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A B S T R A C T

Whole brain segmentation from structural magnetic resonance imaging (MRI) is a prerequisite for most
morphological analyses, but is computationally intense and can therefore delay the availability of image markers
after scan acquisition. We introduce QuickNAT, a fully convolutional, densely connected neural network that
segments a MRI brain scan in 20 s. To enable training of the complex network with millions of learnable pa-
rameters using limited annotated data, we propose to first pre-train on auxiliary labels created from existing
segmentation software. Subsequently, the pre-trained model is fine-tuned on manual labels to rectify errors in
auxiliary labels. With this learning strategy, we are able to use large neuroimaging repositories without manual
annotations for training. In an extensive set of evaluations on eight datasets that cover a wide age range, pa-
thology, and different scanners, we demonstrate that QuickNAT achieves superior segmentation accuracy and
reliability in comparison to state-of-the-art methods, while being orders of magnitude faster. The speed up fa-
cilitates processing of large data repositories and supports translation of imaging biomarkers by making them
available within seconds for fast clinical decision making.
1. Introduction

Magnetic Resonance Imaging (MRI) provides detailed in-vivo insights
about the morphology of the human brain, which is essential for studying
development, aging, and disease (Giedd et al., 1999; Draganski et al.,
2004; Shaw et al., 2006; Raznahan et al., 2012; Alexander-Bloch and
Giedd, 2013; Wachinger et al., 2016; Lerch et al., 2017). In order to ac-
cess measurements like volume, thickness, or shape of a structure, the
neuroanatomy needs to be segmented, which is a time-consuming pro-
cess when performed manually (Fischl et al., 2002). Computational tools
have been developed that can fully automatically segment brain MRI
scans by warping a manually segmented atlas to the target scan (Fischl
et al., 2002; Ashburner and Friston, 2005; Rohlfing et al., 2005; Svarer
et al., 2005). Such approaches have two potential shortcomings: (i) the
estimation of the 3D deformation field for warping is computationally
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intense, and (ii) lack of homologies may result in erroneous segmenta-
tions of the cortex (Lerch et al., 2017). Due to these drawbacks, existing
atlas-based methods require hours of processing time for each scan and
may result in sub-optimal solutions.

We propose a method for the Quick segmentation of NeuroAnaTomy
(QuickNAT) in MRI T1 scans based on a deep fully convolutional neural
network (F-CNN) that runs in seconds on GPUs, compared to hours for
existing atlas-based methods. We believe that this speed up by several
orders of magnitude can have a wide impact on neuroimaging: process-
ing of large datasets can be performed on a single GPU workstation,
instead of a computing cluster; quantitative morphological measure-
ments can be derived from a scan within seconds, boosting its translation.
Furthermore, the fast processing speed allows for sampling multiple
segmentations in a reasonable amount of time to estimate segmentation
uncertainty for automated quality control (Roy et al., 2018). Beside its
ease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
and/or provided data but did not participate in analysis or writing of this report.
p-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
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speed, QuickNAT produces state-of-the-art segmentation accuracy as
demonstrated on multiple datasets covering a wide age range, different
field strengths, and pathologies. Moreover, it yields effect sizes that are
closer to those of manual segmentations and therefore offers advantages
for group analyses. Finally, QuickNAT exhibits high test-retest accuracy
making it useful for longitudinal studies.

Deep learning models have had ample success over the last years, but
require vast amounts of annotated data for effective training (LeCun et al.,
2015). The task of semantic image segmentation is dominated by F-CNN
models in computer vision (Long et al., 2015). The limited availability of
training data with manual annotations presents the main challenge in
extending F-CNNmodels to brain segmentation. To address this challenge,
we introduce a new training strategy (Fig. 2) that exploits large brain re-
positories without manual labels and small repositories with manual la-
bels. First, we apply existing software tools (e.g., FreeSurfer (Fischl et al.,
2002)) to segment scans without annotations. We refer to these auto-
matically generated segmentations as auxiliary labels, which we use to
pre-train the network. Auxiliary labels may not be as accurate as expert
annotations; however, they allow us to efficiently leverage the vast amount
of initially unlabeled data for supervised training of the network. It also
makes the network familiar with a wide range of morphological variations
of different brain structures that may exist in a wide population. In the
second step, we fine-tune (i.e., continue training) the previous network
with smaller manually annotated data. Pre-training provides a good prior
initialization of the network, such that scarce manual annotations are
optimally utilized to achieve high segmentation accuracy. As a side note,
we observed that a network trained only on FreeSurfer segmentations can
produce more accurate results than FreeSurfer itself.

QuickNAT consists of three 2D F-CNNs operating on coronal, axial
and sagittal views followed by a view aggregation step to infer the final
segmentation (Fig. 3). Each F-CNN has the same architecture and is
inspired by the traditional encoder/decoder based U-Net architecture
with skip connections (Ronneberger et al., 2015), enhanced with
unpooling layers (Noh et al., 2015) (Fig. 1). We also introduce dense
connections (Huang et al., 2016) within each encoder/decoder block to
aid gradient flow and to promote feature re-usability, which is essential
given the limited amount of training data. The network is optimized
using a joint loss function of multi-class Dice loss and weighted logistic
loss, where weights compensate for high class imbalance in the data and
encourage proper estimation of anatomical boundaries.
Fig. 1. Illustration of QuickNAT's encoder-decoder based fully convolutional archite
view. The symbols corresponding to different network layers are also explained her
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The two main methodological innovations of QuickNAT are the
training strategy with auxiliary labels and the F-CNN architecture. To the
best of our knowledge, this is the first work to conduct such a large
number of experiments on highly heterogeneous datasets to evaluate the
robustness of an F-CNN for brain segmentation. The code and trained
model are available as extensions of MatConvNet (Vedaldi and Lenc,
2015) at https://github.com/abhi4ssj/QuickNATv2. This is an extension
of our early work (Roy et al., 2017), where we introduced the concept of
pre-training with auxiliary labels. In this work, we improved upon the
architecture, segment more brain structures and show exhaustive ex-
periments for a wide range of possibilities to substantiate the effective-
ness of the framework.

2. Methods

Given an input MRI brain scan I, we want to infer its segmentation
map S, which indicates 27 cortical and subcortical structures. Given a set
of scans I ¼ fI1;…Ing and its corresponding segmentations S ¼ fS1;…;

Sng, we want to learn a function fseg : I → S. We express this function as an
F-CNN model, termed QuickNAT, which is detailed below.

2.1. Architectural design

QuickNAT has an encoder/decoder like 2D F-CNN architecture with 4
encoders and 4 decoders separated by a bottleneck layer shown in Fig. 1.
The final layer is a classifier block with softmax. The architecture in-
cludes skip connections between all encoder and decoder blocks of the
same spatial resolution, similar to the U-Net architecture (Ronneberger
et al., 2015). These skip connections not only provide encoder feature
information to the decoders, but also provide a path of gradient flow from
the shallower layers to deeper layers, improving training. In the decoder
stages, instead of up-sampling the feature maps by convolution transpose
like U-Net, we included un-pooling layers (Noh et al., 2015). These
ensure appropriate spatial mappings of the activation maps during
up-sampling, which in turn improves segmentation accuracy, especially
for small subcortical structures.

2.1.1. Dense block
Each dense block consists of three convolutional layers (Fig. 1). Every

convolutional layer is preceded by a batch-normalization layer and a
cture consisting of dense, bottleneck and classifier blocks shown in the zoomed
e.

https://github.com/abhi4ssj/QuickNATv2


Fig. 2. Illustration of the two-step training strategy
for QuickNAT. First, we use an existing segmentation
software (e.g., FreeSurfer) to automatically segment a
large unlabeled corpus (IXI Dataset with 581 scans).
These labels are referred to as auxiliary labels and
used to pre-train QuickNAT. Second, we fine-tune the
network on 28 scans from the multi-atlas label chal-
lenge, which were manually annotated by an expert.
Fine-tuning does not start from scratch, but continues
optimizing the pre-trained model from step 1, to
maximally benefit from the scarce data with manual
annotations.

Fig. 3. We show the multi-view aggregation step that combines segmentations from models trained on 2D slices along three principal axes: coronal, sagittal and axial.
The final segmentation is obtained by combining the probability maps from all the three networks.
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Rectifier Linear Unit (ReLU) layer. The first two convolutional layers are
followed by a concatenation layer that concatenates the input feature
mapwith outputs of the current and previous convolutional blocks. These
connections are referred to as dense connections (Huang et al., 2016)
which improves gradient flow during training and promote feature
re-usability across different stages of convolution (Huang et al., 2016). In
addition, they help learning better representations promoting features
learned by different convoltional layers within the same block to be
different. The kernel size for these two convolutional layers is kept small,
5� 5, to limit the number of parameters. Appropriate padding is pro-
vided so that the size of feature maps before and after convolution re-
mains constant. The output channels for each convolution layer is set to
64, which acts as a bottleneck for feature map selectivity. The input
channel size is variable, depending on the number of dense connections.
The third convolutional layer is also preceded by a batch normalization
and ReLU, but has a 1� 1 kernel size to compress the feature map size to
64. A flow diagram of the dense block is illustrated in Fig. 1.

