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A B S T R A C T   

There is evidence that gray matter networks are disrupted in Mild Cognitive Impairment (MCI) and associated 
with cognitive impairment and faster disease progression. However, it remains unknown how these alterations 
are related to the presence of Apolipoprotein E isoform E4 (ApoE4), the most prominent genetic risk factor for 
late-onset Alzheimer’s disease (AD). To investigate this topic at the individual level, we explore the impact of 
ApoE4 and the disease progression on the Single-Subject Gray Matter Networks (SSGMNets) using the graph 
theory approach. Our data sample comprised 200 MCI patients selected from the ADNI database, classified as 
non-Converters and Converters (will progress into AD). Each group included 50 ApoE4-positive (‘Carriers’, 
ApoE4 + ) and 50 ApoE4-negative (’non-Carriers’, ApoE4-). The SSGMNets were estimated from structural MRIs 
at two-time points: baseline and conversion. We investigated whether altered network topological measures at 
baseline and their rate of change (RoC) between baseline and conversion time points were associated with ApoE4 
and disease progression. We also explored the correlation of SSGMNets attributes with general cognition score 
(MMSE), memory (ADNI-MEM), and CSF-derived biomarkers of AD (Aβ42, T-tau, and P-tau). Our results showed 
that ApoE4 and the disease progression modulated the global topological network properties independently but 
not in their RoC. MCI converters showed a lower clustering index in several regions associated with neuro
degeneration in AD. The SSGMNets’ topological organization was revealed to be able to predict cognitive and 
memory measures. The findings presented here suggest that SSGMNets could indeed be used to identify MCI 
ApoE4 Carriers with a high risk for AD progression.   

1. Introduction 

Late-Onset Alzheimer’s Disease (LOAD) is the most common cause of 
dementia, accounting for 60% to 80% of cases (Hardy, 1997). However, 
there are currently no disease-modifying treatments and clinical drug 
trials have a high failure rate (Cummings et al., 2014). The postulate for 
this result is that AD brain pathology begins years before the cognitive 
decline. Consequently, in recent years, research has moved toward the 

study of the earliest clinical signs of neurodegeneration that are likely to 
evolve to AD. In this effort, a particular interest has been dedicated to 
Mild Cognitive Impairment (MCI) as a transitional phase between the 
cognitive changes associated with aging and early AD (Petersen, 2004; 
Petersen et al., 2001). It is a window in which it may be possible to 
intervene and modulate the disease progression (Albert et al., 2011; 
Gauthier et al., 2006; Mueller et al., 2005; Petersen et al., 1999). 

However, MCI is especially challenging because of the considerable 
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variability in terms of individual clinical outcomes (Jack et al., 2013; 
Scheltens, 2013), dependent on multiple genetic and environmental risk 
factors involved in AD pathogenesis (Collie and Maruff, 2000; Petersen, 
2000). In terms of genetic markers, the best-established genetic risk 
factor for AD is the Apolipoprotein E (ApoE) ε4 allele (ApoE4) (for re
views, Bekris et al., 2010; Bookheimer and Burggren, 2009; Liu et al., 
2013). 

While there is evidence linking ApoE4 to cognitive deficits, 
morphological, structural, and functional brain alterations during AD 
progression (Cherbuin et al., 2007; Liu et al., 2013), at this point, it is 
still unclear how this genetic risk factor affects the organization of brain 
networks. 

One viable mathematical approach to elucidate the ApoE4 impact on 
MCI brain networks is graph formalism (Boccaletti et al., 2006). In graph 
theory, our brain is studied as a model composed of some basic elements 
-nodes- (brain regions) and their relationship (edges); and the brain’s 
complex co-variance patterns are translated into global and regional 
graph metrics (Bullmore and Bassett, 2011). During the past decade, 
graph analysis has already been applied to study the structural co- 
variance networks in AD and MCI (Alexander-Bloch et al., 2013). It is 
based on the phenomenon that regions that are correlated in morpho
metric descriptors (e.g., cortical thickness) are highly probable to be part 
of the same brain system underlying particular behavioral and cognitive 
functions (Lerch et al., 2006). 

Using graph theory formalism, previous studies found evidence of 
the ApoE4-related modulation on healthy aging, MCI, and the AD co- 
variance brain network based on physiological variables derived from 
different image modalities (rsFMRI, FDG-PET, and DWI) (Brown et al., 
2011; Giau et al., 2015; Goryawala et al., 2015; Li et al., 2019; Sanabria- 
Diaz et al., 2021; Seo et al., 2013; Wang et al., 2015; Yao et al., 2015; 
Zhu et al., 2018). Their findings propose a link between the possession of 
ApoE4 and brain network organization abnormalities in AD, suggesting 
disease-related disconnection mechanisms (Delbeuck et al., 2003; Fili
ppi and Agosta, 2011; He et al., 2009). Moreover, these studies have 
provided new insights into the understanding of the biological mecha
nism of AD. They could lead to the use of a network-based imaging 
biomarker for MCI diagnosis and monitoring. 

Nevertheless, it is essential to highlight that the inclusion of MCI is 
only reported by one previous study conducted by Yao et al. (Yao et al., 
2015). Yet, in this case, the sample design makes the interpretation of 
the MCI brain network topology challenging as the groups (NC, MCI, and 
AD) were pulled together to conform the Carriers and non-Carriers 
samples. Additionally, only one study used data from structural Mag
netic Resonance Imaging (sMRI) to construct the brain network struc
tural co-variance, in this case, applied to a healthy aging sample 
(Goryawala et al., 2015). sMRI is an attractive technique because of the 
wide availability in clinical and research settings and its high anatomical 
resolution compared with other neuroimaging modalities (i.e PET). 

Recently our group published the first study about the ApoE4-related 
effects on the structural co-variance brain network topology in MCI 
(Sanabria-Diaz et al., 2021). We found that the E4 allele shaped the 
topological organization of cortical thickness networks in this phase. 
Our results revealed several network measures alterations in MCI Car
riers (ApoE4-positive) compared to non-Carriers, such as a decrease in 
global and homologous connectivity strength, clustering index, charac
teristic path length, local efficiency, modularity, and an increase of 
global efficiency. In general, they support an aberrant network topology 
associated with the genetic risk, which was not detectable with a stan
dards univariate approach. 

However, this study has limitations. First, we applied a group-based 
graph analysis that generated one correlation matrix per group. This 
method did not allow us to establish associations between the network 
properties changes and other AD biomarkers (i.e., CSF Aβ42, tau, hip
pocampal atrophy) at the individual level. In our opinion, it is a critical 
aspect to gain insight into the biological meaning of the structural co- 
variance network alterations. Second, the study was based on a cross- 

sectional design where information about the final clinical outcome 
was not included. As MCI is highly heterogenic in terms of prognosis, the 
progression into AD is essential to control confounding effects and relate 
the ApoE4 to the brain network topological alterations. Finally, ApoE4 
and AD progression’s interaction effects were not analyzed, making it 
challenging to disentangle each factor’s implication on the results. 

In the recent past, the group-based graph analysis limitation has been 
overcome by a methodology that constructs single-subject brain net
works from the native gray matter segmentation space (Dicks et al., 
2020, 2018; Tijms et al., 2012, 2013a, 2014, 2018). This method ac
counts for the similarity in gray matter structure between brain areas 
measured with sMRI (Mechelli et al., 2005; Tijms et al., 2012). These co- 
variance patterns have been associated with coordinated growth tra
jectories of gray matter during development, functional co-activation, 
and axonal connectivity (Alexander-Bloch et al., 2013; Gong et al., 
2012). 

Few prior studies applied this approach to study Single-Subject Gray 
Matter Networks (SSGMNets) in AD and MCI (Dicks et al., 2020, 2018; 
Tijms et al., 2013a, 2016, 2018). These studies show that the more 
network topology randomness, the worse cognitive impairment level in 
AD patients (Tijms et al., 2013a, 2014). Additionally, in preclinical 
phases, the network measures changes predicted hippocampal atrophy 
rate and faster atrophy in other areas associated with AD progression 
(Dicks et al., 2020). In MCI, the network measures showed sensitivity to 
initial structural alterations related to amyloid deposition (Tijms et al., 
2018). The network properties alteration revealed a relation with 
cognitive impairment and a faster decline in almost all cognitive do
mains (Dicks et al., 2018). 

