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For patients with cognitive disorders and dementia, accurate prognosis of cognitive worsening is critical to their ability to prepare for
the future, in collaboration with health-care providers. Despite multiple efforts to apply computational brain magnetic resonance
image (MRI) analysis in predicting cognitive worsening, with several successes, brain MRI is not routinely quantified in clinical
settings to guide prognosis and clinical decision-making. To encourage the clinical use of a cutting-edge image segmentationmethod,
we developed a prediction model as part of an established web-based cloud platform, MRICloud. +e model was built in a training
dataset from Alzheimer’s Disease Neuroimaging Initiative (ADNI) where baseline MRI scans were combined with clinical data over
time. Each MRI was parcellated into 265 anatomical units based on the MRICloud fully automated image segmentation function, to
measure the volume of each parcel. +e Mini Mental State Examination (MMSE) was used as a measure of cognitive function. +e
normalized volume of 265 parcels, combined with baseline MMSE score, age, and sex were input variables for a Least Absolute
Shrinkage and Selection Operator (LASSO) regression analysis, with MMSE change in the subsequent two years as the target for
prediction. A leave-one-out analysis performed on the training dataset estimated a correlation coefficient of 0.64 between true and
predicted MMSE change. A receiver operating characteristic (ROC) analysis estimated a sensitivity of 0.88 and a specificity of 0.76 in
predicting substantial cognitive worsening after two years, defined as MMSE decline of ≥4 points. +is MRICloud prediction model
was then applied to a test dataset of clinically acquired MRIs from the Johns Hopkins Memory and Alzheimer’s Treatment Center
(MATC), a clinical care setting. In the latter setting, the model had both sensitivity and specificity of 1.0 in predicting substantial
cognitive worsening. While the MRICloud prediction model demonstrated promise as a platform on which computational MRI
findings can easily be extended to clinical use, further study with a larger number of patients is needed for validation.

1. Introduction

Cognitive disorders and dementia, heterogeneous condi-
tions that include various brain diseases, are common in old
age. Regardless of the diagnosis, one of the greatest stressors

for dementia patients and caregivers is future uncertainty
surrounding change progression of their condition. In
clinical care settings, including memory clinics, medical
providers make the best possible clinical diagnosis to inform
the patient and caregivers about future progression, the type
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of care needed, problems that might occur in the future, and
how to prevent or ameliorate these problems [1]. Accurate,
individualized ways to predict cognitive progression, ones
that could easily be applied in typical clinical settings, would
be a great advance with huge clinical benefit for patients and
caregivers.

Many neuroanatomical predictors of cognitive decline
have been identified in previous studies of cognitively normal
or cognitively impaired elders. +ese best imaging predictors
involve atrophy in selected brain structures, such as areas of
the mesial and lateral temporal lobes, the posterior cingulate,
the orbitofrontal gyri, and white matter hyperintensity [2–4].
Non-neuro-anatomical predictors [5], such as age—with
younger having worse prognosis [6], baseline cognitive
function [7–9], and vascular risk factors [10], are well
established. However, individualized prediction (precision
medicine) of future decline based on individual variables is
difficult because each factor only weakly correlates with the
outcome, and often overlaps and interacts with other factors.
Integration of these variables is, thus, essential for accurate
prediction [11–14]. For such integration, important features
that relate to disease progression must be extracted and
recorded in a standardized quantitative manner. However, a
widely available platform that could enable such quantifica-
tion and integration has not been established.

In an initial attempt to develop clinically useful in-
dividualized prediction, we used a web-accessible, cloud-
based platform MRICloud (https://mricloud.org/) [15] to
achieve image standardization, quantification, and cross-
variable integration. An integrative cloud platform is the
critical enabling technology for the proposed prediction as it
requires a large amount of atlas resources and intensive
computation. While previous research has succeeded in
predicting cognitive outcomes for research populations
[3, 13, 16, 17], one of the greatest barriers to clinical appli-
cation is fragmentation of analysis pipelines, which require
aggregation of various tools with different capabilities on
different platforms to extract a prediction value from a single
image. MRICloud provides for seamless integration of whole-
brain segmentation and subsequent prediction. Moreover, it
enables users to develop their own applications using its
programming interfaces. For example, users can implement
their own data processing and analysis pipeline in MRICloud.
+is flexibility is particularly important in the era of machine-
learning and artificial intelligence where rapid improvement,
advancement, and innovation are expected.

