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Simultaneous Multiscale Registration using Large
Deformation Diffeomorphic Metric Mapping.
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Abstract— In the framework of Large Deformation Diffeo-
morphic Metric Mapping (LDDMM), we present a practical
methodology to integrate prior knowledge about the registered
shapes in the regularizing metric. We therefore discuss the link
between the registration technique used to compare imaged
organs and the physical meaning of its parametrization. Our
interests are threefold: (1) We first present the notion of charac-
teristic scale at which the features contained in two images are
optimally compared. (2) With the increasing resolution of medical
images, different biological phenomenons can be observed at
several characteristic scales simultaneously. We therefore propose
a methodology to compare such multiscale phenomenons. (3) In
this context, we finally introduce a strategy to quantitatively
measure the phenomenons occurring at each scale separately.
After describing our methodology, we illustrate the meaning and
influence of each of its parameters on phantom data. We then
study its behavior on standard 3D MR longitudinal images out of
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.
We finally show its potential to quantify the anatomical evolution
of the human brain from 3D MR longitudinal images of pre-term
babies.

Index Terms— Diffeomorphic registration, multiscale, LD-
DMM, smoothing kernel, image comparison

I. INTRODUCTION

NON-rigid image registration is of primary importance in
medical image analysis. The reader unfamiliar with this

field can find a recent and interesting comparison of standard
non-rigid registration techniques in [1]. Importantly, these
techniques can be applied to perform quantitative comparisons
of the shapes represented in medical images. In this context,
the underlying motivation of our work is to define pertinent
and intuitive spatial regularizers when registering a source im-
age IS and a target image IT according to the image features.
In particular, we treat the notion of characteristic scale of the
deformations, which refers here to the scale at which two shape
features are optimally compared. For instance, to compare the
cortical thickness in adult human brains 0.2−0.8mm is a good
range of characteristic scales. In hearts, to compare the size
of the left atrial long axis between the end-diastole and end-
systole characteristic scales of 5 − 20mm is more pertinent.
Practically, if the characteristic scale of the registration is s: (1)
the deformations of features having a size smaller than s are
considered as almost rigid and (2) the deformations of features
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having a scale larger than s may have no statistical meaning
since very few spatial regularization constrain their deforma-
tions. Our key motivation is to compare quantitatively organs
represented in 3D medical images. They may represent intra-
subject longitudinal evolution of an organ, or a patient’s organ
relative to a healthy organ, represented by a standard shape.
In both cases, the compared organs may contain anatomical
structures having feature differences observed at several scales
simultaneously. Importantly, due to the increasing resolution
of medical images, such multi-scale structure variability can be
fully imaged, as shown in section VI. This is also illustrated in
Fig. 1, where a shape grows at large scale globally and also at
small scale locally. The acquired images may also be subject
to artifactual low frequency deformations at a scale different
to the phenomenons of interest. It is therefore interesting to
compare imaged shapes at several scales simultaneously and
being able to quantify the deformations at a single scale among
others. This is the problem we address in this paper.

Multi-scale properties in images can be characterized by
using fractal or multi-fractal dimensions [2]–[4]. Another
strategy to measure such properties is to use the power
spectrum or the autocorrelation of the image [4], [5], which
are directly related to Fourier transforms. Such measures are
however global. The relation between scale and space in
images has been an active field of research since early works in
digital image analysis [6]. These issues have in particular been
treated by the scale-space community [7]–[10] or by using
wavelet decompositions [11], [12]. Our work differs from most
of these studies since we focus on image comparisons and
not the description of the images themselves. We therefore
propose a practical paradigm to measure such variations in the
framework of the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) [13]–[17], discussed in section II. We
restrict our study to the simultaneous comparison of shapes at a
limited number of user-defined characteristic scales. This gives
therefore an intuitive control to the method parameterization
and a physical meaning to the comparisons.

In practice, the prior knowledge on characteristic scales
is integrated in the metric of the deformations which is a
fundamental aspect of the LDDMM framework. The metric
is indeed directly related to the smoothing kernel of the
deformations that controls their spatial regularization as ini-
tially described in [18]. The idea of incorporating several
characteristic scales in a metric is close to the idea underlying
the strategy proposed in [19] which consists in registering
images at several scales simultaneously. In the context of
LDDMM, it is also related to the work of J. Glaunes where
time-dependent kernels were used in the context of surface
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registration [20]. Note also that in [21], the authors contributed
to the important topic of the choice of the metric: in particular,
they introduced polyharmonic clamped-plate splines for the
smoothing kernel and advocated their suitability for biological
images. Finally, we emphasize that the role of the similarity
measure is also another important topic of research. For
instance [22], [23] make use of currents for the similarity
measure. In this context, it would be worth studying the
integration of some characteristic lengths within this similarity
measure. Yet, our work is preliminary to such developments
[24].
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Scale 1
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Fig. 1. Comparison of two shapes presenting differences at two characteristic
scales simultaneously. At a large scale (scale 1), the shape grows relatively
homogeneously while at a smaller scale (scale 2) a cavity locally differentiate
the images. The diffeomorphism matching the point xs of the source image
to the point xt of the target image ideally represents the simultaneous
contribution of two clearly identified scales.

