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Abstract

Background—The transition from mild cognitive impairment (MCI) to Alzheimer’s disease is 

characterized by a decline in cognitive performance in many domains. Cognitive performance 

profiles in MCI are heterogeneous, however, and additional insights into markers of incipient 

dementia are needed. Typically, studies focus on average or mean performance, but ignore 

consistency of performance across domains. WIV (within-individual variability) provides an index 

of this consistency and is a potential marker of cognitive decline.

Objective—To use neurocognitive data from the Alzheimer’s Disease Neuroimaging Initiative 

cohort to measure neurocognitive variability.

Methods—The utility of WIV was measured, in addition to global neurocognitive performance 

(GNP), for identifying AD and MCI. In addition, the association between changes in 

neurocognitive variability and diagnostic transition over 12 months was measured.

Results—As expected, variability was higher in AD and MCI as compared to healthy controls; 

GNP was lower in both groups as compared to healthy subjects. Global neurocognitive 

performance alone best distinguished those with dementia from healthy older adults. Yet, for 

individuals with MCI, including variability along with GNP improved diagnostic classification. 
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Variability was higher at baseline in individuals transitioning from MCI to AD over a 12-month 

period.

Conclusion—We conclude that variability offers complementary information about 

neurocognitive performance in dementia, particularly in individuals with MCI, and may provide 

beneficial information about disease transition.
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INTRODUCTION

Cognitive deficits are the defining features of dementia. These impairments are strong 

predictors of functional outcome [1, 2], and are associated with alterations in brain structure 

and function [3]. Hence, the focus of recent neurocognitive studies is on individuals at risk 

for developing dementia. This risk period, typically associated with mild cognitive 

impairment (MCI), is signified by a measurable deterioration in cognitive function that is 

greater than expected based upon an individual’s age and education, but does not 

meaningfully affect a person’s daily functioning [4]. Despite being a major research focus in 

recent years [5], establishing the diagnosis of MCI [6], and monitoring disease progress 

using neuropsychological function over time remains challenging. Moreover, there is little 

work in developing measures that focus on and monitor individual differences in 

neurocognition, despite significant evidence of heterogeneity in disease presentation and 

progression. Recent investigations of within-individual variability (WIV; or intraindividual 

variability) confer unique predictive information about cognitive functioning beyond mean 

performance [7–10], and suggest this measure to be a relatively stable characteristic of an 

individual.

Early and accurate detection of cognitive impairments that precede dementia will enhance 

understanding of possible individual differences in disease trajectory as well as clinical 

management. To this effect, recent studies of neuropsychological function in MCI confirm 

the utility of neuropsychological tests for early detection and prevention strategies [11, 12]. 

Not surprisingly, use of an efficient, but multi-dimensional neuropsychological inventory 

(CERAD-NB) is more accurate at distinguishing MCI or AD from healthy individuals (HC) 

than brief screening measures. Yet, diagnostic accuracy declines when using these 

instruments to distinguish between HC and MCI or MCI and AD [11]. Difficulty in 

differentiating MCI is likely due to several factors including, but not limited to: 1) the 

heterogeneity of causes of MCI diagnosis; 2) variable progression rates from MCI to AD per 

year [13]; 3) the historical focus of research on cross-sectional differentiation of MCI from 

AD and healthy older adults (see [6]); and 4) the relative dearth of valid screening measures 

for detecting subtle deficits of early stage or prodromal AD. The importance of this last 

point cannot be overstated as the value of any test will be in its ability to accurately 

differentiate diagnostic features and identify markers of further decline.
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Neurocognitive variability across tests has been measured before in aging and lifespan 

research [7], but with inconsistent nomenclature, including ‘dispersion’ [14, 15], ‘within-

person variability’ [16], ‘within-person across neuropsychological test variability’ [17], and 

‘intra-individual differences’ [7]. Here we define WIV as inconsistent relative strengths and 

weaknesses in test performances within or across domains [7, 18]. Thus, WIV is estimated 

within a single person, but across several tasks in several domains and therefore provides an 

index of evenness, or consistency, of neurocognitive performance. Specifically, a low WIV 

value indicates a relatively consistent within-individual performance profile, whereas a high 