Heterogeneity in symptoms and comorbidities en-
countered in clinical practice, compared to research pop-
ulations with strict inclusion and exclusion criteria, is one of
the major causes for which research discovery has not made
its way to clinical application, as pointed out by [14]. In the
era of “big data” science, the application of a trained al-
gorithm to real-world data is necessary to validate its use-
fulness in day to day clinical practice. +e MRICloud
platform is promising for such a validation study since it
enables the collection of raw MRIs from all over the world
through its web interface. To test this concept, we applied a
prediction model, developed on a research cohort, to a real
clinical population of cognitively impaired patients to

investigate the applicability of the prediction model to a
heterogeneous clinical setting.

2. Methods

2.1. Training Dataset. Data used in the preparation of this
article were obtained from Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) database (https://adni.loni.usc.
edu). ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W.
Weiner, MD. +e primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive im-
pairment (MCI) and early Alzheimer’s disease (AD). +e
data were analyzed anonymously, using publicly available
secondary data. +erefore, no specific ethics approval was
required for this work.

A total of 402 individuals available from the ADNI-1
database, with corresponding baseline MRIs and two years
of follow-up data, were analyzed (AD� 75, MCI� 176, and
cognitively normal individuals� 151). Structural MRIs were
acquired from 1.5T scanners with a protocol individualized
for each scanner, as defined in http://adni.loni.usc.edu/. +e
MRIs were downloaded from https://ida.loni.usc.edu/ in
NiFTI formats, with geometry distortion correction and B1
correction. +e demographics and characteristics of the
study population are in Table 1.

2.2. Test Dataset. Imaging and clinical data acquired as part
of clinical care in the Johns Hopkins Memory and Alz-
heimer’s Treatment Center (MATC) located at the Bayview
Medical Center were used as the test dataset. +e MATC
dataset consists of patients with memory problems, self-
referred or referred by other physicians, evaluated in an
outpatient memory disorders clinic. +e creation and use of
the database occurred under oversight by the Johns Hopkins
Institutional Review Board, which provided waiver of
consent, as the data were all collected in clinical care [18].
+is patient cohort was heterogeneous, with various etiol-
ogies and levels of severity, and represented diverse people
with memory problems. A total of 17 patients with baseline
MRIs and two years of clinical follow-up data were analyzed.
MRI scans, acquired for clinical care only, followed the
ADNI protocol: a three-dimension (3D), magnetization-
prepared, rapid gradient-echo sequence, with a repetition
time of 2300ms, an echo time of 2.98ms, and a voxel
resolution of 1× 1× 1mm, scanned on a 3T scanner (SIE-
MENS Vario). +e demographics and characteristics of the
selected population are given in Table 2.

2.3. Image Processing. A multiatlas label fusion method in
which an entire brain is automatically parcellated into 265
anatomical units [19] was applied to the MRIs. +is is a fully
automated method that is open to public use through our
website (https://mricloud.org/). All MRIs were bias-
corrected and linearly aligned to the JHU-MNI atlas [20]
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space. Atlases were warped to the linearly aligned subject
image using Large Deformation Diffeomorphic Metric
Mapping (LDDMM) [21], followed by application of the
multiatlas fusion algorithm [19]. +e JHU T1 Geriatric
Multi-Atlas Inventory V5 [22, 23], designed for older patient
populations with potential brain atrophy, was used as a set of
atlases. +e volume of each parcel was measured and nor-
malized based on the whole-brain volume.

2.4. Neuroimage Features. One of the challenges of atlas-
based image analysis is the granularity of the anatomical
parcellation map used to quantify brain MRI [24–26]. +e
statistical power to characterize anatomical features related
to cognitive decline is maximized when the size and shape of
the parcel exactly follow the pathological locations that
determine the prognosis. If there is an a priori hypothesis
about the distribution of the pathologic tissues, predefinition
of the size and shape of parcels can follow the hypothesis.
However, impaired anatomical structures and spatial dis-
tribution depend on the disease severity seen in the brain
MRI, which are unknown prior to the analysis. To account
for the heterogeneity of this patient population, we applied a
tool that can flexibly change the granularity level based on
the hierarchical relationships of 254 structures defined in
our atlas [27], in which the 254 structures were assigned a
hierarchical relationship based on their ontological re-
lationship [28, 29]. +is relationship consists of five hier-
archical levels that were named: Level 1 (11 parcels); Level 2
(17 parcels); Level 3 (36 parcels); Level 4 (54 parcels); and
Level 5 (254 parcels) (Figure 1).+e volumes of all structures
in each level were obtained.

