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Abstract

Introduction: Practice effects (PEs) on cognitive tests obscure decline, thereby delay-

ing detection of mild cognitive impairment (MCI). Importantly, PEs may be present

evenwhen there are performance declines, if scoreswould have been even lowerwith-

out prior test exposure. We assessed how accounting for PEs using a replacement-

participants method impacts incidentMCI diagnosis.

Methods: Of 889 baseline cognitively normal (CN) Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) participants, 722 returned 1 year later (mean age = 74.9 ± 6.8

at baseline). The scores of test-naïve demographically matched “replacement” partici-

pants who took tests for the first timewere compared to returnee scores at follow-up.

PEs—calculated as the difference between returnee follow-up scores and replacement

participants scores—were subtracted from follow-up scores of returnees. PE-adjusted

cognitive scoreswere thenused to determine if individualswere below the impairment
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threshold forMCI. Cerebrospinal fluid amyloid beta, phosphorylated tau, and total tau

were used for criterion validation. In addition, based on screening and recruitment

numbers from a clinical trial of amyloid-positive individuals, we estimated the effect

of earlier detection of MCI by accounting for cognitive PEs on a hypothetical clinical

trial in which the key outcomewas progression toMCI.

Results: In the ADNI sample, PE-adjusted scores increased MCI incidence by 19%

(P < .001), increased proportion of amyloid-positive MCI cases (+12%), and reduced

proportion of amyloid-positive CNs (–5%; P’s < .04). Additional calculations showed

that the earlier detection and increasedMCI incidencewould also substantially reduce

necessary sample size and study duration for a clinical trial of progression toMCI. Cost

savings were estimated at≈$5.41million.

Discussion: Detecting MCI as early as possible is of obvious importance. Accounting

for cognitive PEs with the replacement-participants method leads to earlier detection

of MCI, improved diagnostic accuracy, and can lead to multi-million-dollar cost reduc-

tions for clinical trials.

KEYWORDS

Alzheimer’s disease, clinical trials, early diagnosis, longitudinal aging, mild cognitive impairment,
practice effects

1 INTRODUCTION

Alzheimer’s disease (AD) is a leading cause of death in adults over age

65 and an estimated 1 in 85 people will be living with the disease

by 2050.1,2 Given the protracted AD prodromal period, emphasis is

now on clinical trials that begin with cognitively normal (CN) individ-

uals whomay progress tomild cognitive impairment (MCI).3–6 Delayed

detection of MCI is essentially misdiagnosis, that is, labeling someone

as CN when they, in fact, have MCI. Such misdiagnosis impedes identi-

fication of meaningful drug effects and may lead to misinterpretation

of findings in clinical trials.7,8 Clinically, any effects to slow disease pro-

gression require early detection. Detection of MCI as early as possible

is thus critical.

Repeat cognitive assessments are necessary for accurately deter-

mining transitions from CN to MCI or MCI to dementia. However,

repeat assessments are subject to practice effects (PEs) that can inflate

follow-up scores via memory of specific stimuli (i.e., content PE) or

through increased comfort with test taking (i.e., context PE).9,10 Put

simply, someone taking a test for the second time will typically have

a higher score than if they were taking it for the first time. PEs have

a wide-ranging impact on any study or field involving cognitive testing

because they mask true cognitive decline and compromise diagnostic

accuracy, impairing the separation of cases (i.e., MCI) and controls (i.e.,

CN).11,12 Moreover, PEs are pervasive; they have been found across

multiple cognitive domains and test–retest intervals as long as 7 years

in older adults, including those withMCI andmild AD.9,12–14

A major limitation of most PE methods is that they only consider

PEs when scores are higher at follow-up than at baseline.11,14,15 How-

ever, PEs can exist when there is no overall change and when there

is decline, as they may still cause underestimation of decline (Fig-

ure 1).11,14 In such situations, failure to account for PEsmay delayMCI

diagnosis because PEs would inflate scores above diagnostic impair-

ment thresholds.11,12,16,17 This is particularly relevant for older adults

for whom decline over timemay be the norm.

Despite their importance, PEs are largely ignored in longitudinal

studies, clinical trials, and clinical practice, particularly with respect to

diagnosis.10,11,14,18,19 A review of PEs in MCI and AD samples noted

considerable evidence of PEs (i.e., increased scores) in clinical trials.14

However, despite recognition that accounting for PEs may poten-

tially improve clinical trials and diagnostic accuracy, there are minimal

empirical data on PEs in clinical trials.11,14,15,20

One method of PE adjustment, the replacement-participant

method, is able to gauge PEs even when performance declines.12,16

This method relies on the recruitment of an additional set of test-naïve

participants (i.e., “replacements”) that is similar to returnees in terms

of age and other demographic factors. A comparison of replacements’

performance and that of the returnees calculates a PE because score

differences are due to the fact that returnees have taken the tests

twice, but replacements have taken the tests only once. PE-adjusted

scores can then be derived by subtracting PEs from the returnees’

follow-up scores.12,16 Using a replacement-participants method, in

what to our knowledge is the only study using PE adjustment tomodify

diagnosis, we showed that MCI incidence doubled (4.6% vs. 9.0%)

when scores were adjusted for PEs in a 6-year follow-up study.12 The

increased incidence means earlier detection of MCI, suggesting an

important strength of this method. However, as this method lowers

all scores, it is crucial to determine if the increased incidence truly

represents more accurate diagnosis rather than methodological arti-
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RESEARCH INCONTEXT