WIV value indicates uneven performance profiles [15]. Measuring WIV therefore could be 

another, more sensitive way, to document the emergence of problematic individual 

performance differences. This type of variability differs from ‘intra-individual variability’ 

(e.g., across-trial IIV) within a given test [19, 20], which typically focuses on consistency in 

performance speed. WIV has been operationalized two ways: 1) variability associated with 

measuring one individual at one time point across multiple neurocognitive tasks; or 2) 

measuring one individual on a single task across multiple occasions [7]. It is important to 

note that when WIV is small, mean performance is a robust metric; however, if WIV is high, 

the utility of mean performance diminishes. Thus, exclusive reliance upon mean 

performance without considering WIV may lead to inaccurate conclusions [21, 22]. 

Consequently, WIV has emerged as a useful construct for assessing cognitive performance 

in many disorders. WIV is higher than normal in individuals with cognitive decline, 

Parkinson’s disease, frontotemporal dementia, ADHD (for reviews see [7, 21, 22]), and in 

dementia [10]. Here, we use MCI and AD data from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) sample and compared WIV in those individuals who transition from one 

diagnostic category to another within one year. Using a measure of across-task variability, 

we hypothesized 1) that WIV would improve upon diagnostic classification of mean 

neurocognitive performance and 2) WIV would be a sensitive index (e.g., lower at baseline, 

more change over time) in individuals who transition from MCI to AD.

MATERIALS AND METHODS

Study population: The Alzheimer’s disease neuroimaging initiative

Data used in this study were obtained from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database (http://adni.loni.usc.edu) and approval for this project was granted [23]. 

The ADNI was launched in 2003 as a public-private partnership, led by Principal 

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether 

serial magnetic resonance imaging (MRI), positron emission tomography (PET), other 

biological markers, and clinical and neuropsychological assessments can be combined to 

measure the progression of MCI and early AD. For up-to-date information, see http://

www.adni-info.org.

The neuropsychological data were collected in 229 healthy (HC), 397 MCI, and 193 AD 

individuals. There were significantly more males diagnosed with MCI at baseline χ2(2) = 

12.37, p = 0.002. Overall, HC were older than MCI patients (p = 0.023), but not the AD 

patients (Table 1). HC attained higher levels of education than the AD patients (p < 0.001), 

but not the MCI patients (Table 1).

Roalf et al. Page 3

J Alzheimers Dis. Author manuscript; available in PMC 2017 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://adni.loni.usc.edu
http://www.adni-info.org
http://www.adni-info.org


Diagnostic assessments included history, physical and neurological examinations conducted 

by experienced clinicians. On the basis of these data, a consensus diagnosis was established 

using standardized clinical criteria for AD, MCI [24], or other neurological or psychiatric 

conditions presenting with cognitive impairment (see [25] for description). Screening 

assessments included the Mini-Mental State Examination (MMSE; [26]) and Clinical 

Dementia Rating [2]. Informed consent for the use of all data was obtained from all persons, 

in accord with university institutional review board–approved protocols. As expected, 

MMSE differed by group with AD<MCI<HC (F(1, 809)=454.73, p < 0.001).

The ADNI neuropsychological battery includes tests that assess multiple cognitive domains 

including memory, executive functioning, attention and language [24]. Detailed descriptions 

of the tasks including administration and scoring instructions can be found here: http://

www.adni-info.org/Scientists/ADNIStudyProcedures.html. For the current analysis, memory 

tests included immediate and delayed recall of the Rey Auditory Verbal Learning Test 

(RAVLT) [27] and immediate and delayed recall from the Wechsler Memory Scale-Revised 

[28] Logical Memory subtests. Executive function and attention tasks included the Digit 

Span Test (forward and backward) [28], the Trail Making Tests (Part A and B) [29], and the 

Digit Symbol Substitution Test [30]. Test of language function included semantic word-list 

generation (animal and vegetable fluency) and visual confrontation naming (Boston Naming 

Test (BNT); [31]). Additional neuropsychological measures included the Alzheimer’s 

Disease Assessment Scale–Cognitive subscale (ADAS-Cog; [32] and the Clock Drawing 

Test [33]). Total scores for each task were used as outcome measures. For measures with 

immediate and delayed memory scores, each score was considered separately. For the Trail 

Making Test the difference in time between the completion of A and B was used as the 

outcome measure. For the current study, neuropsychological data from the baseline visit and 

12-month visit were included.