The paper is organized as follows. In section II, we present
several techniques of diffeomorphic registration and explain
our motivations to use the LDDMM formalism. A standard
implementation of the LDDMM for 3D images [15] is then
presented in section III and its multiscale extension introduced
in section IV. In this context, we then propose in section V,
a technique to quantify the deformations that occur at only
one scale of interest among others from the initial image.
These ideas were introduced in [25], [26] but the behavior
of the methodology according to its parameters were briefly
presented in the previous communications. In order to help the
end-user to understand the phenomenons quantified at each
scale, we then first propose in section V a new methodology
to illustrate the deformations occurring at the different scales
separately. In the section VI, we also describe four new tests
that clarify the physical interpretation of the parameters and
their optimal tuning. Again, it improves the usability of the
method for the end-user. In particular, we illustrate the notion
of characteristic scale which is at the heart of the paper. We
also quantify the ability of our technique to detect feature
differences at several scales simultaneously as a function of
its parameters. Then, we compare its statistical power with a
classical coarse to fine approach with no resampling of the
images, on 3D MR images. Finally, we assess its potential to
quantify the brain evolution in 3D images of pre-term babies.

II. CHOICE OF THE DIFFEOMORPHIC REGISTRATION
FORMALISM

Diffeomorphic registration has gained a large interest in
the last decade. Instead of encoding the deformation from a
source image IS to a target image IT in displacement vector
fields, it makes use of vector fields assimilated to velocity
fields that deform the image points, considered as particles.
In this context the deformation flow is the structure encoding
the deformations. The benefit of such deformations is that it
makes possible invertible large deformations that ensure the
preservation of the objects topology. Spatial regularization on
the velocity fields also enforces the smoothness of the defor-
mations. Importantly, considering the flow of deformation to
compare shapes, instead of the final deformation only, appears
as an interesting option for quantitative shape comparisons.

In this paper, we used the Large Deformation Diffeomor-
phic Metric Mapping (LDDMM) framework [13]–[17] which
foundations can be found in [27]. Here, the deformations are
encoded in a time-dependent velocity field. A particularity
of the LDDMM is that it is designed to estimate geodesics
between the source and target images. This means that the
optimal flow of deformation is the shortest path between the
images according to a regularizing metric. In this case, the
optimal path has shooting properties [28] from the velocity
field at time 0 that can be used to statistically compare
shapes [29]. A practical implementation of the LDDMM
framework for image registration has been proposed in [15].
In [30], [31], the approach has been used to measure shape
variations between segmented hearts, in order to highlight
the structural remodeling of dyssynchronous failing hearts.
In [32], [33] the LDDMM has been extended to vector- and
tensor-valued images. Finally a symmetric extension has been
proposed in [34]. However, although it was designed to allow
large deformations, its practical use in real medical images is
often limited to relatively small deformations. Note also that
although we focus here on volumetric images comparisons
most of the applications of the LDDMM framework were done
on surfaces, like in [20], [35] for instance.

Alternative approaches have been proposed in the literature:
For instance, a symmetric interpretation of [15] using cross
correlation to measure the similarity between source and target
images was proposed in [36]. This interpretation was used in
[37] to measure the cortical grey matter thickness in segmented
brain images. Another approach, allowing multimodal regis-
tration for atlas creation was proposed in [38]. More recently,
[15] has been formulated as an optimal control problem in
[39] leading to an improvement of the convergence speed
and robustness. Approaches making use of the Navier-Stokes
equation, have also been proposed [40], [41]. However, none
of these alternatives has been explicitly designed to estimate
geodesic transformations.

An important class of diffeomorphic registration techniques
has also emerged with [42]. This paper indeed discusses the
potential advantage of using exponential maps of constant
velocity fields to model diffeomorphic deformations. The key
advantage is the ability of exponential maps to model smooth,
invertible and large deformations by using far less degrees of



SUBMITTED TO JOURNAL OF IEEE MEDICAL IMAGING 3

freedom than methods based on time-dependent velocity fields.
These algorithms are then faster and require less memory than
those using time dependent velocity fields. However, finding
optimal and meaningful deformations using exponential maps
still appears as an open field of research, particularly for
large deformations. In [43] the authors use a formulation very
similar to [15] but only update the velocity field encoding
the flow of deformation at the final time of the deformation.
Only relatively small deformations can therefore be estimated.
In [44], exponential maps are composed iteratively to update
a displacement field in an extension of Thirion’s demons
algorithm [45]. This leads to the fast estimation of smooth,
invertible and potentially large deformations. Interestingly,
an extension of this method where the total deformation is
encoded in the exponential maps has also been proposed in
[46]. Image comparisons can then be performed on the flow
of deformation and not the displacement field only. Finally
another important technique of diffeomorphic registration us-
ing exponential maps was proposed in [47]. Here the spatial
regularization of the deformations is addressed in an elastic
model. Again, it appears as a good alternative to the LDDMM
formalism for many applications but it has not been designed
to estimate geodesic transformations and may be limited to
estimate large deformations.

Although interesting alternatives to the LDDMM exist, we
developed our method using this framework. This is mainly
due to its solid mathematical foundations which gives it a high
potential to design new registration paradigms with a rich,
intuitive and mathematically justified interpretation. It also
appears as the most adapted approach to address organ feature
comparisons with very large deformations. By discussing
the choice of pertinent metrics for problem specific image
comparisons, we hope to increase its usability for clinical
applications.

III. LARGE DEFORMATION DIFFEOMORPHIC METRIC
MAPPING

A. Standard registration algorithm

We give here an overview of the standard LDDMM reg-
istration algorithm [15]. Let IS be a source image, defined
on a spatial domain Ω, and registered on a target image IT
through the time-dependent diffeomorphic transformation φt

of Ω, t ∈ [0, 1]. This flow of deformation is defined by a
time dependent velocity field vt, t ∈ [0, 1] as follows (see also
Fig. 2): 

∂
∂t
φt = vt(φt), t ∈ [0, 1],

φ0 = Id.

