70.7
47
(10�2, 10�1)
0.00011

71.44
45
(10�5, 10�5)
0.0023

71.35
45
(101, 105)
0.00008

Zelnik1
(399 � 2, 3)

56.47
70
-
0.022

58.72
71
-
0.00009

56.05
71
(10�1)
0.0136

59.59
72
(102, 100)
0.0144

56.05
70
(10�2, 10�3)
0.00011

49.58
74
(100, 10�1)
0.0031

59.65
69
(102, 10�5)
0.00008

Ds2c2sc13
(588 � 2, 13)

87.44
115
-
0.4318

90.46
103
-
0.00035

93.08
69
(10�3)
0.3133

93.01
70
(10�3, 10�5)
0.3154

93.17
72
(10�3, 10�5)
0.0021

93.06
79
(10�1, 10�2)
0.0437

93.45
81
(101, 101)
0.00128

2d-4c-no4
(863 � 2, 4)

87.68
66
-
0.0048

62.52
205
-
0.0003

67.13
131
(102)
0.1697

85.22
70
(100, 105)
0.0754

85.22
70
(10�5, 105)
0.00261

62.96
205
(103, 10�3)
0.0275

93.38
24
(101, 105)
0.00148

Real world
Ecoli

(336 � 7, 8)
71.02
71
-
0.0144

37.79
81
-
0.00034

63.47
81
(105)
0.1092

63.44
82
(103, 104)
0.0563

61.98
80
(101, 10�5)
0.00033

56.19
81
(102, 105)
0.0083

68.25
84
(101, 101)
0.00035

Zoo
(101 � 16, 7)

54.53
24
-
0.0181

72.73
15
-
0.0023

82.04
14
(10�3)
0.0309

89.8
11
(10�1, 100)
0.0217

88.98
11
(10�5, 103)
0.00026

90.12
11
(10�1, 101)
0.0057

88.41
12
(102, 10�5)
0.00022

(continued on next page)
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Table 1 (continued)

Dataset
(Size, clusters)

FCM
[2]
Accuracy
# Miss
-
Time (s)

kPC
[3]
Accuracy
# Miss
-
Time (s)

TWSVC
[45]
Accuracy
# Miss
c1ð Þ
Time (s)

TBSVC
[1]
Accuracy
# Miss
c1; c2ð Þ
Time (s)

LSTWSVC
[16]
Accuracy
# Miss
c1; c2ð Þ
Time (s)

FLSTWSVC
[16]
Accuracy
# Miss
c1; c2ð Þ
Time (s)

Proposed
LSPTSVC
Accuracy
# Miss
c1; c2ð Þ
Time (s)

Wine
(178 � 13, 3)

34.22
43
-
0.0048

56.03
43
-
0.00016

73.88
25
(10�2)
0.0087

71.71
26
(10�5, 100)
0.009

75.74
21
(10�3, 10�1)
0.00011

79.01
17
(101, 10�3)
0.0026

74.06
23
(10�1, 105)
0.00009

Iris
(150 � 4, 3)

32.68
37
-
0.0059

62.7
29
-
0.00007

91.53
5
(10�5)
0.0083

93.08
4
(10�1, 100)
0.0083

94.7
3
(10�1, 101)
0.00007

94.7
3
(10�5, 100)
0.0009

94.7
3
(10�5, 100)
0.00006

Seeds
(210 � 7, 3)

32.77
52
-
0.0072

76.58
33
-
0.00015

75.66
33
(10�2)
0.0116

75.99
34
(10�5, 10�2)
0.0103

75.44
35
(10�5, 10�2)
0.00008

75.66
33
(10�1, 10�4)
0.0022

74.56
27
(102, 102)
0.00008

Teachingeval
(151 � 5, 3)

33.98
36
-
0.0047

42.85
37
-
0.00009

48.32
37
(102)
0.0093

52.65
37
(10�1, 100)
0.0083

51.32
37
(10�2, 102)
0.0001

49.05
37
(10�5, 101)
0.0011

56.25
36
(101, 10�1)
0.00006

Tae
(150 � 5, 3)

32.68
37
-
0.0088

45.15
36
-
0.0001

52.61
37
(103)
0.0094

52.61
37
(105, 10�5)
0.0098

49.48
35
(101, 103)
0.00011

32.68
37
(10�5, 10�5)
0.0012

56.61
36
(102, 104)
0.00006

Hayes-roth
(132 � 4, 3)

62.75
27
-
0.0098

57.67
31
-
0.00007

55.99
32
(101)
0.0077

55.34
33
(100, 10�4)
0.0077

53.38
32
(10�2, 10�2)
0.00008

52.73
28
(100, 10�5)
0.0008

53.94
32
(102, 103)
0.00005

Shuttle
(1486 � 9, 5)

63.25
167
-
0.3162

51.55
359
-
0.00235

62.85
251
(10�1)
1.1994

87.77
54
(10�2, 102)
1.4062

78.54
124
(100, 105)
0.00828

82.12
104
(102, 104)
0.1927

78.54
112
(100, 104)
0.00783

Libras
(360 � 90, 15)

70.99
89
-
0.4334

64.14
88
-
0.0491

66.16
89
(10�5)
0.1845

83.27
88
(10�1, 10�1)
0.1641

86.72
87
(101, 10�4)
0.00584

87.65
85
(10�4, 10�3)
0.0261

87.81
88
(100, 10�4)
0.00503

Average rank
(Accuracy)

5.8043 5.4783 4.1522 3.1522 3.6304 3.7609 2.0217

Average rank
(# Miss)

5.1304 5.3696 4.1957 3.9783 3.6304 3.3261 2.3696

Win-Tie-Loss 21–0-2 21–0-2 21–0-2 17–0-6 18–2-3 15–1-7
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For application on Alzheimer’s data, Freesurfer’s recon-all pipeline (version 6.0.1) [29] is used for processing the MRI
images. The volumetric features of the brain are normalized by the respective total intracranial volume (TIV) of the subjects
[47,36].

In all the existing algorithms except FCM, the initialization of weights is performed using kPC algorithm, while LSPTSVC is
initialized using Theorem 3.1. For initialization of cluster labels, the well known nearest neighbour graph (NNG) technique
[45] is used for all the algorithms except FLSTWSVC which uses fuzzy NNG [16]. However, in case of large datasets, a set of
randomly generated cluster labels are used for initialization of all the algorithms.