Neuropsychological within-individual-variability (WIV)

Performance values were transformed to their standard equivalents based on the means and 

standard deviation (SD) of the healthy sample. An index of WIV across tasks was calculated 

for each participant in SD units (see [17]). This index of variability has been used in other 

studies [9, 17, 34], and reflects variation within a single person across several neurocognitive 

tasks and is therefore an index of an individual’s evenness or dispersion of performance 

across neuropsychological domains. WIV was calculated at baseline and at the 12-month 

follow-up. In addition, a global index of neurocognitive performance (GNP) was calculated 

by averaging the standardized scores (z-scores) across all neuropsychological tasks. Three 

individuals were excluded from analysis for having completed fewer than half of the tasks. 

All other participants completed a minimum of 9 of the 12 neuropsychological tasks.

where Zik is the kth test score for the ith individual and:
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Statistical analysis

WIV values were entered as dependent measures in ANCOVAs with MMSE, age, and sex 

included as factors and education as a covariate. Post-hoc contrasts were used to examine 

interactions; Satterthwaite corrections were used when equal variances could not be 

assumed; corrected degrees of freedom are reported where appropriate. Pearson correlations 

were performed between demographic and performance variables. Cohen’s d values are 

presented for group-specific WIV comparisons. The diagnosis accuracy for each measure (or 

combination of measures) was calculated as the area under the receiver operating 

characteristic (ROC) curve (AUC). The AUC measure represents the mean sensitivity value 

for all possible values of specificity and larger AUC values indicate more accurate 

classification of participants. The logistic ROC analysis used a 10-fold cross-validation 

approach to estimate AUC and optimal cut-off score. AUCs were compared using DeLong’s 

non-parametric method [35]. A cut-off score for each measure that best differentiated 

diagnostic groups was determined using the Youden Index [36], which maximizes the 

tradeoffs between sensitivity and specificity. The classification accuracy (probability of 

correct classification of subject with or without impairment at a given cut-off score) was 

calculated based upon these cut-off scores (Table 2). Diagnostic accuracy of the GNP and 

WIV (or combination of measures) were compared via Chi-Square analysis. Classification 

accuracy of each measure was compared using the Wilcoxon Signed Rank test. All statistical 

analyses were performed in R [37].

RESULTS

Within-individual variability and global neurocognitive performance in AD and MCI

WIV differed by diagnostic group, F(2, 810) = 258.42, p < 0.0001, but not by age (p = 0.68) 

or sex (p = 0.44) and there were no significant interactions (Fig. 1). As hypothesized, AD 

patients had higher WIV than MCI [t(305.31) = 8.76, p < 0.001; Cohen’s d = 0.80] or HC 

[t(238.46) = 21.58, p < 0.001; Cohen’s d = 2.18] and MCI had higher WIV than HC 

[t(610.16) = 20.25, p < 0.001; Cohen’s d = 1.54]. These effects remained significant in an 

age and gender matched subsample (see Supplementary Material). Exploratory group-

specific analysis found that in HC, age F(1, 220) = 5.01, p = 0.02, was significantly related 

to WIV, while there were no effects of MMSE, sex, nor any interactions. In the MCI group, a 

lower MMSE score F(1, 391) = 24.18, p < 0.001 and lower education, F(1, 391) = 8.62, p = 

0.004, were associated with higher WIV; age, sex, and the interactions were not significant. 

