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Abstract 

Background: The progression rates of Alzheimer’s disease (AD) are variable and dynamic, yet the mechanisms that 
contribute to heterogeneity in progression rates remain ill-understood. Particularly, the role of synergies in pathologi-
cal processes reflected by biomarkers for amyloid-beta (‘A’), tau (‘T’), and neurodegeneration (‘N’) in progression along 
the AD continuum is not fully understood.

Methods: Here, we used a combination of model and data-driven approaches to address this question. Working 
with a large dataset (N = 321 across the training and testing cohorts), we first applied unsupervised clustering on 
longitudinal cognitive assessments to divide individuals on the AD continuum into those showing fast vs. moderate 
decline. Next, we developed a deep learning model that differentiated fast vs. moderate decline using baseline AT(N) 
biomarkers.

Results: Training the model with AT(N) biomarker combination revealed more prognostic utility than any individual 
biomarkers alone. We additionally found little overlap between the model-driven progression phenotypes and estab-
lished atrophy-based AD subtypes. Our model showed that the combination of all AT(N) biomarkers had the most 
prognostic utility in predicting progression along the AD continuum. A comprehensive AT(N) model showed better 
predictive performance than biomarker pairs (A(N) and T(N)) and individual biomarkers (A, T, or N).

Conclusions: This study combined data and model-driven methods to uncover the role of AT(N) biomarker syn-
ergies in the progression of cognitive decline along the AD continuum. The results suggest a synergistic relation-
ship between AT(N) biomarkers in determining this progression, extending previous evidence of A-T synergistic 
mechanisms.
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Background
Alzheimer’s disease (AD) is a progressive neurodegen-
erative disorder which gradually impairs memory, cogni-
tion, and other vital functions [1]. Individuals along the 
AD continuum exhibit markedly heterogeneous pro-
gression rates as the disease advances [2, 3]. Both linear 
and non-linear progression of cognitive decline has been 
documented in AD [4, 5], with distinct progression pro-
files found among individuals [2, 3]. Still, the mechanisms 
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that underlie the heterogeneity in AD progression rates 
remain incompletely understood.

The neuropathological hallmarks of AD are centered 
around the presence of amyloid-beta (Aβ) plaques and 
neurofibrillary tangles of hyperphosphorylated tau, 
which are believed to precede structural neurodegenera-
tive changes in the brain [6, 7]. Links between cognitive 
decline in AD and biomarker levels for Aβ [8], tau [9], 
and atrophy/neurodegeneration [10] have been reported 
in the literature. However, with little exception, studies 
have focused on individual biomarkers rather than exam-
ining their synergies and combined contribution to pro-
gressive cognitive decline along the AD continuum. An 
accurate characterization of the mechanisms leading to 
heterogeneity in progression rates would nevertheless 
benefit from considering biomarkers for Aβ (‘A’), tau (‘T’), 
and neurodegeneration (‘N’) together, consistent with the 
recently proposed AT(N) framework [11, 12]. Yet, com-
bining AT(N) biomarkers in a single model is not trivial, 
given their complex, non-linear relationships with one 
another and/or their relationship with cognitive decline 
[13, 14]. A modeling approach based on deep learning 

arises as a natural solution to this problem, given its abil-
ity to model complex and non-linear mappings [15, 16]. 
Deep learning models have emerged as a powerful tool 
recently in relevant tasks, such as differentiating between 
individuals with dementia and controls [17, 18], and clas-
sifying stable vs. progressive mild cognitive impairment 
(MCI) [15, 19–21].

In the current study, we propose a model-driven 
approach, based on AT(N) biomarkers, for stratifying 
progression rates along the AD continuum and delin-
eating their underlying mechanisms. Notably, this work 
focuses on heterogeneity of cognitive decline along the 
AD continuum unlike previous studies where MCI pro-
gression was examined [22, 23]. We first employ data-
driven clustering of cognitive assessments to define 
individuals with prodromal or clinical AD as either Fast 
Decliners (FD) or Moderate Decliners (MD) (Fig.  1A). 
These progression phenotypes are then used to train, 
validate, and test a deep learning model using baseline 
biomarkers for A (CSF Aβ 1–42), T (CSF p-tau 181), and 
N (MRI images and FDG-PET) (Fig. 1B). The model was 
trained with and without Aβ, tau, and neurodegeneration 

Fig. 1 Study setup. A Clustering of MMSE scores to classify subjects as Fast and Moderate Decliners (FD and MD, respectively). B Baseline AT(N) 
biomarkers including CSF Aβ (A), CSF p-tau (T), and FDG-PET along with T1-weighted images (N), from a cohort of subjects with prodromal and 
clinical AD (n = 321, augmented to 1104) were used to train the deep learning models for FD/MD prediction. C The predicted cognitive progression 
phenotypes in the test set (ntest = 97) were also examined for overlap with putative atrophy-based AD subtypes
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biomarkers, allowing us to compare the relative contri-
bution of biomarker synergies, particularly amyloid-, 
and tau-mediated neurodegeneration to progression 
rates along the AD continuum. We additionally exam-
ined the extent to which the cognitive progression phe-
notypes predicted by our model reflected variation in 
regional atrophy characteristics (Fig.  1C), commonly 
used for subtyping AD [24–27]. This allowed us to exam-
ine if our model-based framework reflected patterns of 
neurodegeneration captured by other commonly used 
approaches.