Despite these preceding findings, we are unaware of any studies that 
focused on how ApoE4 affects SSGMNets in MCI. Moreover, no neuro
imaging study has so far explored the interaction between ApoE4 and 
disease progression on these networks’ topological properties in MCI. 
Such longitudinal follow-ups are required to reveal changes associated 
with the genetic risk allele per se and to be able to identify possible 
network properties alterations related to subsequent progression into 
AD. Additionally, the ApoE4 modulation on the association between the 
network topology and other neuropathological AD biomarkers (e.g., CSF 
amyloid β 42 (Aβ42) and total tau levels) in MCI is still unexplored. 

This paper precisely addresses these crucial questions and provides 
experimental evidence of MCI pathological processes, which may help 
implement future strategies to prevent or delay the progression into AD. 

Importantly, we focused our study on MCI without and with one ε4 
allele that are the most representative subgroups present in AD. A body 
of evidence indicates that the combination of the ε3-ε3 alleles is the most 
frequent in cognitively healthy individuals with a frequency of 62.3 %, 
followed by ε3-ε4 = 22.2 %, and ε4-ε4 with only 1.9 %. However, in AD, 
ε3-ε4 shows the highest frequency with 43.4 %, followed by the ε3-ε3 
with 34.3 % (“AlzGen, n.d.) (ALZGENE 2010, http://www.alzgene. 
org/meta.asp?geneID=83). 

2. Materials and methods 

2.1. Participants 

Data used in the preparation of this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http: 
//adni.loni.usc.edu). The ADNI was launched in 2003 as a public- 
private partnership, led by Principal Investigator Michael W. Weiner, 
MD. The primary goal of ADNI has been to test whether serial magnetic 
resonance imaging (MRI), positron emission tomography (PET), other 
biological markers, and clinical and neuropsychological assessment can 
be combined to measure the progression of mild cognitive impairment 
and early Alzheimer’s disease. ADNI was approved by the institutional 
review board of all participating institutions, and written informed 
consent was obtained from all participants at each site. For up-to-date 
information, see www.adni-info.org. Full details of subject 

G. Sanabria-Diaz et al.                                                                                                                                                                                                                        

http://www.alzgene.org/meta.asp?geneID=83
http://www.alzgene.org/meta.asp?geneID=83
http://adni.loni.usc.edu
http://adni.loni.usc.edu


NeuroImage: Clinical 32 (2021) 102799

3

recruitment, biomarkers as quantitative phenotypes, MRI scanning 
protocols, and data pre-processing were published elsewhere (Jack 
et al., 2010b; Mueller et al., 2005; Saykin et al., 2010) (http://www.loni. 
ucla.edu/ADNI/), and only a brief account is given here. 

We selected participants with a clinical diagnosis of MCI who had 
completed at least two visits and fulfilled ADNI inclusion/exclusion 
criteria (http://adni.loni.usc.edu/wp-content/uploads/2010/09/ 
ADNI_GeneralProceduresManual.pdf.). Details of clinical diagnostic 
criteria have been previously described in (Aisen et al., 2015; Petersen 
et al., 2010). Briefly, the inclusion criteria were as follows: Mini-Mental- 
State-Examination (MMSE) scores between 24 and 30 (inclusive), a 
memory complaint, objective memory loss measured by education 
adjusted scores on the Wechsler Memory Scale Logical Memory II (Aisen 
et al., 2015; Petersen et al., 2010), a Clinical Dementia Rating (CDR) of 
0.5, and absence of significant levels of impairment in other cognitive 
domains, essentially preserved activities of daily living and a lack of 
dementia. 

Exclusion criteria included: 1) the presence of a major depressive 
disorder or significant symptoms of depression; 2) modified Hachinski 
ischemia score greater than five; 3) significant neurological or psychi
atric illness; 4) use of antidepressant drugs with anticholinergic side 
effects; 5) high dose of neuroleptics, chronic sedatives, hypnotics, 
antiparkinsonian medication, and use of narcotic analgesics. Details 
about inclusion/exclusion criteria can be found in http://adni.loni.usc. 
edu/wp-content/themes/freshnewa-dev-v2/clinical/ADNI-1_Protocol. 
pdf) (Petersen et al., 2010). 

We stratified the MCI group into those with only one ApoE4 allele 
(ApoE4+, Carriers) and those without (ApoE4-, non-Carriers). 

We excluded participants with the E2 allele due to the possible 
protective effects (Serrano-Pozo et al., 2015). ApoE genotyping was 
performed at the time of participant enrollment and included in the 
ADNI database. The samples were sent to the ADNI Biomarker Core at 
the University of Pennsylvania within 24 h of collection for analysis. 
ApoE genotyping details can be accessed at http://adni.loni.usc.edu/dat 
a-samples/clinical-data/(Saykin et al., 2010). For genotyping methods 
see www.ADNI.org. 

After controlling all the inclusion/exclusion parameters and the ex
istence of the ApoE4 allele in the ADNI database, we selected a sample of 
200 late MCI participants subdivided into 100 late MCI non-converters 
and 100 converters to AD (Table 1). Each subgroup was subdivided 
into 50 Carriers (ApoE4 + ) and 50 non-Carriers’ (ApoE4-) patients. 

More information about the procedure for groups selection can be found 
in Supplementary Material. 

2.2. Cognitive and biomarker measures 

We used a composite score for memory (ADNI-MEM) using data from 
the ADNI neuropsychological battery. The ADNI-MEM description can 
be found in (Crane et al., 2012). The authors described the composite 
score as an empirically derived memory measure that includes items 
from four memory tests available within the ADNI test battery, including 
the ADAS-Cog, the Rey Auditory Verbal Learning Test (RAVLT) (Rey, 
1958), Logical Memory from the Wechsler Memory Scale (Wechsler, 
1945), and the word list from the Mini-Mental State Examination (Fol
stein et al., 1975). ADNI-MEM has been validated in published papers 
(Folstein et al., 1975; Jack et al., 2010a; Jack and Holtzman, 2013). The 
ADNI-MEM scores for each ADNI participant at each study visit are re
ported in the UWNPSYCHSUM file. More details about the cognitive 
tests can be found at ADNI website (http://adni.loni.usc.edu/method 
s/documents/) under clinical protocols. The individual cognitive mea
surements downloaded from the ADNI website (https://ida.loni.usc.ed 
u/pages/access/studyData.jsp?categoryId = 12&subCategoryId = 36) 
and the composite ADNI-MEM method information can be found at (UW 
– Neuropsych Summary Scores Methods.pdf). 

2.3. Biomarker measurements in CSF: Aβ42, P-tau, T-tau. 

In the present study, we used the CSF core biomarkers measurements 
for AD performed with the Elecsys® total-tau CSF, the Elecsys® 
Phospho-Tau (181P) CSF, and the Elecsys® β-amyloid (1–42) CSF im
munoassays on a Cobas E 601 instruments (Hansson O et al., 2018; 
Bittner et al., 2016). The data is available in the ’UPENNBIOMK9.csv’ 
file at the ADNI database (downloaded on May 11th, 2019). The 
analyzed measuring ranges of these assays are the following: 80 to 1300 
pg/ml for total-Tau CSF, 8 to 120 pg/ml for Phospho-Tau (181P) CSF, 
and 200 to 1700 pg/ml for Elecsys® β-Amyloid (1–42) CSF immunoas
says. The CSF biomarkers have been shown to predict cognitive decline 
and progression to dementia in patients with MCI (Hansson et al., 2018; 
Shaw et al., 2009). 

Details about CSF biomarker group classification based on the A/T/N 
scheme (Jack et al., 2016) are described in Supplementary Table S3. 

Table 1 
Demographics and Clinical Characteristics of the MCI non-converters and Converters. MMSE, Gray matter Volume, normalized Gray matter volume, CDR were found 
differences between groups (in bold), specifically in MCI that converted to AD in the second diagnosis time.   