(1)

For notational convenience, we introduce φt,s
.= φs ◦φ−1

t . We
then use I ◦ φt,s to denote the projection at time t of I taken
at time s.

The registration problem then consists in finding the time
dependent velocity field vt that minimizes the sum of a
similarity and a deformation energy:

E(v) =
∫ 1

0

1
2
||vt||2V dt+

1
2
||IS ◦ φ−1

1 − IT ||2L2 . (2)
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Fig. 2. Transportation of a point xS of a source image IS to match the
point xT of a target image IT . The transportation is performed through φt

which is defined by the time dependent velocity field vt.

The second term measures the similarity between the deformed
source image IS ◦ φ−1

1 and IT . Here, the sum of squared
differences between the image intensities is used. The energy
of the deformation is computed as a special norm of v. The
velocity field v is assumed to lie in L2([0, 1], V ), where the
Hilbert space V is expressed by a smooth matrix valued
kernel K describing the velocity fields that can be used for
the registration. At time t, the norm can be computed by
||vt||2V =< F(vt)F(K)−1,F(vt) >L2 , where F(.) represents
a Fourier transform. Even though there is a wide family of
available kernels associated with V , most approaches use
Gaussian kernels:

K(x) = (2π)−d/2|Σ|−1/2 exp
(
−1

2
xT Σ−1x

)
, (3)

where Σ is the covariance matrix of the Gaussian kernel. In our
work, we assume isotropic covariances, i.e. Σ = σIdRd , where
the key parameter σ controls the level of spatial regularization
of the deformations. The minimization algorithm is described
hereafter. We denote JS

t = IS ◦ φt,0, JT
t = IT ◦ φt,1 and

|Dφt,1| the Jacobian of φt,1 at time t. The minimization of the
variational problem of eq. 2 is performed by using a steepest
gradient descent approach. This involves the iterative use of
the gradient of E in L2([0, 1], V ), ∀t:

∇vEt = vt −K ?
(
|Dφv

t,1|∇JS
t (JS

t − JT
t )
)
, (4)

where ? denotes the convolution operator. The velocity field
is then updated by computing:

vk+1 = vk − ε∇vk
tj
E, (5)

where ε controls the step size during the gradient descent.

B. Extraction of the momentum maps

After convergence towards the minimum energy, the time
dependent diffeomorphism resulting from the algorithm of
[15] is a geodesic path in the group of diffeomorphisms for
which the associated velocity field satisfies the Euler-Lagrange
equation. It has therefore the interesting properties presented
in section II which are computed from the initial momentum
map P0, a 3D scalar field encoding the 3D+t diffeomorphism
in association with IS and K. The initial momentum map
can be retrieved from the initial velocity field by using P0 =
Lv0, where L is the inverse operator of K. In practice, this
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calculation can be performed using Fourier transforms F(.) as
follow:

F(P0) = F(K)−1F(v0) .

Note that this strategy may be sensitive to approximation
errors, so P0 may also be computed at every step of the
gradient descent described in the previous subsection. More
details are given in [48].

IV. FINE AND COARSE LDDMM
A. Introduction

In section I, we presented the notion of characteristic scale
of the deformations that we also justify in the test of subsection
VI-B. We also presented that, due to the increasing reso-
lution of medical images, different biological phenomenons,
occurring at several scales simultaneously, can be imaged.
This opens new questions for the anatomical comparison of
such phenomenons. In [25] we discussed that, to compare
two images at several scales simultaneously in the LDDMM
framework, computing the optimal flow of deformation at a
large scale and then improving it at a small scale is not an
appropriate strategy. The scale of the comparison is indeed
entirely expressed by the metric of the final step of the
registration. Hence, we propose a strategy to perform such
comparisons with a physical meaning.

B. Registration paradigm

We define a registration paradigm in which the user em-
pirically defines N characteristic scales σn at which the
registered shapes have feature variations. This information is
then incorporated into the metric underlying the kernel K
presented in section III. Naturally, parameters an modeling the
relations between the scales are also defined. If well defined,
this incorporated knowledge leads to meaningful statistical
comparisons of the images since problem-specific properties
are integrated into the metric. Although this flexibility implies
the definition of additional parameters, they are limited and
can be tuned intuitively.

C. Sum of Gaussian kernels

To simultaneously perform the registration at several scales
of interest, we propose to use kernels K that are the weighted
sum of N Gaussian kernels Kn of different sizes:

K(x) =
N∑

n=1

Kn(x)

=
N∑

n=1

an(2π)−3/2|Σn|−1/2 exp
(
−1

2
xT Σ−1

n x

)
,

(6)
where Σn and an are respectively the covariance matrix and
the weight of the nth Gaussian function. As in eq. 3, each Σn

is only defined by a characteristic scale σn: Σn = σnIdRd .
Eq. 6 allows to construct a wide range of kernels with
several scales of interest while preserving all the promising
statistical properties of the LDDMM formalism. The meaning
and practical tuning of the weights an is explained in the next
subsection.

D. Definition of the weights

Our fine and coarse registration technique depends on a
set of parameters an, n ∈ [1, N ] each of them controlling
the weight of the deformations at scale n. A meaningful
setting of the weights depends on: (1) Representation and
spatial organization of the structures: A same structure can
be encoded in various ways. For instance, it can be binarized
or represented by a range of grey levels. The representation
of the structures influences the an due to the similarity
metric used in the Eq. 2. Similarly, the size and spatial
relations between the structures influence naturally the choice
of the an. (2) Prior knowledge: Prior knowledge about the
amplitude of the structures displacement at each scale σn

may be incorporated in an.