2.1.2. Encoding path
The encoder path consists of a set of 4 dense blocks, each followed by

a 2� 2 max-pooling block, which at each stage reduces the spatial
dimension of the feature maps by half. During down-sampling by max-
pooling, the indices corresponding to the maximum activations are
saved and passed to decoder blocks for un-pooling.
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2.1.3. Bottleneck
The bottleneck block consists of a 5� 5 convolutional layer and a

batch normalization layer to separate the encoder and decoder part of the
network, restricting information flow between the encoder and decoder.

2.1.4. Decoding path
The decoder path also consists of 4 dense blocks. Each dense block is

preceded by an un-pooling layer. This layer recovers the actual spatial
locations corresponding to the maximum activations, which are lost
during max-pooling in the encoders, and places them at the correct
location during up-sampling (Noh et al., 2015). This is very relevant
when segmenting small subcortical structures. Another, advantage of
up-sampling is that it does not require any learnable parameters in
comparison to convolutional transpose used in U-Net (Ronneberger et al.,
2015). The up-sampling is followed by a skip-connection, which con-
catenates the un-pooled feature map with the output feature map of the
corresponding encoder before max-pooling. Skip connections add
encoder features to the decoders for aiding segmentation and thus allow
gradients to flow from deeper to shallower regions of the network. The
concatenated feature map is passed to the next dense block with similar
architecture.

2.1.5. Classifier block
The output feature map from the last decoder block is passed to the



2 http://brain-development.org/ixi-dataset/.
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classifier block, which is basically a convolutional layer with 1� 1 kernel
size that maps the input to an N channel feature map, where N is the
number of classes (28 in our case). This is followed by a softmax layer to
map the activations to probabilities, so that all the channels represent
probability maps for each of the classes.

2.2. Loss function

We train QuickNAT by optimizing two loss functions simultaneously:
(i) the weighted logistic loss, and (ii) the multi-class Dice loss. The lo-
gistic loss provides a pixel-wise probabilistic estimate of similarity be-
tween the estimated labels and the manually annotated labels. The Dice
loss is inspired from the Dice overlap ratio, which estimates similarity
between the estimated and manually annotated labels (Milletari et al.,
2016). It was initially introduced for two-class segmentation and we
extend it to multi-class segmentation in this work. Given the estimated
probability pl(x) of pixel x belonging to class l and the its actual class
glðxÞ, the loss function is

L ¼ �
X
x

ωðxÞglðxÞlogðplðxÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LogisticLoss

� 2
P

xplðxÞglðxÞP
xp

2
l ðxÞ þ

P
xg

2
l ðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

DiceLoss

: (1)

The first term is the multi-class logistic loss and the second term is the
Dice loss. We introduce weights ωðxÞ, which balance the relative
importance of pixels in the loss. We use weights to address two chal-
lenges: (i) class imbalance, and (ii) errors in segmentations at anatomical
boundaries. Given the frequency fl of class l in the training data, i.e., the
class prior probability, the indicator function I, the training segmentation
S, and the 2D gradient operator ∇, the weights are defined as

ωðxÞ ¼
X
l

IðSðxÞ ¼ lÞ medianðfÞ
fl

þ ω0 � IðjrSðxÞj > 0Þ (2)

with the vector of all frequencies f ¼ ½f1;…; fN �. The first term models
median frequency balancing (Badrinarayanan et al., 2015) and com-
pensates for the class imbalance problem by up-weighting rare classes in
the image. The second term puts higher weight on anatomical boundary
regions to encourage correct segmentation of contours. ω0 is set to
2 �medianðf Þ

fmin
to give higher priority to boundaries.

2.3. Model learning

We train QuickNAT with stochastic gradient descent with mo-
mentum. The learning rate is chosen such that proper convergence on
validation data is achieved. It is initially set to 0.1 and reduced by one
order after every 10 epochs during pre-training. The training is con-
ducted until the validation loss plateaus. We use a constant weight decay
of 0.0001. Batch size is set to 4, limited by the 12GB RAM of the NVIDIA
TITAN X Pascal GPU. Momentum is set to a high value of 0.95 to
compensate for noisy gradients due to a small batch size. Our choice for
the weight decay constant and momentum is based on settings for other
modern CNNs. Prior to inputing scans into the network, they are pro-
cessed with ‘mri-convert –conform’ from the FreeSurfer pipeline (Fischl
et al., 2002), which performs basic standardization and runs in about 1 s.

2.4. Training with limited annotated data

F-CNN models directly produce a segmentation for all image pixels
in an end-to-end fashion without splitting the image into patches.
Therefore, they can fully exploit the image context, avoid artificial
partitioning of an image, and achieves an enormous speed-up. Yet,
training F-CNNs is challenging because each image serves as a single
training sample and consequently much larger datasets with manual
labels are required than for patch-based approaches, where each image
yields many patches. While the amount of unlabeled data rapidly
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grows, the access to labelled data is still limited due to the labor
intense process of manual annotations. At the same time, the success of
deep learning is mainly driven by supervised learning, while unsu-
pervised approaches are still an active field of research. Data
augmentation artificially increases the training dataset by simulating
different variations of the same data, but it cannot encompass all
possible anatomical variations observable in a population. We propose
to process unlabeled data with existing software tools to create
auxiliary labels. These auxiliary labels are not optimal; however, they
allow us to use the vast amount of initially unlabeled data for super-
vised pre-training of the network, enforcing a strong prior. The
training procedure consists of two main steps (Fig. 2):

1. Pre-training on large unlabeled datasets with auxiliary labels: In
this step, we use a large neuroimaging dataset (IXI dataset2) and
process it with an existing tool to create auxiliary labels. The IXI
dataset was acquired from three centers and is characterized by a high
age range of participants and substantial anatomic variability. We
apply the widely used FreeSurfer (Fischl et al., 2002) to obtain
auxiliary segmentations, but other tools could be used, depending on
the application. We pre-train QuickNAT on this large dataset with
auxiliary labels, which results in a network that imitates FreeSurfer
segmentations. Pre-training enforces a strong prior on the network,
where robustness to data heterogeneity is encouraged by the diversity
of the IXI dataset.

2. Fine-tuning with limited manually labelled data: In this step,
we take the pre-trained model and fine-tune it with small data
having manual annotations. Instead of learning all filters from
scratch, fine-tuning only focuses on rectifying discrepancies be-
tween auxiliary and manual labels. We use data from the Multi-
Atlas Labelling Challenge dataset (Landman and Warfield, 2012)
for fine-tuning. During this, we lower the initial learning rate to
0.01 and reduce it by an order of magnitude after every 5 epochs
until convergence.
2.5. Multi-view aggregation

To also consider the third dimension in QuickNAT, we train a separate
F-CNN for each of the three principal views: coronal, axial and sagittal
(Fig. 3). The predictions for each these networks are combined into the
final segmentation in a multi-view aggregation step. The final label for a
voxel x is given by LPredðxÞ, which is computed as

LPredðxÞ ¼ arg max
c

�
λ1pAxðxÞ þ λ2pCorðxÞ þ λ3pSagðxÞ

�
(3)

where pAxðxÞ, pCorðxÞ, pSagðxÞ are the predicted probability vectors for
axial, coronal and sagittal views respectively, and λ1, λ2, λ3 their corre-
sponding fixed weights. The probability score for a particular structure
reflects the certainty of the network in the prediction, which depends on
how well the structure is represented in the corresponding view.
Aggregating all the votes for a voxel x provides a regularization effect for
the label prediction and reduces spurious predictions.

The highly symmetric layout of the brain poses challenges for
segmentation in sagittal slices, as it is not possible to differentiate
slices from the left and right hemisphere. Thus, we assign structures
from the left and right hemisphere the same label number for training
on sagittal slices. This reduces the number of classes from 28 to 16. At
testing, we re-map the probability maps from 16 to 28 structures by
replicating probabilities for left and right. Due to this, we assign a
lower value to λ3 in comparison to λ1 and λ2. In our case, we set λ1; λ2;
λ3 to 0.4, 0.4 and 0.2, respectively, to give relatively equal importance
to all views.

http://brain-development.org/ixi-dataset/
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3. Experimental datasets

We use nine brain MRI datasets in our experiments. We use five
datasets with manual annotations to evaluate segmentation accuracy.
Three datasets were used for testing reliability of the segmentation
framework. Table 1 summarizes the number of subjects per dataset, the
age range, the diagnosis, and the annotated structures. Present diagnoses
are Alzheimer's disease (AD), mild cognitive impairment (MCI), and
psychiatric disorders. Details about acquisition protocol used in each of
the datasets can be found in their respective references. All MRI datasets
are publicly available.