1. Systematic Review: We reviewed the literature (e.g.,

PubMed) and found only one study (by our group) that

used practice effects (PEs) for purposes of earlier detec-

tion of mild cognitive impairment (MCI). However, the

validity or accuracy of the practice-adjusted diagnoses

and their potential impact on clinical trials remains

unknown.

2. Interpretation: Our novel application of the replacement-

participant method of practice effect estimation resulted

in a21% increase in incidentMCI at 1-year follow-up. This

earlier detectionwas alsomore accurate: 20% increase in

amyloid-positive MCI cases and 6% decrease in amyloid-

positive controls. We then showed that accounting for

PEs would substantially increase power and reduce nec-

essary sample size, duration, and cost of AD drug trials.

3. Future Directions: Matched replacement participants

should be included in the design of large longitudinal

aging studies and AD clinical drug trials to gauge PEs and

provide for earlier detection of progression to impair-

ment.

fact. We propose improved correspondence between AD biomarkers

and MCI diagnoses as a way of validating the PE-adjusted diagnoses.

Other strengths of the method are that returnees and replacements

are always well-matched for demographics, and PEs are always cal-

culated based on the specific time interval and for a specific test. A

shortcoming of this method is that each test’s PE is the same for all

subjects because they are groupmean effects.

Here, we used a novel approach by identifying the equivalent of

replacement participants in theAlzheimer’s DiseaseNeuroimaging Ini-

tiative (ADNI). In individuals who were CN at baseline, we hypothe-

sized that: (1) we would observe PEs at the 12-month follow-up; and

(2) accounting for PEs would increase the number of MCI diagnoses

at follow-up. Regarding criterion validity, we hypothesized that: (3)

PE-adjusted diagnoses would result in more AD biomarker-positive

MCI cases and fewer biomarker-positive CN individuals than PE-

unadjusted diagnoses. Finally, we completed power/sample size calcu-

lations, hypothesizing that: (4) accounting for PEs would substantially

reduce the number of participants needed for clinical trials. We then

applied these estimates to a hypothetical drug trial with progression

to MCI as a key outcome using recruitment data from a major clinical

trial. Earlier and more accurate detection should thus have a substan-

tial impact on clinical trials by reducing study duration, attrition, partic-

ipant and staff burden, and overall cost.

2 MATERIALS AND METHODS

2.1 Participants

Data were obtained from the ADNI database (adni.loni.usc.edu). The

ADNI was launched in 2003 as a public–private partnership, led by

Principal Investigator Michael W. Weiner, MD. The primary goal of

ADNI has been to test whether biological markers, clinical assessment,

and neuropsychological measures can be combined to measure the

progressionofMCI andearlyAD. Forup-to-date information, seewww.

adni-info.org. Participants from the ADNI-1, ADNI-GO, and ADNI-2

cohorts were included. Informed consent was obtained from all partic-

ipants.

We identified 889 individuals who were CN at baseline; 722 of

them returned for a 12-month follow-up. Mean educational level of

returnees was 16 years (standard deviation [SD] = 2.7), 47% were

female, and mean baseline age was 74.9 years (SD = 6.8). All partici-

pants completed neuropsychological testing at baseline and 12-month

follow-up. After accounting for PEs,we re-diagnosed returnees at their

12-month follow-up as CN orMCI.

F IGURE 1 Practice effects (PEs) with andwithout true decline. The solid line represents true cognitive ability. The dashed line represents
observed performance, which is inflated due to a practice effect (vertical arrow). A, Typically observed practice effect: an individual’s observed
score increases from baseline to follow-up, demonstrating a typical practice effect. B, Practice effect in the context of cognitive decline. In this
scenario, an individual’s ability is decreasing over time. A practice effect still exists but is masked by cognitive decline. As a result, the individual’s
performance appears to be stable but is actually better than it would have beenwithout previous exposure to the test. C, PEs impair detection of
mild cognitive impairment (MCI). In this situation, an individual has declined below anMCI cutoff. However, PEs are inflating their score so that
they now fall above theMCI cutoff andwill be diagnosed as cognitively normal at follow-up

http://www.adni-info.org
http://www.adni-info.org
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2.2 Procedures

Six cognitive tests were examined at both baseline and follow-up

(mean = 12.21 months; SD = 0.97): memory (Wechsler Memory

Scaled-Revised, Logical Memory Story A delayed recall; Rey Auditory

Verbal Learning Test [AVLT] delayed recall); language (Boston Naming

Test; Animal Fluency); attention-executive function (Trail Making Test

Parts A and B). The American National Adult Reading Test provided an

estimate of premorbid IQ. Participants completed the same version of

tests at baseline and 12-month visits.