In [25] we proposed the following strategy to tune the
weights an. We model each an as follows:

an = a′n/g(Kn, IS , IT ),

where g(Kn, IS , IT ) represents the typical amplitude of the
updates of vt in Eq. 8 when registering IS to IT at scale n.
This value depends on the representation of the structures and
their spatial organization so it cannot be analytically computed.
An empirical technique to tune it is the following: for each
Kn, the value of g(Kn, IS , IT ) can be estimated by observing
the maximum update of the velocity field v in a pre-iteration
of registration of IS on IT using only the kernel Kn with an =
1. The apparent weights a′n, n ∈ [1, N ] provide an intuitive
control of the amplitude of the displacements. When all values
of a′n are equal, the deformations of the main structures have
a similar amplitude at each scale n. In practice, that would
not be necessarily desired and the a′n may then be different.
This is explained in subsection VI-C on a synthetic example
similar to the one described in Fig. 1. Subsections VI-D and
VI-E also present the efficiency of this methodology on 3D
medical images.

V. SEPARATING THE CONTRIBUTION OF EACH KERNEL

A. Introduction

In the last section, we proposed a registration paradigm
that incorporates scale-related prior knowledge in order
to find meaningful diffeomorphisms comparing complex
biological shapes. In this section, our goal is to extract, from
the optimal diffeomorphism φ, descriptors comparing the
shapes at each characteristic scale n separately. For instance,
in Fig. 1 the technique of section IV allows the estimation
of a smooth diffeomorphism matching the source and target
images accurately (see also subsection VI-C). We then aim to
quantify the contribution of the scales 1 and 2 in φ separately.
Importantly, our approach differs from a classical coarse to
fine strategy in two ways: (1) We control the relation between
different scales through the weights an. (2) More importantly,
we quantify the deformations that occur at each single scale
n from the source shape directly.



SUBMITTED TO JOURNAL OF IEEE MEDICAL IMAGING 5

B. Optimization scheme

The formulation of the energy gradient given in Eq. 4, can
be re-written to distinguish the contribution of each kernel Kn

in φ. We associate a time dependent velocity field vn with each
kernel Kn. The energy gradient described in Eq. 4 is now:

∇vn
Et = vn,t −Kn ?

(
|Dφv

t,1|∇JS
t (JS

t − JT
t )
)
, ∀n, (7)

and the velocity field update of Eq. 5 becomes:

vk+1
n = vk

n − ε∇vk
n,tj

E, ∀n. (8)

Finally, similarly to Eq. 1, the diffeomorphism φ is computed
by integrating the velocity fields vn:

∂

∂t
φt =

N∑
n=1

vn,t(φt),

φ0 = Id.

(9)

This formulation of the gradient descent is strictly equivalent
to the original one and provides the same deformations.
Using equations 7 and 8, the sum of the fields vn is indeed
equal to the total velocity field: v =

∑N
n=1 vn. These

properties are due to the construction of the kernel K as the
sum of the kernels Kn. A key contribution in this section
is the use we make of the velocity fields vn as presented below.

C. Scale-dependent amplitude of the deformations

Our goal here is to quantify and visualize the deformations
occurring at a scale of interest σn among others from the
source image IS directly. This is distinct to classic coarse
to fine approaches where IS is deformed first at large scale
and then at finer and finer scales to match IT . In this case
scale-related descriptors comparing the images are indeed
sequentially extracted from the successive deformations of IS .
To quantify the contribution of each kernel Kn in φ at a point
x of IS , we integrate in time the norm of each vn,t separately
along the flow of deformation defined by φt, t ∈ [0, 1] as
follow:

AOD(x) =
∫ 1

0

|vn,t(φt ◦ x)|dt,

where AOD refers to the amplitude of the deformations along
φt(x). In a Lagrangian representation of the deformation, i.e.
by following the motion of each voxel, the AOD at scale
σn will therefore integrate in time all the contributions of
the kernel Kn. Obviously, using vt instead of vn,t in this
equation gives the length of the total deformation from x.
Remark also that the sum of the AOD at all scales of interest
may be different to the AOD of the total deformation since
the different vn,t are not necessarily collinear. We show in
section VI that the AOD is an interesting descriptor of the local
deformations for shapes whose features exist across several
scales. We also present in the next subsection a technique to
illustrate the phenomenons quantified by the AOD.

D. Scale-dependent deformations of the source image

Let φn
t be the time-dependent deformations of Ω generated

by the kernel Kn only. It can be computed as follows:

∂

∂t
φn

t = vn,t(φt), ∀n ∈ {1, · · · , N},

∂

∂t
φt =

N∑
n=1

vn,t(φt) = vt(φt),

φ0 = φ1
0 = · · · = φN

0 = Id.

Importantly, for all n, the velocity field is not integrated along
the path of φn

t but the path of the general transformation
φt. This formula is similar to the one of the AOD where
the vectors vn,t are integrated instead of their norm. This is
illustrated in Fig. 3 where a point x of Ω is transported along
φn

t (x) according to the velocity field of vn computed along
φt(x).

t=0.25

t=0.5

t=0.75
v
1,0.5

v
2,0.5

v
0.5

t=0

t=1

Φ
1
(x)

Φ
1
(x)

Φ
1
(x)
1

2

x

v
1,0.5

v
2,0.5

Fig. 3. Transportation of a point x along a path φt, t ∈ [0, 1] (continuous
line) computed using the velocity field vt (red). The contributions v1,t (green)
and v2,t (red) are distinguished here and the transportation of x along φ1

t and
φ2

t shown (dashed lines).

