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Abstract

Mild cognitive impairment (MCI) represents the intermediate stage between normal cerebral aging
and dementia associated with Alzheimer’s disease (AD). Early diagnosis of MCI and AD through
artificial intelligence has captured considerable scholarly interest; researchers hope to develop
therapies capable of slowing or halting these processes. We developed a state-of-the-art deep
learning algorithm based on an optimized convolutional neural network (CNN) topology called
MCADNNet that simultaneously recognizes MCI, AD, and normally aging brains in adults over
the age of 75 years, using structural and functional magnetic resonance imaging (fMRI) data.
Following highly detailed preprocessing, four-dimensional (4D) fMRI and 3D MRI were
decomposed to create 2D images using a lossless transformation, which enables maximum
preservation of data details. The samples were shuffled and subject-level training and testing
datasets were completely independent. The optimized MCADNNet was trained and extracted
invariant and hierarchical features through convolutional layers followed by multi-classification in
the last layer using a softmax layer. A decision-making algorithm was also designed to stabilize
the outcome of the trained models. To measure the performance of classification, the accuracy
rates for various pipelines were calculated before and after applying the decision-making
algorithm. Accuracy rates of 99.77% 0.36% and 97.5% 1.16% were achieved for MRI and fMRI
pipelines, respectively, after applying the decision-making algorithm. In conclusion, a cutting-edge
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and optimized topology called MCADNNet was designed and preceded a preprocessing pipeline;
this was followed by a decision-making step that yielded the highest performance achieved for
simultaneous classification of the three cohorts examined.
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. Introduction

A. Cognitive Impairment

COGNITIVE impairment is a general term referring to impairments in cognition among the
domains of memory, learning, concentration and decision-making. Cognitive impairment
ranges from mild to severe and the symptoms can worsen over time and ultimately prevent a
patient from performing daily tasks. Mild Cognitive impairment (MCI) was first utilized by
Reisberg et al. [1] and is currently defined as a decline in cognitive ability that is detectable
however lacking in terms of the severity to alter one’s functioning of daily living. The
National Institute on Aging Alzheimer’s Association (NIA-AA) has provided criteria to
diagnose dementia and MCI when there occurs a significant cognitive deterioration from an
individual’s previous level [2] [3]. Additionally, research demonstrates that elderly adults
with a diagnosis of MCI have a higher risk of developing dementia and age-related cognitive
decline [4]. Petersen et al.’s research demonstrates that although there is still a scoring
threshold in determining MCI, the memory decline of individuals with MCI is
approximately1.5 standard deviations below normative data of same age and educationally
matched peers [5] [6]. Gallagher et al. indicate depression and anxiety have been reported in
almost 50% of individuals with MCI, and a link between depression and anxiety with
cognitive decline has been found [7] [8] [9]. Despite research demonstrating the elevated
risk of dementia among those with a MCI diagnosis, it is unclear which factors and profiles
of MCI are at greatest risk of progression and therefore most likely to benefit from early
intervention. Researchers have investigated the effectiveness of MCI treatment with
medication [10]. Morris et al. identified the major challenge in MCI research is
distinguishing which memory deficits inevitably progress to Alzheimer’s. An additional
barrier to research within this population is that the diagnosis of MCI is established through
various assessments such as Clinical Dementia Rating (CDR), Short Blessed Test (SBT) and
Mini-Mental State Examination (MMSE) that are insensitive to early-stage AD. For
example, researchers have shown that the MMSE scores are not good at predicting risk of
future dementia [11] [12]. Grundman et al. explained the details of recruiting normal
subjects in MCI studies. The normal subjects must be in the same age range and maintain a
CDR of 0 and an MMSE score above 26. The subjects should also have a similar level of
education [13]. Structural Magnetic Resonance Imaging (MRI) that captures the structure of
the brain is the most popular imaging modality to recognize MCI [6] [14] [15] [16] [17].
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B. Convolutional Neural Networks (CNNSs)