PE-adjusted and PE-unadjusted scores were converted to z-scores

based on external norms that accounted for age, sex, and education

for all tests except the AVLT.21 Having found no external norms for the

AVLT that were appropriate for this sample and accounted for age, sex,

and education, the AVLTwas z-scored based onADNI participantswho

were CN at baseline (n = 889). AVLT demographic corrections were

based on a regression model that followed the same approach as the

other normative adjustments.21

We focused primarily onMCI diagnosed according to the Jak-Bondi

approach, requiring scores on ≥2 tests within the same cognitive

domain to be >1 SD below normative means.7,8,22 To test whether the

results were specific to a particular diagnostic approach, we repeated

analyses using PetersenMCI criteria.22

Biomarkers included cerebrospinal fluid amyloid beta (Aβ), phos-
phorylated tau (p-tau), and total tau (t-tau) collected at baseline.

The ADNI biomarker core (University of Pennsylvania) used the

fully automated Elecsys immunoassay (Roche Diagnostics). Sample

collection and processing have been described previously.23 Cut-

offs for biomarker positivity were: Aβ+: Aβ <977 pg/mL; p-tau+: p-

tau >21.8 pg/mL; t-tau+: t-tau >270 pg/mL (http://adni.loni.usc.edu/

methods).24,25 There were 521 returnees with Aβ, 518 with p-tau, and
519with t-tau data.

2.3 Practice effect calculation and statistical
analysis

PEs were calculated using a modified version of a replacement-

participants method.12 Reviews and meta-analysis have noted that

almost all studies of PEs considered only observed performance

increases (Figure 1A), and recommended replacement-participant

methods in situations in which decline is expected.11,14,16 In some

situations PEs will not necessarily manifest as improvements for

middle-aged and older adults, particularly for individuals on an AD

trajectory.26 The replacement-participants approach involves recruit-

ing participants for testing at follow-up who are demographically

matched to returnees. The only difference between groups is that

replacements are taking the tests for the first time whereas returnees

are retaking the tests. Comparing scores at follow-up between

returnees and replacement participants (with additional adjustment

for attrition effects) allows for detection of PEs when observed scores

remain stable (Figure 1B) and even when they decline (Figure 1C). In

both scenarios, scores would have been lower without prior exposure.

Thus, the goal is to create follow-up scores over retest intervals that

are free of PEs and comparable to general normative data. By design,

this method is equally applicable for any sample and any test because

returnees and replacements are alwaysmatchedondemographic char-

acteristics, test, and retest interval.

Because ADNI did not have replacements, we used individuals who

at baseline were demographically matched to returnees at follow-

up. We refer to them as pseudo-replacements. Bootstrapping (5000

resamples, with replacement) was used to calculate PE values for

each cognitive test. Figure 2 demonstrates how participants were

matched at each iteration of the bootstrap. Propensity scores (R pack-

age:MatchIt) calculated via one-to-onematchingwere used to identity

pseudo-replacements that were similar to returnees, and an additional

constraint confirmed that the returnees and pseudo-replacements

werematched at a group level (P’s> .8).27 PEswere calculated by com-

paring themean scores of these subsamples at eachbootstrapping iter-

ation using equations displayed in Figure 2. The difference score repre-

sents the sumof the practice effect and the attrition effect.With actual

replacements, the attrition effect accounts for the fact that returnees

are often higher-performing or healthier than those who drop out.

However, because the pseudo-replacements are similar to returnees,

their removal from the baseline sample lowers themean baseline score

among those not chosen to be returnees at that iteration, resulting in

an artificially high attrition effect. To ensure a more accurate attrition

effect, we calculated the true attrition and retention rates for each test

(≈16% and 84%, respectively). We then multiplied the mean score of

returnees at baseline by the retention rate and the mean score of the

remaining baseline participants (i.e., those not chosen as returnees or

pseudo-replacements) by the attrition rate. The sum of these values

provides a weighted mean for each iteration, which we refer to as the

proportional baseline. Finally, the PE for each test equals the differ-

ence scoreminus the attrition effect.12,17 ThePE for each testwas then

subtracted fromeach individual’s observed (unadjusted) follow-up test

score to provide PE-adjusted raw scores.