We emphasize that each φn
t is not the deformation that

would be computed if IS was registered on IT using the kernel
Kn only. For instance, by referring again to Fig. 1, we want
φ2

t to reflect the creation of the cavity with a minor influence
of the general shape growth. The registration with K2 only
would reflect the creation of the cavity and the general growth
simultaneously.

Note also that even tough φn is smooth, it is not invertible
in general. In practice, this property can be quickly checked
by computing the determinant of the Jacobians det(J). If
det(J(φt(x))) > 0, ∀x ∈ Ω, the transformation is invertible.
We always observed this property when the the characteristic
scale σn was larger than the maximal amplitude of the defor-
mations at the smaller scale σn+1. For example, in Fig. 1, the
size of the cavity must be smaller than the characteristic scale
σ1. If this hypothesis is verified, the deformations that occur
at scale σn therefore transport almost homogeneously those
observed at scale σn+1. Importantly, this property was always
respected in the tests of section VI and all the φn were invert-
ible. To conclude, since the diffeomorphic properties of the
deformations φn are not mathematically ensured, we propose
to use them qualitatively only. As shown in section VI they
are however a rich complement to illustrate and understand
the phenomenons measured quantitatively by the AOD.
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Source image IS,1

Target image IT,1

σ
=

3.
5

σ
=

7
σ

=
14

t = 0 t = 0.33 t = 0.66 t = 1 Final def. grid
Fig. 4. Registration of the source image IS,1 to the target image IT,1 using isotropic Gaussian kernels of σ = 3.5 pixels (top), σ = 7 pixels (centre) and
σ = 14 pixels (bottom). Diffeomorphic transformations of IS,1 are shown at t = 0 (no deformation), t = 0.33, t = 0.66 and t = 1 (final deformation),
where the red curves represent the shapes surface in IT,1. On the right, the yellow grids represent uniform grids (step = 2 pixels) deformed at t = 1.

VI. TESTS AND DISCUSSION

A. Introduction

Our tests show first the influence of our model parameters.
In subsection VI-B, we indeed give an empirical justification
to the notion of characteristic scale and the influence of the
weights an is discussed in subsection VI-C. We then show
the usability and pertinence of using multi-scale kernels in
3D medical image comparisons through two examples. In
subsection VI-D, our approach is quantitatively compared
to a more classical coarse to fine strategy on standard
3D images out of the Alzheimer’s Disease Neuroimaging
Initiative (ADNI). We then use our method to measure the
brain folding in MR cortical images of pre-term babies in
subsection VI-E.

B. Characteristic scale of the deformations

In this section, we give an empirical and intuitive justifi-
cation of the notion of characteristic scale. It is based on the
test illustrated in Fig. 4: A source image IS,1 is registered
on a target image IT,1. Both contain a large disc (radius =
7 pixels) that is translated to the right from IS,1 to IT,1. A
smaller disc (radius = 2 pixels) is also relatively close to the
large one in IS,1 and remains at the same location in IT,1. To
compare IS,1 and IT,1, we then use three different isotropic
Gaussian kernels referred here by K3.5, K7 and K14 with
σ = {3.5, 7, 14} voxels respectively.

In all cases, the matching of the large disc between IS,1◦φ−1
1

and IT,1 is good, with slightly better results using K3.5 than
K7 and K14. Similarly, it appears that the higher σ, the higher
the perturbation due to the registration of the large disc on the
small disc. Indeed, the small disc is not deformed by using
K3.5 while it is slightly modified by using K7 and strongly
perturbed by using K14. Following this observation, small

kernels would be the best choice. However, this observation is
counterbalanced by another one, observed in the deformation
grids at t = 1. We described the deformation of the large circle
from IS,1 to IT,1 as a translation and would ideally observe an
almost rigid flow of deformation between these shapes. The
grid deformed using K3.5 between these shapes is strongly
curved and is therefore far to represent an homogeneous
translation. Quantitative comparisons performed using this
deformation have not therefore the desired physical meaning.
The deformations estimated using K7 and K14 are not either
exact translations but are clearly less curved. We conclude that
among K3.5, K7 and K14, K7 represents the best balance
between too few spatial regularization, leading to meaningless
statistics, and too much spatial regularization perturbing the
neighborhood of the structures of interest. In this example,
we therefore consider 7 pixels, the size of σ, as a good
characteristic scale. Note finally that non-Gaussian kernels
could lead to better results in this particular example but for
the sake of generality and simplicity, we restrict our study to
isotropic Gaussian kernels.

C. Influence of the weights

In this second test, we present the influence of the weight
when K is the sum of several kernels. Like in the example
given in Fig. 1, the differences between the source image IS,2

and the target image IT,2 are observed at two different scales
simultaneously. At a large scale the radius of the disc in IS,2

grows by 4 pixels to match the one in IT,2. At small scale, a
small cavity of 5 pixels depth is also created in the disc of IT,2.
We build the kernel K as the sum of two isotropic Gaussian
kernels K1 and K2 where σ1 = 10 pixels and σ2 = 1 pixels.
The weights a1 and a2 are estimated using the technique of
subsection IV-D, i.e. a1 = a′1/g(K1, IS,2, IT,2) and a2 =
a′2/g(K2, IS,2, IT,2), where the values of g are automatically
estimated. To present the influence of the apparent weights a′1
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Source image IS,2

Target image IT,2

K
K

1
K

2

a′1 = a′2 a′1 = 8a′2
Fig. 5. Registration of the source image IS,2 to the target image IT,2 using the sum of isotropic Gaussian kernels K1 and K2 with σ1 = 10 pixels and
σ2 = 1 pixel as kernel K. The results obtained using the apparent weights a′