4.3. Results on benchmark datasets

The comparison of the proposed LSPTSVC with existing methods viz. FCM, kPC, TWSVC, TBSVC, LSTWSVC, and FLSTWSVC
is shown in Table 1 for linear case. One can observe that proposed LSPTSVC is showing better performance w.r.t. clustering
accuracy in comparison to existing algorithms. This is also justified by the lowest average rank of LSPTSVC i.e., 2.0217 for all
the datasets. Moreover, the training time of LSPTSVC is lesser than TWSVC and TBSVC. This is due to the fact that the pro-
posed LSPTSVC solves a set of linear equations to obtain the projection axis. In contrast, TWSVC and TBSVC solve computa-
tionally expensive QPPs. In comparison to LSTWSVC, LSPTSVC is slightly faster in most datasets since it only needs to
calculate the weight vector w and not the bias b. For FLSTWSVC, the training time is higher than proposed LSPTSVC due
to the overhead of calculation of fuzzy membership. The comparison of computation time of kPC and FCM with proposed
LSPTSVC is not justified, since they are not twin SVM based algorithms. However, we have shown the training time of all
the algorithms in the tables.



Table 2
Performance comparison on clustering accuracy (%), number of mis-clustered data points (# Miss), and training time of the proposed LSPTSVC with existing
algorithms using Gaussian kernel. The Win-Tie-Loss calculation is based on accuracy, and ‘s’ represents time in seconds.

Dataset
(Size, clusters)

FCM
[2]
Accuracy
# Miss
-
Time (s)

kPC
[3]
Accuracy
# Miss
-
Time (s)

TWSVC
[45]
Accuracy
# Miss
c1;lð Þ
Time (s)

TBSVC
[1]
Accuracy
# Miss
c1 ¼ c2;lð Þ
Time (s)

LSTWSVC
[16]
Accuracy
# Miss
c1; c2;lð Þ
Time (s)

FLSTWSVC
[16]
Accuracy
# Miss
c1; c2;lð Þ
Time (s)

Proposed
LSPTSVC
Accuracy
# Miss
c1; c2;lð Þ
Time (s)

Synthetic
3MC

(400 � 2, 3)
51.37
89
-
0.0151

69.18
63
-
0.0383

66.32
97
(100, 25)
0.0977

60.81
93
(101, 20)
0.0993

88.85
18
(10�3, 10�1, 25)
0.045

72.27
62
(103, 10�4, 24)
0.0455

82.31
29
(101, 101, 25)
0.0444

Aggregation
(788 � 2, 7)

77.64
152
-
0.1394

92.21
77
-
0.638

92.36
77
(10�3, 23)
0.8281

92.85
70
(10�5, 21)
0.7539

92.8
71
(10�5, 10�2, 21)
0.29

94.97
42
(10�1, 10�1, 23)
0.2958

92.99
70
(10�5, 10�5, 21)
0.2835

Compound
(399 � 2, 6)

78.41
72
-
0.0718

88.57
53
-
0.1013

91.34
44
(10�5, 20)
0.1506

91.37
41
(10�2, 21)
0.1482

93.24
38
(10�3, 10�4, 20)
0.0557

90.81
43
(10�3, 10�5, 21)
0.0588

93.05
40
(10�2, 102, 22)
0.0527

R15
(600 � 2, 15)

92.17
126
-
0.0243

99.43
8
-
0.6568

99.73
4
(10�5, 25)
0.6917

99.8
3
(10�5, 24)
0.7201

99.42
7
(10�5, 10�4, 2�1)
0.2268

99.43
7
(10�5, 10�5, 2�1)
0.23

99.57
5
(10�5, 10�4, 2�1)
0.2197

Zelnik5
(512 � 2, 4)

68.73
112
-
0.0163

75.96
87
-
0.0946

82.07
76
(10�3, 25)
0.1574

86.85
53
(10�2, 21)
0.1356

84.03
80
(10�1, 10�2, 21)
0.0837

85.64
67
(10�5, 10�5, 22)
0.0876

84.86
61
(102, 105, 2�3)
0.0794

2d-4c-no9
(876 � 2, 4)

85.77
114
-
0.0931

98.66
8
-
0.3521

98.39
7
(10�5, 22)
0.6216

97.81
10
(10�5, 21)
0.6215

97.07
15
(10�2, 101, 22)
0.2801

99.16
5
(10�5, 10�4, 21)
0.2892

98.28
8
(10�4, 10�2, 22)
0.2798

Longsquare
(900 � 2, 6)

81.67
179
-
0.0114

89.27
107
-
0.5345

64.72
200
(10�2, 21)
1.0026

78.86
192
(100, 22)
0.8856

81.08
198
(10�4, 102, 22)
0.3905

93.22
65
(10�3, 10�4, 22)
0.3796

93.76
49
(100, 104, 22)
0.3779

Hepta
(212 � 3, 7)

77.05
43
-
0.006

100
0
-
0.018

100
0
(10�5, 21)
0.0563

100
0
(10�5, 21)
0.0553

100
0
(10�5, 10�5, 23)
0.0156

100
0
(10�5, 10�5, 20)
0.0176

100
0
(10�5, 10�5, 21)
0.0144

Zelnik3
(266 � 2, 3)

74.87
31
-
0.0054

83.12
19
-
0.0253

83.39
18
(10�1, 25)
0.048

81.7
20
(10�4, 22)
0.0455

84.51
17
(101, 104, 2�4)
0.0206

100
0
(10�5, 10�3, 2�5)
0.0214

100
0
(100, 103, 2�4)
0.0192

Pathbased
(300 � 2, 3)

61.71
74
-
0.0156

63.9
64
-
0.0252

57.49
74
(104, 25)
0.0638

68.21
60
(100, 25)
0.0571

70.56
46
(10�5, 100, 25)
0.0256

75.7
34
(10�2, 10�5, 22)
0.026

82.26
23
(101, 103, 22)
0.0255

Zelnik1
(399 � 2, 3)

56.47
70
-
0.022

52.6
74
-
0.0217

59.82
69
(10�2, 24)
0.0433

58.52
69
(10�2, 21)
0.0381

68.57
57
(102, 100, 2�4)
0.0268

73.41
53
(105, 103, 2�4)
0.0275

74.16
56
(104, 101, 22)
0.0248

Ds2c2sc13
(588 � 2, 13)