MCI non-Converters MCI Converters 

Diagnosis Time 1 (MCI) Diagnosis Time 2 (MCI) Diagnosis Time 1 (MCI) Diagnosis Time 2 (AD) 

Carriers non-Carriers Carriers non-Carriers Carriers non-Carriers Carriers non-Carriers 

# of Participant 50 50 50 50 50 50 50 50 
males/females 34/16 36/14 34/16 36/14 37/13 36/14 37/13 36/14 
Age, years 74.76 (7.12) 76.33 (7.85) 77.06 (7.04) 77.71 (7.92) 74.18 (6.74) 75.71 (8.52) 77.47 (7.12) 78.71 (8.84) 
Education, years 15.76 (2.99) 15.68 (2.86) 15.76 (2.99) 15.68 (2.86) 16.66 (2.49) 16.50 (2.57) 16.66 (2.49) 16.50 (2.57)  

Average MMSE 27.46 (1.85) 27.76 (1.67) 27.40 (1.68) 27.80 (1.85) 27.10 (1.46) 26.60 (1.69) 21.34 (3.71) 23.06 (3.87) 
CDR 0.5 50 50 50 50 50 50 15 20 
CDR 1 na na na na na na 28 23 
CDR 2 na na na na na na 7 7 
TIV 1592.3 

(167.2) 
1591.6 
(174.1) 

1569.8 (202.9) 1584.6 (198.9) 1602.2 (192.7) 1591.7 
(177.5) 

1602.3 (192.5) 1577.2 (196.7)  

Gray matter volume 608.5 (63.8) 598.2 
(70.11) 

585.3 (79.98) 585.2 (85.38) 593.6 (82.25) 575.9 
(58.97) 

561.6 (81.57) 541.9 (86.71) 

Normalized Gray matter 
volume 

0.40 (0.04) 0.39 (0.04) 0.39 (0.04) 0.38 (0.05) 0.39 (0.04) 0.38 (0.03) 0.38 (0.04) 0.36 (0.05) 

Network size 7486.68 
(651.8) 

7420.5 
(649.10) 

7339.72 
(855.47) 

7392.02 
(664.41) 

7420.86 
(792.77) 

7404.6 
(681.54) 

7287.72 
(810.93) 

7226.92 
(918.19) 

Data are presented as number or mean and standard deviations (SD). MMSE is Mini-mental state examination, mm3: cubic millimeter, MCI is Mild Cognitive 
Impairment, CDR is Clinical Dementia Rate, TIV is total intracranial volume, na is not applicable. 
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2.4. MRI acquisition and pre-processing 

Pre-processed versions of the 400 T1-weighted MRI scans were 
downloaded from LONI Image Data Archive. Further details are avail
able in the ADNI-MRI technical procedures manual (ADNI-MRICore, 
2005). Further details are available in the ADNI-MRI technical proced
ures manual (http://adni.loni.usc.edu/methods/documents/MRI pro
tocols). Pre-processing steps can be found elsewhere (Jack et al., 2008). 
Images were pre-processed using Statistical Parametric Mapping soft
ware version 12 (SPM12) (https://www.fil.ion.ucl.ac.uk/spm/softwa 
re/spm12/). First, the structural T1 weighted images are segmented 
into gray matter, white matter, and cerebrospinal fluid tissue classes 
using default settings. Next, 114  gray matter regions were parcellated 
based on Neuromorphometrics atlas using the Neuromorphometrics 
toolbox (Full list of structures listed in Supplementary Materials 
Table S1) (http://www.Neuromorphometrics.com/) to obtain individ
ual anatomical atlases. This atlas has proved to show high sensitivity 
detecting age modulation on the networks of myelin co-variance topo
logical features (Melie-Garcia et al., 2018). The Total intracranial vol
ume (TIV) was computed as the sum of gray and white matter and 
cerebrospinal fluid volumes in cm3. Normalized gray matter volume is 
defined as the ratio between gray matter volume and TIV. 

The native T1-weighted images were re-oriented to the canonical 
MNI space of the SPM12 ’avg305T1′ template using a rigid-body 
transformation and resliced to a voxel size 2×2×2 mm. Both trans
formations were applied to the native space gray matter segmented 
images and individual atlases using trilinear and nearest-neighbor in
terpolations, respectively. These pre-preprocessing steps help to stan
dardize voxel sizes and reduce dimensionality. 

We selected the CSF biomarkers and cognitive variables measure
ments with a maximum of two months to MRI study dates. 

2.5. Single subject gray matter networks and its topological properties 

2.5.1. Extraction of single subject gray matter networks 
Single Subject Gray Matter Networks (SSGMNets) were extracted 

from transformed gray matter segmentation using a method developed 
and published by Tijms et al. 2012 (https://github.com/bettytijms/Si 
ngle_Subject_Gray_Matter_Networks; (Tijms et al., 2012)). This toolbox 
was implemented in MATLAB programming language (http://www. 
mathworks.com). 

Briefly, to extract SSGMNets, each individual’s gray matter seg
mentation is parcellated into multiple small cubes of 3×3×3 = 27 voxels 
each. These non-overlapping cubes serve as the ’nodes’ in the network, 
thereby using geometrical information and gray matter density values (i. 
e., from the tissue segmentation) in the voxels. Their ’connection’ refers 
to ’edges’ indicating statistically similar gray matter morphology of two 
cubes as determined by calculating the Pearson’s correlation. Notably, 
the term ’connection’ in this methodology should not be confused with 
anatomical connections (axonal connections). The cortex is a curved 
object, and hence two similar cubes could be at an angle to each other, 
incorrectly decreasing similarity values (Tijms et al., 2012). Therefore, 
each seed node was rotated by an angle θ with multiples of 45 degrees 
and reflected over all axes to identify the target node’s maximal simi
larity value. Nodes with zero variance in their gray matter density values 
were excluded (average across all subjects <0.01%) since, in this case, 
the correlation coefficient is undefined (Tijms et al., 2012). 

All pairwise correlations are entries in a matrix denominated ’con
nectivity’ or ’adjacency matrix’ in graph theory terms. The presence or 
absence of connections between nodes is determined according to an 
individualized threshold with a random permutation method that en
sures a maximum of 5% spurious connections for each SSGMNets (Tijms 
et al., 2012). 

A correction for multiple comparisons was applied using the False 
Discovery Rate (FDR) to determine a corrected-threshold (FDR- 
threshold) (Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 

2001). The FDR-threshold was applied to binarize the SSGMNet. An edge 
(element of the connectivity matrix) indicated by ’1′ occurs when a 
correlation is higher than the FDR-threshold. On the contrary, the 
absence of an edge is represented by 0 while the correlation is lower 
than FDR-threshold. 

2.5.2. Network properties computation: Graph theory approach 
Formally, a complex network can be represented as a graph G = [N, 

K], the components of this system are called nodes (N), and K refers to 
the relations or connections between them are called edges (Boccaletti 
et al., 2006). In our case, the nodes are the cubes defined over the in
dividual’s gray matter segmentation, and the edges are derived from the 
statistical similarity in gray matter morphology between pairs of cubes 
(i.e., nodes). 

Technically, we used the following global network attributes to 
characterize the SSGMNet topological organization. The attributes 
include the clustering coefficient (Clux) (i.e., the level of interconnec
tedness between the neighbors of a node), the characteristic path length 
(CharPath) (i.e., the minimum number of edges between any pair of 
nodes), the normalized clustering index (Clux-Normalized), the 
normalized characteristic path length (CharPath-Normalized), and 
global efficiency (Eglobal) (i.e., how efficiently the information can be 
exchanged over the network). The global connectivity (GConnect) is 
defined as the mean correlation of all the connectivity matrix elements. 

To estimate Clux-Normalized (gamma) and CharPath-Normalized 
(lambda), we first constructed 20 randomized reference networks 
matching the original ones in size and degree distribution. The Clux and 
CharPath mean over the 20 random networks are calculated and deno
ted as Clux_rand and CharPath_rand. So, Clux-Normalized and 
CharPath-Normalized are defined as the ratios: Clux-Normalized =
Clux/Clux_rand and CharPath-Normalized = CharPath/CharPath_rand 
(Humphries et al., 2008; Maslov and Sneppen, 2002; Watts and Strogatz, 
1998). The small world (sigma) attribute is computed as the ratio be
tween Clux-Normalized and CharPath-Normalized. 