1 = a′
2 (left) and a′

1 = 8a′
2 (right) are distinguished. We also distinguish

the total deformation (top) and the contribution of K1 (centre) and K2 (bottom). In every distinguished case, we show the final deformation (left) and the
amplitude of deformations (AOD) (right). For all AOD, black is a deformation of 0 pixels and white a deformation of 5 pixels. The blue curves represent
the surface in IS,2 and the red curves the surface in IT,2.

and a′2, we show in Fig. 5 the results obtained using a′1 = a′2
and a′1 = 8a′2. We present the total deformation due to K
and the contributions of K1 and K2 distinguished using the
technique of section V. Ideally, we would like to detect the
radius growth at large scale only and the cavity deepening at
small scale only. We then also present in Fig. 6 these estimated
lengths compared with the expected ones as a function of
a′1/a

′
2.

Fig. 6. Percentage of expected estimation of the disc radius growth (red
continuous curve) and the cavity deepening (blue dashed curve), from IS,2

to IT,2, as a function of the ratio of the apparent weights a′
1 and a′

2. Results
are given in percentage.

By observing the results of Fig. 5 and 6, three different
behaviors of the algorithm can be distinguished as a function
of a′1/a

′
2: (1) For a′1/a

′
2 < 3 the matching of IS,2 ◦ φ−1

1 on
IT,2 is very accurate. This makes sense since the weight on
the small scale σ2 is clearly expressed in K. However the
contribution of each scale separately is not as desired. The

large scale σ1 does not indeed express significantly the general
disc growth (< 80%). This can be observed in Fig. 5 where
the general growth of the disc is clearly observed at large
and small scale simultaneously when a′1 = a′2. As a result,
the cavity deepening is not properly measured at small scale
since this estimation is partially biased by the disc growth
that, ideally, should not be detected at this scale. (2) For 3 ≤
a′1/a

′
2 < 11 the matching of IS,2 ◦ φ−1

1 on IT,2 is still very
accurate. Moreover there is enough weight on the large scale
to distinguish it from the influence of the small scale when
estimating the general growth of the shape. In Fig. 6 we can
observe that more than 80% of the general growth of the shape
is detected at large scale. In Fig. 5 almost all the general
shape growth is observed at large scale when a′1 = 8a′2. The
estimation of the cavity deepening has therefore about 90%
of accuracy compared with ideal results. (3) For 11 ≤ a′1/a

′
2

the separation of the large and small scales is clear. The disc
growth at large scale is indeed estimated with more than 95%
of accuracy. However the weight on the small scales is not
large enough to match properly the shape details. The cavity
deepening is therefore poorly estimated.

Our tests show that satisfactory results, i.e. more than 80%
of accuracy compared with the expected results, are obtained
for a large range of ratios: 3 ≤ a′1/a

′
2 < 11. For such

configurations the deformations observed at large and the small
simultaneously are then well separated. Note that the optimal
separation is observed here for a′1 = 5a′2, with more than 90%
of accuracy at both scales compared with our expectations.
Importantly, we used a logarithmic scale on the a′1/a

′
2 axis of

Fig. 6 and the curves are relatively smooth. This means that the
results are stable for similar apparent weights. Additionally,
note that the estimation of the cavity deepening would have
been improved by using larger values of σ1. Indeed, the higher
σ1, the smallest its ability to detect local phenomenons.
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Source image IS,3 Def. t = 0 Def. t = 0.5 Def. t = 1 Grid at t = 1

Target image IT,3 AOD SK2 AOD SK1 AOD LSK1 AOD SGK21

Fig. 7. Registration of the 3D MR source image IS,3 (baseline) to the target image IT,3 (follow-up) using several strategies. The blue curve represents the
baseline hippocampal surface. (Top) Transformations of IS,3 are shown at t = 0 (no deformation), t = 0.5 and t = 1 (final deformation) using the strategy
SGK1. The deformation grid at t = 1 with 1 mm of step size is presented on the right. (Bottom) Amplitude of the deformation flow using the strategies
SK2, SK1, LSK1 and SGK21. The brighter a point the larger the path of the deformation. The grey levels are linearly sampled between 0.2 and 1.2mm.

It is interesting to remark that the separation of phe-
nomenons observed at different scales, performed here simul-
taneously, is classically done sequentially in coarse to fine
techniques. Moreover, for any ratio a′1/a

′
2, the expected global

growth and local deepening were simultaneously measured
with more than 95% of accuracy. It is then natural to wonder
what would be the behavior of a sequential approach for this
kind of task. Obviously, the deformations at large scale would
be perturbed by those at small scale and then those at small
scale biased by the lack of accuracy of the deformation at
large scale. The issues are then similar. To clarify this point,
we then compare in the next subsection the statistical power
of our coarse and fine registration technique with a coarse to
fine one on standard 3D MR images to distinguish two groups
of imaged organs.

D. Quantitative assessment on MR images

Our aim here is to assess, in MR images, the ability of
our method to detect deformations at a scale of interest when
other deformations also occur at a larger scale of interest.
To do so, we downloaded 60 MR brain image pairs taken at
baseline and after 24 months follow-up from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study [49]. A total of
30 image pairs were acquired from patients with Alzheimer’s
disease (AD) and 30 others from healthy age-matched controls
(CN). All T1-weighted 1.5T MR-images were pre-processed
using the standard ADNI pipeline. Then, we compared the
statistical power of several strategies to discriminate (AD) and
(CN) by measuring the atrophy of the hippocampus.