Methods
time points during 24 months following baseline, (3) 
had T1‑weighted MRI images takenParticipants and data 
acquisition
Data used in this study were obtained from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) 
database (adni.loni.usc.edu; clinical trial registration: 
NCT00106899). The ADNI was launched in 2003 as a 
public-private partnership, led by the Principal Inves-
tigator Michael W. Weiner, M.D. The primary goal of 
the ADNI has been to test whether serial MRI, positron 
emission tomography (PET), other biological markers, 
and clinical and neuropsychological assessments can be 
combined to measure the progression of MCI and early 
AD. In the current study, participants from the ADNI-
1, ADNI-2/Go, and ADNI-3 cohorts were included if 
they were (1) diagnosed with AD at baseline or within 
1 year of their first diagnosis (i.e., MCI subjects were 
included if they were later diagnosed as AD), (2) had 
valid cognitive evaluations (Mini-Mental State Exami-
nation (MMSE) scores) performed at a minimum of t = 
4 time points during 24 months following baseline, (3) 
had T1-weighted MRI images taken using 3T scanners 
based on either an inversion recovery-fast spoiled gra-
dient recalled (IR-SPGR) or a magnetization-prepared 
rapid gradient-echo (MP-RAGE) sequences, and (4) were 
determined to be amyloid-positive within the study’s 
timeline according to published criteria (CSF Aβ < 976.6 
pg/mL or 18F-florbetapir-PET uptake ratio > 1.11). The 
18F-florbetapir-PET uptake ratios, provided in ADNI as a 
derived variable, were calculated by extracting weighted 
cortical retention means from frontal, cingulate, parietal, 
and temporal regions, after co-registering the PET and 
MRI scans. These data were used to calculate standard-
ized uptake value ratios (SUVRs), normalized by a whole 
cerebellum reference region. SUVRs with a positivity 
threshold of 1.11 were then identified [28, 29].

In total, 321 unique subjects were identified using these 
criteria. Out of these, 310 subjects were determined to 
be amyloid-positive using CSF Aβ cutoff while 11 sub-
jects satisfied the PET uptake ratio criterion. All subjects 

provided written informed consent, and the procedures 
were approved by the Institutional Review Boards of par-
ticipating centers.

MRI images and their processing
T1-weighted SPGR or MPRAGE images were acquired 
using 3T scanners (full details of the image acquisi-
tion protocols can be found online (http:// adni. loni. usc. 
edu/ metho ds/ docum ents/ mri- proto cols/). T1-weighted 
images were used for training of the deep learning mod-
els. The cohort with valid MRI and cognitive assessments 
were split between the training (n train = 224) and testing 
(n test = 97) datasets.

CSF Aβ 1-42 (amyloid-beta) and p-tau181 (tau) biomark-
ers along with MRI + fluorodeoxyglucose (FDG)-PET 
data (neurodegeneration) were used as the A, T, and N 
biomarkers respectively in our AT(N)-centered analyti-
cal framework. CSF samples used in this study were col-
lected and processed previously (see, [30]; http:// adni. 
loni. usc. edu/ metho ds). CSF Aβ and p-tau were measured 
with the fully automated Elecsys immunoassay (Roche 
Diagnostics, Basel, Switzerland) by the ADNI biomarker 
core (University of Pennsylvania, Philadelphia, PA). Pro-
cessed (see, http:// adni. loni. usc. edu/ metho ds) FDG PET 
images were averaged, with uptake values from angu-
lar, temporal, and posterior cingulate cortices serving as 
one of our two biomarkers for neurodegeneration (along 
with MRI) [31]. This average FDG PET was previously 
obtained using a series of steps to mitigate inter-scanner 
variability and normalized in spatial resolution and inten-
sity range for further analysis [32]. Each MRI image was 
standardized to 0 mean and unit standard deviation. Sim-
ilarly, other AT(N) biomarkers were standardized before 
being used as input in the deep learning model.

Unsupervised clustering of cognitive measurements
To characterize longitudinal change in cognition, we 
used 2-year follow-up MMSE scores. In addition, other 
cognitive assessments over the same duration were used 
for validation purposes, including the Alzheimer’s Dis-
ease Assessment Scale, 13-Item Subscale (ADASCog13), 
Clinical Dementia Rating Sum of Boxes (CDR-SB), and 
Functional Assessment Questionnaire (FAQ). These tests 
were administered as described online (http:// www. adni- 
info. org).

We used time-series clustering based on the dynamic 
time-warping (DTW) method [33] to identify cognitive 
phenotypes in a data-driven manner. Clustering is typi-
cally applied in order to partition a heterogeneous set of 
samples into more homogeneous clusters based on some 
similarity measure. When it comes to clustering of time-
series data, a DTW-based similarity measure is more 
widely applicable than the conventional Euclidean distance 

http://adni.loni.usc.edu/methods/documents/mri-protocols/
http://adni.loni.usc.edu/methods/documents/mri-protocols/
http://adni.loni.usc.edu/methods
http://adni.loni.usc.edu/methods
http://adni.loni.usc.edu/methods
http://www.adni-info.org
http://www.adni-info.org
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or spatial distance based measures [34, 35]. DTW is able to 
find optimal global alignment between sequences of dif-
ferent shapes. The shape-based DTW method is particu-
larly well-suited to dynamic time-series data with potential 
temporal drift, showing better accuracy than linear models 
[34, 36]. We used the DTW to cluster the MMSE scores of 
our cohort using t = 4 time points, collected over 2 years 
from baseline, using Hierarchical Agglomerative Cluster-
ing with Ward’s linkage [37]. Clustering was repeated with 
other linkage methods such as Ward1 and the unweighted 
pair-group method using arithmetic averages (UPGMA) to 
examine the similarity of cluster labels [38, 39]. Other cog-
nitive assessments such as ADASCog13, CDR-SB, and FAQ 
were used for validation purposes, testing if the phenotypes 
based on MMSE scores also differ in other measures of 
cognition in AD. Further, to determine the optimal number 
of cognitive decline clusters in our cohort, we used silhou-
ette analysis to compare average silhouette width for k = 2, 
3, and 4 clusters.