We estimated the normalized clustering index attribute for each node 
(Nodal_Clux-Normalized) to describe the network’s nodal properties. 
Nodal_Clux-Normalized is defined as: Nodal_Clux-Normalized =

Nodal_Clux/Clux_rand. Then, this measure is averaged across all nodes 
(cubes) for each of 114 anatomical structures defined in the Neuro
morphometric atlas as the second step. 

We define the sparsity of the networks as the density of the 
connection within the connectivity matrix. This measure was calculated 
as the percentage number of existing edges respect to the maximum 
number of possible edges (N × (N – 1), where N is the number of nodes). 

All network measures were computed with functions from the Brain 
Connectivity Toolbox (www.brain-connectivity-toolbox.net). More in
formation about the graph network topological properties definition and 
meaning can be found elsewhere (Rubinov and Sporns, 2010). 

2.6. Rate of change analysis 

We also were interested in evaluating the impact of ApoE4 and 
progression factors on the Rate of Change (RoC) of the SSGMNets to
pological properties, morphometric, psychological, and CSF variables. 
RoC provides information about how fast the variables change linearly 
with time. If a variable Y is defined in two-time points t1, t2 as Y(t1) and 
Y(t2), RoC is estimated as follows: RoC = ΔY/Δt where Δt = t2 – t1 and 
ΔY = Y(t2)-Y(t1). Also, RoC normalizes the variable’s change between 
two-time points by the elapsed time. This time normalization step is 
necessary when subjects have different Δt between baseline and second 
visit time. The two-time points RoC estimation provides a local RoC 
surrogate measure between t1 and t2. 

2.7. Statistical analysis 

We checked the normal distributions of all variables using 
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Kolmogorov–Smirnov tests and visual inspection of the histograms. To 
test a significant separation from the normality of the variables’ distri
butions, the Lilliefors tests were applied. The Log-transformation suc
cessfully rendered the data normal in some variables. For other variables 
that remain not normal, a rank transformation was applied instead to 
conform to the use of parametric statistical models (Conover and Iman, 
1981). Comparisons of clinical and demographic variables between 
groups were performed with Analysis of Variance (ANOVA), Kruskal- 
Wallis, or Chi-square tests where appropriate. 

Baseline network topological measures were compared between 
groups with Analysis of Covariance statistical models (ANCOVA) to es
timate the two main effects ApoE4 status (Carriers vs. non-Carriers) and 
disease progression (Converters vs. non-Converters) and the interaction 
term ApoE4*progression. The additional covariates were age, gender, 
educational level, MRI magnetic field strength, handedness, and gray 
matter volume. We checked whether the dependent variable’s variance 
is equal between the groups by performing Levene’s test of equal vari
ances. If significant differences were found (all p > 0.05), either a ’rank’ 
or a ’log10′ transformation was applied to the dependent variable. 
Additionally, we used a Games-Howell method when equal group/level 
variances are not assumed and posthoc comparisons with Tukey’s or 
Bonferroni corrections to adjust for multiple comparisons. These sta
tistical verifications are essential to ensure the dependent variable 
transformations’ reliability and results’ validity using parametric 
models. 

As reported previously, the size, degree, and connectivity density 
might influence other network properties (van Wijk et al., 2010; Zalesky 
et al., 2010). Therefore, we first tested group effects for these network 
properties defining size, connectivity density, and average degree. For 
those significant, these properties were added as additional covariates 
(Dicks et al., 2018; Tijms et al., 2013a) 

ANCOVA analysis was performed for the normalized clustering index 
at each brain region defined in the Neuromorphometric atlas. We also 
included the regional gray matter volume and nodal degree as additional 
covariates. False discovery rate (FDR) correction was used to adjust for 
multiple comparisons by the number of structures. 

The association of network properties with psychological (ADNI- 
MEM, MMSE) and CSF variables (Aβ42, T-tau, and P-tau) were assessed 
using a partial correlation model. The method allows calculating the 
linear partial correlation between our variables of interest adjusting for 
different covariates. Our covariates were: age, gender, educational level, 
and TIV. Where appropriate, we adjust for multiple comparisons using 
FDR correction. 

To find statistical differences between partial correlation co
efficients, we first applied the Fisher’s Z transform z = ln((1 + r)/(1-r))/ 
2 for each correlation coefficient. After, we used the Z-test correcting for 
degrees of freedom as follows: Z = (z1-z2)/sqrt (1/(n1-q-3) + 1/(n2-q- 
3)) (Afifi et al., 2003) (assuming standard normal distribution under the 
null hypothesis of no difference in ’mean’ partial correlations); where 
’z1′ and ’z2′ are the two transformed partial correlations, ’n1′ and ’n2′

are sample sizes, and ’q’ is the number of covariates involved in the 
partial correlation computation. 

The statistical analysis was performed using the JASP software (https 
://jasp-stats.org/). For the partial correlation analysis, we used MATLAB 
software (’partialcorri.m’ function) (https://www.mathworks.com/). 

2.8. Study of the SSGMNets reliability 

To evaluate the reliability of the SSGMNets topological properties, 
we followed the methodology used in Pizzagalli et al. 2020 (Pizzagalli 
et al., 2020). Specifically, we selected the Kennedy Krieger Institute 
(KKI) (Multi-Modal MRI Reproducibility Resource) (Landman et al., 
2011) data and the Intraclass correlation measure (ICC) (Landis and 
Koch, 1977) for the reliability evaluation. The KKI (Kennedy Krieger 
Institute—Multi-Modal MRI Reproducibility Resource) data is available 
at https://www.nitrc.org/projects/multimodal/. More details related to 

MRI data acquisition and processing can be found in Supplementary 
Materials. 

3. Results 

3.1. Sample description statistics and SSGMNets reliability 

The groups did not significantly differ in age, gender, education, or 
network size (number of nodes) at time points 1 and 2 (see Table 1). All 
SSGMNets followed a small-world topology and did not exhibit discon
nected nodes. We found a good/excellent reproducibility for all 
SSGMNets global network attributes with ICC > 0.8. Tables with all ICC 
values and the statistical significance, including the nodal normalized 
clustering index, can be found in Supplementary Material, Tables S26, 
and S27. 

3.2. Baseline effects of ApoE4 and disease progression on the network 
properties 

All groups showed a small-world architecture (i.e., σ >1). We found 
significant group differences in disease progression and ApoE4 factors in 
the ANCOVA analysis after correcting for multiple hypotheses. The in
dependent effect of the ApoE4 (Carriers vs. non-Carriers) was significant 
in Clux-Normalized (F(1,190) = 4.372, p = 0.038, effect-size ω2 = 0.014) 
and σ (F(1,190) = 4.743, p = 0.031, effect-size ω2 = 0.012). 

Fig. 1 (panels b) and h)) shows higher Clux-Normalized and σ values 
for Carriers than non-Carriers. The disease progression effect (Fig. 1, 
panels c), f), and i)) was found on Clux-Normalized (F(1,190) = 5.053, p 
= 0.026, ω2 = 0.014), CharPath-Normalized (F(1,190) = 5.430, p =
0.021, ω2 = 0.017) and σ (F(1,190) = 4.618, p = 0.033, ω2 = 0.012). 

MCI Converters showed lower values in all network properties than 
non-Converters (Fig. 1, panels c), f), i)). We did not find ApoE4*disease 
progression interaction effects. More details about these results can be 
found in Table S4, Supplementary Material. 

3.3. ApoE4 and disease progression effects on the network properties rate 
of change 

We found differences (Fig. 2) in the rate of change (RoC) related to 
progression factor in Clux (F(1,190) = 5.273, p = 0.023, ω2 = 0.021), 
CharPath (F(1,190) = 10.378, p = 0.002, ω2 = 0.044), GConnect (F 
(1,190) = 10.153, p = 0.002, ω2 = 0.043) and Eglobal (F(1,190) =
10.712, p = 0.001, ω2 = 0.046). The ApoE4*disease progression inter
action effect was found in Clux-Normalized (F(1,190) = 7.414, p =
0.007, ω2 = 0.031) and CharPath (F(1,190) = 5.566, p = 0.019, ω2 =

0.222) Fig. 2, panels a) and c). The highest interaction size effect was 
found in the CharPath (size-effect ω2 = 0.222). 