87.44
115
-
0.4318

84.25
114
-
0.3848

94.28
45
(10�5, 2�3)
0.5756

94.78
43
(10�3, 2�4)
0.5546

95.14
41
(10�5, 10�5, 2�4)
0.1956

93.47
77
(10�3, 10�4, 2�3)
0.2095

95
41
(10�5, 10�4, 2�5)
0.1902

2d-4c-no4
(863 � 2, 4)

87.68
66
-
0.0048

71.55
101
-
0.3495

65.39
155
(10�4, 21)
0.5077

64.93
156
(100, 22)
0.4275

62.14
162
(10�5, 105, 22)
0.2884

89.65
66
(10�1, 103, 21)
0.2889

95.27
20
(101, 105, 22)
0.2773

Real world
Ecoli

(336 � 7, 8)
71.02
71
-
0.0144

68.31
69
-
0.0496

61.13
84
(10�5, 23)
0.1331

60.61
83
(104, 23)
0.1175

63.45
74
(101, 10�4, 25)
0.0434

55.01
67
(10�1, 100, 25)
0.0466

73.28
81
(101, 103, 25)
0.0407

Zoo
(101 � 16, 7)

54.53
24
-

81.71
16
-

86.53
11
(10�5, 23)

86.86
14
(10�2, 22)

85.88
13
(103, 10�5, 23)

80.33
15
(10�1, 10�5, 22)

89.31
9
(101, 10�1, 23)

(continued on next page)
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Table 2 (continued)

Dataset
(Size, clusters)

FCM
[2]
Accuracy
# Miss
-
Time (s)

kPC
[3]
Accuracy
# Miss
-
Time (s)

TWSVC
[45]
Accuracy
# Miss
c1;lð Þ
Time (s)

TBSVC
[1]
Accuracy
# Miss
c1 ¼ c2;lð Þ
Time (s)

LSTWSVC
[16]
Accuracy
# Miss
c1; c2;lð Þ
Time (s)

FLSTWSVC
[16]
Accuracy
# Miss
c1; c2;lð Þ
Time (s)

Proposed
LSPTSVC
Accuracy
# Miss
c1; c2;lð Þ
Time (s)

0.0181 0.0039 0.0379 0.0311 0.0039 0.0078 0.0035
Wine

(178 � 13, 3)
34.22
43
-
0.0048

65.27
30
-
0.0067

68.69
27
(10�5, 24)
0.0262

72.32
22
(10�2, 24)
0.0258

74.26
23
(10�1, 100, 25)
0.0096

59.24
38
(10�5, 10�2, 25)
0.0103

75.18
21
(10�1, 10�3, 25)
0.009

Iris
(150 � 4, 3)

32.68
37
-
0.0059

78.31
16
-
0.0051

94.7
3
(10�1, 25)
0.019

94.7
3
(10�5, 25)
0.0197

96.4
2
(10�1, 10�3, 22)
0.0063

90.05
6
(10�1, 10�2, 20)
0.007

94.7
3
(10�1, 10�2, 22)
0.0062

Seeds
(210 � 7, 3)

32.77
52
-
0.0072

76.1
33
-
0.0127

76.58
33
(10�5, 25)
0.0311

87.09
12
(10�3, 25)
0.0322

87.01
12
(10�5, 10�3, 25)
0.0123

73.79
33
(101, 103, 23)
0.0133

87.71
11
(10�1, 102, 24)
0.0121

Teachingeval
(151 � 5, 3)

33.98
36
-
0.0047

44
35
-
0.0033

40.76
36
(10�3, 22)
0.021

46.74
37
(100, 22)
0.0206

46.52
36
(104, 101, 22)
0.0067

49.05
37
(101, 103, 23)
0.0074

53.08
36
(104, 103, 25)
0.0064

Tae
(150 � 5, 3)

32.68
37
-
0.0088

54.67
36
-
0.0021

32.68
37
(10�5, 2�5)
0.0199

42.13
35
(101, 22)
0.0201

47.53
37
(100, 104, 23)
0.0068

32.68
37
(10�5, 10�5, 2�5)
0.0071

54.88
37
(104, 102, 25)
0.0061

Hayes-roth
(132 � 4, 3)

62.75
27
-
0.0098

33.19
33
-
0.0026

63.92
29
(10�5, 2�1)
0.0173

63.92
29
(10�5, 2�1)
0.017

52.96
33
(10�3, 10�1, 22)
0.0051

54.5
30
(105, 10�4, 21)
0.0056

70.35
24
(100, 102, 21)
0.0049

Shuttle
(1486 � 9, 5)

63.25
167
-
0.3162

68.37
145
-
0.565

70.33
150
(10�4, 25)
2.5814

70.59
149
(10�5, 24)
2.5527

75.73
137
(101, 104, 25)
1.1689

64.66
160
(10�3, 10�5, 22)
2.168

79.96
132
(10�1, 104, 25)
1.1518

Libras
(360 � 90, 15)

70.99
89
-
0.4334

71.75
83
-
0.1532

85.68
88
(10�5, 2�1)
0.251

81.56
86
(10�3, 20)
0.2675

86.41
88
(103, 102, 2�1)
0.0799

88.6
87
(10�4, 10�5, 20)
0.08

87.15
88
(104, 100, 24)
0.074

Average rank
(Accuracy)

6.1739 4.8696 4.3478 3.7391 3.4565 3.6739 1.7391

Average rank
(# Miss)

5.8913 4.4348 4.4783 3.6957 3.6522 3.5435 2.3043

Win-Tie-Loss 23-0-0 21-1-1 19-2-2 19-2-2 18-1-4 17-2-4
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Table 1 also shows the number of mis-clustered [13] data points for every algorithm. The mis-clustered data points are
calculated by counting the pair of data points with cluster mismatch. One can observe in Table 1 that even in terms of the
mis-clustered data points, proposed LSPTSVC obtains the least rank i.e., 2:3696. Moreover, a similar trend is observed for the
average ranks of other algorithms, in comparison to the average ranks based on accuracy. Only difference is in the compar-
ison between FCM and kPC, where kPC is the worst performing algorithm in terms of mis-clustering. One can notice that for
some datasets, the best performing algorithm in terms of accuracy is not having the least number of mis-clustered data
points. This can be attributed to the imbalance in the number of data points of the clusters in a dataset.