Deep learning model architecture and training
Deep learning models have been extensively used for AD 
classification [17, 18] and predicting progression of MCI 
[15, 21, 40]. Deep learning models are typically compared 
against linear or non-linear Support-Vector Machine 
(SVM), logistic regression, or random forest classifiers, 
where SVM has been shown to outperform the latter two 
[41]. We first calibrated our deep learning model’s per-
formance using a similar comparison with SVM. Our 
deep learning model used a parameter-efficient architec-
ture similar to that previously proposed for classification 
of MCI [42]. The Parameter-Efficient Network model, 
designated as PENet, takes a combination of baseline 
AT(N) biomarkers including MRI images and FDG-PET 
(N), CSF p-tau (T), and CSF Aβ (A) and learns to predict 
the subject’s cognitive decline status (FD vs MD) using 
these baseline measurements only. The multi-modal fea-
ture extractor implemented in the model uses a series of 
convolutional blocks, or conv blocks, to process MRI ten-
sors. These conv blocks are composed of a convolutional 
layer followed by batch normalization and exponential 
linear unit (ELU) transformation. The model also makes 
use of separable convolution blocks, or sep-conv blocks, 
which perform the operation of a convolution block but 
with far fewer parameters, hence reducing the risk of 
over-fitting. PENet uses 2 conv blocks followed by 3 sep-
conv blocks with increasing number of filters (Fig. 3A). It 
processes non-imaging biomarkers by dense or FC (fully 
connected) blocks.

Implementation
Experiments were conducted using python version 3.6. 
The implementation was developed using the Keras deep 

learning library with Tensorflow backend. The model was 
trained on Ubuntu 18.04 on a single Nvidia Tesla V100 
GPU with 16G memory, using a batch size of 25 and 
trained for 50 epochs after which the model showed sta-
ble dynamics (Fig. S2). This training was performed using 
the Stochastic Gradient Descent algorithm with an ini-
tial learning rate = 8 ×  10-4 and exponential decay with 
a drop rate = 0.5. The FC layers used in the model were 
regularized using L2 regularization with penalty coeffi-
cient = 5 ×  10-4.

Data augmentation and validation framework
The implemented model was trained and validated using 
5-fold cross-validation stratified by class phenotypes. 
All qualifying subjects from ADNI-1, ADNI-2/Go, and 
ADNI-3 were used in our experiments, yielding a total of 
n = 321 subjects (n train = 224, MD = 136, FD = 88; n test 
= 97, MD = 58, FD = 39). To improve model generaliza-
bility, we augmented the training dataset through a com-
bination of image rotation (random angle in [−90°, 90°], 
translation (random shift in [0, 0.5]), and flipping opera-
tions, resulting in 1104 training images. Special care was 
taken to use the test dataset only after all steps of aug-
mentation, model selection, and hyperparameter tuning 
were completed, ensuring no data leakage.

Analysis of atrophy‑based AD subtypes
MRI images for the test dataset were processed (http:// 
adni. loni. usc. edu/) using Freesurfer (http:// surfer. nmr. 
mgh. harva rd. edu/) to extract region of interest (ROI)-
based gray matter (GM) volume. The following pro-
cessing steps were performed: (1) motion-correction 
and skull-stripping based on a watershed deformation 
method [43], (2) image registration to the Talairach brain 
template, (3) estimation and labeling of gray matter-white 
matter (GM-WM) boundary using a tessellation step, and 
(4) registration of volume to an atlas to acquire volume 
and surface statistics for each ROI. Using these extracted 
volumes, we investigated the potential association 
between the model-based cognitive progression phe-
notypes and atrophy-based AD subtypes, as previously 
identified [24]. Subtypes were identified using the ratio 
of hippocampal volume (HV) to cortical total volume 
(CTV). Following the same procedure as described previ-
ously [24], subjects in the test dataset with an HV:CTV 
ratio above the 75th percentile were identified as belong-
ing to the Hippocampal-Sparing AD (HpSp)  subtype, 
those with HV:CTV ratio below the 25th percentile as 
belonging to the Limbic-Predominant subtype (LP) and 
the rest were designated as typical-AD (tAD).

To visualize the spatial extent of atrophy, the sub-
types HpSp, LP, and tAD were also contrasted against 
age-matched controls (n = 30) to extract voxel-wise 

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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contrast maps using FSL’s optimized voxel-based mor-
phometry (VBM) (http:// www. fmrib. ox. ac. uk/ fsl/) [44]. 
The FSL VBM processing pipeline involved brain extrac-
tion of T1-weighted images followed by segmentation into 
WM, GM, and CSF volume probability maps. Next, a ran-
dom subset of each compared cohort was used to create 
the average study-specific GM template by registration to 
MNI152 space using the FSL FLIRT tool. This was followed 
by non-linear registration of all GM images in the native 
image space to the average GM template. Subsequently, 
these registered images were smoothed using a full-width 
half-maximum (FWHM) of 6mm and their voxel-wise 
GM volumes were contrasted using a general linear model 
(GLM) formulation. To identify significant differences 
between the compared groups, non-parametric statistics 
were performed using the ‘randomise’ FSL function (5000 
permutations) with FWE correction set at p < 0.05, based 
on threshold-free cluster enhancement (TFCE).

Statistical analysis
For comparisons between two groups, unpaired two-sided 
t tests or Wilcoxon rank-sum test were used. For testing 
significant differences in MMSE scores of the MD and FD 
phenotypes, we used the selective inference method [45] 
implemented in the R ‘clusterpval’ package, which con-
trols for type I error rate in group comparisons after clus-
tering. To analyze longitudinal changes in ADASCog13, 
CDR-SB, and FAQ scores, two-way repeated measures 
ANOVA was used to examine the main effect of time and 
its interaction with the MD/FD phenotypes.

Results
Clustering cognitive assessments according to progression 
rates
Data used in this study were obtained from the ADNI 
database [46], combining participants from the ADNI-1, 
ADNI-2/GO, and ADNI-3 cohorts (N = 321; m = 180, f 
=141). We first applied data-driven clustering to derive 
distinct cognitive progression phenotypes from the sam-
ple, considering longitudinal (over 2-year follow-ups) 
changes in MMSE scores [47]. We used an unsupervised 
time-series clustering technique based on DTW with 
Ward’s linkage-based agglomerative clustering [33, 37], 
suitable for shape-based clustering of dynamic time-
varying observations [34, 35]. The longitudinal MMSE 
scores of the entire cohort were clustered to reveal 2 dif-
ferent progression phenotypes identified as moderate 
(MD: n = 194; ages 73.8 ± 7.28; Supplementary Table 1) 
and fast (FD: n = 127; ages 73.2 ± 8.02) decline (Fig. 2A 
and B). Other linkage methods such as Ward1 [38] and 
UPGMA resulted in very similar clustering solutions [38, 
39]. The 2 clusters did not exhibit any significant differ-
ences in age, education, gender, total cortical volume, and 