(i) IXI dataset: The dataset is collected from 3 different hospitals
from London (Hammersmith hospital, Guy's hospital, institute of
psychiatry) and consists of both 1.5T and 3.0T MRI T1 scans for
581 healthy subjects. The data was collected by Imperial College
London and is available for download at http://brain-
development.org/ixi-dataset/.

(ii) Multi-Atlas Labelling Challenge (MALC): The dataset is part of
the OASIS dataset (Marcus et al., 2007) and contains MRI T1 scans
from 30 subjects with manual annotations for the whole brain
(Landman and Warfield, 2012). In the challenge, 15 vol were
defined for training and 15 for testing. We follow the same setup
in our experiments. The dataset also includes follow-up scans from
5 subjects to evaluate inter-run consistency. Manual segmenta-
tions were provided by Neuromorphometrics, Inc. under academic
subscription.

(iii) ADNI-29: The dataset is a subset of 29 subjects from the Alz-
heimer's Disease Neuroimaging Initiative (Jack et al., 2013)
(ADNI, adni.loni.usc.edu). The primary goal of ADNI has been to
test whether serial MRI, PET, other biological markers, and clin-
ical and neuropsychological assessment can be combined to
measure progression of MCI and AD. Manual whole-brain seg-
mentations were provided by Neuromorphometrics, Inc. under
academic subscription. The dataset includes 15 controls and 14
Alzheimer's patients. Furthermore, 15 scans were acquired with
1.5T field strength and 14 scans with 3.0T, with balanced distri-
bution of AD and controls.

(iv) Internet Brain Segmentation Repository (IBSR): The dataset
consists of 18 T1 MRI scans with manual segmentations of the
whole brain (Rohlfing, 2012). The MR scans and their manual
segmentations were provided by the Center for Morphometric
Table 1
Summary of the datasets used for training and testing. Dataset characteristics are
shown together with available manually annotated structures. Information
regarding the diagnosis of IBSR dataset and Age information of THP dataset were
not available.

Dataset No. of
Subjects

Age Diagnosis Annotations

IXI 581 49.09� 16.43 Normal None
MALC 30 3416� 20.40 CN/AD/MCI Whole Brain
ADNI-
29

29 75.87� 5.86 CN/AD Whole Brain

IBSR 18 29.05� 4.80 – Whole Brain
CANDI 13 10.00� 3.13 Psychiatric

Disorders
Whole Brain

ALVIN 16 AD: 77.4� 2.4, Young
adults: 23.8� 4.1

CN/AD Lateral
Ventricle

HarP 131 AD: 74.2� 7.8,
CN: 76.2� 7.4,
MCI: 74.7� 8.1

CN/MCI/AD Hippocampus

TRT 3 (40
scans/
subject)

26–31 Normal None

THP 5 (Scans
from 8 sites
in USA)

– Normal None
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Analysis at Massachusetts General Hospital and are available at
http://www.cma.mgh.harvard.edu/ibsr/.

(v) Child and Adolescent NeuroDevelopment Initiative (CANDI):
The dataset consists of 13 T1 MRI scans (8 male, 5 female) of
children with psychiatric disorders, having minimum age of 5,
maximum age of 15 and mean age of 10 years. Manual whole-
brain segmentations were provided by Neuromorphometrics,
Inc. under academic subscription. The dataset is publicly available
at Kennedy et al. (2012).

(vi) Harmonized Protocol (HarP): The European Alzheimer's Disease
Consortium and ADNI (Jack et al., 2013) together provided a
Harmonized Protocol (HarP) for manual hippocampal segmenta-
tion fromMRI (Boccardi et al., 2015). It was defined by through an
evidence-based Delphi panel that converged on a consensus
definition. After standardization, a dataset with 131 vol was
released with manually annotated right/left hippocampus for
development and evaluation of standard automated hippocampus
segmentation algorithms. Special attention was paid for ensuring
that the dataset is representative of physiological and pathological
variability (age, dementia severity), field strength (1.5T and 3T)
and scanner manufacturer (GE, Philips and Siemens). 45 scans
were from AD subjects, 42 scans from Controls and 44 scans from
MCI.

(vii) ALVIN: Kempton et al. (2011) released the ALVIN dataset in an
attempt to standardize the evaluation of segmentation algo-
rithms. The dataset consists of 7 young adult subjects and 9
subjects with Alzheimer's disease. The dataset does not provide
manual segmentations but volume measurements of the ven-
tricles. These volume measurements are available from a
manual rater at two points in time to observe intra-observer
variability.

(viii) Test-Retest (TRT) dataset: This dataset was released to analyze
reliability of segmentation frameworks for estimating volumes of
brain structures (Maclaren et al., 2014). The dataset consists of
120 MRI T1 scans from 3 subjects (40 scans per subject) in 20
sessions (2 scans per session) over the duration of 31 days. All the
subjects were healthy aged 26–31 years.

(ix) Travelling Human Phantom (THP) dataset: This dataset was
released to check the reliability of automated segmentation
frameworks in estimating volumes from scans acquired from
different sites (Magnotta et al., 2012). In the study, 3 healthy
subjects were scanned at 8 different centers in the USA using
scanners from different vendors. All scans were acquired within
a period of 30 days. The sites are: (1) Cleveland Clinic, (2)
Dartmouth, (3) University of Iowa, (4) Johns Hopkins, (5)
Massachusetts General Hospital, (6) University of California
Irvine, (7) University of Minnesota, (8) University of
Washington.

In our experiments, we use FreeSurfer annotations from IXI for pre-
training and manual annotations from MALC (provided by Neuro-
morphomrtrics Inc. under academic license) for fine-tuning. The defini-
tions of anatomical structures between MALC and FreeSurfer are
identical. Annotators at Neuromorphometrics Inc. follow the CMA
(Center for Morphometric Analysis) protocol, which was also used in the
creation of the FreeSurfer atlas. ADNI-29 and HarP are a subset from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.
usc.edu). The ADNI was launched in 2003 as a public-private partner-
ship, led by Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early
Alzheimer's disease (AD). For up-to-date information, see www.adni-
info.org.

http://brain-development.org/ixi-dataset/
http://brain-development.org/ixi-dataset/
http://adni.loni.usc.edu
http://www.cma.mgh.harvard.edu/ibsr/
http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://www.adni-info.org
http://www.adni-info.org


Table 2
Summary of the experiments for evaluating segmentation accuracy (1–5) and
reliability (6–8). For each experiment, the table indicates the datasets used for
pre-training, fine-tuning and testing together with the number of scans in pa-
rentheses. We also list the purpose for each experiment.

Evaluation Experiment Pre-
training

Fine-
tuning

Testing Purpose of
Experiment

Segmentation
Accuracy

Experiment
1

IXI
(581)

MALC
(15)

MALC
(15)

Benchmark
Challenge
Dataset.

Experiment
2

IXI
(581)

MALC
(28)

ADNI
(29)

Robustness to
pathology,
scanner field
strength, group
analysis by
effect sizes.

Experiment
3

IXI
(581)

MALC
(28)

IBSR
(18)

Robustness to
low resolution
data with wide
age range.

Experiment
4

IXI
(581)

MALC
(28)

CANDI
(13)

Robustness to
children with
psychological
disorders.

Experiment
5

IXI
(581)

MALC
(28)

HarP
(131)

Robustness of
hippocampus
segmentation in
presence of
dementia.

Segmentation
Reliability

Experiment
6

IXI
(581)

MALC
(28)

ALVIN
(16)

Reliable
volume
estimation of
lateral
ventricles for
young and aged
subjects
(dementia).

Experiment
7

IXI
(581)

MALC
(28)

TRT
(120)

Inter- and intra-
session
reliability.

Experiment
8

IXI
(581)

MALC
(28)

HTP
(67)

Reliability
across 8 centers
with different
scanners.

Table 3
Comparison of Dice scores of QuickNAT with state-of-the-art methods on 15
testing scans fromMALC. Results of only using the pre-trained model on test data
is referred as ‘Pre-Trained’. Results for training only with 15 manual data from
scratch is referred as ‘Only Manual’. Results of using the pre-trained model and
fine-tune it with 15 manual data is referred as ‘Fine-tuned’. Performance of
QuickNAT after fine-tuning is the best, which is indicated in bold.