The Win-Tie-Loss comparison is also shown in Table 1. The clustering accuracy of proposed LSPTSVC is compared with
existing algorithms in a Win-Tie-Loss scenario for all the datasets. It is evident that LSPTSVC is having a ‘Win’ scenario
for all the compared algorithms. The highest ‘Win’ case is in comparison to FCM, kPC, and TWSVC algorithm. This is because
FCM algorithm is based on distance from neighbouring data points, while the datasets have varying data distributions. More-
over, LSPTSVC initializes its weights using the eigenvectors and then converges, while kPC obtains its hyperplanes as the
eigenvectors. In comparison to TWSVC, proposed LSPTSVC involves the concept of within class scatter minimization leading
to better clustering accuracy. However, proposed LSPTSVC is having some losses in case of TBSVC, LSTWSVC, and FLSTWSVC.
For more analysis on significance of the proposed algorithm, statistical analysis is presented in Section 4.4.

The clusters identified by the proposed and existing algorithms using linear kernel for 3MC synthetic dataset are shown in
Fig. 2. The actual clusters in the dataset are shown in Fig. 2a. One can easily notice that the clusters labelled by the proposed
LSPTSVC in Fig. 2f are similar to the original clusters in Fig. 2a. This may be attributed to minimization of the within class
variance of projected data, while keeping the projected data of other classes at unit distance from centre of the cluster.



Fig. 2. Plot showing performance of proposed LSPTSVC in comparison to existing algorithms using linear kernel for 3MC dataset. In the legend ‘C’ means
cluster.
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Table 2 shows the performance of the proposed LSPTSVC for non-linear case. One can notice that clustering accuracy of
the proposed LSPTSVC is better than existing algorithms for most of the datasets. This is also evident from the average rank of
LSPTSVC which is the lowest among algorithms in Table 2 i.e., 1.7391. Moreover, the proposed non-linear LSPTSVC is having
‘Win’ situation with all the algorithms in most datasets. This is due to the effect of Gaussian kernel resulting in non-linear
projection axes. Similar to the linear case, the training time of proposed LSPTSVC is also lesser than existing algorithms.

In terms of mis-clustered data points also, proposed LSPTSVC performs better than the existing algorithms with an aver-
age rank of 2:3043 (Table 2). A similar trend is observed for the average ranks of the different algorithms. However, the aver-
age rank of FLSTWSVC is lesser than LSTWSVC in terms of mis-clustered data points.

The clusters labelled by all the algorithms using non-linear kernel for Longsquare synthetic dataset are shown in Fig. 3.
There are 6 clusters in this dataset labelled using non-linear kernel. It is clear from the illustration in Fig. 3f that LSPTSVC is
able to label the clusters better than the other algorithms. Also, FLSTWSVC is showing similar performance in Fig. 3e. A sim-
ilar trend is visible in Fig. 4 for Pathbased dataset, where proposed LSPTSVC outperforms the other algorithms.

4.4. Statistical analysis

In this section, we check the statistical significance of proposed LSPTSVC with existing techniques in terms of clustering
accuracy. We perform the Friedman test [8] with the corresponding Nemenyi post hoc test. Initially, we assume that there is
no difference between the methods as the null hypothesis.

4.4.1. Linear case
The v2

F value for Friedman test is calculated using Table 1 as
v2
F ¼

12N
k kþ 1ð Þ

Xk
i¼1

R2
i �

k kþ 1ð Þ2
4

" #
;

where Ri is the average rank on N datasets for ith method.
v2
F ¼ 12�23

7 7þ1ð Þ
X7
i¼1

R2
i � 7 7þ1ð Þ2

4

" #
;

v2
F ¼ 12�23

7 7þ1ð Þ 5:80432 þ 5:47832 þ 4:15222 þ 3:15222 þ 3:63042 þ 3:76092 þ 2:02172
� �

� 7 7þ1ð Þ2
4

h i
;

� 50:7162:



Fig. 3. Plot showing performance of proposed LSPTSVC in comparison to existing algorithms using Gaussian kernel for Longsquare dataset. In the legend ‘C’
means cluster.

Fig. 4. Plot showing performance of proposed LSPTSVC in comparison to existing algorithms using Gaussian kernel for Pathbased dataset. In the legend ‘C’
means cluster.
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The FF value is calculated as
Table 3
Pairwis

Prop

N

Prop
FF ¼ 23� 1ð Þ � 50:7162
23� 7� 1ð Þ � 50:7162

� 12:7831:
Here, the F-distribution has 7� 1; 7� 1ð Þ 23� 1ð Þð Þ ¼ 6;132ð Þ degrees of freedom. Now, for the level of significance at
a ¼ 0:05, the critical value of F 6;132ð Þ is 2:1680. Since, FF ¼ 12:7831 > 2:1680, we reject the null hypothesis.

Now, to check pairwise difference between the proposed method and existing algorithms, we use the Nemenyi post hoc
test. The critical difference is calculated as
CD ¼ ta

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k kþ 1ð Þ

6N

r
; ð47Þ
where ta is the critical value for a level of significance, and CD is the critical difference for k algorithms on N datasets.
For significant pairwise difference between the methods at a ¼ 0:10 level of significance, the average ranks of the meth-

ods shown in Table 1 should differ by at least 2:693
ffiffiffiffiffiffiffiffiffiffiffi
7 7þ1ð Þ
6�23

q
� 1:7155. Table 3 shows the pairwise difference between the

methods. It can be inferred from Table 3 that in the linear case, proposed LSPTSVC is significantly better than FCM, kPC,
TWSVC, and FLSTWSVC algorithms.

4.4.2. Non-linear case
Similar to the linear case, first we calculate the v2 value using Table 2,
v2
F ¼ 12�23

7 7þ1ð Þ 6:17392 þ 4:86962 þ 4:34782 þ 3:73912 þ 3:45652 þ 3:67392 þ 1:73912
� �

� 7 7þ1ð Þ2
4

h i
;

� 55:1196:
The FF value is given as
FF ¼ 23� 1ð Þ � 55:1196
23� 7� 1ð Þ � 55:1196

� 14:6311:
Since, FF ¼ 14:6311 > 2:1680, we reject the null hypothesis. Now, similar to linear case, we perform the Nemenyi post hoc
test using Table 2 to check the pairwise difference between the proposed method and existing algorithms. The results for the
pairwise statistical difference are shown in Table 3. It is clear that in terms of clustering accuracy, proposed LSPTSVC is sig-
nificantly better than all the existing algorithms for the non-linear case.