APOE e4 status (all p > 0.05; Supplementary Table 1 and 
Fig. S3). Silhouette analysis, used to determine the opti-
mal number of clusters, resulted in maximal silhouette 
width for k = 2 clusters (Supplementary Table  2). The 
MD and FD phenotypes showed, as expected, significant 
differences in MMSE profiles (p = 6.73 ×  10-3), revealed 
using a method developed for post-clustering compari-
sons [45]. Subjects in the MD and FD phenotypes were 
also compared for longitudinal changes in ADASCog13, 
CDR-SB, and FAQ scores. Similar to the MMSE scores, 
the ADASCog13, CDR-SB, and FAQ scores showed dis-
tinct patterns of decline in the different progression 
phenotypes (Fig. 2C-E). Repeated measures ANOVA for 
ADASCog13 revealed a significant main effect of time 
(F(3, 960) = 48.14; p < 2 ×  10-10) and a significant inter-
action between time and phenotype (F(3, 960) = 20.68; 
p < 2 ×  10-10). Similarly, significant main effects for time 
as well as significant time by phenotype interactions were 
observed for CDR-SB (main effect: F(3, 960) = 85.55; p 
< 2 ×  10-12; interaction: F(3, 960) = 24.46; p < 2 ×  10-12), 
and FAQ scores (main effect: F(3, 960) = 75.49; p < 2 × 
 10-13; interaction: F(3, 960) = 3.13; p = 0.024).

Deep learning model predictions and role of AT(N) 
biomarkers in progression along AD continuum
The FD and MD phenotypes identified by clustering 
were next used for model training, where a combina-
tion of baseline AT(N) biomarkers including MRI images 
and FDG-PET (N), CSF p-tau 181 (T), and CSF Aβ 1–42 
(A) were used as input to the model. We constructed a 
parameter-efficient deep learning architecture similar 
to that previously proposed [42]. This architecture uses 
fewer parameters than most other models used in similar 
tasks with state-of-the-art performance and is well-suited 
for data-limited applications. The overall architecture 
makes use of 2 convolutional blocks followed by 3 sepa-
rable convolution blocks with progressively increasing 
number of filters (Fig. 3A; See the “Methods” section for 
more details). In the model, non-imaging biomarkers 
are processed by dense or FC (fully connected) blocks. 
Finally, extracted features from MRI and biomarkers are 
combined through FC layers to generate predictions. 
The implemented model was trained and validated using 
5-fold cross-validation stratified by cognitive phenotypes. 
All subjects meeting our criteria for analysis from ADNI-
1, ADNI-2/Go, and ADNI-3 were used in the experi-
ments, yielding a total of n = 321 subjects (n train = 224, 
MD = 136, FD = 88; n test = 97, MD = 58, FD = 39).

We first evaluated the performance of a basic PENet 
model trained using N features alone. The model showed 
significantly better performance than a random classifier 
when compared using DeLong’s test (p = 0.014; Fig. S1) 

http://www.fmrib.ox.ac.uk/fsl/
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[48]. The PENet model was then also compared with an 
SVM classifier, which used a radial-basis function ker-
nel and N features as input. The PENet outperformed 
the SVM model (Fig. 3B), achieving an accuracy of 0.685 
(area under the curve, AUC = 0.66).

Next, different combinations of AT(N) biomarkers 
were used in the PENet model to test their prognos-
tic value and evaluate the role of biomarker synergies in 
progression along the  AD continuum. This method of 
assessing the predictive successes of different biomarker 
combinations was preferred over linear or non-linear 
regression-based methods because of the possibility of 
complex, higher order synergies between AT(N) bio-
markers, especially when 3D voxel-level data is included 
[14, 49]. Including all AT(N) biomarkers in the model 
yielded the best classification accuracy (0.710 ± 0.024), 
followed by T(N) (0.702 ± 0.013), N (0.685 ± 0.017), and 
A(N) (0.683 ± 0.006) (Fig.  3C, D). Individual A and T 
biomarkers, when used to predict progression phenotype 
using a logistic regression model, yielded only 59.7% and 

56.7% classification accuracies (Supplementary Table 4). 
Thus, a comprehensive model based on A, T, and N was 
more accurate at predicting AD progression phenotypes 
than biomarker pairs (A(N) and T(N)) or individual bio-
markers (A, T, or N). Moreover, relative to a model based 
on N features alone, the addition of A features resulted in 
slightly worse accuracy, while the addition of T features 
resulted in 1.7% improvement. In a secondary analysis, 
we also investigated the effect of including a proxy for 
brain reserve and excluding FDG-PET from the mod-
el’s inputs. In the first experiment, intracranial volume 
(ICV), a common proxy for brain reserve [50], was used 
as input to the model together with N biomarkers (MRI 
and FDG-PET). In the second experiment, FDG-PET was 
removed from the N biomarkers so that only MRI images 
were used as N inputs. The two experiments resulted 
in classification accuracies of 0.686 (± 0.021) and 0.677 
(± 0.010) respectively, compared to that observed when 
using N biomarkers without these changes (0.685 ± 
0.017) (Supplementary Table 5).