Interestingly, the post hoc analysis shows that only in the non- 
Carriers group, non-Converters showed higher Clux-Normalized and 
CharPath RoC than Converters. On the other hand, in the Converters 
group, the Carriers depicted significantly more Clux-Normalized as 
compared with non-Carriers. The ApoE4 effects, as a global factor, were 
not present in this analysis. Details about this analysis can be found in 
Supplementary Material Table S6. 

3.4. Effects of ApoE4 and disease progression on cognitive, morphometric, 
and CSF-derived measures in baseline 

Figs. 3 and 4 show the ANCOVA results for the baseline groups’ 
differences in cognitive, regional gray matter volume, and CSF 
biomarkers. 

The CSF-derived measures (Aβ42, T-tau and P-tau) showed signifi
cant group differences in the ANCOVA analysis for ApoE4, disease 
progression and the ApoE4*disease progression interaction. 

The results revealed an ApoE4 effect on Aβ42 (F(1,118) = 7.365, p =
0.008; ω2 = 0.047); T-tau (F(1,118) = 17.734, p = 0.001, ω2 = 0.110) 
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and P-tau (F(1,118) = 21.739, p = 0.001, ω2 = 0.133). The MCI Carriers’ 
group exhibited lower CSF Aβ42 levels and higher T-tau and P-tau 
compared to non-Carriers at baseline. 

For the disease progression factor all measures were significantly 
different between Converters and non-Converters (Aβ42: F(1,118) =
9.905, p = 0.002, ω2 = 0.065; T-tau: F(1,118) = 9.473, p = 0.003, ω2 =

0.056); P-tau: (F(1,118) = 9.924, p = 0.002, ω2 = 0.057). 
The ApoE4*disease progression interaction was found only in Tau 

measures (T-tau: F(1,118) = 4.899, p = 0.029, ω2 = 0.026; P-tau: F 
(1,118) = 4.522, p = 0.036, ω2 = 0.023). The post hoc analysis showed 
significant differences between Converters and non-Converters in the 
non-Carriers group and between Carriers and non-Carriers in the non- 
Converters group. Interestingly we did not find significant differences 
for MCI Carriers associated with disease progression (see Supplementary 
Material Table S4). 

We found significant effects associated with disease progression in 
MMSE (F(1,194) = 14.133, p = 0.001, ω2 = 0.058) and ADNI-MEM (F 
(1,194) = 43.209, p = 0.001, ω2 = 0.166). The test scores showed sig
nificant differences between Converters and non-Converters in the non- 
Carriers group (see Supplementary Material Table S4). ADNI-MEM also 
captured this difference for the Carrier’s group. Finally, the left and right 
hippocampus and entorhinal gray matter volume normalized revealed 
differences between non-Converters and Converters (R.Hipp: (F(1,191) 
= 25.482, p = 0.001, ω2 = 0.091; L.Hipp: (F(1,191) = 28.141, p = 0.001, 
ω2 = 0.099; R.EC: (F(1,191) = 17.803, p = 0.001, ω2 = 0.069; L.EC: F 
(1,191) = 17.537, p = 0.001, ω2 = 0.070) (Supplementary Material 
Table S4). However, both right hemisphere regions, showed differences 
associated with disease progression for non-Carrier’s group. In the left 

hemisphere significant differences were also found for Carriers. 
The highest size effects associated with ApoE4 was found for P-tau 

(ω2 = 0.13) and T-tau (ω2 = 0.11). The ADNI-MEM showed the 
maximum size effect associated with the disease progression (ω2 =

0.166). 
The post hoc testing results (p-value corrected by Bonferroni) for all 

variables with statistically significant differences can be found in Sup
plementary Material Table S4. 

3.5. ApoE4 and disease progression effects on the rate of change of 
cognitive and morphometric variables 

The normalized volume in left and right entorhinal cortex showed 
groups significant differences associated with the disease progression (F 
(1,191) = 10.869, p < 0.00, ω2 = 0.046; F(1,191) = 14.823, p < 0.001, 
ω2 = 0.064) as well as in the right and left hippocampus (F(1,191) =
9.573, p = 0.002, ω2 = 0.041; F(1,191) = 9.271, p = 0.003, ω2 = 0.039) 
(see Fig. 5). 

We found an ApoE4-related effect on the rate of change of MMSE (F 
(1,194) = 62.744, p < 0.001, ω2 = 0.015), the left and right entorhinal 
cortex normalized volume (F(1,191) = 8.236, p = 0.007, ω2 = 0.034; F 
(1,191) = 8.616, p = 0.004, ω2 = 0.064). The MMSE and ADNI-MEM 
rate of change were also affected by the disease progression (F(1,194) 
= 62.744, p < 0.001, ω2 = 0.231; F(1,194) = 77.778, p < 0.001, ω2 =

0.278) (see Fig. 6). 
The ApoE4 highest size effect was found for the right entorhinal 

cortex (ω2 = 0.06). The MMSE (ω2 = 0.231), ADNI-MEM (ω2 = 0.278), 
and right entorhinal cortex (ω2 = 0.06) showed the maximum size 

Fig. 1. ANCOVA results for Network topological attributes. It is represented the plots of Clustering index normalized (Clux-Normalized), Characteristic path length 
normalized (CharPath-Normalized), and sigma. The first column of graphs (panels a), d) and g)) shows the groups subdivided into non-Converters (non-Conv), 
Converters (Conv), and Carriers (ApoE4 + ), non-Carriers (ApoE4-). The second column (panels b), e) and h)) shows the results of the ApoE4 main effect comparing 
ApoE4 + versus ApoE4-. The third column (panels c), f) and i)) shows the disease progression’s results as comparing non-Converters (non-Conv) versus Converters 
(Conv). Asterisks indicate statistically significant differences. The bars’ height represents the mean, and the error bars the 95% confidence interval (CI). Dots 
represent subject measures. 
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effects associated with the disease progression. The results of the post
hoc comparison can be found in Supplementary Material Table S6. 

3.6. ApoE4 and disease progression-related changes on regional 
normalized clustering index 

As the network Clux-Normalized showed significant group differ
ences associated with the ApoE4 and disease progression factors and its 
RoC, we studied the origin of these differences at the regional level. 

The normalized clustering index is commonly used as an indicator of 
functional segregation and, as such, suggests the role of a particular 
region on specialized processing that occurs within densely inter
connected groups of brain regions. 

We found 13 regions with differences between Carriers and non- 
Carriers (p-uncorrected < 0.01) (Supplementary Material Table S8). 
However, only the right supramarginal gyrus – PCgG.R – (pFDR = 0.043) 
and the left anterior cingulate gyrus – ACgG.L – (pFDR = 0.015) survived 
multiple comparison correction. Both showed higher Clux-Normalized 
values for Carriers compared to non-Carriers. 

For the disease progression effect, 75 regional ANCOVAs were 
significantly different between groups, after FDR correction for multiple 
comparisons (Supplementary Material Table S9). Fig. 7 shows the 
spatial distribution of regional normalized clustering index group dif
ferences. The MCI that will progress into AD showed lower Clux- 
Normalized for all regions than those that will not. Some of these re
gions were: right fusiform gyrus (pFDR = 0.006), right and left middle 
frontal gyrus (pFDR = 0.002; pFDR = 0.0001), right and left posterior 
cingulate cortex (pFDR = 0.002; pFDR = 0.005), right precuneus (pFDR =

0.006), right and left superior frontal gyrus (pFDR = 0.0001; pFDR =

0.001) and left supramarginal gyrus (pFDR = 0.005). For details of 
regional groups’ mean and confident intervals, see Supplementary Ma
terial Table S9. (See Fig. 8) 

The left anterior cingulate gyrus (ACgG.L) showed significant inter
action effects ApoE4*disease progression but for p-uncorrected < 0.01. 

3.7. ApoE4 and disease progression effects on the association between 
network properties and cognitive and CSF variables 

We further scrutinized the relationships between network measures, 
memory deficit measured with ADNI-MEM, cognitive decline evaluated 
with MMSE (available for all subjects), as well as CSF Aβ42, T-tau, and P- 
tau levels. 