2.5. Non-Image Features. Many non-image predictors of
cognitive decline have been identified in previous studies of
cognitively normal or cognitively impaired elders. +ese
can be summarized into seven major categories [5]:

sociodemographics; clinical characteristics; cognitive or
neuropsychological features; behavioral or psychological
factors; cardiovascular risk factors; genetics; and biological
markers. Although inclusion of all these factors into the
prediction model might maximize the prediction accuracy,
obtaining and recording such information comprehen-
sively in a structured way is not a feasible standard for the
vast majority of clinical care settings. We attempted to
balance this by focusing on (preselecting) predictor vari-
ables available in pretty much all clinical care setting: age,
sex, and MMSE score at the time of the MRI scan.

2.6. Prediction Algorithm. A Least Absolute Shrinkage and
Selection Operator (LASSO) regression analysis [30, 31] was
estimated to predict worsening in cognition two years after
the baseline. +e LASSO was chosen to address the multi-
collinearity problem and to identify important predictors.
+e MMSE measured cognitive function, and change in
MMSE was set as the target for prediction. Among various
cognitive measures, theMMSE was chosen because it is most
commonly measured in patients who visit memory clinics
and can easily be also measured in primary care settings. +e
LASSO regularization weight parameter λ was selected in
order to minimize a mean squared prediction error between
the measured and the predicted ΔMMSE obtained by leave-
one-out cross validation. +e normalized volume of ana-
tomical units, baselineMMSE, age, and sex were used as a set
of variables.

2.7. Validation. To validate the prediction algorithm within
the ADNI population, a leave-one-out analysis was per-
formed to investigate the correlation between the measured
and the predicted MMSE change. +e analyses were per-
formed based on level of granularity (Levels 1–5) and all
levels combined. +e predictor model that provided the best

Table 1: Demographics and characteristics of the training dataset (ADNI1).

Diagnosis at
baseline N Age Sex (men/

women)
MMSE at
baseline

MMSE after 2
years

MMSE decline in 2
years

Number of patients with substantial
worsening∗

CN 151 75.5± 5.0 80/71 29.2± 1.0 29.0± 1.2 −0.2± 1.3 1
MCI 176 73.4± 7.1 113/63 27.2± 1.7 25.4± 3.9 −1.8± 3.3 46
AD 75 73.8± 7.4 34/41 23.3± 2.0 19.0± 5.6 −4.3± 5.3 36
Total 402 74.9± 6.5 227/175 27.2± 2.6 25.6± 5.1 −1.6± 3.6 83
∗Substantial worsening: MMSE declines≤−4 within two years.

Table 2: Demographics and characteristics of the test dataset (MATC database).

Suspected diagnosis at
baseline N Age Sex (men/

women)
MMSE at
baseline

MMSE after 2
years

MMSE decline in 2
years

Number of patients
with substantial
worsening∗

AD 7 73.7± 11.0 4/1 21.9± 4.5 16.9± 8.0 −5.0± 5.8 4
MCI 3 82.5± 2.9 1/2 29.0± 0.8 26.3± 3.9 −2.7± 4.6 1
Others 7 69.8± 10.1 3/4 23.1± 7.0 20.6± 10.1 −2.6± 3.8 2
Total 17 73.7± 10.7 8/9 23.6± 6.0 20.0± 9.1 −3.6± 5.0 7
Others: mixed dementia, 2; vascular dementia, 1; frontotemporal dementia, 2; nonspecific cognitive disorder with depression, 2. ∗Substantial worsening:
MMSE declines≤−4 within two years.
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correlation with cognitive outcome in ADNI data was then
applied to the clinical population.

+ere is considerable debate about the disease-specific
speed of cognitive worsening [32, 33], although a meta-
analysis suggested a similar pace of cognitive decline in two
of the most common diagnoses of dementias, AD and de-
mentia with Lewy bodies [34]. Faster cognitive decline is
seen in autopsy-confirmed frontotemporal dementia (FTD)
compared to AD [33]. Within the AD population, there are
at least two distinctive types of disease progression, slow and
rapid [7, 35–37]. Since we aimed to identify rapid pro-
gressors in the clinical cohort of mild cognitive impairment
or mild dementia (MMSE≥ 23) at baseline, and majority of
the ADNI training data fall into this category (Table 1), we
used MMSE decline of ≥4 points after two years to define
substantial cognitive worsening, according to the reported
average decline in MMSE score over two years (3.3 points
decline in MMSE score) in the mild AD population with a
baseline MMSE score of 23 [38]. To investigate the accuracy
to predict substantial cognitive worsening, ROC analysis was
performed. +e cutoff of the predicted MMSE change that
maximized the Youden index [39] was adopted as the
threshold to predict substantial cognitive worsening (true
MMSE decline of ≥4 points). +e glmnet package [31]
implemented in R software [http://cran.r-project.org, R
Core Team, version 3.2.3] was used for the LASSO regression
analysis and the ROC curve analysis.