Fig. 2 Time-series clustering of MMSE scores reveals varying rates of progression in subjects along the AD continuum. A Dendrogram showing the 
degree of similarity in MMSE time-series taken from individual subjects. B Longitudinal MMSE scores in individuals along the AD continuum over 24 
months from baseline clustered into 2 distinct groups: Moderate and Fast Decliners (MD and FD) along with regression lines and 95% confidence 
intervals. C Variation of CDR-Sum of Boxes scores in the 2 progression phenotypes over 24 months from baseline. D Variation of ADAS Cog13 scores 
in the same subjects over 24 months from baseline. E Variation of FAQ scores in the same subjects over 24 months from baseline
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We next tested whether the predicted cognitive pro-
gression phenotypes differed in tau positivity (where 
T+ was defined as CSF p-tau > 21.8 pg/ml, [12]). We 
found significant differences in the proportion of tau 
positivity between the MD and FD groups (χ2= 4.48, p 
= 0.034; Fig. 4A). The differences between the predic-
tive value of CSF p-tau and CSF Aβ were then further 
validated, by testing the degree of redundancy in their 
predictive value. To do this, the MD and FD phenotypes 
as predicted by A(N) biomarkers were tested for signifi-
cant differences in CSF p-tau. Similarly, the two phe-
notypes as predicted by T(N) biomarkers were tested 
for significant differences in CSF Aβ. Significant dif-
ferences were only found between CSF Aβ levels in the 

model where the MD/FD phenotypes were predicted 
using T(N) biomarkers (p = 0.02). No significant dif-
ferences were observed between CSF p-tau levels in the 
model where the predicted MD/FD labels were based 
on A(N) biomarkers (Fig. 4B, C). Thus, the combination 
of T(N) features could account for the variance in CSF 
Aβ between the two phenotypes whereas the combina-
tion of A(N) features could not account similarly for 
the variation in CSF p-tau.

The moderate and fast decliners were distributed 
according to clinical diagnosis as follows: MD (MCI 
= 123, AD = 71) and FD (MCI = 22, AD = 105). 
Thus, there were more MCI subjects in the MD group, 
and more AD subjects in the FD group, respectively. 

Fig. 3 Parameter Efficient Net (PENet) for progression phenotype prediction and its performance. A Model architecture and layers of the PENet 
used here for predicting the rate of decline observed in individuals along the AD continuum (MD vs. FD). B Performance comparison of the PENet 
model with SVM (with Radial Basis Function kernel) for predicting progression along the AD continuum using (N) biomarkers shows PENet’s 
superiority. C Receiver operating characteristics (ROC) curve showing the performance of PENet using different combinations of A, T, and N 
biomarkers. D Performance metrics for the PENet show the effect of using different combinations of AT(N) biomarkers on prediction accuracy. 
The model’s performance progressively improved as A and T biomarkers were added to N; however, the addition of the A biomarker had no effect 
relative to a model based on N biomarkers alone
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Therefore, to examine if the model was only learning 
MCI/AD characteristics instead of reflecting the hetero-
geneity of cognitive decline along the AD continuum, we 
tested our model trained on MD/FD classification in the 
task of detecting the MCI/AD clinical diagnosis. Using 
the 5-fold cross-validation setup used in previous experi-
ments, the model predicted the MCI/AD diagnosis with 
0.584 ± 0.03 accuracy, showing substantially worse per-
formance than that observed in the task of MD/FD clas-
sification. This demonstrates the distinct nature of the 
MD/FD and MCI/AD classification problems.

Association of cognitive progression phenotypes with AD 
subtypes
Using extracted GM volumes for subjects in the test set 
(see the “Methods” section), we next investigated the 

potential association between the progression pheno-
types identified here and atrophy-based AD subtypes as 
previously identified [24]. The objective of this analysis 
was to examine if the cognitive progression phenotypes 
predicted by our model reflected AD subtypes captured 
solely by patterns of neurodegeneration. The atrophy-
based AD subtypes were defined  based on the HV:CTV 
ratio. This resulted in a total of 26, 24, and 47 subjects 
assigned to the HpSp, LP, and tAD subtypes, respec-
tively. First, to validate the presence of previously identi-
fied atrophy patterns in these subtypes, the spatial extent 
of their regional atrophy was visualized by contrasting 
them against data from age-matched controls (n = 30; 
Fig. 5A). These maps were obtained using the FSL VBM 
approach [44]. Consistent with previously observed atro-
phy patterns [51], the HpSp subtype was manifested in 

Fig. 4 Differences in the role of CSF Aβ and CSF p-tau in progression along the AD continuum. A Contingency table showing significant difference 
in the ratio of tau positivity between the two progression phenotypes. B CSF Aβ differences in cognitive progression phenotypes predicted by a 
PENet model using T(N) biomarkers only. C CSF p-tau differences in cognitive progression phenotypes predicted by the PENet model using A(N) 
biomarkers only. *Significant differences (p < 0.05)
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atrophy spread to bilateral temporoparietal cortex, pre-
cuneus, and posterior cingulate regions. On the other 
hand, the LP subtype displayed voxel-wise differences 
only in limbic regions. Next, we determined if the atro-
phy-based AD subtypes overlapped with the predicted 
cognitive progression phenotypes (MD/FD) identified via 
our modeling approach. We found no significant differ-
ences in the distribution of the different atrophy subtypes 
among the two cognitive progression phenotypes (χ2= 
1.39, p = 0.497; Fig.  5B). Altogether, the HpSp subtype 
was more prevalent in the MD compared to the FD phe-
notype (19/7), while the tAD (26/21) and LP (13/11) sub-
types were more equally distributed among the MD and 
FD phenotypes.

Discussion
The mechanisms that underlie the marked heterogeneity 
in AD progression are to date incompletely understood. 
In the present work, we used a combination of data and 

model-driven methods to investigate heterogeneity along 
the AD continuum and tease apart the contribution of 
AT(N) biomarkers and their synergies  to this progres-
sion. We first demonstrated that progression along the 
AD continuum varied considerably between individuals 
by applying unsupervised clustering on longitudinal cog-
nitive assessments. Next, we used a parameter-efficient 
deep neural network (PENet) to predict the different 
cognitive progression phenotypes using baseline AT(N) 
biomarkers. Our model showed that the combination 
of all AT(N) biomarkers had the most prognostic util-
ity in predicting progression along the AD continuum. 
A comprehensive AT(N) model showed better predic-
tive performance than biomarker pairs (A(N) and T(N)) 
and individual biomarkers (A, T, or N). Finally, we report 
that the cognitive progression phenotypes did not over-
lap with previously established AD subtypes, defined 
solely based on patterns of neurodegeneration (atro-
phy). Altogether, our findings highlight a central role for 