The analysis pulling together all groups and at individual groups 
showed several associations between the network properties and other 
measures (Supplementary Material Tables S10–S14).The Clux- 
Normalized was related to ADNI-MEM using all subjects (r = 0.206, p 
= 0.003) and with Carriers (r = 0.225, p = 0.03) and non-Carriers (r =
0.234, p = 0.021) groups separated. The clustering index correlated with 
ADNI-MEM in general (r = 0.259, p = 0.0002, N = 200 subjects), non- 
Converters (r = 0.249, p = 0.014, N = 100), as well as with MMSE in the 
non-Carriers (r = 0.217, p = 0.033, N = 100). Also, clustering index 
showed a correlation with ADNI-MEM in non-Carriers group (r = 0.388, 
p = 8.97*10− 5, N = 100) and not in Carriers. 

We found the normalized characteristic path length (CharPath- 
Normalized) to correlate in general with ADNI-MEM (r = 0.246, p =
0.0005, N = 200). In Carriers, CharPath-Normalized was associated with 
ADNI-MEM (r = 0.297, p = 0.003) and in non-Carriers (r = 0.232, p =
0.023) as well. Finally, CharPath-Normalized show significant correla
tions with MMSE in non-Carriers (r = 0.148, p = 0.038) and with Aβ42 
in Carriers (r = 0.283, p = 0.039). 

The global connectivity showed association with ADNI-MEM in 
general (r = 0.162, p = 0.024), non-Converters (r = 0.24, p = 0.016) and 
non-Carriers (r = 0.287, p = 0.004) groups. Finally, in non-Converters, 
we found an association between global efficiency and ADNI-MEM (r =

Fig. 2. ANCOVA results for the Rate of Change (RoC) of the Network topological attributes. It is represented the bar plots of Clustering index normalized (Clux 
Normalized), Characteristic path length (CharPath), Clustering index (Clux), global efficiency (Eglobal), and Global connectivity (Gconnect). Panels a), c), e), g) and 
i) show the groups subdivided into non-Converters (non-Conv), Converters (Conv), and Carriers (ApoE4 + ), non-Carriers (ApoE4-). Panels b), d), f), h) and j) 
represent the disease progression’s main effect results as comparing non-Converters (non-Conv) versus Converters (Conv). ’Clux Normalized’ and ’CharPath’ showed 
an interaction effect ApoE4*disease progression. All topological network attributes depicted a significant disease progression effect. A log10 transformation was 
applied to all variables to meet the equal group variances condition in the parametric ANCOVA statistical design. Asterisks indicate statistically significant differences 
(p-corrected < 0.05). The bars’ height represents the mean, and the error bars the 95% confidence interval (CI). Dots represent subject measures. 
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0.209, p = 0.04). The CSF Tau measures did not reveal associations with 
the network properties. 

For ApoE4, we found significant differences in the correlations be
tween the characteristic path length and Aβ42 levels (Carriers r = 0.229, 
non-Carriers r = -0.171, z-stats = 2.158, p = 0.03). Also in global effi
ciency we obtained the same effect (Carriers r = -0.16, non-Carriers r =
0.20, z-stats = -2.00, p = 0.044). 

The correlation between global connectivity and MMSE was different 
between Converters and non-Converters (Converters r = 0.2, non- 
Converters r = -0.08, z-stats = 2.01, p = 0.04). The correlation be
tween network properties with ADNI-MEM and CSF tau measures did 
not reveal significant differences between Converters versus non- 
Converters and Carriers versus non-Carriers. 

4. Discussion 

The present study shows that SSGMNet is affected independently by 
ApoE4 and disease progression in late-MCI. The topological network 
alterations indicate a shift towards a random organization, more in 
Carriers than non-Carriers. Our findings reveal the intricate relationship 
between the SSGMNet attributes and ApoE4 genotype, suggesting 
modulated effects by independent processes associated with disease 
progression. 

The main results of this research can be summarized as follows: 1) At 
baseline (all subjects classified as MCI) the ApoE4 and the future pro
gression to AD status modulate topological network properties differ
ently; 2) the Rate of Change (RoC) of characteristic path length and 
Clux-Normalized were affected by ApoE4 and disease progression 

status interaction; 3) The Clux-Normalized values were lower in MCI 
who will progress into AD compared to those who will not; 4) Clux- 
Normalized decreased in several regions belonging to the Default 
Mode Network (DMN) in MCI Converters respect to non-Converters; 5) 
ApoE4 and disease progression affect the association between specific 
topological network features and CSF Aβ42; and MMSE variables. 

The present results are in line with the idea that disruptions in gray 
matter networks start years before dementia unfolds and, as such, may 
be sensitive to the concurrent changes in structural integrity across the 
brain in MCI. The baseline and RoC analysis findings underline the 
importance of considering cross-sectional and longitudinal approaches, 
as they could provide complementary information. Some of these find
ings deserve more attention and will be discussed in the following 
subsections. 

4.1. ApoE4 and progression to AD status impairs the SSGMNet topology 
in MCI 

Our results revealed that the ApoE4 mainly modulated two network 
properties, Normalized clustering index, and sigma. In both attributes, 
higher values in MCI Carriers were found than non-Carriers indepen
dently of the disease progression status. These increments (e.g., higher 
similarity between neighboring nodes) associated with the E4 allele may 
reflect synchronous atrophy between brain areas, whereas Carriers show 
a more uniform neurodegeneration pattern across the brain. This finding 
seems to contradict previous studies reporting lower clustering index in 
MCI Carriers (Li et al., 2019; Sanabria-Diaz et al., 2021). The source of 
this variability may be primarily related to a different network 

Fig. 3. ANCOVA results for Cerebrospinal Fluid (CSF) variables. Bar plots for Aβ42, T-tau, and P-tau variables. The first column of graphs (panels a), d) and g)) shows 
the groups subdivided into non-Converters (non-Conv), Converters (Conv), and ApoE4+, ApoE4-. The second column (panels b), e) and h)) represents the ApoE4 
main effect results comparing ApoE4 + versus ApoE4-. The third column (panels c), f) and i)) shows the disease progression’s results as comparing non-Converters 
(non-Conv) versus Converters (Conv). The CSF measures were log10 transformed to meet the equal group variances condition in the parametric ANCOVA statistical 
design. Asterisks indicate statistically significant differences (p-corrected < 0.05). The bars’ height represents the mean, and the error bars the 95% confidence 
interval (CI). Dots represent subject measures. 
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methodology, morphometric descriptors, group selection, and sample 
size, among other factors. 

Additionally, the higher values of small-worldness in Carriers indi
cate a less random network organization, which has often been reported 
in AD and MCI (Dicks et al., 2018; Tijms et al., 2013a; Yao et al., 2010). 
The disease progression also modulated the sigma property, with lower 
values in Converters compared to non-Converters. This association has 
been demonstrated in previous longitudinal and cross-sectional studies 
in MCI (Friedman et al., 2014). 

Independent of the ApoE4 factor, we found that those MCI who will 
progress into AD have lower normalized characteristic path length. It 
suggests a more random network, consequently reducing the potential 
for functional integration between brain regions. This effect potentially 
reflects the interplay between synchronous atrophy over time (Tijms 
et al., 2018) and regional adaptative/maladaptive mechanisms (Fornito 
et al., 2015). 

Additionally, only the CSF measures were modified by the E4 allele 
at baseline. Our results in Carriers confirm previous findings where 
ApoE4 status was associated with brain amyloid accumulation and 
lower CSF Aβ42 as well as higher tau levels in MCI (Hashimoto et al., 
2012; Liu et al., 2013; Risacher et al., 2013). Yet, the impact of the 
disease progression status at baseline was captured by the hippocampus 
and entorhinal volumes and ADNI-MEM composite score. The MCI 
Converter groups showed higher volume loss in both structures and 
lower scores on the memory test than the non-Converters. Both mea
sures have been previously associated with MCI progression into AD 
(Crane et al., 2012; Farlow et al., 2004; Giorgio et al., 2020; Jack et al., 
2010a; Jack et al., 2013; Jack et al., 2004). 