In summary, this method identifies a comparison sample (pseudo-

replacements) who are matched for age and other demographic char-

acteristics to the returnees. The only difference is that returnees have

taken the test before and pseudo-replacements have not. Because this

analysis uses completed data, creating pseudo-replacements allowed

for applicationof a replacementmethodofPEadjustment to an already

completed study without requiring new participant recruitment.

Adjusted raw scores at follow-up were converted to z-scores, which

were used to determine PE-adjusted diagnoses. In other words, deter-

mination of whether an individual was below the impairment thresh-

old was now based on the PE-adjusted scores. McNemar χ2 tests were
used to compare differences in the proportion of individuals classified

as havingMCI before versus after adjusting for PEs, and to determine if

PE-adjusted diagnoses changed the proportions of biomarker-positive

MCI andCNparticipants. Cohen’s dwas calculated for eachPEby com-

paring unadjusted and adjusted scores.

To determine the impact of PE adjustment in a clinical trial, we cal-

culated sample size requirements for a hypothetical clinical trial aimed

at reducing progression toMCI at 1-year follow-up in amyloid-positive

http://adni.loni.usc.edu/methods
http://adni.loni.usc.edu/methods


SANDERSON-CIMINO ET AL. 5 of 11

F IGURE 2 Samplematching and practice effect calculations. Practice effect calculations are based on bootstrapped analyses. Participants
with valid baseline data were identified (n= 889). (1) Participants who also had 12-month follow-up data comprised the returnees (n= 722). (2) A
subsample (n= 25% total sample) of returnees was selected; this was≈220 participants. (3) Baseline data for these participants were labeled as
ReturneesT1. Follow-up data for these participants were labeled ReturneesT2. (4) The 220 ReturneesT1 participants were removed from the pool
of baseline data, leaving≈670 remaining baseline participants. (5) Using propensity scorematching with an additional age restriction (<0.1 years),
the potential pseudo-replacements werematched to the ReturneesT2 participants using one-to-onematching. The pseudo-replacements were
drawn from the 670 remaining baseline participant pool. Matching parameters were age, birth sex, education, and premorbid IQ. Additionally,
comparisons of age, birth sex, education, and premorbid IQwere completed to confirm groups were similar (p’s> .80). (6) Oncematching was
complete, the sample was labeled Pseudo-ReplacmentsT1, and this sample ranged in size from 200 to 240 participants. Thus, the
Pseudo-ReplacmenstsT1 sample and the ReturneesT2 sample were demographically matched and only differed in that the ReturneesT2 had taken
the test before while Pseudo-ReplacmeentsT1 had taken the tests only once. After the—on average—220 Pseudo-ReplacmentsT1 were removed
from the pool of baseline data, there were 450 remaining unchosen baseline participants, or 50% of the total sample. The previous steps were
completed at each of the 5000 iterations. Practice effects were calculated by comparing themean scores of these subsamples using the equations
provided below the flowchart. The difference between themean of ReturneesT2 scores and themean of thematched Pseudo-ReplacementsT1
scores equates to the sum of practice effect and attrition effect. The attrition effect accounts for the fact that individuals who return for follow-up
may be higher performing or healthier than the full baseline sample. (7–9) To retain the proportion of returnees to attritors we had in the original
sample, we then created a weightedmean of the baseline data cognitive score bymultiplying themean test score of the remaining baseline subject
pool by the attrition rate (≈ 16%) and the ReturneesT1 pool by the retention rate (84%); this is referred to as the Proportional Baseline in the text.
The practice effect for each test equals the difference scoreminus the attrition effect.

CN individuals using MCI incidence rates from the present study. We

performed logistic regressions with drug/placebo as the predictor and

diagnosis at follow-up as the outcome. Sample size estimates were

determined across a range of drug effects (10% to 40% reduction in

MCI diagnoses) with α = 0.05 and power = 0.80. We then used this

information toestimate theeffects on required sample size and cost for

a variant of the Anti-Amyloid Treatment in Asymptomatic Alzheimer’s

Disease (A4) study given α = 0.05, and power = 0.80. The A4 study

recruited amyloid-positive CN individuals to investigate whether anti-

amyloid therapy can delay cognitive decline.6 Progression to disease

is a common and meaningful outcome for clinical trials. For our hypo-

thetical variation of the A4 study, the outcome of interest was pro-

gression toMCI at 1 year rather than just comparing cognitive decline.

These analyseswere completedwithin the powerMediation package in

R v3.6.1.28,29

3 RESULTS

PEmagnitudes varied within and between cognitive domains (Table 1).