Fig. 5 Association between progression phenotypes predicted by the deep learning model and AD subtypes identified by morphometric analysis. 
A Voxel-wise differences between the different AD subtypes and a group of age-matched healthy controls (n=30) reveal the regional atrophy 
patterns in these subtypes. The HpSp subtype (associated mostly with the FD phenotype) was manifested in widespread atrophy spread to the 
bilateral temporoparietal cortex, precuneus, and posterior cingulate regions while the LP subtype (corresponding mostly with the MD phenotype) 
displayed voxel-wise differences only in limbic regions. Voxel-wise differences were calculated using FSL-VBM with FWE correction set at p < 0.05, 
based on the threshold-free cluster enhancement (TFCE) statistic. B Contingency table showing the association between AD subtypes and the 
progression phenotypes predicted by the deep learning model. Overall, the different subtypes did not exhibit a significantly different distribution 
between the two progression phenotypes (χ2 test, p = 0.497)
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concurrent AT(N) mechanisms which determine the rate 
of cognitive decline along the AD continuum.

Comparison of age, gender, education, total corti-
cal volume, and APOE e4 status at baseline revealed no 
significant differences between the various cognitive 
phenotypes identified using DTW clustering. This is 
noteworthy because of the concern that unsupervised 
clustering may capture variance not necessarily relevant 
to disease expression patterns, but rather may reflect 
confounds such as age, gender, or education. While base-
line differences in MMSE scores between the phenotypes 
may have arisen due to differences in disease duration 
which can only be estimated indirectly in neurodegen-
erative disease [52], the accentuation of these differences 
with time indicates that the phenotypes declined at a 
significantly different rate. Our findings of discrete cog-
nitive progression phenotypes are consistent with previ-
ous work on identifying distinct cognitive subtypes in AD 
[3, 53]. However, our clustering approach is specifically 
suitable for finding optimal global alignment between 
time-series data. Since cognitive phenotypes have been 
suggested to progress at different speeds in various stages 
of the disease (linearly or non-linearly) [4, 5], more com-
plex modeling methods such as DTW are needed to 
capture the shape of the progression curve, taking into 
account potential temporal shifts.

The cognitive phenotypes identified by our analysis also 
differed significantly in ADASCog13, CDR-SB, and FAQ 
scores at the 2 years mark. Consistent with our results, 
differences in ADASCog13, CDR-SB, and FAQ scores 
were found among some or all of the cognitive subtypes 
identified in previous studies [24, 54, 55]. In other stud-
ies where a more detailed profiling of memory and cog-
nitive domains was included, atypical subtypes were also 
identified based on visuospatial functioning and language 
impairment [56, 57]. Moreover, our finding of two dis-
tinct cognitive phenotypes is supported by previous stud-
ies [3, 58], which have robustly identified two cognitive 
clusters across multiple AD dementia cohorts, using a 
data-driven approach.

The MD and FD phenotypes identified via clustering 
were treated as labels in a model-driven classification 
and prediction of subjects’ cognitive progression phe-
notype using baseline N biomarkers. Comparison of the 
deep learning model with an SVM classifier showed bet-
ter performance for the former model, similar to results 
published in similar tasks such as MCI classification 
[41, 59]. Using the PENet deep learning model and neu-
rodegeneration biomarkers only (T1-weighted images 
and FDG-PET) resulted in baseline accuracy of 0.685, 
which progressively increased to 0.710 when adding 
additional T/N biomarkers. Critically, a comprehensive/
complete AT(N) model showed more predictive power 

than biomarker pairs (A(N) and T(N)) and individual 
biomarkers (A, T, or N), suggesting that complex syner-
gies between all three biomarker types underlie the pro-
gressions of cognitive decline along the AD continuum. 
This finding extends the emerging evidence from animal 
model and human studies on synergies between Aβ and 
tau [60, 61]. For example, injection of Aβ42 fibrils into the 
brains of P301L mutant tau transgenic mice caused a sub-
stantial increase in the numbers of neurofibrillary tangles 
both near the injection site and in regions projecting to it 
[62]. Evidence pointing to synergies between Aβ and tau 
also comes from studies in humans [63, 64]. Tau spread 
outside entorhinal cortex is enhanced by Aβ deposition 
in cognitively normal older adults [65]. Moreover, signifi-
cant interactions between CSF Aβ and CSF p-tau affect-
ing brain structure were reported in preclinical AD [66]. 
Similarly, findings based on PET imaging demonstrate 
that both Aβ and tau underlie memory decline in preclin-
ical AD [64]. Altogether, previous evidence on synergies 
between Aβ and tau have mostly originated from stud-
ies in cognitively normal or preclinical AD populations 
[64, 67]. Our study extends this work,   examining pro-
gression along the AD continuum. Moreover, our results 
suggest that synergies between all three biomarker types 
(Aβ, tau, and neurodegeneration) underlie the progres-
sion of cognitive decline along the AD continuum. Our 
deep learning model and its reliance on AT(N) features 
is also distinct from previous machine learning models 
where multi-modal AD classification was based on N 
features (e.g., MRI and FDG) [40, 68] or combined cog-
nitive or demographic variables [42, 69]. Further, previ-
ous machine learning based models have been mostly 
deployed to distinguish AD/CN or predict progression of 
MCI (see [15, 41] for a review), whereas our investigation 
focused on cognitive progression phenotypes in the AD 
continuum.

Our results reveal that the addition of A (Aβ) bio-
markers to the model resulted in effectively no increase 
in accuracy, while the inclusion of T (tau) biomarkers 
resulted in an improvement of 1.7% in accuracy. This 
role of T biomarkers in progression along the  AD con-
tinuum was further highlighted by the significant differ-
ences in tau positivity found between the MD and FD 
phenotypes. Thus, evidence suggests that CSF p-tau is a 
stronger determinant of progression rate along AD con-
tinuum than CSF Aβ, consistent with previous reports 
showing that tau-mediated neurodegeneration mecha-
nisms result in heterogeneous AD progression [9, 70]. 
This observation of tau-associated progression along the 
AD continuum is also in agreement with previous studies 
where MCI progression was linked to elevated CSF p-tau 
[71, 72]. Further, the addition of ICV as an N biomarker 
in the model did not result in a meaningful change in 
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classification accuracy (+0.1%), likely due to the covari-
ance between ICV and voxel-level N biomarkers. Simi-
larly, the exclusion of FDG-PET from the model’s N 
biomarkers had a marginal effect on accuracy (−0.8%).