To analyze the effect of parameter values on the clustering performance, insensitivity analysis of LSPTSVC is performed
for the parameters c and l. Fig. 5 shows the change in accuracy w.r.t. varying values of parameters for real world datasets. It
can be observed in Fig. 5 that for higher values of l, the clustering performance is better. This is due to the fact that in non-
linear case, l decides the value of kernel function, leading to non-linear transformation of data. However, the value of c1 ¼ c2
does not have any significant effect on the clustering accuracy.

4.5. Large scale datasets

To show the effectiveness of the proposed LSPTSVC on large sized datasets, experiments are performed on datasets with
large number of samples as well as features. A total of 12 large scale datasets are included, where 7 datasets are having large
number of samples, while 5 are having large feature size. The algorithms involving QPPs lead to high time complexity for
large number of samples. Therefore, for large sample datasets, we compared the proposed algorithm with clustering algo-
rithms involving solutions of linear equations in Table 4. Moreover, linear kernel is used for the comparison.

It is evident from Table 4 that the proposed LSPTSVC takes least amount of time for large sample datasets. Moreover, the
generalization performance of LSPTSVC is also better in most datasets with an average rank of 1.2857. The training time is
highest for FLSTWSVC, since it involves the calculation of fuzzy membership matrix.

In case of datasets with large features, we used Gaussian kernel in all the algorithms. Here, the SMW formula is not used
in LSTWSVC, FLSTWSVC, and LSPTSVC, since the feature size is more than the number of samples. Table 5 shows the perfor-
mance for datasets with large feature size. One can observe that proposed LSPTSVC is efficient on datasets with large number
e significance of proposed LSPTSVC with existing algorithms.

Linear FCM kPC TWSVC TBSVC LSTWSVC FLSTWSVC

osed LSPTSVC Yes Yes Yes No No Yes

on-linear FCM kPC TWSVC TBSVC LSTWSVC FLSTWSVC

osed LSPTSVC Yes Yes Yes Yes Yes Yes



Fig. 5. Insensitivity of proposed LSPTSVC for clustering to the user specified parameters c1 ¼ c2 and l using Gaussian kernel for real world benchmark
datasets.

Table 4
Performance comparison on accuracy (%) and training time of proposed LSPTSVC with existing algorithms on large sample datasets using linear kernel. Average
rank is based on accuracy.

Dataset
(Train size, Test size)

Clusters LSTWSVC
Accuracy
Time (s)

FLSTWSVC
Accuracy
Time (s)

Proposed
LSPTSVC
Accuracy
Time (s)

Pendigits
(5996 � 17, 1498 � 17)

10 84.76
1.3836

79.77
1.5956

83.31
1.0081

Penbased
(8794 � 16, 2198 � 16)

10 75.62
2.6765

71.7
2.9576

81.59
2.0746

Letter_10k
(8000 � 16, 2000 � 16)

26 86.21
6.2636

86.64
6.9988

91.51
5.1504

Letter_20k
(16000 � 16, 4000 � 16)

26 81.16
23.0756

87.54
24.9343

90.17
19.9956

Poker_30k
(24000 � 10, 6000 � 10)

8 54.71
13.3279

53.28
16.7914

54.68
10.6532

Poker_40k
(32000 � 10, 8000 � 10)

9 54.78
30.5703

53.98
36.0595

55.29
22.2977

Poker_50k
(40000 � 10, 10000 � 10)

9 54.41
48.7161

54.51
62.3994

54.99
36.6232

Average rank 2.1429 2.5714 1.2857
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of features. On TTC-3600 dataset, the training time of LSPTSVC is significantly lesser than the other algorithms. Also, the
accuracy of LSPTSVC is better for all the datasets. However, the differences in training time of the algorithms are not high.
This is due to inclusion of time for generation of kernel matrices in all the algorithms. The time required for generation of
kernel matrices is very high in comparison to other steps in the algorithms.



Table 5
Performance comparison on accuracy (%) and training time of proposed LSPTSVC with existing algorithms on large feature datasets using Gaussian kernel.
Average rank is based on accuracy.

Dataset
(Train size, Test size)

Clusters TSVC
Accuracy
Time (s)

TBSVC
Accuracy
Time (s)

LSTWSVC
Accuracy
Time (s)

FLSTWSVC
Accuracy
Time (s)

Proposed
LSPTSVC
Accuracy
Time (s)

Dbworld_emails
(52 � 4702, 12 � 4702)

2 83.33
0.075

69.7
0.0716

69.7
0.0611

69.7
0.0669

100
0.0598

Hydraulic_condition_ps1
(1103 � 6000, 1102 � 6000)

2 50.03
61.3294

62.06
61.5112

50.93
60.8006

59.21
60.8788

62.97
60.6945

Hydraulic_condition_ps2
(1103 � 6000, 1102 � 6000)

2 59.85
60.6696

52.45
61.1182

56.03
60.4428

53.52
60.5068

70.85
60.2428

Hydraulic_condition_ps4
(1544 � 6000, 661 � 6000)

2 66.39
119.679

66.74
119.708

67.63
118.259

62.33
118.567

68.91
117.561

TTC-3600
(2880 � 7507, 720 � 7507)

6 68.54
687.917

66.76
660.138

65.09
632.627

60.59
632.861

69.31
613.667

Average rank 3 3.4 3.4 4.2 1
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4.6. Applications

In this section, we present some real world applications of the proposed LSPTSVC, along with comparisons to existing
algorithms. Experiments are performed on biometric data viz. facial, and facial expression images. Moreover, we also present
the application of LSPTSVC on biomedical data. We use ADNI MRI data to evaluate clustering ability of LSPTSVC on Alzhei-
mer’s disease. For all the applications, Gaussian kernel is used in proposed and existing algorithms.