PE-adjusted scores resulted in 124 (17%) converters to MCI; unad-

justed scores resulted in 104 (14%) converters (Table 2A). Thus, there
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TABLE 1 Means, standard deviations, attrition effects, and practice effects for each cognitive test

Memory Attention/executive function Language

Rawmean score (SD) RAVLT

Logical

memory Trails A Trails B

Boston

Naming

Category

fluency

Proportional baseline 7.18 (3.81) 10.64 (4.24) 31.89 (10.79) 77.47 (39.86) 29.04 (2.42) 19.67 (5.23)

Returnees baseline 7.18 (3.79) 10.54 (4.23) 31.97 (10.82) 76.89 (38.41) 29.05 (2.36) 19.71 (5.26)

Returnees follow-up 6.97 (4.38) 11.66 (4.63) 31.52 (12.52) 75.24 (43.14) 29.43 (2.27) 19.84 (5.22)

Replacements follow-up 6.97 (3.79) 10.60 (4.34) 32.47 (10.83) 79.38 (41.69) 28.99 (2.45) 19.46 (5.19)

Attrition effect 0 –0.09 –0.02 –0.59 0.01 0.03

Practice effect NA 1.15 –0.93 –3.56 0.43 0.35

Cohen’s d NA .24 –0.07 –0.08 0.19 0.07

Abbreviations: PE, practice effect; RAVLT, Rey Auditory Verbal Learning Test; SD, standard deviation; Trails, Trail Making Test.

Notes: Groups are based on the average performance across all 5000 bootstrapped iterations. Means are based on transformed data that was reverted

back to raw units. “Proportional baseline” refers to a weighted mean that combines the returnee baseline group and a group that included all subjects not

selected to be returnees or replacements in that bootstrapped iteration. “Returnee baseline” refers to baseline test scores for the portion of participants

who returned for the 12-month follow-up visit (n = 722). “Returnee follow-up” refers to 12-month scores for the portion of participants who returned for

the 12-month follow-up (n = 722). “Replacement follow-up” refers to the pseudo-replacement scores. The scores for memory tasks indicate the number of

words remembered at the delayed recall trials. Scores on the attention/executive functioning tests indicate time to completion of task. On these tasks, higher

scores indicate worse performance. Scores on the Boston Naming Test task indicate number of correct items identified; scores on category fluency indicate

number of items correctly stated. Practice effects and attrition effects are in rawunits. As such, the negative practice effects and attrition effects for the Trails

tasks demonstrate that practice decreased time (increased performance). Cohen’s d is given for the difference between PE-adjusted and unadjusted scores

of returnees at follow-up.

were 19% (P < .001) more individuals diagnosed with MCI after one

year usingPE-adjusted scores (Table 2A). Table 2B shows that adjusting

for PEs significantly increased the number of biomarker-positive par-

ticipants who progressed to MCI (+13% to +15%) and decreased the

number of biomarker-positive participants who remained CN (–5%).

In particular, there was a 12% increase in amyloid-positive MCI cases

and a 5% decrease in amyloid-positive CNs. Tables S1-S2 in supporting

information show results for diagnoses based on Petersen criteria. The

pattern is the same as for the Jak-Bondi criteria, and all significant dif-

ferences remained significant regardless of diagnostic approach.

Next, we showed that the number of participants necessary to

determine a significant drug effect was substantially reduced by

accounting for PEs across all effect sizes (Figure 3). On average, adjust-

ing for PEs reduced the number of participants required by 15.9%

(321 participants) across effect sizes (range= 68 to 1377 participants).

The inset within Figure 3 focuses on differences for hypothetical PE-

adjusted and unadjusted samples of≈1000.

We then applied our findings to recruitment data from the A4

study (Figure 4A).30 Obtaining the CN, amyloid-positive A4 sample of

1323 required the recruitment of 5.11 times as many people for initial

screening (n = 6763) and 3.39 times as many people to undergo amy-

loid positron emission tomography (PET) imaging (4486).30 Our cal-

culations showed that this sample size of 1323 would be powered to

detect a 24.7% drug effect on incident MCI outcomes, but account-

ing for PEs would yield the same power with only 1116. As shown in

Figure 4A, the number of initial screens and amyloid PET scans would,

in turn, be substantially reduced to 5704 and 3784, respectively. Fig-

ure 4B shows the range of sample size reductions for differing drug

effect sizes for initial screening (reduced ns range from 347 to 7039)

and amyloid PET imaging (reduced ns range from230 to 4670). As esti-

mated drug effect sizes become smaller, the reductions in necessary

sample size become substantially larger, which should lead to substan-

tial cost reductions.

4 DISCUSSION

Delayed detection of MCI is extremely costly from a public health per-

spective. In 2018, the Alzheimer’s Association projected an estimated

US national savings of $231 billion by 2050 if those on the AD trajec-

tory were diagnosed during theMCI, rather than the dementia, stage.1

In clinical practice, the MCI stage represents a critical time for prepa-

ration and intervention for individuals whowill progress to AD-related

dementia. If PEs delay detection of MCI, clinicians may also be provid-

ing inadequate care to thosemost at risk.