The human visual system consists of cells and synapses that capture visual information from
the environment and transfer it to the human brain through a visual portal called the lateral
geniculate nucleus (LGN) located in the thalamus. Interestingly, a set of pathways operate
largely in parallel to transceiver visual information. Convolutional neural networks are
inspired by the human visual system and perform hierarchical learning based on complicated
algorithms that model low-high level features and extract abstractions from data. This
architecture has been specifically designed based on the explicit assumption that raw datum
are comprised of two-dimensional images that enable certain properties to be encoded while
also reducing the amount of hyper parameters. One of the most important features of CNNs
is that their complex architecture provides a level of invariance to shift, scale and rotation, as
the local receptive field allows the neurons or processing units’ access to elementary
features, such as oriented edges or corners. This network is primarily comprised of neurons
having learnable weights and biases, forming the convolutional layer. The network also
includes other network structures, such as a pooling layer, a normalization layer and a fully
connected layer. As briefly mentioned above, the convolutional layer, or conv layer,
computes the output of neurons connected to local regions in the input, each computing a
dot product between its weight and the region it is connected to in the input volume. The
pooling layer, also known as the pool layer, performs a downsampling operation along the
spatial dimensions. The normalization layer, also known as the rectified linear units (ReLU)
layer, applies an elementwise activation function, such as max (0, x) thresholding at zero
[18] [19] [20]. The fully connected (FC) layer computes the class scores, resulting in the
volume of the number of classes. As with ordinary neural networks, and as the name
implies, each neuron in this layer is connected to all of the numbers in the previous volume
[19] [21] [22] [23]. Equation 1 demonstrates how the gradient component for a given weight
is calculated in the backpropagation step, where £'is the error function, yis the neuron A;;
xis the input, /represents layer numbers, wis filter weight with aand & indices, Nis the
number of neurons in a given layer, and m is the filter size.
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Equation 2 describes the backpropagation error for the previous layer using the chain rule.

This equation is similar to the convolution definition, where X{(/+a)(/+b) is replaced by X(/
-4a)(/~b). It demonstrates that backpropagation results in convolution while the weights are
rotated. The rotation of the weights derives from a delta error in the convolutional neural
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Several successfully developed deep CNN architectures have already been introduced for
various computer vision tasks such as object recognition and classification, object
classification and localization, object detection and image segmentation. LeNet-5 [18] is
considered a fundamental architecture designed for handwritten and machine-printed
character recognition. AlexNet [24] is also one of first CNN architectures designed for
image classification. VGGNet [25] was developed at the University of Oxford for large-scale
image recognition. GoogleNet [23] was introduced by the research team at Google by which
the inception module was added to the network architecture. ResNet [26], one of the monster
architectures that defines a deep learning network and the residual module, was utilized for
the first time. Next, ResNext [27] was designed and consisted of the concepts of inception
and residual modules. This architecture has a vast application in image recognition. You
Only Look Once or YOLO architecture [28] was designed to solve complicated image
detection problems. The high computation costs in the CNN-based architectures encouraged
researchers to develop optimized architectures to be functional on mobile devices and
SqueezeNet [29] was introduced for low bandwidth scenarios. Image segmentation is one of
the crucial tasks in computer vision and has been of interest to scientists in the field. SegNet
[30] applied the deep learning concepts to solve image segmentation problems that included
a set of encoders and decoders where the high frequency details are retained. Additionally,
Generative Adversarial Networks (GANSs) [31] were introduced to generate entirely new
images not used in training datasets.