4.6.1. Face clustering
A total of 400 images are included from the AT&T face recognition database shown in Fig. 6. The dataset consists of 10

images of 40 individuals, each having dimension of 112� 92. 200 images are used in the training as well as testing phase.
The dataset is constructed by using all pixel values of an image in one row of the dataset matrix. To avoid overfitting of
model, we use principal component analysis (PCA) and class discriminatory ratio (CDR) [30] to reduce the dimension of
the dataset to 400� 100. The results for face clustering are shown in Fig. 7. It is evident that LSPTSVC is able to cluster facial
data with better accuracy i.e., 95.53% in comparison to other algorithms.
Fig. 6. AT&T face recognition data (AT&T Laboratories Cambridge) comprising of 40 individuals.

Fig. 7. Performance comparison of the proposed LSPTSVC with existing algorithms for clustering of AT&T face recognition data.
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4.6.2. Facial expression clustering
A total of 210 images are downloaded from the well known JAFFE facial expression database [21] having 30 images of

each expression. The dataset contains 7 classes as shown in Fig. 8. A total of 140 images are used for training consisting
of 20 images of each class, and 70 for testing containing 10 images of each class. The dimension of all the images is
256� 256.

In comparison to face recognition, facial expression is a much more difficult problem due to large variations in facial
expressions among individuals [19]. However, edge based information is useful for identifying facial expressions [12]. Wave-
let transform is used for extracting high frequency components [30] responsible for the edges. Therefore, we used PCA along
with wavelet transform for dimension reduction, and extraction of useful information for expression detection. Wavelet
transform [30] is performed using ‘Daeubechies-4’ wavelet up to 3 levels of decomposition. Further, CDR is utilized to select
the prominent features. After dimension reduction, the size of the dataset becomes 210� 50. The results for clustering are
shown in Fig. 9. In comparison to face recognition, the accuracy is lower in all the algorithms for both features. However, it
can be observed that the proposed LSPTSVC is showing highest clustering accuracy for both feature sets i.e. PCA and wavelet
for the facial expression dataset.

Other algorithms obtaining high clustering accuracy are TBSVC and FLSTWSVC. This is because TBSVC involves the reg-
ularization term, and FLSTWSVC includes fuzzy membership information about the data points.
4.6.3. Alzheimer’s disease clustering
Alzheimer’s disease is an incurable disease affecting 50 million people worldwide [23]. Classification of Alzheimer’s dis-

ease data is a challenging task [40]. For unlabelled Alzheimer data, clustering is a very useful option. As per our search, there
is no work on application of SVM based clustering techniques for Alzheimer’s disease data. Therefore, we used Alzheimer’s
data for clustering by the proposed LSPTSVC and compared with other algorithms.

150 T1-weighted structural MRI images are downloaded from the ADNI database. There are 50 images belonging to each
of the three categories i.e., control normal (CN), mild cognitive impairment (MCI), and Alzheimer’s disease (AD) as shown in
Fig. 10. The average age of the subjects is 75.83 ± 6.07 years, and the Mini-Mental State Examination (MMSE) score of sub-
jects is 26.51 ± 2.88. The images are of the following specifications: field strength = 1.5 T; description: MP-RAGE, acquisition:
3D, acquisition plane: sagittal, pulse sequence: RM; slice thickness: 1.2 mm; flip angle: 8 degrees; manufacturer: GE medical
systems.
Fig. 8. Sample images of JAFFE database showing different facial emotions.

Fig. 9. Performance comparison of proposed LSPTSVC with existing algorithms for clustering of JAFFE facial expression data.



Fig. 10. MRI images of CN, MCI, and AD subject from ADNI database.

Fig. 11. (a) Performance comparison of proposed LSPTSVC with existing algorithms for clustering of ADNI Alzheimer’s disease data. (b) Plot of Alzheimers
dataset using two PCA components.
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The images are processed using Freesurfer to extract the volumetric and thickness measures of the brain. Since, one MCI
image failed to process in the Freesurfer pipeline, the dimension of the dataset is 149� 91. The feature set includes 34 sub-
cortical volumes, 23 WM tissue volumes, and 34 cortical thickness measures [32]. 74 images are used for training and 75 for
testing. The results are shown in Fig. 11a. It is evident that the proposed LSPTSVC is effective in clustering Alzheimers data in
comparison to other algorithms. LSPTSVC obtains a clustering accuracy of 63.09% for CN, MCI and AD subjects. The clustering
accuracy of LSPTSVC is similar to previous works [36,18] on multiclass classification of Alzheimers data. However, the clus-
tering accuracy of FLSTWSVC is lowest among all the methods. This may be attributed to the presence of outliers in the data.
Indeed, the clustering accuracies of all the algorithms are comparatively lower than the applications discussed in the previ-
ous subsections. This is because the data points belonging to the classes MCI and AD are non-linear in their distribution, and
are overlapping in nature [32] as shown in Fig. 11b. Moreover, MCI is an intermediate stage between CN and AD, leading to
incorrect labelling of data points [46]. Therefore, the Alzheimers dataset is difficult to classify [40] or cluster.

5. Conclusions and future work

In this work, we proposed a novel projection based clustering algorithm i.e., LSPTSVC. Proposed LSPTSVC finds projection
axes instead of projection planes for clustering. This is an alternative to the plane based clustering algorithms. The solution of
proposed LSPTSVC is obtained by solving a set of linear equations, leading to lesser computational cost. Consequently, no
optimization toolbox is required for LSPTSVC. Experimental results show that proposed LSPTSVC obtains better clustering
accuracy than existing algorithms with lesser training time. Statistical analysis also implies that the proposed algorithm
is significantly better than existing algorithms. Moreover, LSPTSVC is an efficient algorithm for clustering on datasets with
large sample and feature size. In future, the proposed LSPTSVC can be extended for multiple projection axes.

In case of real world applications, LSPTSVC performed better than the existing algorithms. This justifies its applicability
for real world applications. In case of Alzheimer’s disease, proposed LSPTSVC has shown significantly better performance,
justifying its use for healthcare applications. In future, proposed LSPTSVC can be applied on other real world clustering
problems.

CRediT authorship contribution statement

B. Richhariya: Conceptualization, Methodology, Formal analysis, Investigation, Resources, Writing - original draft, Writ-
ing - review & editing, Visualization. M. Tanveer: Conceptualization, Methodology, Validation, Writing - review & editing,
Supervision, Funding acquisition.