Results of the present study confirm our hypothesis that adjust-

ing for PEs using the replacement-participants method does lead to

earlier detection of MCI. Accounting for cognitive PEs resulted in a

26% increase in 12-month MCI incidence. The increase in biomarker-

positive MCI (+20% amyloid-positive) and reduction in biomarker-

positive CN participants (–6% amyloid-positive) supports diagnostic

validity. Failure to account for PEs led to a substantial number of false

negatives as 18% of biomarker-positive MCI cases were labeled as CN

at follow-up.Accounting forPEs improvedaccuracy, reducing falsepos-

itives by 5%. Individuals diagnosed with MCI based on PE-adjusted

scores—who would otherwise have been considered CN—would be

expected toprogress toADdementia sooner than trueCNparticipants.

Progression at later follow-ups was consistent with this hypothesis,

but sample sizes were too small for statistical comparisons (see Table

S3 in supporting information). Taken together, these results demon-



SANDERSON-CIMINO ET AL. 7 of 11

TABLE 2 Impact of practice effects

A progression from cognitively normal toMCI

# of cases, based on

PE-unadjusted cognitive

scores

# of cases, based on

PE-adjusted cognitive

scores

Difference in # of

cases (%) χ2; P

MCI diagnosis 104 124 +20 (+19%) 18.1;< .001

Memory domain impaired 74 87 +13 (+18%) 11.1;< .001

Attention/executive domain

impaired

21 25 +4 (+19%) 2.3; .13

Language domain impaired 11 14 +3 (+27%) 1.3; .25

Impaired on 1 test within all

domains

11 13 +2 (+18%) 0.17; .68

B. Concordance ofMCI diagnosis and biomarker-positivity

Converters toMCI

# of returnees who are

biomarker-positive and

MCI (PE-unadjusted)

# of returnees who are

biomarker-positive and

MCI (PE-adjusted)

Difference in # of

cases (%) P

Aβ+ 51 58 +7 (+14%) .02

p-tau+ 54 62 +8 (+15%) .01

t-tau+ 47 53 +6 (+13%) .04

Stable CN # of returnees who are

biomarker-positive and

CN (PE-unadjusted)

# of returnees who are

biomarker-positive and

CN (PE-adjusted)

Difference in # of

cases (%)

P

Aβ+ 152 145 -7 (-5%) .02

p-tau+ 170 162 -8 (-5%) .01

t-tau+ 118 112 -6 (-5%) .04

Abbreviations: Aβ, amyloid beta; CN, cognitively normal; MCI, mild cognitive impairment; PE, practice effects; p-tau, phosphorylated tau; t-tau, total tau.

Notes: Follow-up diagnoses were made with practice effect-unadjusted (PE-unadjusted) or practice effect-adjusted (PE-adjusted) scores. The difference in

the number of cases is calculated by subtracting the number of cases, based on PE-unadjusted scores, from the number of cases based on PE-adjusted scores.

The percent difference (%) in number of cases is the differences in number of cases divided by the number of cases based on PE-unadjusted cognitive scores

(eg., 19% = 20/104). χ2 is McNemar χ2. Individuals could be impaired in more than one domain. Consequently, the sum of impaired individuals within each

domain is greater than the total number of MCI cases. The MCI diagnosis row counts an individual only once, even if they are impaired in more than one

domain.

strate that this approach reduces the observed discrepancy between

biologically- and clinically-based diagnoses.31 As such, not adjusting

for PEs weakens our ability to accurately determine the effect of

novel treatments and to compare case-control biomarker differences,

a goal of current research guidelines.32 Importantly, the replacement-

participantmethod is not dependent on diagnostic approach. All signif-

icant differences for Jak-Bondi criteria remained for Petersen criteria.

To quantify how clinical trials would be improved by PE adjustment,

we estimated sample sizes necessary to power a simulated clinical drug

trial. Our PE adjustment increased the base rate of MCI at 12-month

follow-up and, other things being equal, detecting differences or mak-

ing predictions is less accurate for low base rate events.33 Progression

to disease is themost common outcome of interest in clinical trials, and

smaller samples would be needed for clinical trials with a PE-adjusted

diagnostic endpoint. Across effect sizes, there was an average reduc-

tion of 16% in necessary sample size usingPE-adjusted diagnoses; sam-

ple size reductions were greater with smaller treatment effect sizes

(Figures 3, 4A). Based on screening/recruitment numbers in the A4

study,30 Figure 4A showed that determining progression to MCI using

PE-adjusted scores would mean 1060 fewer initial screenings and 703

fewer amyloid PET scans. At $5000 per scan, cost savings for that

alone would be $3.52 million. Initial screening—which included cog-

nitive testing, clinical assessments, and apolipoprotein E genotyping—

for 1060 individuals would result in considerable additional cost sav-

ings, estimated at $2.50 million. Cost saving would be partially off-

set by needing to add replacement participants. In prior work, 150 to

200 replacement participantswere sufficient.12 With replacements for

three follow-up cognitive assessment sessions with 200 participants

each,weestimatedadditional costs of$615,000. Estimatedoverall sav-

ings would be $5.41 million. Moreover, PE-adjusted diagnoses result

in earlier detection, which means shorter follow-up periods. Reduced

study duration would lead to still further cost reductions and bene-

fits including lower participant and staff burden, fewer invasive proce-

dures, and likely reduced attrition.