First, we distinguished two strategies to linearly align the
baseline and follow-up images: (S1) All images were aligned
with the MNI152 brain template using affine registration.
(S2) Each follow-up image was aligned with the correspond-
ing baseline image using affine registration. The alignment
between the baseline and follow-up images is clearly more
accurate using (S2) than (S1). The image pairs aligned using

(S2) almost only present differences due to the atrophy of the
tissues, while those aligned using (S1) also present differences
due to an inaccurate linear alignment.

TABLE I
P-VALUES OF MANN-WHITNEY TESTS DISCRIMINATING AD AND CN

USING AVERAGE AND MAXIMAL AOD IN EACH SUBJECT HIPPOCAMPAL

SURFACE. THE LOWER THE P-VALUE, THE CLEARER THE DISTINCTION.

Max AOD Average AOD
a. AD a. CN P-val. a. AD a. CN P-val.

SK2 1.1 0.66 3.5e-07 0.46 0.22 1.6e-08
SK1 1.1 0.74 2.5e-06 0.48 0.26 1.2e-06

LSK1 0.96 0.48 1.1e-07 0.32 0.15 2.2e-07
SGK21 0.98 0.53 7.9e-09 0.34 0.17 3.2e-09

Either for (S1) and (S2), we then extracted regions of interest
of 1283 voxels around the hippocampus in all images. For (S1),
we then registered all the baseline and follow-up images using
several strategies: (SK1) Using directly a small characteristic
scale σ2 = 1.5mm adapted to the measure of the hippocampal
atrophy. (LSK1) Using the same characteristic scale σ2, but
after a first step of registration at large scale. The optimal
deformations at large scale were obtained using σ1 = 15mm
and were composed with those at small scale so that the
baseline images are only resampled one time to match the
follow-up images (cf. [50]). This strategy corresponds to a
coarse to fine approach. (SGK1) Using directly the sum of two
kernels of characteristic scales σ1 = 15mm and σ2 = 1.5mm
with apparent weights a′2 = 7a′1 and the average g1 and g2
in the 60 image pairs. (SGK21) Using the same kernel as in
(SGK1) and isolating the contribution of the kernel at small
scale. For (S2), we finally registered the images by using only
(SK2) the small kernel of characteristic size σ2 = 1.5mm.
Typical results are illustrated in Fig. 7.

We compared the hippocampal temporal changes using sev-
eral descriptors by automatically segmenting the hippocampus
in all baseline images and transforming these volumes using
the flow of deformations resulting from the registration of
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the grey level images. We measured the amplitude of the
deformation (AOD) from each point x of the baseline images.
For each subject, we therefore computed the average and
maximum AOD from the hippocampal surface. These values,
averaged in the groups AD and CN are given in millimeters in
the (a. AD) and (a. CN) columns of table I. Group-dependent
P-values of non-parametric Mann-Whitney tests between the
groups AD and CN, which measure the discriminative power
of each descriptor, were then computed. Note that prior to
these tests, the AOD have been non-dimensionalized by the
cubic root of the hippocampal volume at the baseline to
remove a part of the bias due to inter-subject variations.
Results are presented in the (P-val.) columns of table I.

The P-values show first that the statistical power is higher
using (SK2) than (SK1). This makes sense since the defor-
mations at small scale are not biased by the deformations
at large scale. Obviously, the methods (LSK1) and (SGK21)
quantifying the deformations at a scale among others are more
powerful than (SK1) which measures deformations at all scales
simultaneously. Interestingly, they also provide better distinc-
tions than (SK2), except for (LSK1) with the average AOD.
The key result is that (SGK21) has a better discriminative
power than (LSK1) here. When comparing two shapes having
feature differences at several scales simultaneously, it there-
fore appears that taking into account all feature differences
simultaneously with a proper model is a serious alternative to
a sequential approach. Additionally, this test shows that using
a common value of g for images representing the same organ,
pre-treated with the same pipeline and compared using the
same kernel can lead to good results. Our strategy to tune
the weight can then be used for an atlas creation or multiple
comparisons by systematically using the same characteristic
scales σn with the same weights an computed with a typical
value of g for the compared images. Finally, our results
also highlights the good behavior of our technique to extract
the information at a scale of interest among others in non-
segmented 3D MR images.

E. Measure of cortical folding

We apply now our technique to the longitudinal estimation
of the early brain development out of 3D MR brain images.
Our goal is to show the usability and potential of our
algorithm on these images, so we limit our study to the
comparison of two brains of 36.00 and 42.14 weeks of
gestational age out of the same preterm infant. The images
were acquired at the Hammersmith Hospital London (UK)
with a spatial resolution of 0.85mm. Bias field correction was
first performed using N3 [51] and the images were linearly
aligned. Finally, in order to extract the brain grey matter,
probabilistic segmentation of this structure was performed
using the method of [52]. Our image comparisons focus on
the extracted grey matter in the images referred by IS,4 and
IT,4 in Fig. 8.