Method Pre-Trained Only Manual Fine-Tuned

QuickNAT 0.798� 0.097 0.874� 0.067 0.901± 0.045
U-Net 0.681� 0.193 0.762� 0.124 0.857� 0.079
FCN 0.579� 0.245 0.534� 0.311 0.778� 0.121
DeepNAT 0.891 for 25 structures
Spatial Staple 0.879� 0.063
PICSL 0.898� 0.050
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4. Experiments and results

We evaluate QuickNAT in a comprehensive series of eight experi-
ments to assess accuracy, reproducibility, and sensitivity on a large va-
riety of neuroimaging datasets, summarized in Table 2. In all
experiments, we pre-train QuickNAT on 581 MRI volumes from the IXI
dataset to get auxiliary segmentations from FreeSurfer (Fischl et al.,
2002). We conducted 5 experiments to evaluate the segmentation accu-
racy (experiments 1 to 5; Sec. 4.1 and Sec. 4.2), and another 3 experi-
ments (experiments 6 to 8; Sec. 4.3) to assess the reliability and
consistency of QuickNAT segmentations. We divided Experiments 1–5
into two sets, (i) Training and testing on the same dataset (Sec. 4.1), and
(ii) Training and testing on different dataset, i.e. cross dataset experi-
ments (Sec. 4.2).
4.1. Evaluation of segmentation accuracy with training and testing on same
dataset

4.1.1. Experiment 1: MALC
In the first experiment, we use the MALC data and replicate the setup

of the original challenge (Landman and Warfield, 2012). A problem
associated with segmenting this dataset is that all the training volumes
are from young adults while testing volumes include subjects with 70
years and older (maximum 90 years). To achieve good performance, the
network therefore has to be robust to differences due to age.

In this experiment, we compare the performance of QuickNAT with
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state-of-the-art methods and evaluate the impact of pre-training. Table 3
reports the results measured in Dice overlap score. First, we compare
with the existing F-CNN models (FCN (Long et al., 2015), U-Net (Ron-
neberger et al., 2015)). Along each column, we observe that for all the
F-CNN models, pre-training with auxiliary labels followed by fine-tuning
(termed ‘Fine-tuned’ in Table 3) yields significantly (p< 0.001) better
performance than training only with limited manually annotated data
(termed ‘Only Manual’ in Table 3). Second, when comparing across rows,
we observe that QuickNAT performs better than U-Net and FCN in every
setting. QuickNAT significantly (p< 0.001) outperforms U-Net and FCN
by a margin of 5% points and 12% points mean Dice score after
fine-tuning. Noteworthy is that QuickNAT not only is better when trained
on the FreeSurfer labels (pre-trained model) but also when trained
exclusively with limited manually annotated data.

Next, we compare the fine-tuned QuickNAT model with state-of-the-
art atlas-based methods PICSL (Wang and Yushkevich, 2013) (winner of
challenge) and Spatial STAPLE (Asman and Landman, 2012) (top 5 in
challenge), and state-of-the-art 3D CNN based deep learning method
DeepNAT (Wachinger et al., 2018). Our model outperforms Spatial
STAPLE by a statistically significant margin (p< 0.05). The 15 scans for
training and the 15 scans for testing were consistent with the challenge
definition, for a fair comparison. It outperforms PICSL by a small margin,
which is not statistically significant. It also outperforms DeepNAT when
comparing segmentations for only 25 structures. DeepNAT operates in
3D, however, on patches extracted from the image, which limits the
context for prediction. A direct extension to a 3D full volume prediction,
instead of patches, is limited by the current available amount of GPU
memory.

In addition to comparing of brain-wide Dice scores, we performed a
structure-wise comparison (see Fig. 4). Significant differences are high-
lighted with a star symbol (⋆). No significant differences exist across any
of the 27 structures to the challenge winner PICSL. QuickNAT has
significantly higher Dice for many structures compared to Spatial STA-
PLE (14 of 27) and U-Net (23 of 27).

Qualitative Analysis: Sample segmentations are visualized in Fig. 5
for QuickNAT (trained on small data), PICSL and QuickNAT (fine-tuned)
along with the manual segmentation. A zoomed view of the segmenta-
tions is also presented. We indicate two important subcortical structures
left putamen (brown) and left pallidum (white) with a white arrow. We
can observe under-inclusion of left putamen for PICSL. We also observe
many spurious misclassified regions in the background in QuickNAT
(trained with limited data), which are absent for QuickNAT (fine-tuned).

Speed: Existing state-of-the-art atlas-based brain segmentation
frameworks build upon 3D deformable volume registration, e.g., ANTs
(Avants et al., 2011). In pair-wise registrations, each image in the atlas is
transformed to the test image. This results in long runtimes, since a single
pair-wise registration takes about 2 h on a 2GHz CPU machine (Landman
andWarfield, 2012). On MALC with 15 training images, the approximate
segmentation time for both PICSL and Spatial STAPLE is 30h/vol. Free-
Surfer has its own atlas and takes around 4h/vol. DeepNAT uses a 3D
patch-based approach for segmentation, which takes around 1h/vol. In



Fig. 4. Box-plot of Dice scores comparing QuickNAT with PICSL, Spatial STAPLE and U-Net on 15 test volumes of MALC dataset for all the 27 structures. Statistical
significance (p < 0:05) in comparison to QuickNAT is indicated by a star symbol (⋆). The p-values were estimates using two-sided Wilcoxon rank-sum test. WM
indicates White Matter and GM indicates Grey Matter.

Fig. 5. Qualitative results of QuickNAT trained with and without pre-training along with PICSL. A zoomed view shows left Putamen (dark brown) and left Pallidum
(white) with a white arrow for all the cases indicating the superior segmentation performance of fine-tuned QuickNAT over others.

Fig. 6. Illustration of segmentation speed for QuickNAT, DeepNAT, FreeSurfer
and PICSL in log scale, demonstrating its superior speed.

Table 4
Inter-Run Consistency reported by volume distance over 5 subjects from MALC
Dataset chosen by the Challenge organizers.

Structures Spatial STAPLE PICSL QuickNAT

Whole Brain 0.013� 0.015 0.018� 0.018 0.017� 0.016
Hippocampus 0.021� 0.012 0.041� 0.026 0.020� 0.012
Amygdala 0.011� 0.009 0.010� 0.001 0.025� 0.012
Lat. Ventricles 0.012� 0.005 0.015� 0.010 0.032� 0.025
White Matter 0.005� 0.004 0.012� 0.005 0.005� 0.004
Grey Matter 0.011� 0.011 0.019� 0.006 0.009� 0.006
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comparison to these models, QuickNAT segments a volume in 20s, which
is orders of magnitude faster. We illustrate the segmentation time in
Fig. 6 in logarithmic scale. The speed of QuickNAT can be further
reduced to about 6s, if only one anatomical view instead of all three are
used for segmentation. We observed the best segmentation performance
on a single view for coronal view, with an overall Dice of 0:895� 0:055
compared to 0:901� 0:045 with view aggregation.

Inter-Run Consistency: MALC includes a second MRI T1 scan for 5
patients to evaluate the consistency of the segmentation algorithm across
acquisitions (test/retest). For quantification, we estimate the volumes of
different structures for both runs and compute the volume distance (dV )
between them. This metric indicates the error in volume estimation after
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segmentation. It is defined as

dV ðVa;VeÞ ¼ 2
jVa � Vej
Va þ Ve

(4)

where Va is the actual volume (estimated from manual segmentation)
and Ve is the estimated volume, for a given structure. Higher volume
distance indicates poor estimation of volume and therefore an indirect
measure of low segmentation quality. Table 4 reports mean volume
distance for whole brain, hippocampus, amygdala, lateral ventricles,
white matter and grey matter; comparing QuickNAT with PICSL and
Spatial STAPLE. In case of whole brain, all values are very low with low
standard deviation, indicating that each of the methods produces highly
consistent results. For structures hippocampus, white matter, grey matter



Table 5
Segmentation performance for different views and with different view
aggregation. The best performance is achieved by combining all the
coronal, axial and sagittal views, which is indicated in bold.

Views Mean Dice score

Only Coronal 0.895� 0.055
Only Axial 0.879� 0.062
Coronal þ Axial 0.897� 0.052
Coronal þ Axial þ Sagittal 0.901± 0.045
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QuickNAT has a lower volume distance indicating its superiority over
PICSL and Spatial STAPLE. For structures Lateral ventricle and amygdala,
QuickNAT has poorer performance than PICSL and Spatial STAPLE, but
within an acceptable range of 2–3%.

Importance of View Aggregation: To evaluate the impact of view
aggregation, we conducted 4 experiments with our model on 15 test
volumes of MALC datasets: (i) Only coronal model, (ii) Only axial model,
(iii) Aggregation of coronal and axial models, and (iv) Aggregation of
coronal, axial and sagittal models. The results are reported in Table 5. We
can observe that coronal is the best view. Aggregation with axial in-
creases performance, with the best performance aggregating all the
orthogonal views (p < 0:05).
4.2. Evaluation of segmentation accuracy with training and testing on
different dataset

In the following experiments, we evaluate the generalizability of
QuickNAT by applying the network on datasets that have not been used
for training. We increase the number of training scans from MALC from
15 to 28 and compare to FreeSurfer (Fischl et al., 2002) and FSL (Ash-
burner and Friston, 2005), which are the most frequently used tools for
neuroanatomical reconstruction. Note that manual annotations of the
training/testing datasets follow the same protocol as the FreeSurfer atlas,
defined by the Center for Morphometric Analysis at Massachusetts
General Hospital. We assess accuracy with respect to the age of subjects,
the presence of disease (Alzheimer's disease, AD), and the magnetic field
strength (3.0T/1.5T). Finally, we evaluate the sensitivity of automated
segmentation in comparison to manual segmentation in group analyses.