Since the inclusion of more variables did not always 
improve the prediction accuracy of the model, the per-
formance differences between the model based on AT(N) 
inputs and those obtained when using individual inputs 
cannot be explained solely by the number of input vari-
ables in the model. Additionally, the question of whether 
Aβ, tau, and neurodegeneration biomarkers have an 
additive or interactive relationship can improve our 
understanding of the disease. Our results indicate that 
performance gains associated with the addition of the A 
biomarker to a model trained on T(N) inputs is different 
from the improvement gained by adding A to (N) inputs 
only. In other words, performance improvement due to 
A is a function of whether T is included in the model’s 
inputs, which suggests that the A and T synergies found 
in our model are non-additive in nature. We, however, 
acknowledge that more formal ways of testing interac-
tion vs. additive effects such as partial dependency plots 
should be employed in future studies to investigate the 
nature of biomarker synergies in progression along the 
AD continuum.

The deep learning model deployed here demonstrated 
good discriminative performance, where special care 
was taken to avoid different sources of data leakage pre-
viously identified [41]. Deep learning models have been 
extensively used for predicting progression of MCI to 
AD [15, 19, 21], along with other related tasks such as 
AD classification with missing data [73] and early detec-
tion of AD [74]. However, little is known about their util-
ity in identifying cognitive progression phenotypes using 
the AT(N) framework. Employing this approach allowed 
us to investigate the complex and potentially non-linear 
relationships between these biomarkers. Furthermore, 
the shape-based DTW clustering of cognitive assess-
ments, as applied here, allowed us to more optimally cap-
ture progression rates in AD, as it is specifically designed 
for modeling time-varying data [36].

We tested whether the cognitive progression phe-
notypes were captured by an established subtyping 
approach [24] based solely of patterns of neurodegenera-
tion. We found no significant differences in the distribu-
tion of AD subtypes among the two cognitive progression 
phenotypes. Thus, the model-based phenotypes identi-
fied here, may not be readily detectable using atrophy-
based methods. Data-driven studies on AD subtyping 
revealed neurodegeneration patterns similar to those 
found here [24–26], but atrophy-based methods do not 
always result in distinct cognitive progression pheno-
types [27]. Additional work is needed to better reconcile 

atrophy and cognitive-based subtyping of AD and its 
progression.

Limitations
Several limitations should be noted. First, we acknowl-
edge that any study investigating the effects of AT(N) bio-
markers in AD should ideally test longitudinal changes in 
these biomarkers in the same cohort. However, this was 
not applicable in the current study due to missing data 
in several of the biomarkers. Second, while being beyond 
the scope of the current study, an examination of the spa-
tiotemporal characteristics of amyloid and tau deposition 
using PET-based markers can provide useful informa-
tion about the progression of cognitive decline along the 
AD continuum. Future work focusing on spatiotemporal 
changes in the synergy between biomarkers for Aβ, tau, 
and neurodegeneration as it relates to progression rates is 
thus warranted.

Conclusions
To conclude, our study combined data and model-driven 
methods to uncover the role of AT(N) biomarkers in the 
progression of cognitive decline along the AD contin-
uum. The results converge to support a more complex, 
synergistic relationship between AT(N) biomarkers in 
determining this progression. Our findings further dem-
onstrate the utility of using modeling approaches to study 
the complex multifaceted mechanisms that underlie dis-
ease progression in AD.
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 62. Götz J, Chen F, van Dorpe J, Nitsch RM. Formation of Neurofibrillary 
Tangles in P301L Tau Transgenic Mice Induced by Aβ42 Fibrils. Science. 
2001;293(5534):1491-5. https:// doi. org/ 10. 1126/ scien ce. 10620 97.

 63. Hanseeuw BJ, Betensky RA, Jacobs HIL, Schultz AP, Sepulcre J, Becker JA, 
et al. Association of Amyloid and Tau With Cognition in Preclinical Alzhei-
mer Disease. JAMA Neurol. 2019;76(8):915. https:// doi. org/ 10. 1001/ jaman 
eurol. 2019. 1424.

https://pubmed.ncbi.nlm.nih.gov/29935417/
https://pubmed.ncbi.nlm.nih.gov/29935417/
https://pubmed.ncbi.nlm.nih.gov/29455029/
https://pubmed.ncbi.nlm.nih.gov/29455029/
https://pubmed.ncbi.nlm.nih.gov/22271235/
https://pubmed.ncbi.nlm.nih.gov/23166389/
https://pubmed.ncbi.nlm.nih.gov/19822868/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/17.6.495
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/17.6.495
https://epubs.siam.org/page/terms
https://epubs.siam.org/page/terms
https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1016/j.is.2015.04.007
http://www.clustan.com
https://pubmed.ncbi.nlm.nih.gov/11525331/
http://arxiv.org/abs/2012.02936
http://arxiv.org/abs/2012.02936
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/493108
https://doi.org/10.1212/WNL.0000000000004802
https://doi.org/10.1212/WNL.0000000000004802
https://onlinelibrary.wiley.com/doi/abs/10.1016/j.jalz.2019.08.201
https://onlinelibrary.wiley.com/doi/10.1002/
https://jamanetwork.com/
http://doi.wiley.com/10.1002/gps.4893
http://doi.wiley.com/10.1002/gps.4893
http://www.r-project
http://www.r-project
https://pubmed.ncbi.nlm.nih.gov/28623677/
https://pubmed.ncbi.nlm.nih.gov/28623677/
https://doi.org/10.1016/j.biopsych.2020.01.016
https://pubmed.ncbi.nlm.nih.gov/32778792/
https://pubmed.ncbi.nlm.nih.gov/28500862/
https://pubmed.ncbi.nlm.nih.gov/28500862/
https://doi.org/10.1126/science.1062097
https://doi.org/10.1001/jamaneurol.2019.1424
https://doi.org/10.1001/jamaneurol.2019.1424