When comparing these images, we aim to quantify the
growth of local structures like the sulci. The influence of the
skull growth, expressed by a general growth of the brain, is

Src image IS,4 (3D) Src image IS,4 Trg image IT,4

P0 SK3 P0 LK3 P0 SGK3

Fig. 8. (Top) Source image IS,4 (centre) and target image IT,4 (right). The
region of interest on which the results are presented in this figure and Fig. 9
is shown in the red square on the left image. (Bottom) Initial momentum
maps P0 estimated using SK3, LK3 and SGK3.

also observed at a larger scale. It is then interesting to take
into account feature differences at two scales simultaneously
when quantifying the brain growth. Here, we used two
characteristic scales: a large one (σ1 = 20mm) and a small
one (σ2 = 1.5mm). We then registered IS,4 onto IT,4 using
the large kernel σ1 only (LK3), the small kernel σ2 only
(SK3) and the sum of the kernels σ1 and σ2 with a′1 = 8a′2
(SGK3). The estimated initial momentum maps P0 are first
presented in Fig. 8. The final deformations of IS,4 and the
corresponding deformed grids are then presented with the
amplitude of the deformation (AOD) from each point of
IS,4 in Fig. 9. Interestingly, for (SGK3), we also separated
the contribution of the large and small kernels. In Fig. 9
(SGK13) and (SGK23) therefore refer to the contribution of
the large and small kernel respectively. Importantly, although
the results are presented in a 2D slice, all comparisons were
performed in 3D. The shape is then transformed in the 2D
ROI but also across slices. This can be particularly noticed
when observing carefully the deformed grids. Note finally
that in the figures, the blue and red curves represent the
surface of the grey matter in IS,4 and IT,4 respectively.

As presented in Fig. 9, the matching of the grey matter
is accurate using (SK3) and (SGK3) while it is not the case
using (LK3). The deformation grids however highlight that the
transformation estimated using (SGK3) is clearly more regular
than using (SK3). Indeed, (SGK3) registers properly feature
differences observed at small scale but also those observed
at large scale contrary to (SK3). The deformation computed
using (SGK3) looks therefore more plausible.
In addition, the initial momentum maps of (SGK3) and (LK3)
in Fig. 8 are more spatially regularized that the one of
(SK3). The initial momentum map of (SGK3) is also more
contrasted than the one of (LK3). The interpretation of these
results is particularly complex and will be addressed in future
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Fig. 9. (Top) Deformation of the source image IS,4 on the target image IT,4 at t = 1 using SK3, LK3, SGK3, SGK13, and SGK23. (Center) Homogeneous
grid deformed using the transformation of IS,4 to IT,4 at t=1 using the corresponding kernels. The initial grid has 1.5 mm of step size. (Bottom) Amplitude
of the deformation (AOD) along the path of each voxel between t=0 and t=1 using the corresponding kernels. The grey levels are linearly sampled between
0 mm (black) and 3mm (white).

communications.
By observing the AOD in Figs. 9, the strategy (SGK23)
appears as the best to quantify the growth of local structures
like the sulci. (SK3) and (SGK3) indeed measure the deforma-
tions at small and large scale simultaneously while (SGK23)
measures deformations at small scale with a minor influence
of those observed at larger scale. Note that these deformations
are quantified in millimeters, so their interpretation is natural
even for a non-specialist. Remark finally that, even if the
deformation (SGK23) of IS,4 is only used qualitatively, it
appears as a good complement to the AOD to interpret the
results.

VII. CONCLUSION

In this paper, we have presented a practical and intuitive
paradigm to integrate prior knowledge in the comparison of
images having feature variations at one or several identified
scales of interest. The user indeed defines a given number of
scale of interest σn in millimeters and an automatic procedure
helps him to tune the weights an associated with each σn.
This approach is of particular interest in medical imaging
since due to the increasing resolution of images, physiological
phenomena occurring at several scales are more and more
commonly observed. We have implemented our strategy in the
context of LDDMM for 3D medical images to take advantage
of the mathematical potential of this formalism, by including
the prior knowledge in the deformation metric. In practice we

have simply defined the kernels K associated to the metric
as the sum of isotropic Gaussian kernel Kn, each Gaussian
being parametrized by the standard deviation σn assimilated
to a scale of interest. Interestingly, this strategy may also
be developed in other fluid registration techniques by using
similar smoothing kernels. Our tests have shown that this
method estimates natural-looking deformations when regis-
tering images presenting feature variations at different scales
simultaneously and preserves the mathematical properties of
the LDDMM.

In addition, we have developed a strategy to extract quan-
titative information comparing the images at a given scale
of interest among others. When comparing two images, all
the pre-defined scales of interest are registered simultaneously
and the amplitude of the deformations occurring at each scale
are then quantified separately. It appears as an interesting
alternative to classical coarse to fine approaches which register
sequentially the images at large scale first and then at finer and
finer scale. As shown in our tests, when the metric pertinently
models the compared data, our method may indeed have a
better statistical power than a coarse to fine technique to
discriminate two image datasets with feature differences at
a scale of interest among others. Interestingly, we have also
developed a technique to illustrate qualitatively the meaning of
the scale-dependent amplitude of deformations, by deforming
the initial image at the corresponding scale of interest only.
Note that the scale-dependent amplitudes of the deformations
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are expressed locally and in millimeters. The end-user can
therefore interpret intuitively the results.

Future work will first consist in the validation of a multi-
resolution approach, where the not only the scale of the kernel
but also the image resolution will be treated. This will improve
the time of computations, especially when registering large
3D images. More applications of our technique will also be
carried out on MR cerebral images as well as on CT cardiac
images. In particular, we will develop similarity metrics that
are more adapted than the sum of square differences to treat
the complex volumetric images observed in medical imaging,
as initiated in [24]. In addition, making usable quantitatively
and not only qualitatively the deformations representing the
contribution of a kernel at a particular scale of interest will
also be carried out. Developing the mathematical link between
our method and [53] may be interesting for this purpose. Our
work has finally two main methodological perspectives. The
first one is to evaluate optimal parameterizations to perform
inferential statistics in problem specific applications from
large datasets. The second one is to develop and evaluate
another formulation of the registration algorithm which works
on the initial momentum maps directly. It would therefore
strongly reduce the degrees of freedom of the problem and
ensures geodesic properties of the deformations even before
the convergence.
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