4.2.1. Experiment 2: ADNI-29
In this experiment, we test whole brain segmentation on 29 scans

from the Alzheimer's Disease Neuroimaging Initiative (ADNI) that were
manually annotated by Neomorphometrics Inc. ADNI (Jack et al., 2008)
is one of the largest longitudinal neuroimaging studies to date. ADNI-29
contains whole brain segmentations for 14 AD patients and 15 controls
Fig. 7. Box-plot of Dice scores comparing QuickNAT with FreeSurfer on ADNI-29
Statistical significance (p< 0.05) in comparison to QuickNAT is indicated by a star sy
WM indicates White Matter and GM indicates Grey Matter.
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from the ADNI dataset (Jack et al., 2008). The dataset contains 15 1.5T
scans and 14 3.0T scans. Beside measuring segmentation accuracy, we
also use this dataset to evaluate the performance of QuickNAT in group
analysis by computing effect sizes and p-values. We segmented all 29
scans by applying the already trained QuickNAT model.

The mean Dice score on the dataset for FreeSurfer is 0:778� 0:097
and for QuickNAT 0.841� 0.064. QuickNAT outperforms FreeSurfer by
6% points in Dice score with p < 10�7. Also, a structure-wise comparison
is provided in Fig. 7, where QuickNAT has significantly higher dice score
than FreeSurfer for 24 out of 27 structures. We also deployed our ‘Pre-
trained’ network (trained with FreeSurfer auxiliary labels on IXI dataset)
on this dataset, which resulted in a mean Dice score of 0.789� 0.093.
Interestingly, this network, only trained on FreeSurfer annotations,
achieves a 1.1% points higher Dice score than FreeSurfer itself.

We evaluated the effectiveness of our proposed training strategy of
first pre-training followed by fine-tuning in Experiment 1 (Table 3) on
MALC dataset. On ADNI-29 which is an unseen dataset, we observed a
similar trend where fine-tuning lead to 6% points increase in global Dice
score. We conducted another experiment, where we trained QuickNAT
on the union of the IXI and MALC dataset. When applied to ADNI-29 we
obtain a global Dice score of 0.814� 0.080, which is 3% points less than
our proposed final framework. This is evidence that a two step pre-
training from scratch and fine-tuning is better than training on the
combined data.

To evaluate the robustness of QuickNAT across scans acquired from
scanners with different field strengths (1.5T/3.0T), we compared the
Dice score across the two groups. We did the same with FreeSurfer. The
results are shown in Fig. 8. We observe that for both groups, QuickNAT
outperforms FreeSurfer. We conducted the same experiment with Control
and AD patients as groups to observe robustness to pathologies. The re-
sults are presented in Fig. 8, where also we observe a superior perfor-
mance of QuickNAT.

Table 6 reports the effect sizes for the group analysis by comparing
AD patients with controls. We only report values for hippocampus and
amygdala due to their important role in AD pathology. The analyses are
performed on volume estimates, where we normalize volume estimates
by the intracranial volume. For computing effect sizes, we use Hedge's g
and Glass Δ. Since we have less than 50 subjects for each of the groups,
we use variants of these metrics, customized for small sample size. We
report effect sizes and corresponding confidence intervals, computed on
the manual segmentations together with those from QuickNAT and
FreeSurfer. We observe that for both metrics, QuickNAT is closer to the
actual estimate than FreeSurfer.

4.2.2. Experiment 3: IBSR
In this experiment, we test on 18 T1 MRI scans with manual whole
Dataset consisting of 15 Control and 14 AD subjects for all the 27 structures.
mbol (⋆). The p-values were estimated using two-sided Wilcoxon rank-sum test.



Fig. 8. Boxplot of Dice scores. To the left, Comparison of Dice scores for 1.5
Tesla and 3.0 Tesla field strengths for QuickNAT and FreeSurfer on ADNI-29. 15
scans were acquired at 1.5T and 14 scans at 3T. To the right, Comparison of Dice
scores for AD and controls for QuickNAT and FreeSurfer on ADNI-29. 15 scans
were acquired from controls and 14 from AD. The p-values were estimated using
two-sided Wilcoxon rank-sum test.

Table 6
Effect sizes and confidence intervals from manual segmentation, QuickNAT and
FreeSurfer in terms of Hedge's g and Glass Δ for ADNI-29 dataset between con-
trols and AD.

Hedge's g

Manual QuickNAT FreeSurfer

Hippocampus Left 1.22(0.37–1.99) 1.18(0.34–1.95) 1.00(0.18–1.76)
Amygdala Left 1.11(0.28–1.88) 1.16(0.32–1.94) 0.92(0.12–1.68)
Hippocampus Right 1.26(0.41–2.04) 1.25(0.40–2.03) 1.06(0.24–1.18)
Amygdala Right 1.26(0.41–2.04) 1.40(0.53–2.20) 0.96(0.15–1.72)

Glass Δ

Manual QuickNAT FreeSurfer

Hippocampus Left 0.96(0.11–1.81) 0.88(0.05–1.72) 0.75(0.05–1.57)
Amygdala Left 0.94(0.09–1.79) 0.93(0.09–1.77) 0.83(0.00–1.65)
Hippocampus Right 1.00(0.14–1.85) 0.97(0.12–1.82) 0.83(0.00–1.66)
Amygdala Right 1.03(0.17–1.89) 1.09(0.22–1.95) 0.79(0.03–1.61)

We also evaluate the performance of QuickNAT in finding significant associations
between diagnostic groups and brain morphology. Towards this end, we use a
standard linear regression model: Volume ~ Age þ Sex þ Diagnosis, and
compare the regression co-efficients of Diagnosis, in Table 7. The co-efficients of
QuickNAT are closer to the ones from manual segmentation.

Table 7
Normalized volume estimates for manual, QuickNAT and FreeSurfer segmenta-
tions are used in a linear model, Volume ~ Ageþ Sexþ Disease, for the ADNI-29
dataset. The normalized regression co-efficient and p-values corresponding to
variable Disease is reported below.

Manual QuickNAT FreeSurfer

Hippocampus Left 1.136(0.0012) 1.136(0.0012) 1.015(0.0031)
Amygdala Left 1.013(0.0058) 1.124(0.0009) 0.954(0.0068)
Hippocampus Right 1.157(0.0010) 1.149(0.0011) 1.061(0.0020)
Amygdala Right 1.119(0.0020) 1.247(0.0002) 0.957(0.0075)

Table 8
Mean Dice scores of QuickNAT and Dolz et al. (2018) on IBSR for four subcortical
structures segmented by Dolz et al. (2018).

Structures Dolz et al. (2018) QuickNAT

Thalamus 0.87 0.87
Caudate 0.84 0.86
Putamen 0.85 0.88
Pallidum 0.79 0.81
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brain segmentations from the Internet Brain Segmentation Repository
(IBSR). Challenges of this dataset include lower resolution of 1.5mm in
anterior-posterior direction (high slice thickness), low contrast, and a
wide age range from 7 to 71 years. Results on IBSR show a higher mean
Dice score for QuickNAT (0:835� 0:080) than for FreeSurfer
(0:794� 0:093). Fig. 9 reports structure-wise Dice scores. QuickNAT
results in higher Dice scores than FreeSurfer, which is significant for the
brain-wide comparison (p < 10�7 and for 16 of the 27 structures.
Fig. 9. Box-plot of Dice scores comparing QuickNAT with FreeSurfer on IBSR Datase
(p < 0:05) in comparison to QuickNAT is indicated by a star symbol (⋆). The p-value
Matter and GM indicates Grey Matter.
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Next, we compare with the CNN-based segmentation method in Dolz
et al. (2018), who segment 4 structures (thalamus, caudate, putamen,
pallidum). They train their model on ABIDE (Autism Brain Imaging Data
Exchange) dataset and test on IBSR, which is similar to our cross-dataset
experimental setup. Table 8 shows that QuickNAT results in about 2–3%
points higher Dice score, except for thalamus. Note however, that Dolz
et al. (2018) use the ‘brain.mgz’ output from FreeSurfer as input (skull
stripped, intensity normalized), which takes hours to generate and fa-
cilitates learning due to better standardization of the scans. In contrast,
we use ‘orig.mgz’ as input, which takes less than a second to generate.