22 B. Richhariya, M. Tanveer / Information Sciences 533 (2020) 1–23
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We are thankful to the anonymous reviewers for their constructive comments for improvement of the paper.
This work was supported by Science & Engineering Research Board (SERB) under Ramanujan fellowship Grant No. SB/S2/

RJN-001/2016 and Early Career Research Award Grant No. ECR/2017/000053. It is also supported by Council of Scientific &
Industrial Research (CSIR), New Delhi, INDIA under Extra Mural Research (EMR) Scheme Grant No. 22(0751)/17/ EMR-II. We
gratefully acknowledge the Indian Institute of Technology Indore for providing facilities and support. A sincere thanks to the
Indian Institute of Technology Indore for providing Institute fellowship to Mr. Bharat Richhariya. The collection of data and
sharing of this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health
Grant U01 AG024904), and DOD ADNI (Department of Defense award number W81XWH-12–2-0012). The funding for ADNI
is provided by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through
generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Ara-
clon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuti-
cals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.;
Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson
Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx
Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda
Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to sup-
port ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of
Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the
study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. The dissem-
ination of ADNI data is carried out by the Laboratory for Neuro Imaging at the University of Southern California.

References

[1] L. Bai, Y.H. Shao, Z. Wang, C.N. Li, Clustering by twin support vector machine and least square twin support vector classifier with uniform output
coding, Knowl.-Based Syst. 163 (2019) 227–240.

[2] J.C. Bezdek, R. Ehrlich, W. Full, FCM: The fuzzy c-means clustering algorithm, Comput. Geosci. 10 (2–3) (1984) 191–203.
[3] P.S. Bradley, O.L. Mangasarian, K-plane clustering, J. Global Optim. 16 (1) (2000) 23–32.
[4] S.G. Chen, X.J. Wu, A new fuzzy twin support vector machine for pattern classification, Int. J. Mach. Learn. Cybern. 9 (9) (2018) 1553–1564.
[5] X. Chen, J. Yang, Q. Ye, J. Liang, Recursive projection twin support vector machine via within-class variance minimization, Pattern Recogn. 44 (10–11)

(2011) 2643–2655.
[6] P.M. Cheung, J.T. Kwok, A regularization framework for multiple-instance learning, in: Proceedings of the 23rd International Conference on Machine

learning, ACM, 2006, pp. 193–200.
[7] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995) 273–297.
[8] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res. 7 (Jan) (2006) 1–30.
[9] D. Dua, C. Graff, UCI machine learning repository, 2017. .
[10] X. Gao, L. Fan, H. Xu, Multiple rank multi-linear kernel support vector machine for matrix data classification, Int. J. Mach. Learn. Cybern. 9 (2) (2018)

251–261.
[11] G.H. Golub, C.F. Van Loan, Matrix computations, vol. 3, JHU Press, 2012.
[12] R.J. Harris, A.W. Young, T.J. Andrews, Brain regions involved in processing facial identity and expression are differentially selective for surface and edge

information, NeuroImage 97 (2014) 217–223.
[13] L. Huang, D. Yan, N. Taft, M.I. Jordan, Spectral clustering with perturbed data, in: Advances in Neural Information Processing Systems, pp. 705–712. .
[14] A.K. Jain, Data clustering: 50 years beyond k-means, Pattern Recogn. Lett. 31 (8) (2010) 651–666.
[15] Jayadeva, R. Khemchandani, S. Chandra, Twin support vector machines for pattern classification, IEEE Trans. Pattern Anal. Mach. Intell. 29 (5) (2007)

905–910.
[16] R. Khemchandani, A. Pal, S. Chandra, Fuzzy least squares twin support vector clustering, Neural Comput. Appl. 29 (2) (2018) 553–563.
[17] M.A. Kumar, M. Gopal, Least squares twin support vector machines for pattern classification, Expert Syst. Appl. 36 (4) (2009) 7535–7543.
[18] R.K. Lama, J. Gwak, J.S. Park, S.W. Lee, Diagnosis of Alzheimer’s disease based on structural MRI images using a regularized extreme learning machine

and PCA features, J. Healthcare Eng. 2017 (2017), https://doi.org/10.1155/2017/5485080.
[19] H. Li, G. Wen, Sample awareness-based personalized facial expression recognition, Appl. Intell. 49 (8) (2019) 2956–2969.
[20] X. Liu, T. Zhu, L. Zhai, J. Liu, Mass classification of benign and malignant with a new twin support vector machine joint l2;1-norm, Int. J. Mach. Learn.

Cybern. 10 (1) (2019) 155–171.
[21] M. Lyons, S. Akamatsu, M. Kamachi, J. Gyoba, Coding facial expressions with gabor wavelets, in: Proceedings Third IEEE International Conference on

Automatic Face and Gesture Recognition, IEEE, 1998, pp. 200–205.
[22] S. Ma, B. Cheng, Z. Shang, G. Liu, Scattering transform and LSPTSVM based fault diagnosis of rotating machinery, Mech. Syst. Signal Process. 104 (2018)

155–170.
[23] C. Patterson, The state of the art of dementia research: New frontiers, World Alzheimer’s Report 2018 (2018).
[24] X. Peng, D. Chen, PTSVRs: regression models via projection twin support vector machine, Inf. Sci. 435 (2018) 1–14.
[25] Z. Qi, Y. Tian, Y. Shi, Robust twin support vector machine for pattern classification, Pattern Recogn. 46 (1) (2013) 305–316.
[26] J. Qiu, K. Sun, I.J. Rudas, H. Gao, Command filter-based adaptive nn control for mimo nonlinear systems with full-state constraints and actuator

hysteresis, IEEE Trans. Cybern. (2019), https://doi.org/10.1109/TCYB.2019.2944761.
[27] J. Qiu, K. Sun, T. Wang, H. Gao, Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed

performance, IEEE Trans. Fuzzy Syst. 27 (11) (2019) 2152–2162.
[28] R. Rastogi, A. Pal, Fuzzy semi-supervised weighted linear loss twin support vector clustering, Knowl.-Based Syst. 165 (2019) 132–148.

http://refhub.elsevier.com/S0020-0255(20)30393-5/h0005
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0005
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0010
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0015
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0020
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0025
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0025
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0030
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0030
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0030
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0035
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0040
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0050
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0050
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0055
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0055
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0060
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0060
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0070
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0075
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0075
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0080
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0085
https://doi.org/10.1155/2017/5485080
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0095
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0100
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0100
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0100
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0105
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0105
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0105
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0110
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0110
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0115
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0120
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0125
https://doi.org/10.1109/TCYB.2019.2944761
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0135
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0135
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0140


B. Richhariya, M. Tanveer / Information Sciences 533 (2020) 1–23 23
[29] M. Reuter, N.J. Schmansky, H.D. Rosas, B. Fischl, Within-subject template estimation for unbiased longitudinal image analysis, NeuroImage 61 (4)
(2012) 1402–1418.