Compared to our previous paper (Sanabria-Diaz et al., 2021), there 
are several differences. Contrary to the mentioned study, we also 

classified MCI patients at baseline based on the clinical progression 
(non-Converters versus Converter into AD). Second, the evaluation of 
the network measures is different between studies. We found the Clux- 
Normalized more sensitive to detect ApoE4 effects, a network attri
bute that was not explored in the previous work. Each research used a 
different morphometric descriptor (cortical thickness versus grey matter 
density). Based on a prior study from our group, it is known that 
morphometric descriptors capture distinct properties of the interaction 
between brain structures (Sanabria-Diaz et al., 2010). Importantly, we 
explore the modulation on the time Rate of Change (RoC) of network 
attributes, CSF biomarkers, and cognitive measures in the same MCI 
cohort. This relevant contribution is missing in our previous paper. 

4.2. ApoE4 genotype differentially modulates the rate of change of 
SSGMNet properties and other AD-related biomarkers 

Our study revealed that the RoC of characteristic path length and 
Normalized clustering index were affected by the interaction between 
ApoE4 and disease progression status. The effect was driven by the non- 
Carrier’s group, were patients who will later on progress into AD showed 
the steepest decline compared to those that will not convert to AD. This 
result may help to establish which network properties changes are 
associated with AD progression in MCI non-Carriers. It supports the 
hypothesis that a higher rate of decreasing over time in both metrics in 
MCI is associated with an AD progression. In particular, a previous study 
in non-demented subjects (amyloid positive) showed an association 
between clinical progression over time and lowered normalized clus
tering index values (Tijms et al., 2016). Also, RoC results indicated that 
the gray matter networks seem to move towards a random network 
organization, which has been previously reported for AD subjects by 

Fig. 4. ANCOVA results for the volumetric and cognitive variables. The volumetric variables were: normalized volume of the left Entorhinal cortex (L.Ent.Cortex Vol 
Norm.) (panels a) and b)), and right Entorhinal cortex (R.Ent.Cortex Vol Norm.) (panels c) and d)); the normalized volume of the left Hippocampus (L.Hipp Volume 
Norm.) (panels e) and f)), and right Hippocampus (R.Hipp Volume Norm.) (panels g) and h)). The cognitive variables are ADNI-MEM (panels i) and j)) and Mini- 
Mental score (MMSE) (panels k) and l). For all variables, a bar plot with the groups subdivided in non-Converters (non-Conv), Converters (Conv), and ApoE4+, 
ApoE4- are shown. All variables showed a significant disease progression main effect as comparing non-Converters (non-Conv) versus Converters (Conv) (see 
Materials and Methods section). Asterisks indicate statistically significant differences (p-corrected < 0.05). The bars’ height represents the mean, and the error bars 
the 95% confidence interval (CI). Dots represent subject measures. 
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other studies (Pereira et al., 2016; Phillips et al., 2015; Tijms et al., 2014 
(Tijms et al., 2013a)). 

Interestingly, none of the network measures’s RoC is affected by 
ApoE4 as a global ANOVA effect, although several were sensitive to the 
disease progression. Longitudinally, the main differences associated 
with the clinical progression were found to have a steeper decrease in 
cluster index, characteristic path length, global connectivity, and global 
efficiency in Converters. Altogether these findings suggest brain con
nectivity alterations (for a review, see (Tijms et al., 2013b)). They may 
reflect a reduced ability to integrate information across distributed brain 
regions and altered communication between neighboring areas (Dicks 
et al., 2018; Pereira et al., 2016). 

Additionally, we found an independent effect of the E4 allele on the 
entorhinal cortex rate of atrophy. The Carriers showed a higher RoC in 
this structure volume compared to non-Carriers. Specifically, a previous 
study using ADNI database confirms an association between E4 allele 
and a more significant increase in atrophy rate in the hippocampus and 

entorhinal cortex in MCI Carriers’ Converters (Hostage et al., 2014; 
Risacher et al., 2010). In our study, the steeper atrophy in these regions 
in MCI Converters confirms the most extensive effects described in areas 
previously demonstrated to display significant atrophy in AD. Never
theless, this analysis revealed the importance of monitoring the ento
rhinal cortex volume in MCI since it is affected independently by ApoE4 
and disease progression. 

A faster cognitive decline associated with ApoE4 was also captured 
by MMSE. Our result suggests that this test score, used in clinical and 
research settings to measure cognitive impairment, is modulated by the 
ApoE4. Based on this finding, we considered incorporating the subject 
E4 allele information for MCI cognitive characterization a valuable 
research strategy, especially in clinical trials. On the other hand, inde
pendently of ApoE4, the RoC for ADNI-MEM total score revealed faster 
memory decline for those who progressed into AD. ADNI-MEM has been 
considered in a previous study using the ADNI database, as the most 
discriminative cognitive feature for classifying stable versus progressive 

Fig. 5. ANCOVA results for the Rate of Change (RoC) of the volumetric measures. It is represented the bar plots of the normalized volume of the left Hippocampus (L. 
Hipp Volume Norm.) (panels a), b) and c)), right Hippocampus (R.Hipp Volume Norm.) (panels d), e) and f)) and the normalized volume of the left Entorhinal cortex 
(L.Ent.Cortex Vol Norm.) (panels g), h) and i)), and right Entorhinal cortex (R.Ent.Cortex Vol Norm.) (panels j), k) and l)). The first column of graphs shows the 
groups subdivided into non-Converters (non-Conv), Converters (Conv), and APOE4+, APOE4-. The second column shows the results of the APOE4 main effect 
comparing APOE4 + versus APOE4-. The third column shows the disease progression’s main effect as comparing non-Converters (non-Conv) versus Converters 
(Conv). ’L.Ent.Cortex Vol Norm.’ and ’R.Ent.Cortex Vol Norm.’ showed a significant APOE4 effect. A ’rank’ transformation was applied to meet the equal group 
variances condition in the parametric ANCOVA statistical design. Asterisks indicate statistically significant differences (p-corrected < 0.05). The bars’ height rep
resents the mean, and the error bars the 95% confidence interval (CI). Dots represent subject measures. 
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MCI (Giorgio et al., 2020). 

4.3. ApoE4 and disease progression modulate the regional Normalized 
clustering index in MCI 

Our study found regional normalized clustering index differences 
between groups driven by the disease progression and not by ApoE4. 
These regional differences were widely distributed across the brain with 
a common denominator: lower Clux-Normalized values for those MCI 
that will convert to AD. It suggests that in MCI, the risk of disease pro
gression is characterized by worse local communication between ’to
pological neighboring’ areas (graph theory concept). The fact that all 
identified regions showed a lower clustering index in MCI Converters 
may be related to AD neuropathological processes that are already 
operating in this phase, which in turn affect the intracortical gray matter 
properties similarity. 

It has been previously described that intracortical morphometric 
similarity is related to coordinated changes of cortical structures (for a 
review, see (Alexander-Bloch et al., 2013)). This hypothesis may explain 
why several regions with lower values in MCI Converters belong to the 
default-mode network (DMN), including the posterior cingulate cortex, 
precuneus, temporal and prefrontal areas (Greicius et al., 2004). This 
finding agrees with our previous study, where several regions belonging 
to the DMN showed nodal alteration associated with the ApoE4 (Sana
bria-Diaz et al., 2021). However, many of them diverge between studies 
probably related to several methodological differences (i.e., parcellation 
schemes and sample size). 

Our findings support the idea that a continuous DMN activity in
creases the metabolism-dependent cascade conducive to AD (Buckner 
et al., 2009, 2005; Raichle, 2006). In this regard, as part of the DMN, 
memory systems may be preferentially affected because it plays a central 
role in the resting activity (Buckner et al., 2005). 