The present study may raise the question of how the replacement-

participants method compares with other approaches to PEs, but that

is likely to be the wrong question because different approaches may

be for different purposes. A 2012 meta-analysis and 2015 review
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F IGURE 3 Effect of practice effect-adjusted versus unadjusted
scores on a hypothetical clinical trial of biomarker-positive
participants. Comparison of estimated sample sizes (Y-axis) necessary
for detecting a significant drug effect (X-axis) in a sample that is
biomarker-negative and cognitively normal (CN) at baseline. The drug
effect is operationalized as percent reduction inmild cognitive
impairment (MCI) diagnoses at a 1-year follow-up between the
treatment group and the placebo group. For example, a drug effect of
30%means that 30%more participants remained CNwhen treated
with the drug thanwhen given the placebo. The red line represents a
trial that usesMCI incidence rates based on practice effect
(PE)-adjusted diagnoses and the blue line represents a trial that uses
incidence rates based on unadjusted diagnoses. MCI incidence rates
were based on the subsample of participants from the present study
whowere biomarker-negative and CN at baseline. Themodel
examinedwas a logistic regressionwith diagnosis at follow-up (MCI vs.
CN) as the outcome variable. The predictor was a two-level
categorical variable representing placebo or drug. Alpha was set at
0.05, power was 0.80, and the hypothetical sample was evenly split
into treatment and placebo groups. Across all effect sizes (10% to 40%
reduction in treatment vs. placebo conversation rates) the
PE-adjusted trial required fewer participants than the PE-unadjusted
trial. The inset shows results for hypothetical samples with≈1000
participants. If this study used PE-unadjusted outcomemeasures (blue
line), it would require an effect size of 28.2% to reach a significant
result with≈1000 participants. Using PE-adjusted diagnoses, only 844
participants would be required for the same study with the same drug
effect, a reduction of 156 participants. A PE-adjusted study with
≈1000 participants (red line in the inset) would be able to detect a
smaller drug effect of 26.1%.With this 2.1% reduction in effect size, a
PE-unadjusted study would require an additional 186 participants at
this drug effect level (1186 vs. 1000)

described several approaches to estimating PEs.11,14 Almost all non-

replacement approaches—including more commonly used regression-

based approaches—are only informative about relative differences,

including predicting future change. One interesting paradigm is to

retest participants after a short interval using a regression-based

approach, and then have a much longer follow-up. Individuals with

smaller PEs at 1week aremore likely to haveworse baseline biomarker

profiles, experience steeper 1-year decline, and progress to MCI/AD

compared to other participants.15,20,34,35 Thus, this approach may be

useful for participant selection in clinical trials. Other studies have

found that additional baseline tests improve prediction of progres-

sion toMCI.7,20,36–40 Whether complete 1-week retesting of the entire

sample improves prediction over the less burdensome and less costly

inclusion of additional measures at baseline testing remains to be

determined. Also, regression-based methods require a large, norma-

tive change sample, and would require new, large normative samples

for each study if the specific tests, retest intervals, or sample demo-

graphics are different. Change is assessed relative to the normative

sample, but PEs are still unknown in the normative sample. Impor-

tantly, regression-based approaches cannot be used for absolute diag-

nostic cutoff thresholds because, unlike the replacement-participant

method, they donot produce stand-alone follow-up scores adjusted for

PEs. Thus, they cannot have any effect on when a person crosses an

impairment threshold and cannot lead to earlier detection of conver-

sion toMCI. Nor can they calculate PEs in the presence of amean-level

decline over time, which is expected in older adults. The replacement-

participantsmethod requires a small number of additional participants

relative to an entire study sample, and it generates adjusted scores

at follow-up that are not obscured by age-related decline. The other

methods can compare trajectories of people already diagnosed as

MCI or CN, but only the replacement method—which generates abso-

lute PE-adjusted scores—can alter when MCI is detected. Although

the replacement-participants method reduces all scores, it does not

change individual differences in any way. Thus, it also allows for com-

parison of trajectories. More thorough discussions of PE methods can

be found in a systematic review by Calamia et al.,11 the position paper

on PEs by the American Academy of Clinical Neuropsychology,10 and a

study that directly compares three regression-based PE approaches.42

We acknowledge some limitations of the study. ADNI is not a

population-based study and is not representative of the general pop-

ulation in terms of sociodemographic factors. However, replacement

methods have been shown to be effective in other studies, including

population-based samples.12,17 The method currently only examines

PEs across two time points. As PEs persist over time, their magnitude

may differ with additional assessments. Future studies should explore

PEs in caseswithmultiple follow-up visits. As noted, includingmatched

replacements for third and fourth visits would still be cost-effective.