In AD, lower MMSE scores were associated with higher WIV, F(1, 391) = 10.05, p < 0.002; 

age, sex, and the interactions were not significant. Associations between MMSE and WIV 

are displayed in Fig. 2. As expected, GNP differed by diagnostic group, F(2, 801) = 519.42, 

p < 0.0001, by age F(1, 801) = 5.20, p < 0.03, but not sex (p = 0.07), and there were no 

significant interactions. As seen in Table 1, HC outperformed MCI, who in turn 

outperformed AD. Plots of performance by task are shown in the Supplementary Material.
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The association between WIV and GNP was measured using Pearson correlation. Higher 

variability was associated with poorer GNP across diagnostic group (Pearson r = −0.78, p < 

0.001). This relationship was more prominent in the two patient groups: AD (r = −0.67, p < 

0.001) and MCI (r = −0.62, p < 0.001), but was also significant in the HC (r = −0.23, p < 

0.001). In addition, variability at base line was associated with variability at 12-month 

follow-up (r = 0.73, p < 0.001). Again, this association was strongest in the two patient 

groups: AD (r = 0.58, p < 0.001), MCI (r = 0.54, p < 0.001); however, HC (r = 0.37, p < 

0.001) also showed a significant positive correlation.

ROC analysis of GNP and WIV in AD, MCI, and HC

The ROC analysis was used to evaluate the diagnostic accuracy of each measure (GNP and 

WIV) to discriminate AD and MCI from each other and from healthy cognitive subjects. 

Graphic representations of the ROC curves are provided in Fig. 3, and Table 2 shows 

clinically relevant cut-offs for the GNP, WIV, and combination of the two measures. The 

diagnostic accuracies of GNP and WIV were excellent for HC versus AD, with AUCs > 

0.96. Diagnostic accuracies were lower, but still very good in the GNP (0.94) and WIV 

(0.89) for HC versus MCI. Diagnostic accuracies of both measures were the lowest when 

differentiating AD from MCI, yet the AUCs were still moderate to good: GNP (0.81) and 

WIV (0.72). A comparison of AUC between GNP and WIV is presented in the 

Supplementary Material.

Combining WIV and GNP improves diagnostic accuracy in MCI

Combining WIV with GNP significantly improved diagnostic accuracy as compared to using 

either measure alone for discriminating MCI from HC (Table 2/Fig. 4, green lines). 

Specifically, considering WIV in addition to GNP improved diagnostic accuracy when 

differentiating HC from MCI [Z = 3.32, p < 0.0001]. This was due to an increase in 

specificity (improvement in identifying HC). GNP alone was best for differentiating HC 

from AD and MCI from AD; WIV did not significantly increase diagnostic discrimination 

(AUC) in these two comparisons. However, using the combination of optimal and clinically 

relevant cut-off scores (a score below either cut-off score) of the GNP and/or WIV to 

classify individuals resulted in an increase in classification accuracy of 4% at the optimal 

cut-off for HC versus AD (V = 153, p < 0.01), 9% for HC and MCI (V = 1711, p < 0.001) 

and 11% for MCI and AD (V = 1378, p < 0.001). Cut-off scores for each measure are 

provided in Table 2.

WIV is higher in individuals that transition from MCI to AD

The majority of individuals (83%) had neuropsychological data available at 12-month 

follow-up (Table 1). Approximately 10% of individuals had a diagnostic change within 12 

months, the vast majority transitioning from MCI to AD (85% or 58/68 subjects). Since the 

majority of diagnostic change was seen within the MCI group, follow-up statistical analyses 

were conducted only within the MCI→MCI and MCI→AD group. The change in variability 

was calculated as WIV at 12 months minus WIV at baseline. The change in WIV is shown 

for all groups in Fig. 4. Age did not differ between the MCI→MCI and MCIcAD groups (p 
= 0.21). The MCI →AD group F(1, 314) = 6.51, p = 0.01) had more change in WIV over a 

12 month period (Fig. 4). On average, there was a 12% increase in variability in the 
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MCI→AD group, while the MCI→MCI group had approximately a 6% increase over the 

same time period. In addition, the MCI→AD group had higher baseline WIV [t(77.88) = 

3.20 = 0.002] and higher WIV at 12 months [t(97.05) = 3.16 = 0.001]. Importantly, 

HC→HC showed lower WIV at 12 months (~3% reduction), while AD→AD patients 

showed, on average, a 17% increase in WIV. There were a small number of individuals (n = 

7) with a change from MCI→HC, however this group was too small to perform meaningful 

statistical analysis.

DISCUSSION

We report the utility of measuring neurocognitive WIV in individuals at risk for dementia. 