2.8. Implementation of the Prediction Model into the
MRICloud. +e MRICloud provides a cloud-based archi-
tecture for neuroimage analysis tools through the web. It has
three components: storage; computation; and applications.
It also provides visualization applications and enables users

to develop their own application with the application pro-
gramming interfaces (API). It provides low-barrier access to
the algorithms and tools and accommodates high
throughput, as well as parallel computation, to render in-
tensive computations tractable. +e prediction model de-
veloped was integrated into the MRICloud using the API,
which allows users to upload their own image and non-
image data to predict the MMSE change.

2.9. Application of the Prediction Algorithm to the Clinical
Population. +e prediction model implemented in MRI-
Cloud was applied to the clinical cohort for individualized
prediction of the MMSE change over the two years after the
initial evaluation. A correlation between true and predicted
MMSE change, as well as sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV)
to predict substantial cognitive worsening were calculated.

3. Results

3.1.GenerationofPredictionModel. A leave-one-out analysis
of the training dataset estimated a larger correlation co-
efficient between true and predicted MMSE change at the
highest granularity level (level 5, R� 0.635) and at all levels
combined (R� 0.636) (Figure 2(a)) compared to the lower
granularity levels (Level 1, R� 464, Level 2� 0.489, Level
3� 0.527, and Level 4� 0.599). +e ROC analysis
(Figure 2(b)) using an applied regression model estimated
areas under the curve (AUC) of 0.898 (Level 5, 95% CI:
0.862–0.935) or 0.899 (all levels combined, 95% CI:
0.862–0.936) for the prediction of substantial cognitive
worsening.+erefore, the prediction model using local brain
volumes of all granularity levels combined was used in later

Level 1 Level 2 Level 3 Level 4 Level 5

Figure 1: Hierarchical relationships of 254 structures defined in the MRICloud.
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analyses. +e optimal cut of value for the prediction of
substantial cognitive decline, calculated from the ROC
curve, was a predicted MMSE decline of −1.9, which
demonstrated sensitivity of 0.847, specificity of 0.779, PPV of
0.455, and NPV of 0.959 for substantial cognitive worsening.
+emean absolute difference between the true and predicted
MMSE change was 2.0 (SD� 2.0).

3.2. Contribution of Each Factor to the Prediction. Among
402 ADNI participants, 83 (21%) were rapid progressors
(Table 1). +irty-one factors (volumes of 29 anatomical
areas, baseline MMSE score, and age, but no sex) were
selected through the LASSO regression analysis using all
granularity levels combined and built into the final pre-
diction model. +e standardized regression coefficients for
each of the image and non-image factors are in Table 3.
Regression coefficients for selected anatomical structures are
color-coded and overlaid on the JHU-MNI atlas (Figure 3).
Atrophy in the bilateral middle temporal gyri, the claustrum
complex, the superior parietal white matter, expansion of the
Sylvian fissure, and the lower baseline MMSE score and
younger age predicted greater likelihood being a rapid
progressor by MMSE change score.

3.3. Implementation of the Model into the MRICloud. +e
model was then implemented into the MRICloud. +is
enables external users to obtain access to the prediction
model for additional validation. Users can visit the website
(https://www.mricloud.org) to log in to the “BrainGPS”
module and then select the “T1 segmentation” tool listed in
the upper row. +is allows users to upload their own ADNI-
compatible, high-resolution, 3D-MPRAGE images, MMSE

score, and age at scan to obtain the predicted ΔMMSE in two
years (Figure 4).

3.4.Application to theClinicalPopulation. Among 17MATC
patients, 7 (41%) were rapid progressors (Table 2). A graph
showing the correlation (R� 0.69) between the actual and
predicted MMSE change is shown in Figure 5. All patients
with substantial cognitive worsening were accurately pre-
dicted when a predicted MMSE decline of −1.9 was applied.
+emean absolute difference between the true and predicted
MMSE change was 3.4 (standard deviation� 2.5).