C. Related Works

A deep learning architecture including stacked auto-encoders and a softmax layer was
designed by Siqi Liu to classify AD and MCI through a unique setting. The advantage of the
design was to use less samples to train the model [32]. Suk et al. developed a deep learning-
based extraction and classification method to classify AD/MCI where PET and MRI data
were utilized. The accuracy rates of 95.9% and 85% were reported for AD and MCI,
respectively [33]. Another work from Suk et al. was to classify AD, NC and MCI through a
multimodal fusion system in which CNN models were utilized. The maximum accuracy
rates of 93.52%, 85.19% for AD vs NC and MCI vs NC were obtained [34]. Changes in
brain structure and function caused by Alzheimer’s disease have proved of great interest to
numerous scientists and research groups. In diagnostic imaging in particular, classification
and predictive modeling of the stages of Alzheimer’s have been broadly investigated. Suk et
al. [33] [35] [36] developed a deep learning-based method to classify AD magnetic current
imaging (MCI) and MCI-converter structural MRI and PET data. In their approach, Suk et
al. developed an auto-encoder network to extract low- to mid-level features from images.
Next, classification was performed using multi-task and multi-kernel Support Vector
Machine (SVM) learning methods. This pipeline was improved by using more complicated
SVM kernels and multimodal MRI/PET data. However, the best accuracy rate for Suk et al.
remained unchanged [34]. Randomized denoising auto-encoder marker (rDAm) was used to
design a multimodal imaging system against PET and structural MRI data to classify MCI
and AD [37]. An automatic classification system was developed to recognize AD and MCI
data who converted to AD using deep neural networks. The best accuracy rates achieved in
this work were up to 86% for all AD and MCI samples vs healthy control, and MCI
converters vs MCI stable with accuracy up to 75% [38]. Senanayake et al. implemented an
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approach for classification of MCI subtypes using deep learning and stacked auto-encoder
architectures. They classified 5 subtypes of MCI and the accuracy rates between 84% up to
97% were obtained [39]. Payan et al. [40] of Imperial College London designed a predictive
algorithm to distinguish AD MCI from normal healthy control subjects’ imaging. In this
study, an auto-encoder with 3D convolutional neural network architecture was utilized.
Payan et al. obtained an accuracy rate of 95.39% in distinguishing AD from NC subjects.
The research group also tested a 2D CNN architecture with a reported accuracy rate nearly
identical in terms of value. Additionally, a multimodal neuroimaging feature extraction
pipeline for multiclass AD diagnosis was developed by Liu et al. [41]. This deep-learning
framework was developed using a zero-masking strategy to preserve all possible information
encoded in imaging data. High-level features were extracted using stacked auto-encoder
(SAE) networks, and classification was performed using SVM against multimodal and
multiclass MR/PET data. The highest accuracy rate achieved in that study was 86.86%.
Aversen et al. [42], Liu et al. [43], Siqi et al. [44], Brosch et al. [45], Rampasek et al. [46],
De Brebisson et al. [47] and ljjina et al. [48]. Also, Qui et al. investigated the improvement
in the accuracy of diagnosing MCI using MMSE scores and logical memory (LM) by adding
MRI data and their fusion model could achieve up to 90% [49]. Another study showed a
deep learning approach based on convolutional neural networks to accurately predict MCI-
to-AD using structural MRI data with an accuracy of 79.9% and an area under the receiver
operating characteristic curve (AUC) of 86.1% in leave-one-out cross validations [50].
Mazrina et al. [51], Wen et al. [52] and Srinivasan et al. [53] developed similar
methodologies to predict MCI and AD brains. Nicola et al. developed a new method for
early prediction of Alzheimer’s’ disease that involves extracting random forest features from
the data of an international challenge and classifying them via deep neural networks. In the
classification, the authors considered four stages of the disease, including two stages of
MCI. Their methodology produced higher accuracy rates, they found, than other machine
learning strategies in that challenge [59]. Shi et al. employed a new strategy for classifying
Alzheimer’s data through the use of MRI and PET data. They introduced an algorithm called
multimodal stacked DPN (MM-SDPN), which involves two steps: 1) fusing and 2) learning
features from the brain imaging data. In their binary classification task, they showed the
capability of using such a design to improve the performance of classification through
multimodal feature learning [60]. A deep learning-based architecture derived from
GooglINet’s “InceptionVV3” was employed to classify the F-FDG PET brain images of 40
patients. The CNN-based algorithm produced high specificity and sensitivity rates with a
confidence level of 95%. However, the population employed in this study seemed
insufficient for significant claims [61]. An automatic classification method using deep neural
networks was designed to categorize AD and MCI big data. Basaia et al. demonstrated the
capability of DNN by recruiting a huge dataset for training and testing the developed
models. The highest accuracy rate of 98% was achieved in this work for AD and HC
classification [62]. Jabason et al. developed a novel semi-supervised learning approach
based on an auto encoder to classify ADNI data. They claimed that their algorithm improved
the performance of classification for different evaluation metrics [63]. Using longitudinal
multi-domain data from ADNI, Lee et al. developed a framework for predicting the
conversion MCI stages to Alzheimer’s disease. For the performance evaluation, they
concentrated on the area under the AUC curve. Their algorithm uses a recurrent neural
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network that integrates longitudinal information and demographic information to train the
model [64]. Spasov et al. employed structural MRI data and developed a deep learning-
based framework that considered optimization of the number for the network parameters.
They found that their framework produced very competitive results when they reduced the
number of parameters in the training phase. Reducing the number of parameters results in
faster training and the need for fewer images to develop the machine learning models [65].
Recently, various techniques including 3D CNN and parameter-efficient deep learning
models were utilized for MRI data classification [66] [67] [68].

[I. Methods

A. Participants

Alzheimer’s disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/)
was considered in this work by which two categories of subjects for MRI and fMRI
modalities were selected to develop the deep learning models. The first category included
275 subjects who were scanned for resting-state functional fMRI (rs-fMRI) studies. This
dataset included 52 Alzheimer’s patients, 92 healthy control subjects and 131 MCI patients
(age group ¢ 75). In the second category, 1076 subjects were selected to participate in MRI
data acquisition. This group included 211 Alzheimer’s patients, 91 healthy control subjects
and 774 MCI patients. In both categories, certain subjects were scanned at substantially
different points in time, and their imaging data were separately considered in this work.
Table I presents the demographic information for both categories, which also include mini
mental state examination (MMSE) scores.

B. Image Acquisition

MRI data acquisition was performed according to the ADNI acquisition protocol [23].
Scanning was performed on three different Tesla scanners, General Electric (GE)
Healthcare, Philips Medical Systems, and Siemens Medical Solutions, and was based on the
same scanning parameters. Anatomical scans were acquired with a 3D MPRAGE sequence
(TR=2s, TE=2.63 ms, FOV=25.6 cm, 256x256 matrix, 160 slices of 1mm thickness).
Functional scans were acquired using an EPI sequence (150 volumes, TR=2 s, TE=30 ms,
flip angle=70, FOV=20 cm, 64x64 matrix, 30 axial slices of 5mm thickness without gap).