Some participants who do not qualify after initial screening or those

who do not agree to biomarker assessment might still qualify to serve

as replacement participants. Importantly, the PE magnitudes in the

present study shouldnotbedirectly used inother studies. PEsareoften

sample specific and need to be calculated with appropriate replace-

ment participants for each study.11,42 Ultimately, the field may bene-

fit from the development of PE norms for standard neuropsychological

tests at someclinicallymeaningful intervals (e.g., 6 and12months). This

could reduce the need for replacement participants. Similarly, sample

size estimations for our hypothetical clinical trial may not be the same

for other studies, but do provide more empirical evidence supporting

the use of PE-adjustment.

Surprisingly, we found no practice effect on the AVLT. This may have

occurred because, despite receiving the same version at the 12-month

visit, someparticipants also completedanalternate versionof theAVLT
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F IGURE 4 Comparison of recruitment designs for detection of a drug effect based on Anti-Amyloid Treatment in Asymptomatic Alzheimer’s
Disease (A4) study recruitment.30 Using sample size estimates from Figure 3, we present how planning to adjust for practice effects (PEs) would
alter a clinical drug trial, using A4 study recruitment as an example. The A4 study had a total sample of 1323 participants after recruitment as
shown in the top row of gray boxes (based on Figure 1 in Sperling et al.).30 A, Based on sample size estimates from Figure 3, a sample of 1323would
enable a study to detect a significant drug effect of 24.7% at an alpha of 0.05 and 0.80 power. The top row of the flowchart presents the
recruitment for the A4 study. This study reported an initial screening (6763 participants) followed by amyloid positron emission tomography (PET;
4486 participants) imaging to achieve their sample of 1323 amyloid-positive (Aβ+), cognitively normal (CN) participants. Achieving the final
sample size thus required an n for the initial screening that was 5.11 times as large as the final sample size, and an n for amyloid PET imaging that
was 3.39 times as large as the final sample. Our power analyses suggest that the same effect size is achievedwith only 1116 participants if a trial
adjusted follow-up scores for PEs. That, along with the reductions in initial screening and PET scans, is shown in themiddle row of the flowchart.
The bottom row shows the sample size reductions for initial screening, PET screening, and the initial biomarker-positive and CN sample. B, The
figure presents the reduction in recruitment sample size (Y-axis) across effect sizes ranging from 10% to 40% (X-axis). The orange line represents
howmany fewer participants would be necessary at initial screening if a study had planned to adjust for practice effects (PEs) at follow-up

at a 6-month visit. The reduced 12-month practice effect for AVLT is

consistent with the well-known phenomenon of retroactive interfer-

ence, that is, thedifferent 6-month version interferingwith thePE from

exposure to the baseline/follow-up version. Prior studies, including our

own, have consistently found PEs on theAVLT or similar episodicmem-

ory measures.11,12,17 Thus, the present estimate of the impact of PEs

may be a conservative one. It is also noteworthy that despite the lack

of an apparent AVLT practice effect in the current study, we still found

an increase in amnestic MCI cases after adjusting for PEs. This high-

lights the importance of including more than one test in each cogni-

tive domain as specified in the Jak-Bondi approach.7,8,12,36 Finally, we

note that use of alternate forms is considered suboptimal as evenwell-

matched forms are not equivalent and add an additional source of test–

retest variance.43

In summary, adjusting for PEs results in earlier and more accu-

rate detection of MCI. Reluctance to include additional replacement-

participant testing is understandable as it increases cost and partic-

ipant burden. In the end, however, it would substantially reduce the

necessary sample size, follow-up time, participant and staff burden,

and cost for clinical trials or other longitudinal studies. Although the

magnitude of PEs may not be generalized from one sample to another,

the replacement-participant method is appropriate for all ages, tests,

and retest intervals because replacements are always matched on

these features. The method is also not dependent on any specific

approach to the diagnosis ofMCI. Additionally, we have shown that the

replacement-participantmethodcanbeadapted forongoingor already

completed studies that did not recruit matched-replacement partici-

pants in advance. Given the public health importance of the earliest

possible identification of AD pathology, we strongly recommend that

accounting for PEs be a planned component of clinical trials, routine

clinical work, and longitudinal studies of aging and aging-related cog-

nitive disorders.
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