4.2.3. Experiment 4: CANDI
In this experiment, a subset of 13 MRI T1 scans from the Child and

Adolescent NeuroDevelopment Initiative (CANDI) dataset (Kennedy
et al., 2012) with scans from children with psychiatric disorders were
used as testing subjects. Subject's age ranges from 5 to 15 years with a
mean of 10 years. Annotations were provided by Neomorphometrics Inc.
We applied the trained QuickNAT on the dataset and compared against
FreeSurfer. This dataset is challenging because the subjects of this
particular age range are not part the training set (MALC). Here we
investigate the ability of the model to generalize across previously un-
seen age ranges. The mean Dice scores across all structures for QuickNAT
is 0.842� 0.084, compared to FreeSurfer with 0.798� 0.092, which is
5% points lower. Fig. 10 reports structure-wise Dice scores. QuickNAT
results in higher Dice scores than FreeSurfer, which is significant for the
brain-wide comparison (p< 10�17) and for 22 of the 27 structures.
t consisting of 18 MRI T1 scans for all the 27 structures. Statistical significance
s were estimated using two-sided Wilcoxon rank-sum test. WM indicates White



Table 9
Comparison of QuickNAT, FSL and FreeSurfer for segmentation of 13 structures
common to all on ADNI-29, CANDI and IBSR Dataset. The results including and
excluding scans where FSL failed are presented separately, along with the failure
rate of FSL. Bold indicates the best performing algorithm in the respective
datasets.

Method ADNI-29 CANDI IBSR

All scans QuickNAT 0.825 �
0.027

0.819 �
0.028

0.820 �
0.035

FreeSurfer 0.745� 0.042 0.780� 0.025 0.776� 0.025
FSL 0.643� 0.290 0.647� 0.369 0.461� 0.419
Failure of
FSL

5 out of 29
(17%)

3 out of 13
(23%)

8 out of 18
(44%)

Scans where
FSL
succeeded

QuickNAT 0.823 �
0.027

0.817� 0.032 0.817� 0.035

FreeSurfer 0.745� 0.045 0.775� 0.027 0.772� 0.022
FSL 0.775� 0.024 0.841 �

0.013
0.825 �
0.013
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4.2.4. Comparison with FSL
We also compare to FSL FIRST, which is another publicly available

tool for automated segmentation of some subcortical structures for T1
MRI scans (Jenkinson et al., 2012; Patenaude et al., 2011). We cannot
directly compare our results to FSL as it only segments 15 structures in
the brain, whereas QuickNAT segments 27 structures. For a fair com-
parison, we selected the common 13 structures which are segmented by
FSL, QuickNAT, and FreeSurfer. These are Thalamus (LþR), Caudate
(LþR), Putamen (LþR), Pallidum (LþR), Hippocampus (LþR), Amygdala
(LþR) and BrainStem. We reported the performance of QuickNAT,
FreeSurfer and FSL on the 3 datasets with whole-brain manual annota-
tions (ADNI-29, CANDI, IBSR).

We observed that FSL is prone to registration errors which leads to
process termination or faulty segmentations. We note that FSL was used
with its default settings for all the experiments, as recommended in its
instruction manual. FreeSurfer and QuickNAT did not fail during seg-
mentation. Thus, we report results once on all scans and once on those
scans that FSL did not fail in Table 9. The failure rate of FSL is higher on
IBSR (44%) than on ADNI (17%) or CANDI (23%), indicating that it is
susceptible to low quality scans. Considering all scans and a sub-set of 13
structures QuickNAT outperforms both FreeSurfer and FSL by a statisti-
cally significant margin (p< 0.001). Excluding the scans where FSL
failed, QuickNAT demonstrates superior performance for ADNI-29, while
FSL is best for CANDI. In IBSR, FSL outperforms QuickNAT by a small
margin of 0.08% points, which is not statistically significant. A possible
reason for the good performance of FSL on CANDI may be that FSL in-
cludes scans with age range (5–15 years) in its atlas. Scans of this age
range were not included in training QuickNAT. The performance of
QuickNAT can potentially be improved on young subjects with more
training data from such an age range.

4.2.5. Compilation of worst segmentation performance scans (Exp: 2,3,4)
In this section, we visualize the subjects with lowest segmentation
Fig. 10. Box-plot of Dice scores comparing QuickNAT with FreeSurfer on CANDI Dat
significance (p< 0.05) in comparison to QuickNAT is indicated by a star symbol (⋆
indicates White Matter and GM indicates Grey Matter.

Fig. 11. Illustration of scans for IBSR, ADNI and CANDI with the worst segmentation p
IBSR scan has motion and ringing artifacts with poor contrast, (b) ADNI scan is from
ventricles), (c) CANDI scan is from a 5-year-old subject, with severe motion artifact
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accuracy (mean Dice score) for all datasets with whole-brain annotations
and cross-dataset evaluation (IBSR, ADNI-29, CANDI), to identify the
limits of QuickNAT. Segmentations are shown in Fig. 11(a–c). The scan
with the worst performance in IBSR dataset has a mean Dice score of
0.78, which is 5% points less than the overall Dice of the dataset. We
observe that the scan has motion and ringing artifacts and low contrast
(Fig. 11(a)), which might have impaired performance. The worst per-
forming ADNI-29 scan has a Dice score of 0.81, which is 3% points less
than the overall Dice of dataset. The scan is from a 95-year-old patient
with severe AD. The scan shows strong ringing artifacts, pronounced
atrophy, and enlarged ventricles, shown in Fig. 11(b). Such pathological
data were not used for training, still QuickNAT generalizes well to such
cases. The worst performing CANDI scan has a Dice score of 0.77, which
is 7% points lower than the Dice score for the overall dataset. This is from
a patient aged 5. The scan has severe motion artifacts and low contrast as
aset consisting of 13 MRI T1 scans of children for all the 27 structures. Statistical
). The p-values were estimated using two-sided Wilcoxon rank-sum test. WM

erformance. The MRI scans along with QuickNAT segmentations are shown. (a)
a 95-year-old subject with severe AD (prominent cortical atrophy and enlarged
s and very low contrast.



Fig. 12. The figure shows hippocampus segmentation performance on the HarP
dataset, in terms of Dice score and volume distance for different diagnoses (42
Controls, 44 MCI, and 45 AD). Higher Dice score and correlation indicates better
performance, while lower volume distance indicates better performance. The p-
values were computed using two-sided Wilcoxon rank-sum test.
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shown in Fig. 11(c). Looking at the segmentation results of QuickNAT on
all of these challenging cases, we observe small errors, but it is striking
that overall decent segmentation performance is decent.

4.2.6. Experiment 5: HarP dataset
We evaluate the hippocampus segmentation in the presence of de-

mentia on a large dataset with manual annotations following the
Harmonized Protocol (HarP) for hippocampus segmentation (Boccardi
et al., 2015), developed by the European Alzheimer's Disease Consortium
and ADNI. Similar to ADNI-29, it is a subset of the ADNI dataset (Jack
et al., 2008). Left and right hippocampi were segmented for 131 subjects,
balanced for controls, mild cognitive impairment (MCI), and AD. The
hippocampus is an important brain structure, whose volume and shape
changes are important biomarkers for disease and aging (Bartsch and
Wulff, 2015). Segmenting the hippocampus is challenging because of
small or absent signal gradient between it and its adjacent regions. The
HarP dataset contains 131 MRI T1 scans, which are balanced for controls,
MCI and AD (42 CN, 44 MCI, 45 AD). The challenges associated with this
dataset are: (i) subjects with neurodegenerative disease, and (ii) varia-
tions in the manual annotation protocol. Across all diagnostic groups
(CN, MCI, AD), the volume distance to the manual segmentation is
significantly lower for QuickNAT than FreeSurfer and the Dice scores are
significantly higher (Fig. 12).

4.3. Evaluation of segmentation reliability

In the following experiments, we evaluate the segmentation reli-
ability of QuickNAT with different experiments detailed below.
Fig. 13. The figure illustrates the performance of QuickNAT for ventricle vol-
ume estimation after segmentation and compares to FreeSurfer and ALVIN, on
the dataset introduced by ALVIN. The performance is evaluated by estimating
intra-class correlation (metric used in Kempton et al. (2011)) for both young
adults (7 scans) and AD subjects (9 scans).
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4.3.1. Experiment 6: ALVIN dataset
In this experiment, we follow a comprehensive testing protocol for

MRI neuroanatomical segmentation techniques as proposed for lateral
ventricle segmentation, termed ALVIN (Kempton et al., 2011). The
dataset consists of 7 young adults and 9 patients with Alzheimer's dis-
ease. Lateral ventricles have been manually annotated at two time points
to observe intra-observer variability and their volumes were reported.
We compute volumes from QuickNAT segmentations and follow the
evaluation protocol by reporting intra-class correlation coefficient (ICC)
(Kempton et al., 2011), in addition to volume distance (Methods). We
compare with results of FreeSurfer and ALVIN reported in Kempton et al.
(2011). On control subjects and AD patients, QuickNAT shows the best
performance (Fig. 13).