Page 14 of 14Sadiq et al. Alzheimer’s Research & Therapy           (2022) 14:16 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 64. Sperling RA, Mormino EC, Schultz AP, Betensky RA, Papp K V., Amariglio 
RE, et al. The impact of amyloid-beta and tau on prospective cognitive 
decline in older individuals. Ann Neurol. 2019;85:181–93. [cited 2021 Jul 
21] Available from: https:// pubmed. ncbi. nlm. nih. gov/ 30549 303/

 65. Adams JN, Maass A, Harrison TM, Baker SL, Jagust WJ. Cortical tau deposi-
tion follows patterns of entorhinal functional connectivity in aging. Elife. 
2019;8 [cited 2021 Nov 5] Available from: https:// pubmed. ncbi. nlm. nih. 
gov/ 31475 904/.

 66. Fortea J, Vilaplana E, Alcolea D, Carmona-Iragui M, Sánchez-Saudinos MB, 
Sala I, et al. Cerebrospinal fluid β-amyloid and phospho-tau biomarker 
interactions affecting brain structure in preclinical Alzheimer disease. 
Ann Neurol. 2014;76:223–30 [cited 2021 Nov 5] Available from: https:// 
pubmed. ncbi. nlm. nih. gov/ 24852 682/.

 67. Jacobs HIL, Hedden T, Schultz AP, Sepulcre J, Perea RD, Amariglio RE, 
et al. Structural tract alterations predict downstream tau accumulation in 
amyloid-positive older individuals. Nat Neurosci. 2018;21:424–31. [cited 
2021 Jul 21] Available from: https:// pubmed. ncbi. nlm. nih. gov/ 29403 032/

 68. Huang Y, Xu J, Zhou Y, Tong T, Zhuang X. Diagnosis of Alzheimer’s disease 
via multi-modality 3D convolutional neural network. Front Neurosci. 
Frontiers; 2019;13:509.

 69. Qiu S, Joshi PS, Miller MI, Xue C, Zhou X, Karjadi C, et al. Development and 
validation of an interpretable deep learning framework for Alzheimer’s 
disease classification. Brain. 2020;143:1920–33. [cited 2021 Jul 21] Avail-
able from: https:// acade mic. oup. com/ brain/ artic le/ 143/6/ 1920/ 58278 21

 70. Dujardin S, Commins C, Lathuiliere A, Beerepoot P, Fernandes AR, Kamath 
TV, et al. Tau molecular diversity contributes to clinical heterogeneity in 
Alzheimer’s disease. Nat Med. 2020;26:1256–63 [cited 2021 Mar 17] Avail-
able from: https:// doi. org/ 10. 1038/ s41591- 020- 0938-9.

 71. Blom ES, Giedraitis V, Zetterberg H, Fukumoto H, Blennow K, Hyman BT, 
et al. Rapid progression from mild cognitive impairment to alzheimer’s 
disease in subjects with elevated levels of tau in cerebrospinal fluid and 
the Apoe ε4/ε4 genotype. Dement Geriatr Cogn Disord. Dement Geriatr 
Cogn Disord; 2009;27:458–64. [cited 2021 Mar 17] Available from: https:// 
pubmed. ncbi. nlm. nih. gov/ 19420 940/

 72. Buchhave P, Minthon L, Zetterberg H, Wallin ÅK, Blennow K, Hansson 
O. Cerebrospinal fluid levels of β-amyloid 1-42, but not of tau, are fully 
changed already 5 to 10 years before the onset of Alzheimer dementia. 
Arch Gen Psychiatry. 2012;69:98–106. [cited 2021 Jul 15] Available from: 
https:// jaman etwork. com/ journ als/ jamap sychi atry/ fulla rticle/ 11074 43

 73. Li R, Zhang W, Il SH, Wang L, Li J, Shen D, et al. Deep learning based 
imaging data completion for improved brain disease diagnosis. Lect 
Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes 
Bioinformatics). Springer Verlag. 2014:305–12 [cited 2021 Apr 5] Available 
from: https:// pubmed. ncbi. nlm. nih. gov/ 25320 813/.

 74. Li H, Habes M, Wolk DA, Fan Y. A deep learning model for early prediction 
of Alzheimer’s disease dementia based on hippocampal magnetic reso-
nance imaging data. Alzheimer’s Dement. 2019;15:1059–70 [cited 2021 
Feb 9] Available from: https:// pubmed. ncbi. nlm. nih. gov/ 31201 098/.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://pubmed.ncbi.nlm.nih.gov/30549303/
https://pubmed.ncbi.nlm.nih.gov/31475904/
https://pubmed.ncbi.nlm.nih.gov/31475904/
https://pubmed.ncbi.nlm.nih.gov/24852682/
https://pubmed.ncbi.nlm.nih.gov/24852682/
https://pubmed.ncbi.nlm.nih.gov/29403032/
https://academic.oup.com/brain/article/143/6/1920/5827821
https://doi.org/10.1038/s41591-020-0938-9
https://pubmed.ncbi.nlm.nih.gov/19420940/
https://pubmed.ncbi.nlm.nih.gov/19420940/
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/1107443
https://pubmed.ncbi.nlm.nih.gov/25320813/
https://pubmed.ncbi.nlm.nih.gov/31201098/

	Model-based stratification of progression along the Alzheimer disease continuum highlights the centrality of biomarker synergies
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	time points during 24 months following baseline, (3) had T1-weighted MRI images takenParticipants and data acquisition
	MRI images and their processing
	Unsupervised clustering of cognitive measurements
	Deep learning model architecture and training
	Implementation
	Data augmentation and validation framework

	Analysis of atrophy-based AD subtypes
	Statistical analysis

	Results
	Clustering cognitive assessments according to progression rates
	Deep learning model predictions and role of AT(N) biomarkers in progression along AD continuum
	Association of cognitive progression phenotypes with AD subtypes

	Discussion
	Limitations
	Conclusions
	Acknowledgments
	References