We report lower GNP and higher WIV in MCI and AD as compared to healthy older adults. 

Higher variability was associated with higher MMSE and poorer overall neurocognitive 

performance; however, this was more prominent in MCI and AD patients than in healthy 

individuals. Most importantly, we show that diagnostic change from MCI to AD corresponds 

with greater baseline WIV and a larger 12-month change in WIV. In addition, we show that 

WIV can add to the differentiation between diagnostic groups, particularly between healthy 

individuals and MCI.

The preponderance of the neurocognitive research in dementia emphasizes mean group 

differences in neurocognitive performance, which typically ignores within-individual 

variability. As we show, within-individual variability appears to be a useful tool to monitor 

individual differences in neurocognition, and aids in diagnostic differentiation of MCI from 

healthy individuals. WIV has not been thoroughly studied in AD and MCI, but is more 

common in aging and lifespan research. Our findings indicate that WIV is associated with 

general cognitive performance (i.e., MMSE), but not age; these findings parallel other large 

studies of aging [14, 15]. Yet, the specific aims of these two studies were not to directly 

compare healthy individuals to those with MCI or AD, although Lindenberger & Baltes 

(1997) provide exploratory findings in a small cohort of individuals with dementia. Another 

study, which measured the deviation of measures of cognition from crystalized intelligence 

in healthy aging, found age to be associated with higher variability [38], particularly when 

compared to healthy young adults. In addition, Rabbitt (1993) concludes that when 

neurocognitive function begins to decline in old age these abilities do not “all go together 

when they go” [38] (p. 385). More recently, a study of limited neuropsychological data from 

the ADNI indicates that computing variability within items or across tests provides a useful 

summary measure of performance in AD, MCI, and healthy cognitive aging [39], and we 

show similar results when measuring global WIV in the ADNI sample. More recent 

evidence from another sample suggests that high WIV is characteristic of patients with MCI 

[10], which we replicate. In addition, we show that WIV, in combination with GNP, may 

help to identify those individuals with a progressive pathological process earlier in the 

course of disease. Specifically, our measure of variability, which has been used before in 

aging research [7], examines intra-individual consistency of performance across 

neurocognitive domains. Our finding that AD and MCI groups were more varied in their 

performance than our HC group fits with prior reports in aging [21] and dementia [10]. For 

example, Reckess et al. [10] measured across-task WIV in 528 individuals, 395 with clinical 

symptoms. Their findings indicate that WIV increases with symptom severity in MCI, but 
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shrinks in those with significant dementia. In conjunction with our findings, this indicates 

that WIV may be more sensitive in detecting subtle change in those people with subtle 

cognitive impairments (such as MCI), but is less meaningful in frank dementia where mean 

neuropsychological performance is near floor and sufficient, for detecting dementia-level 

impairment. We do not find lower WIV in advanced AD as compared to MCI; however, 

Reckess et al. [10] estimated variability using the standard deviation of performance for 

groups of individuals with specific MMSE scores, whereas we estimated variability over the 

entire performance spectrum.

Most importantly, WIV appears to provide a sensitive measure to detect small, but 

potentially meaningful change over short periods of time in MCI. We find MCI individuals 

that transition to clinical dementia show higher WIV at baseline and a larger increase in 

WIV over a 12-month period. Thus, higher WIV may reflect domain specific deterioration 

of cognitive performance. This inconsistency in performance suggests that relative declines 

in one area of cognition as compared to another are an important signal of overall 

deterioration of the neural system. This suggests that WIV provides researchers and 

clinicians a tool that is sensitive to subtle changes in the disease course that traditional 

approaches fail to detect. Likewise, our findings suggest that WIV may help reduce some of 

the heterogeneity in the definition of MCI; however, these measures need to be validated in 

larger samples, prospectively. Similar to changes in average performance, inconsistencies in 

variability are likely due to underlying changes in the neural architecture; however, this 

remains to be confirmed. Other studies [22, 40] suggest consistency, or lack thereof, may be 

a sensitive index of performance over time that is related, in part, to neurotransmitter 

function [19, 41] or white matter integrity [9]. While WIV provides an index of deterioration 

it does not identify the specific domain affected. Nonetheless, it is noteworthy that we were 

able to detect these subtle changes in WIV, at least within the relatively short time 

parameters of this study. Future studies should consider measuring the relationship between 

response slowing/variability at the task level and brain function (i.e., diffusion MRI) in 

dementia.