4. Discussion

4.1. Generation of the Prediction Model. In current clinical
practice for patients with cognitive disorders, the main role of
structural MRI is to exclude causes such as neoplasms, hy-
drocephalus, trauma, or ischemic disease that are clearly visible
on a scan. In clinical research, MRI is used as one of the
measures of neurodegeneration caused by AD pathology [40].
Our results suggest a substantial contribution of local neuro-
anatomical changes to predict cognitive worsening in addition
to non-image features.+e predictionmodel trained by LASSO
indicated younger age and lower baseline cognitive function
were related to faster deterioration in cognitive function,
consistent with prior studies [7, 41]. +e final model did not
include sex as a predictor, suggesting that sex has little effect on
rate of cognitive decline, as expected [42]. Since our goal was to
investigate a robust index for individualized prediction from
information available through clinical practice not necessarily
obtained by specialists, the inclusion of only two simple non-
image factors—age and MMSE—has practical significance.
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Figure 2: (a) Scatter plot showing the relationship between true and predicted MMSE change based on the training dataset. (b) ROC
analysis showing the relationship between sensitivity and specificity to predict substantial cognitive worsening. CN: cognitively normal,
MCI: mild cognitive impairment, and AD: Alzheimer’s disease.
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4.2. Brain Areas Important for the Prediction. +ree ana-
tomical areas—middle temporal gyrus, peri-Sylvian, and
parietal areas—were the areas that contributed to prediction
of cognitive worsening. +ese areas did not necessarily in-
clude anatomical structures that are known to be most af-
fected in early AD, such as medial temporal area, but rather,
overlapped with local brain areas whose volumes correlated
with MMSE score, such as the temporal, the middle frontal,
and the left angular and supramarginal gyri [43–45]. Pre-
viously reported correlations between enlargement of the
Sylvian fissure and MMSE score in AD and MCI [46]
support our findings. +ese results suggest that the mesial

temporal atrophy, while correlated with the MMSE score at
the baseline [43, 47–49] is not necessarily the best predictor
of cognitive worsening in coming years.

4.3. Clinical Validation Study Performed on the MRICloud
Platform. Although the MATC population consisted of
patients with various clinical diagnoses or with mixed
causes of cognitive decline, the sensitivity and specificity to
predict rapid cognitive decline was comparable to that
obtained from an ADNI cohort with strict inclusion and
exclusion criteria. +is was unexpected because we initially
assumed that the prediction model trained from the ADNI
dataset would be applicable only to patients with a clinical
diagnosis of probable AD. One possible explanation is the
existence of a spatial pattern in local brain atrophy related
to an increased risk of cognitive worsening, which is less
specific to AD, but rather common to various types of
dementias. +e applicability of the model to nonAD de-
mentias, such as frontotemporal dementia, dementia with
Lewy bodies, or vascular dementia, needs to be further
investigated.

We also noted overestimated prediction of MMSE de-
cline for patients with a low baseline MMSE score
(MMSE< 23). +is was probably due to the relative im-
precision of MMSE in measuring cognitive decline in de-
mented patients [50]. +is explains the results of the ROC
curve analysis, in which the cutoff predicted MMSE change
of −1.9 was higher than the true actual change in MMSE of
−4. +erefore, care should be taken when the predicted
change is less than −1.9; in this case, the practical in-
terpretation should be a “MMSE change less than −4 can be
predicted.”

Other limitations include the small clinical sample size,
which may have involved selection bias or confounding
factors, such as age. Indeed, this limitation was one of our
motivations to develop an open-access platform for future
validation study, in which MRIs from other institutes can be
easily submitted to increase the number of test MRIs, as
detailed in the next section. +e method used to select the
LASSO regularization parameter could also be an issue, since
inappropriate selection leads to overfitting of training data;
therefore, the performance measures for the training data
(ADNI data) were possibly upward-biased. Application of
the nested cross validation is one possibility to remain
unbiased in the cross validation-based evaluation, where the
parameters are selected by cross validation [17].