4.3.2. Experiment 7: TRT dataset
The dataset was released to test reliability of automated whole-brain

segmentation algorithms in estimating volumes for some important brain
structures using test re-test (Maclaren et al., 2014). They acquired 120
MRI T1 scans from 3 subjects (40 scans per subject). The scans were
acquired over 20 sessions (2 scans per session). All the scans were ac-
quired within a period of 30 days. Maclaren et al. (2014) analyzed the
coefficient of variation in volume estimates within one session (intra
session CVs) and the total variance over all 40 scans (CVt). The metric
co-efficient of variance, provides an extent of variability to the mean
value. The total coefficient of variation is computed as CVt ¼ σt

μt
, where σt

and μt are the standard deviation and mean of the estimates. This global
variance considering all the estimates across session provides
inter-session CVt . The intra-session co-efficient of variation CVs is esti-
mated by the root mean square of all the co-efficient of variance per
session. Ideally as atrophy is almost negligible within the period of 30
days, the coefficient of variation in estimates should be zero. The lower
the estimate, the better the estimator. We compare QuickNAT with
FreeSurfer in this regard. The 8 structures considered in this experiment
are consistent with the ones reported in Maclaren et al. (2014). The re-
sults of the experiment are reported in Table 10. Both coefficients of
variation CVs and CVt are within a tolerable range of less than 2% for
QuickNAT, but variations are quite high for FreeSurfer for some struc-
tures like thalamus (6%), pallidum (5%), amygdala (5%) and putamen
(4%). In volume estimation of cerebral WM, FreeSurfer exhibits a better
performance than QuickNAT with (CV < 1%). A possible reason might
be the sophisticated surface processing and correction stage in FreeSurfer
that follows the initial segmentation (Dale et al., 1999; Fischl et al.,
1999).

Finally, having such low CV estimates makes QuickNAT a promising
tool for group analysis studies over large datasets with reliable estimation
of biomarkers. It can also be effectively used in processing longitudinal
scans to model disease progression. We excluded comparison with FSL in
this experiment due to FSL registration errors in some volumes.

4.3.3. Experiment 8: HTP dataset
In this experiment, we evaluated the reliability and robustness in

estimating volumes across scans acquired frommultiple centers, from the
Human Travelling Phantom (HTP) dataset (Magnotta et al., 2012). The
dataset includes scans from 5 healthy subjects travelling to 8 different
medical centers in the USA. All scans were acquired within a period of 30
days, such that atrophy of structures due to normal aging is negligible.
Each of the 8 imaging centers used MRI scanners manufactured by
different vendors, different gradient specifications, different number of
channels in the head coil etc. Ideally, the coefficient of variation (CV) of
volume estimates across the sites should be zero; the lower the estimate,
the more reliable and robust is the segmentation algorithm. A detailed
explanation of the experimental setup is provided in Magnotta et al.
(2012). Overall, the dataset is challenging for segmentation, because it is
very heterogeneous with strong variation of data quality across sites,
where scans from some sites exhibit strong motion artifacts. We



Table 10
Variation in volume measurement per structure. QuickNAT is compared against FreeSurfer in terms of intra-session coefficient of variation (CVs), inter-session total
coefficient of variation (CVt) and the absolute difference between them. Also, the mean volume estimates per structure are reported. It must be noted that volumes of
both left and right hemispheres are combined to estimate the total volume for each structure. The estimates from FreeSurfer were taken from Maclaren et al. (2014).
Bold indicates the scores of algorithm for each structure with better segmentation reliability.

Structures Mean Vol. (ml) Intra-session CVs (%) Inter-session CVt (%) jCVs�CVtj (%)

FS Q-NAT FS Q-NAT FS Q-NAT FS Q-NAT

Hippocampus 8.90 7.56 2.77 0.73 2.92 0.80 0.16 0.09
Lateral Ventricles 10.10 14.42 1.58 2.33 3.40 3.04 1.82 0.95
Amygdala 3.80 2.18 4.69 1.91 5.21 2.39 0.53 0.50
Putamen 11.60 8.89 4.04 0.71 3.92 0.85 0.13 0.17
Pallidum 3.20 3.36 5.25 1.32 5.42 1.42 0.17 0.12
Caudate 7.40 6.82 1.54 1.02 1.58 1.14 0.04 0.18
Thalamus 12.90 16.22 5.98 0.77 6.06 0.93 0.08 0.19
Cerebral WM 496.60 403.70 0.88 1.98 0.87 1.91 0.00 0.07
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compared QuickNAT with FreeSurfer and reported the results in
Table 11. QuickNAT showed more robustness for hippocampus, puta-
men, pallidum, and thalamus, while FreeSurfer is better in lateral ven-
tricles, amygdala, caudate, and cerebral WM. Overall, this challenging
experiment demonstrated that QuickNAT and FreeSurfer are equally
robust.

5. Discussion

5.1. Comparison with deep learning approaches

Recently, convolutional neural networks have been proposed for
brain segmentation (Chen et al., 2018; Dolz et al., 2018; Fedorov et al.,
2017; Wachinger et al., 2018; Moeskops et al., 2016). DeepNAT
(Wachinger et al., 2018) reported competitive results on the MALC data,
but as shown in Table 3, QuickNAT yields significantly higher accuracy,
while requiring only seconds (Fig. 6). Dolz et al. (2018) proposed a
network for segmenting 8 structures based on skull-stripped and intensity
normalized images, which facilitates the learning process but requires
hours for processing. Nevertheless, a comparison on IBSR demonstrated
higher accuracy for QuickNAT (Table 8). The comparison to VoxResNet
(Chen et al., 2018) is not directly possible, because only 3 structures were
segmented. MeshNET (Fedorov et al., 2017) only uses FreeSurfer seg-
mentations for training and testing, without any manual annotations,
which makes it complicated to assess the actual performance. The
methods in Dolz et al. (2018) and Fedorov et al. (2017) have limited
comparison to existing segmentation approaches, while we compare with
FreeSurfer, FSL, PICSL, SpatialSTAPLE, U-Net, FCN, and DeepNAT using
an identical experimental setup. Notably, none of the methods have been
used in a cross-dataset evaluation, i.e., training and testing on separate
datasets, except for Dolz et al. (2018). By evaluating QuickNAT on 8
different datasets and performing reliability study on 3 datasets, we have
presented the most comprehensive evaluation of a convolutional neural
network for brain segmentation so far.

In addition to the above mentioned articles, CNNs have also been
Table 11
Coefficient of variation (CV) in volume estimation for the 8 structures for each subject,
subjects is presented. Bold indicates the scores of algorithm for each structure with l

Structures Subject ID with CV

1 2 3

FS QN FS QN FS

Hippocampus 8.49 4.66 1.41 1.09 2.39
Lateral Ventricles 8.28 14.8 5.25 8.43 2.37
Amygdala 4.1 10.4 2.25 5.08 5.33
Putamen 9.36 5.76 5.66 1.89 5.83
Pallidum 9.34 5.26 7.59 1.49 9.05
Caudate 5.12 15.3 2.83 5.72 3.13
Thalamus 2.74 1.43 4.21 1.11 2.7
Cerebral WM 3.09 3.43 1.64 3.45 2.59
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proposed for the segmentation of pathological structures like brain tu-
mors (Pereira et al., 2016; Havaei et al., 2017; Kamnitsas et al., 2017) or
lesions (Brosch et al., 2016; Ghafoorian et al., 2017; Valverde et al.,
2017).

5.2. Pre-training with auxiliary labels

Although deep learning models have been shown to be highly effec-
tive, they are highly complex and require large annotated data for
effective training (LeCun et al., 2015). Access to abundant annotated
training data is challenging for medical applications due to the high cost
of creating expert annotations. The problem is more prominent for
F-CNNs, where each slice corresponds to one data point, in contrast to
patch based approaches, where millions of patches can be extracted from
a volume (Wachinger et al., 2018). To address this issue, we introduced a
training strategy that leverages large unlabeled data and small manual
data to effectively train our fully convolutional model. We used Free-
Surfer to automatically create segmentations from unlabeled data, which
serve as auxiliary labels to pre-train our model. This pre-trained model,
which mimics FreeSurfer, is fine-tuned with small manually annotated
data to get the final model. Our results have shown that a model trained
with this new strategy significantly outperforms a model that is only
trained on manual data. Although we have demonstrated the application
to brain segmentation, the proposed training strategy is generic and can
be effectively used for other segmentation tasks as well. In a parallel
research work, FreeSurfer generated labels were used to train a model for
multiple cohorts for hippocampus segmentation, showing promising re-
sults (Thyreau et al., 2018).