While our findings are intriguing, there are several limitations to consider. First, we use 

global scores for performance and variability and these are calculated across domain. Given 

the modest number of tests in each neurobehavioral domain, the global scores may have 

been biased by the psychometric characteristics of the test instruments used. Although age-

related differences in GNP and WIV appear systematic, there are likely multiple factors that 

contribute to variability. Differences in WIV therefore may depend to a large extent on the 

specific constellation of abilities being measured; if so, its generalizability needs further 

scrutiny. Directly measuring WIV in neurocognitive performance provides a general view of 

neurocognitive ability. However, Cole et al. [40] argue that using a composite index of 

neurocognitive domains, such as WIV, provides a better index of consistency in 

neurocognitive ability. Furthermore, WIV can be advantageous in elucidating common 

underlying mechanisms of information processing that result in increased variability [42]. 

This approach may be more sensitive to detecting change over time by taking advantage of 

the variability within an individual to aid in determining individuals at-risk for dementia. 

Future longitudinal follow-up studies could expand upon the variability findings by 

elucidating the specific neurocognitive domains responsible for higher variability in MCI 
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and AD and by examining variability across time within a specific test. The contribution of 

WIV to diagnostic classification was significant, but small. We acknowledge that there is 

only a small increase in the AUC of the ROC curve for HC versus MCI, however we believe 

the more important finding is the increase in classification accuracy at the proposed cut-offs 

since this translates to mean performance scores that could be used clinically. Given the 

heterogeneity in the MCI diagnosis, it is unlikely that a global measure of variability will 

suffice for detecting very subtle performance changes. Measuring variability on a trial-wise 

basis may further improve the capability of variability in classification. Future studies that 

implement computerized neurocognitive testing and record reaction time on a trial-by-trial 

basis should consider evaluating variability in MCI and AD. Moreover, our results support 

the potential utility of WIV as a dimension or metric related to cognitive decline. Initial 

evaluation of the construct validity of this new dimension suggests that WIV correlates 

negatively with average performance. The negative association between higher WIV and 

lower GNP data adds validity to our measure as the findings align with the substantial 

literature showing decreases in neurocognitive ability with increasing age and dementia [21]. 

A single measure of variability over a battery of tasks does not replace a thorough 

neuropsychological evaluation, as variability is common even in healthy adults [43]. 

However, measurement of within-person variability as a complementary measure to 

traditional mean performance metrics provides a generalizable index of neurocognitive 

performance that is informative and potentially useful in the study of dementia.

Despite being a major research focus in recent years [5], identifying individuals at risk for 

developing dementia using traditional neurocognitive assessments remains challenging. This 

is likely due, in part, to defining and diagnosing MCI (and more recently in individuals with 

subjective memory complaints) in terms of acquired impairment in neurocognitive domains 

specifically affected in AD [44]. While this approach ensures clinical continuity between 

MCI and AD, traditional tests tend to be insensitive to early, subtle deficits. Moreover, this 

approach assumes that early deficits in at-risk individuals are the result of higher order 

(cortico-cortical) neural disruptions; however, recent work suggests that lower level neural 

deficits may be more prominent in MCI [45]. We believe that early identification and 

monitoring of disease progression can be improved upon in MCI by increasing the 

specificity of neurocognitive testing by measuring variability in neurocognitive performance. 

The present study of within-individual variability provides evidence that capturing 

variability in neurocognitive performance is a useful index in MCI and dementia, and may 

be a beneficial screening tool. Specifically, increases in performance variability may index 

vulnerability and potential transition to dementia. Moreover, the use of a patient-centered 

metric, such as WIV, is ideal for monitoring subtle change in performance over extended 

periods of time, may reflect the unfolding of neurocognitive dysfunction and may be 

associated with brain deterioration that would go undetected if only mean performance is 

considered.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Neurocognitive variability is high in AD and MCI. Mean across-task WIV in HC, MCI, and 