4.4. MRICloud as a Platform for Algorithm Development and
Clinical Validation Studies. External and/or clinical vali-
dation of prediction models developed in research is not
easy. Such models are typically published in print with only
the theoretical aspects, such as functions and variables,
elaborated. However, practical implementation of the
models depends on the computational environment, the
operating systems used, software versions, methods to ex-
tract variables, and coding of the functions, all of which have
an impact on the reproducibility of the research findings.
+ere have been efforts to distribute the open-source scripts

Table 3: List of the standardized regression coefficients for each of
the image and non-image factors, obtained from the LASSO re-
gression analysis.

Factors Standardized regression
coefficients

Age 0.606014
Middle temporal gyrus, left (Level 5) 0.555413
Claustrum, right (Level 5) 0.33835
Baseline MMSE score 0.221676
External capsule, right (Level 5) 0.203446
Temporal lobe, left (Level 4) 0.184202
Angular gyrus, right (Level 4) 0.179487
Superior parietal white matter, left
(Level 5) 0.147153

Angular gyrus, left (Level 4) 0.146566
Fimbria, left (Level 5) 0.131843
Middle temporal gyrus, right (Level 5) 0.119239
Inferior occipital gyrus, left (Level 4) 0.09018
Middle frontal gyrus, left (Level 5) 0.083102
Posterior cingulate cortex, right
(Level 5) 0.080805

Posterior cingulate cortex, left (Level
5) 0.074983

Superior parietal white matter, right
(Level 5) 0.068838

Middle occipital gyrus, left (Level 4) 0.060132
Superior frontal gyrus, left (Level 5) 0.052995
Fimbria, right (Level 5) 0.045444
Inferior deep parietal white matter,
left (Level 4) 0.014723

Peripheral frontal white matter, right
(Level 4) −3.00E − 05

Inferior frontal white matter, right
(Level 5) −0.01381

Lateral frontoorbital gyrus white
matter (Level 5) −0.03149

Lingual gyrus white matter, right
(Level 5) −0.04243

Postcentral gyrus white matter, left
(Level 5) −0.07299

Postcentral gyrus, right (Level 4) −0.08223
Fornix, right (Level 4) −0.08814
Dorsal anterior cingulate cortex, right
(Level 5) −0.10213

Gyrus rectus white matter, left (Level
5) −0.16791

Mammillary body, right (Level 5) −0.25573
Sylvian fissure and temporal sulcus,
right (Level 4) −0.29769
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Figure 4: Screenshot of the MMSE score prediction function implemented in the BrainGPS module of the MRICloud. +e module allows
users to submit their own high-resolution, 3D, T1-weighted images with the age and MMSE score at scan. +e module provides a color-
coded z-score map of the local volume (lower left) as well as the predicted ΔMMSE (magnified view in the blue rectangle).

–1 0 1

Figure 3: Regression coefficients of the selected anatomical structures are color-coded (blue: positive regression coefficient and red: negative
regression coefficient) and overlaid on the JHU-MNI atlas.
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or software packages as the solutions for effective de-
ployment of new models. While successful, there are several
limitations in this approach. First, it places a considerable
amount of the burden on developers, which includes pro-
gram development for cross platforms and reengineering
after a version change of the operating system, efforts to
redistribute after a version-update, management of users
with different versions, and inquiries from other developers
about the content of the source codes. +e cloud-based
software-as-a-service (SaaS) model has emerged as a solu-
tion to these barriers for cross-program communications,
platform independence, and efficient computation strate-
gies. +e field of machine-learning and artificial intelligence
is developing rapidly, and we expect algorithms that will
replace LASSO, in the near future. Currently available al-
gorithms, such as elastic net, are already demonstrating
excellent performance in MRI feature selection [51]. +e
SaaS through API, which allows users to implement their
novel image analysis algorithm to be shared and tested with
users, seems to be one of the best solutions computer science
can offer at this moment. +e MRICloud provided a user-
friendly environment to share the prediction model with
external users for rigorous validation.

5. Conclusion

Our results indicated the potential to apply results from a
study population to clinical practice, at least in a limited

venue, such as the MATC, but further study with a larger
number of patients is needed to characterize the features of
cognitive worsening. +e MRICloud provided a user-
friendly environment suitable for multi-institutional clini-
cal validation studies to predict future cognitive worsening
from image and non-image data.

Data Availability

+eADNI dataset is downloadable through the website http://
adni.loni.usc.edu/. MRICloud is available for registered users
(https://mricloud.org/). Data used in preparation of this article
were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design and
implementation of the ADNI and/or provided data but did not
participate in the data analysis or in the writing of this report.
A complete listing of ADNI investigators can be found at
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