In Sec. 4.2.1, we observed another very interesting aspect of pre-
training. On the ADNI-29 dataset, the pre-trained network achieved a
higher accuracy than FreeSurfer itself. This is quite surprising given the
fact that pre-training was conducted with annotations generated from
FreeSurfer only. In other words, it seems that the network imitating
FreeSurfer can perform better than FreeSurfer itself. The reason for such
a behavior could be the large amount of data (IXI Dataset) that the pre-
using QuickNAT (QN) and FreeSurfer (FS). Also, RMS CV per structures for all the
ower RMS CV, i.e. better segmentation reliability.

RMS

4 5 CV

QN FS QN FS QN FS QN

2.18 3.57 1.19 2.69 4.06 4.47 3.02
6.32 2.85 6.62 12.9 15.1 7.45 10.9
4.98 2.16 2.99 5.58 5.31 4.15 6.29
1.3 5.18 1.8 4.29 5.08 6.31 3.63
1.59 7.99 1.22 5.27 3.85 7.98 3.12
1.47 2.45 4.27 3.01 6.75 3.44 8.18
2.55 2.42 2.36 5.33 3.49 3.65 2.35
4.8 2.2 3.79 4.14 4.28 2.86 3.99
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trained model has seen and that it learned to generalize from the noisy
auxiliary annotations, emphasizing the potential of pre-training.

5.3. Architecture design

The architecture of QuickNAT has been tailored to address the chal-
lenges associated with whole brain segmentation. The fully convolu-
tional architecture offers faster processing and larger context than patch-
based DeepNAT (Wachinger et al., 2018), because all the voxels in a slice
are labelled simultaneously. The dense connections within every encoder
and decoder block promote feature re-usability in the network (Huang
et al., 2016), which optimizes model complexity by avoiding learning of
similar feature maps in different layers. In the decoder blocks, upsam-
pling is done using unpooling layers instead of convolutions, which does
not involve any learnable parameters and enforces spatial consistency; an
essential aspect for segmenting small subcortical structures. The network
is learned by optimizing a combined weighted logistic and Dice loss
function with stochastic gradient descent. To tackle class imbalance and
provide reliable contour estimation of the structures, we up-weighted
under-represented classes using median frequency balancing and
emphasized anatomical boundaries. Our results have shown the signifi-
cant improvement of the QuickNAT architecture, compared to
state-of-the-art U-Net and FCN models.

5.4. Segmentation accuracy

We have demonstrated the high accuracy of QuickNAT on a
comprehensive set of 5 experiments that cover a wide range of variations
in acquisition parameters and neuroanatomy. In experiments on the
MALC dataset, we demonstrated that QuickNAT provides segmentations
with similar accuracy and inter-run consistency to the best atlas-based
methods (Table 3 and Table 4). In experiments with ADNI-29, we
demonstrated the robustness of QuickNAT with respect to pathology and
magnetic field strengths (Fig. 8). Moreover, effect sizes from QuickNAT
are more similar to those from manual segmentations than FreeSurfer
(Table 6). In experiments with IBSR, we demonstrated the robustness to
data with lower resolution and low contrast (Fig. 9). High segmentation
accuracy on scans from young subjects was demonstrated on the CANDI
dataset (Fig. 10) and for hippocampus segmentation on the HarP dataset
(Fig. 12). Finally, we compared to FSL FIRST on a subset of structures that
are identified by both (Table 9). Notably, QuickNAT has not failed on any
scan across all datasets and has not produced a single segmentation that
had to be rejected.

5.5. Segmentation reliability

In an additional set of 3 experiments, we evaluated the reliability of
QuickNAT. We measured high reliability in lateral ventricle segmenta-
tion by following the testing protocol ALVIN. We observed high consis-
tency for the segmentation of 8 structures on test-retest data with less
than 2% variation on most brain structures (Table 10). The test-retest
data was acquired on the same scanner. We extended the evaluation to
a more challenging dataset, where the same subject was scanned in
various machines at different sites. As expected, the variation increased
in this setup, but the reliability was comparable to FreeSurfer. The high
reliability of QuickNAT compared to FreeSurfer is surprising, because the
atlas used in FreeSurfer provides a strong spatial prior, which tends to
improve reliability. However, our results showed that the more uncon-
strained, deep learning based segmentation can achieve higher
reliability.

5.6. Limitations

As any brain segmentation method, QuickNAT has limitations. On the
data of the human travelling phantom (HTP Dataset), we observed an
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increase in variance across centers. In a detailed investigation, we found
that scans from one of the sites (Dartmouth) had strong motion artifacts,
which deteriorated our segmentation performance, and in turn increased
the variance. Motion artifacts present a challenge to many image pro-
cessing tasks. If more than one source volume exists, motion correction
could be applied, as is done in the FreeSurfer pipeline. We have experi-
mented with scans from subjects in the age range 5–95. Outside this age
range, additional experiments need to be conducted. Furthermore, we
have shown scans with the worst segmentation performance in Fig. 11,
illustrating the limits of QuickNAT. Another limitation of QuickNAT is
that it cannot deal with tissue classes that are not part of the training set,
e.g., tumors. For QuickNAT to also work on tumor cases, we would need
training data, where the tumor is annotated together with all the brain
structures. To the best of our knowledge, such a dataset is not publicly
available.

6. Conclusion

We have introduced QuickNAT, a deep learning based method for
brain segmentation that runs in seconds, achieving superior performance
with respect to existing methods and being orders of magnitudes faster in
comparison to patch-based CNNs and atlas-based approaches. We have
demonstrated that QuickNAT generalizes well to other, unseen datasets
(training data different to testing) and yields high segmentation accuracy
across diagnostic groups, scanner field strengths, and age, while pro-
ducing highly consistent results. This high segmentation accuracy en-
hances group analyses by enabling effect sizes and significance values
that better match those of manual segmentations. Also, with high test-
retest accuracy it can be effectively used for longitudinal studies.
QuickNAT can be highly impactful because of its fast processing time and
robustness to neuroanatomical variability, allowing for an almost
instantaneous access to accurate imaging biomarkers.
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Appendix

List of classes: The brain structures segmented by QuickNAT are: (1) Cortical White Matter Left, (2) Cortical Grey Matter Left, (3) Cortical White
Matter Right (4) Cortical Grey Matter Right, (5) Lateral Ventricle Left, (6) Cerebellar White Matter Left, (7) Cerebellar Grey Matter Left, (8) Thalamus
Left, (9) Caudate Left, (10) Putamen Left, (11) Pallidum Left, (12) 3rd ventricle, (13) 4th ventricle, (14) Brainstem, (15) Hippocampus Left, (16)
Amygdala Left, (17) Ventral DC Left, (18) Lateral Ventricle Right, (19) Cerebellar White Matter Right, (20) Cerebellar Grey Matter Right, (21) Thalamus
Right, (22) Caudate Right, (23) Putamen Right, (24) Pallidum Right, (25) Hippocampus Right, (26) Amygdala Right, (27) Ventral DC Right.

Label remapping strategy: QuickNAT segments 27 brain structures with IDs 1 to 27 as indicated above. For training, testing and evaluation
purposes, we map the FreeSurfer labels and Manual Labels (provided by Neuromorphometrics Inc.) consistent to that of the QuickNAT IDs. The ID
mapping strategy is detailed in Table 12. For FreeSurfer, the mapping IDs are corresponding to ‘aseg.mgz’, which does not contain cortical parcellations.
For manual annotations, which has cortical parcellations, we first map all the parcels to a single cortex class. All the IDs greater than 100 with even
values are mapped to ID 210 (Right hemisphere cortex). Similarly, all the IDs greater than 100 with odd values are mapped to ID 211 (left hemisphere
cortex). After this the mapping to QuickNAT IDs are performed as per Table 12.
Table 12

Label Remapping Strategy

Structures QuickNAT FreeSurfer Manual
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Cortical White Matter Left
 1
 2
 45

Cortical Grey Matter Left
 2
 3
 211

Cortical White Matter Right
 3
 41
 44

Cortical Grey Matter Right
 4
 42
 210

Lateral Ventricle Left
 5
 4
 52

Cerebellar White Matter Left
 6
 7
 41

Cerebellar Grey Matter Left
 7
 8
 39

Thalamus Left
 8
 10
 60

Caudate Left
 9
 11
 37

Putamen Left
 10
 12
 58

Pallidum Left
 11
 13
 56

3rd ventricle
 12
 14
 4

4th ventricle
 13
 15
 11

Brainstem
 14
 16
 35

Hippocampus Left
 15
 17
 48

Amygdala Left
 16
 18
 32

Ventral DC Left
 17
 28
 62

Lateral Ventricle Right
 18
 43
 51

Cerebellar White Matter Right
 19
 46
 40

Cerebellar Grey Matter Right
 20
 47
 38

Thalamus Right
 21
 49
 59

Caudate Right
 22
 50
 36

Putamen Right
 23
 51
 57

Pallidum Right
 24
 52
 55

Hippocampus Right
 25
 53
 47

Amygdala Right
 26
 54
 31

Ventral DC Right
 27
 60
 61
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