In addition to this hyper functional-activation hypothesis, the 
regional clustering alterations may arise due to axonal connectivity. For 
example, we found lower values in the posterior cingulate cortex and the 
precuneus for those MCI who will progress into AD. Both structures have 
been reported in previous network studies in MCI and AD at a group and 

individual-based level (Dicks et al., 2018; He et al., 2008; Pereira et al., 
2016; Tijms et al., 2014, 2013a; Yao et al., 2010). Moreover, the pos
terior cingulate cortex constitutes a central node in the DMN. This 
structure has reciprocal connections to the medial temporal lobe struc
tures (i.e., entorhinal cortex, parahippocampal gyrus, precuneus, orbi
tofrontal cortex) affected during AD progression. Along with the 
precuneus, the posterior cingulate cortex has a role in episodic memory 
retrieval (Maddock et al., 2001; Nielsen et al., 2005), working memory 
(Kozlovskiy et al., 2012), and has been implicated in several intrinsic 
control networks (Leech et al., 2012). 

These results support the hypothesis that in MCI, regional network 
alterations are associated with network degeneration. There are several 
mechanisms suggested by which it occurs: 1) Selective neuronal 
vulnerability that may affect functional circuits (Hyman et al., 1984), 
inducing compensatory strategies at the network level (Palop et al., 
2007; Palop et al., 2006); 2) Retrograde axonal transport deficits that 
result in axonal degeneration (Salehi et al., 2006); 3) Prion disease 
mechanism where misfolded disease proteins may propagate 
throughout brain circuits (Scott et al., 2013). 

4.4. ApoE4 and disease progression effects on the association between 
network properties, cognitive and CSF-derived measures 

Additionally, the present study investigated the associations between 
the network topological properties, memory, general cognition, and 
CSF-derived measures. We studied the general correlation between these 
variables and, separately, the influence of ApoE4 and disease progres
sion factors. We found that in MCI, several network properties showed a 
positive correlation with memory functions evaluated using ADNI-MEM. 
Our findings agree with a recent MCI study in which the gray matter 
network properties showed the strongest associations with a decline in 
global cognition and memory (Dicks et al., 2018). The correlation with 
ADNI-MEM is consistent with the memory domain being among the first 
cognitive functions affected in the amnesic MCI subtype (Jack et al., 
2013). A practical implication of this finding is the possible use of the 
network measures to monitor new therapies’ efficiency in clinical trials 
in MCI patients. 

Fig. 6. ANCOVA results for the Rate of Change (RoC) of cognitive variables. It is represented the bar plots of the cognitive variables are ADNI-MEM (panels a), b) and 
c)) and Mini-Mental score (MMSE) (panels c), d) and e)). The first column of graphs shows the groups subdivided into non-Converters (non-Conv), Converters (Conv), 
and APOE4+, APOE4-. The second column shows the results of the APOE4 main effect comparing APOE4 + versus APOE4-. The third column represents the disease 
progression’s main effect, comparing non-Converters (non-Conv) versus Converters (Conv). Both variables showed a significant disease progression effect. MMSE also 
showed a significant APOE4 effect (panel e)). A ’rank’ transformation was applied to meet the equal group variances condition in the parametric ANCOVA statistical 
design. Asterisks indicate statistically significant differences (p-corrected < 0.05). The bars’ height represents the mean, and the error bars the 95% confidence 
interval (CI). Dots represent subject measures. 
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Interestingly, the CSF Aβ42 level was positively associated with the 
characteristic path length in the Carriers group, while we did not find 
correlations with P-tau and T-tau. This result agrees with previous 
studies showing that the E4 allele modulates the brain Aβ aggregation 
and deposition (for review, see (Liu et al., 2013)). Moreover, the positive 
association between these two measures was confirmed only for ApoE4 
and not for the disease progression factor. Our finding suggests that the 
characteristic path length informs the detrimental E4 allele effects on 
the amyloid-related pathways in network terms. We hypothesized that 
synaptic dysfunction due to increased AD-related brain pathology 
(amyloid aggregation, tau) renders gray matter morphology more dis
similar at a regional level, resulting in differences between Carriers and 
non-Carriers. 

Finally, the CSF P-tau and T-tau levels were not associated with the 
network topology either for ApoE4 or disease progression factors. This 

finding may suggest that the network attributes are not sensitive to Tau 
levels changes and/or may reflect a different neurodegenerative mech
anism. Consistent with this explanation, a previous study found gray 
matter network measures contained predictive information in addition 
to total CSF Tau levels (Tijms et al., 2018). 

4.5. Limitations and Future considerations 

There are several potential limitations to this study that should be 
considered. First, two-time points MRI scans were analyzed in the cur
rent study. Future investigation on the ApoE4-related effects on the 
network properties, longitudinal cognitive decline, and brain atrophy is 
necessary. Second, a small sample of subjects had CSF measures, which 
might have affected the accuracy of the association analysis. Third, this 
study was specifically limited to those subjects who were already 

Fig. 7. ANCOVA results for the nodal normalized clustering index (nodal Clux Normalized) topological measure. All structures represented as spheres in panel c) 
were those with significant p-values (FDR corrected multiple comparisons) for the disease progression main effect (Converters versus non-Converters). The larger the 
sphere diameter, the larger the difference between groups. The panels a) and b) represent the results for the right Posterior Cingulate gyrus (PCgG.R) and the right 
Precuneus (PCu.R), respectively. Panel d) and e) show the left Anterior Cingulate gyrus (ACgG.L) and right Supramarginal gyrus (SMG.R), respectively. These 
structures showed differences in ApoE4 main effect (p uncorrected). The ACgG.L also shows an interaction effect of APOE-disease progression. Asterisks indicate 
statistically significant differences for p-corrected < 0.05 (FDR) except for panel d) and e) p-uncorrected < 0.01. The bars’ height represents the mean, and the error 
bars the 95% confidence interval (CI). Dots represent subject measures. 
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clinically diagnosed with amnesic MCI. Thus, our study may not be 
generalizable to other clinical studies or populations. Further studies are 
needed to support the present findings with larger sample sizes. 

A gene-dose analysis as well as susceptibility and protective loci 
associated with late-onset AD need to be considered in conjunction to 
ApoE4 for studying possible interaction effects. Another potential limi
tation is that our study included an average period of 3 years between 
the two visits (time points). Hence, some patients in the non-Converter 
MCI group could progress to dementia later on. Yet, we demonstrated 
the impact of the E4 allele on the RoC of structural gray matter networks 
alongside the cross-sectional results. To the best of our knowledge, this 
has not been studied before and warrants further investigation of how 
gray matter network integrity changes over time in MCI. 

Future research is needed to examine whether altered graph prop
erties are related to a particular cognitive domain and are more sensitive 
to predict cognitive decline. The graphs’ diagnostic potential should be 
further investigated using classification algorithms and state of the art 
machine learning algorithms. 

It remains an open question how the brain structural co-variance 
connectivity is related to anatomical and functional connectivity and 
how this relationship changes during AD progression. Future multi
modal neuroimaging studies are required to answer this question. A 
strength of the current approach is that we illustrated the network 
properties affected by ApoE4 and disease progression and their relation 
to inter-individual differences in other biomarkers in MCI, suggesting 
that they encode additional relevant information. 

5. Conclusions 

This paper demonstrated the role of ApoE4 in disrupting specific 
parameters of the gray matter network topology. ApoE4 simultaneously 
affects morphometric, cognitive variables, as well as CSF variables. 
Significantly, the time RoC of these variables is also affected by ApoE4. 
In particular, in Carriers, there are an increased CSF Aβ42 and entorhinal 
cortex atrophy and decreased T-tau and P-tau levels. We also discovered 
specific disruption in topological network properties, morphometric, 
cognitive, and CSF-derived markers in those MCI patients that will 
progress to AD. Disease progression conducts more pervasive brain al
terations than ApoE4. The clustering index at the regional level showed 
widespread changes across the brain cortex, driven mostly by the disease 
progression, overlapping with the critical nodes of the DMN related to 
AD pathology. 

Based on these findings, we considered the SSGMNets as a valid 
approach to sheds light on the cognition-gene-structural co-variance 
interaction. This is a potentially significant development because it 
could find use in MCI biomarkers research and may even offer clinical 
value. The study further provides information to advance the current 
understanding of how ApoE4 -which is far the most important genetic 
factor known in late-onset AD- influences brain network topology in MCI 
subjects. Examining ApoE4 with factors such as the risk of AD pro
gression, as we have demonstrated, may be crucial in building classifi
cation models in an attempt to measure subtle network changes in MCI. 
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