AD. WIV was associated with diagnosis. ∗p < 0.001 as compared to HC. #p < 0.001 as 

compared to MCI.
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Fig. 2. 
Neurocognitive variability is associated with MMSE performance. Correlation between 

MMSE and WIV was significant in AD and MCI, but not HC.
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Fig. 3. 
Variability aids in diagnostic classification in MCI. ROC curve of the GNP, WIV, and GNP

+WIV in HC versus AD, HC versus MCI, and AD versus MCI. Including WIV in diagnostic 

classification improved differentiation of HC and MCI (∗p < 0.01).
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Fig. 4. 
Change in variability over 12 months is highest in MCI individuals that transition to AD. 

Percent change of WIV for all individuals with follow-up neurocognitive assessments at 12 

months. Data is displayed for groups of individuals that both showed a diagnostic transition 

and those that remained stable.
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Table 1

Demographic characteristics, GNP, and WIV performance for AD, MCI, and healthy participants

Mean (SD) Healthy (n = 229) MCI (n = 397) AD (n = 193)

Age 75.93 (5.03)   74.80 (7.44) 75.36 (7.47)

Education 16.04 (2.87)   15.67 (3.04) 14.07 (3.13)

Sex (% Female)         48%         36%         47%

MMSE baseline 29.11 (1.00)*# 27.03 (1.79)# 23.34 (2.06)

MMSE 12 months 29.13 (1.17)*# 26.40 (2.87)# 21.13 (4.46)

CDR baseline        0 (0)*#     0.50 (0.03)#   0.74 (0.25)

CDR 12 months   0.04 (0.14)*#     0.53 (0.18)#   0.99 (0.50)

Number of Neuropsychological Tasks completed baseline 11.74 (0.49)   11.97 (0.20) 11.90 (0.38)

Number of individuals at follow-up with sufficient data         208           327         144

GNP baseline   0.00 (0.50)*#   −1.35 (0.80)# −2.42 (0.92)

GNP 12 months   0.00 (0.53)*#   −1.42 (1.01)# −2.79 (1.4)

WIV baseline   0.87 (0.23)*#     1.45 (0.48)#   1.89 (0.62)

WIV 12 months   0.81 (0.24)*#     1.53 (0.57)#   2.08 (0.65)

*
p < 0.001 as compared to MCI;

#
p < 0.001 as compared to AD.

AD, Alzheimer’s disease; CDR, Clinical Dementia Rating; GNP, global neuropsychological performance; MCI, mild cognitive impairment; 
MMSE; Mini-Mental State Examination; WIV, within-individual variability.
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Table 2

Diagnostic parameters for GNP, WIV and the combination of the two metrics across AD, MCI, and HC

HC versus AD HC versus MCI MCI versus AD

GNP AUC (±95% CI) 0.99 (0.99–1.0) 0.94 (0.92–0.96) 0.81 (0.78–0.85)

Sensitivity/Specificity 0.98/0.96 0.85/0.88 0.71/0.76

Youden Index 0.94 0.73 0.47

Cutoff# −0.86 −0.52 −1.85

Classification Accuracy 94% 85% 74%

WIV AUC (±95% CI) 0.96 (0.95–0.98) 0.89 (0.86–0.91) 0.72 (0.68–0.76)

Sensitivity/Specificity 0.88/0.93 0.79/0.83 0.64/0.73

Youden Index 0.81 0.62 0.37

Cutoff 1.26 1.09 1.64

Classification Accuracy 90% 80% 70%

GNP+WIV AUC (±95% CI) 0.99 (0.99–1.0) 0.95 (0.94–0.97)* 0.81 (0.78–0.85)

Sensitivity/Specificity 0.98/0.97 0.85/0.93 0.71/0.76

Youden Index 0.95 0.78 0.47

Classification Accuracy 98% 94% 83%

Bold text indicated the best model for predicting group.

*
Overall AUC is significantly improved with the addition of a measure of variability (WIV).

#
GNP Cutoff scores are reported as a Z-score.

AD, Alzheimer’s disease; AUC, area under the curve; CI, confidence interval; GNP, global neuropsychological performance; HC, healthy 
participants; MCI, mild cognitive impairment; WIV, within-individual variability.
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