[30] B. Richhariya, D. Gupta, Facial expression recognition using iterative universum twin support vector machine, Appl. Soft Comput. 76 (2019) 53–67.
[31] B. Richhariya, M. Tanveer, EEG signal classification using universum support vector machine, Expert Syst. Appl. 106 (2018) 169–182.
[32] B. Richhariya, M. Tanveer, A.H. Rashid, Alzheimer’s Disease Neuroimaging Initiative, Diagnosis of Alzheimer’s disease using universum support vector

machine based recursive feature elimination (USVM-RFE), Biomed. Signal Process. Control 59 (2020) 101903.
[33] Y.H. Shao, L. Bai, Z. Wang, X.Y. Hua, N.Y. Deng, Proximal plane clustering via eigenvalues, Proc. Comput. Sci. 17 (2013) 41–47.
[34] Y.H. Shao, N.Y. Deng, Z.M. Yang, Least squares recursive projection twin support vector machine for classification, Pattern Recogn. 45 (6) (2012) 2299–

2307.
[35] Y.H. Shao, C.H. Zhang, X.B. Wang, N.Y. Deng, Improvements on twin support vector machines, IEEE Trans. Neural Networks 22 (6) (2011) 962–968.
[36] L. Sørensen, C. Igel, A. Pai, I. Balas, C. Anker, M. Lillholm, M. Nielsen, Alzheimer’s Disease Neuroimaging Initiative, Differential diagnosis of mild

cognitive impairment and Alzheimer’s disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry,
NeuroImage: Clinical 13 (2017) 470–482.

[37] K. Sun, S. Mou, J. Qiu, T. Wang, H. Gao, Adaptive fuzzy control for nontriangular structural stochastic switched nonlinear systems with full state
constraints, IEEE Trans. Fuzzy Syst. 27 (8) (2018) 1587–1601.

[38] M. Tanveer, C. Gautam, P. Suganthan, Comprehensive evaluation of twin svm based classifiers on uci datasets, Appl. Soft Comput. 83 (2019) 105617.
[39] M. Tanveer, M.A. Khan, S.S. Ho, Robust energy-based least squares twin support vector machines, Appl. Intell. 45 (1) (2016) 174–186.
[40] M. Tanveer, B. Richhariya, R.U. Khan, A.H. Rashid, P. Khanna, M. Prasad, C.T. Lin, Machine learning techniques for the diagnosis of Alzheimer’s disease: a

review, ACM Trans. Multimedia Comput., Commun., Appl. (TOMM) 16 (1s) (2020) 1–35.
[41] M. Tanveer, A. Sharma, P.N. Suganthan, General twin support vector machine with pinball loss function, Inf. Sci. 494 (2019) 311–327.
[42] M. Tanveer, K. Shubham, M. Aldhaifallah, K. Nisar, An efficient implicit regularized lagrangian twin support vector regression, Appl. Intell. 44 (4) (2016)

831–848.
[43] Y. Tian, Z. Qi, Review on: twin support vector machines, Ann. Data Sci. 1 (2) (2014) 253–277.
[44] S. Wan, M.W. Mak, Predicting subcellular localization of multi-location proteins by improving support vector machines with an adaptive-decision

scheme, Int. J. Mach. Learn. Cybern. 9 (3) (2018) 399–411.
[45] Z. Wang, Y.H. Shao, L. Bai, N.Y. Deng, Twin support vector machine for clustering, IEEE Trans. Neural Networks Learn. Syst. 26 (10) (2015) 2583–2588.
[46] Z. Wang, Y. Zheng, D.C. Zhu, A.C. Bozoki, T. Li, Classification of Alzheimer’s disease, mild cognitive impairment and normal control subjects using

resting-state fMRI based network connectivity analysis, IEEE J. Transl. Eng. Health Med. 6 (2018) 1–9.
[47] E. Westman, J.S. Muehlboeck, A. Simmons, Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive

impairment conversion, NeuroImage 62 (1) (2012) 229–238.
[48] Z.M. Yang, H.J. Wu, C.N. Li, Y.H. Shao, Least squares recursive projection twin support vector machine for multi-class classification, Int. J. Mach. Learn.

Cybern. 7 (3) (2016) 411–426.
[49] A.L. Yuille, A. Rangarajan, The concave-convex procedure (CCCP), in: Advances in Neural Information Processing Systems, 2002, pp. 1033–1040.
[50] N.N. Zhao, X.Y. Ouyang, C. Gao, L. Wang, A v-twin projection SVR with automatic accuracy adjustment, Artif. Intell. Rev. 53 (2020) 1511–1527.

http://refhub.elsevier.com/S0020-0255(20)30393-5/h0145
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0145
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0150
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0155
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0160
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0160
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0165
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0170
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0170
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0175
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0180
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0180
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0180
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0180
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0185
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0185
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0190
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0195
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0200
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0200
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0205
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0210
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0210
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0215
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0220
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0220
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0225
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0230
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0230
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0235
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0235
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0240
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0240
http://refhub.elsevier.com/S0020-0255(20)30393-5/h0250

	Least squares projection twin support vector clustering (LSPTSVC)
	1 Introduction
	2 Related work
	2.1 Least squares projection twin support vector machine (LSPTSVM)
	2.2 Twin support vector clustering (TWSVC)

	3 Proposed algorithm
	3.1 Linear LSPTSVC
	3.2 Non-linear LSPTSVC
	3.3 Convergence
	3.4 Time complexity
	3.5 Proposed LSPTSVC vs LSPTSVM

	4 Experimental results
	4.1 Data
	4.2 Experimental setup
	4.3 Results on benchmark datasets
	4.4 Statistical analysis
	4.4.1 Linear case
	4.4.2 Non-linear case

	4.5 Large scale datasets
	4.6 Applications
	4.6.1 Face clustering
	4.6.2 Facial expression clustering
	4.6.3 Alzheimer’s disease clustering


	5 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