C. rs-fMRI Data Preprocessing

The raw data in DICOM format for both the Alzheimer’s (AD) group and the normal control
(NC) group were converted to NII format (Neuroimaging Informatics Technology Initiative -
NIfTI) using the dcm2nii software package developed by Chris Rorden et al. http://
www.sph.sc.edu/comd/rorden/mricron/decm2nii.html. Next, non-brain regions, including
skull and neck voxels, were removed from the structural T1-weighted image corresponding
to each fMRI time course using FSL-BET [54]. Resting-state fMRI data, including 140 time
series per subject, were corrected for motion artefact using FSL-MCFLIRT [55], as low
frequency drifts and motion could adversely affect decomposition. The next necessary step
was the regular slice timing correction, applied to each voxel’s time series because of the
assumption that later processing assumes all slices were acquired exactly half-way through
the relevant volume’s acquisition time (TR). In fact, each slice was taken at slightly different
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times. Slice timing correction works by using Hanning-windowed Sinc interpolation to shift
each time series by an appropriate fraction of a TR relative to the middle of the TR period.
Spatial smoothing of each functional time course was then performed using a Gaussian
kernel of 5 mm full width at half maximum. Additionally, low-level noise was removed from
the data by a temporal high-pass filter with a cut-off frequency of 0.01 HZ (sigma = 90
seconds) in order to control the longest allowed temporal period. The functional images
were registered to the individual’s high-resolution (structural T1) scan using affine linear
transformation with seven degrees of freedom (7 DOF). Subsequently, the registered images
were aligned to the MNI152 standard space (average T1 brain image constructed from 152
normal subjects at the Montreal Neurological Institute) using affine linear registration with
12 DOF followed by 4 mm resampling, which resulted in 45x54x45 images per time course.

D. Structural MRI Data Preprocessing

The raw data of structural MRI scans for both the AD and the NC groups were provided in
NII format in the ADNI database. First, all non-brain tissues were removed from images
using Brain Extraction Tool FSL-BET [54] by optimizing the fractional intensity threshold
and reducing image bias and residual neck voxels. A study-specific grey matter template was
then created using the FSL-VBM library and relevant protocol, found at http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM [45]. In this step, all brain-extracted images were
segmented to grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF). GM
images were selected and registered to the GM ICBM-152 standard template using linear
affine transformation. The registered images were concatenated, averaged and flipped along
the x-axis, the two mirror images then re-averaged to obtain a first-pass, study-specific affine
GM template. Second, the GM images were re-registered to this affine GM template using
non-linear registration, concatenated into a 4D image, averaged and flipped along the x-axis.
Both mirror images were then averaged to create the final symmetric, study-specific “non-
linear” GM template at 2x2x2 mma3 resolution in standard space. Following this, all
concatenated and averaged 3D GM images (one 3D image per subject) were concatenated
into a stack (4D image = 3D images across subjects). Additionally, the FSL-VBM protocol
introduced a compensation or modulation for the contraction/enlargement due to the non-
linear component of the transformation, by which the voxel of each registered grey matter
image was multiplied by the Jacobian of the warp field. The modulated 4D image was then
smoothed by a range of Gaussian kernels, sigma = 2, 3, 4 mm (standard sigma values in the
field of MRI data analysis), which resulted in full width at half maximum (FWHM) of 4.6, 7
and 9.3 mm. The various spatial smoothing kernels enabled us to explore whether
classification accuracy would improve by varying the spatial smoothing kernels. The MRI
preprocessing module was applied to AD and NC data and produced two sets of four 4D
images called Structural MRI 0 — fully preprocessed without smoothing — as well as three
fully preprocessed and smoothed datasets called Structural MRI 2, 3, 4, which were used in
subsequent classification steps. The copyright holder for this preprint is the author/funder. It
is made available under a CC-BY-NC 4.0 International license

E. Data Conversion

Various data conversion and augmentation methods are available in the literature. However,
it seems the algorithm developed by Sarraf et. al. [56] [57] produces the highest
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classification performance in which MRI and fMRI data are decomposed along Z direction
and converted from 3D and 4D data into 2D imaging samples. The content of imaging data
must be preserved during data conversion, therefore lossless data conversion was utilized. In
a lossless data conversion, all original data are recovered and every single bit of data remains
after conversion and the information is fully restored. In this work, Portable Network
Graphics (PNG) lossless data conversion was used. The preprocessed rs-fMRI time series
data were first loaded into memory using neuroimaging package Nibabel (http://nipy.org/
nibabel/) and were then decomposed into 2D (x,y) matrices along z and time (t) axes. Next,
the 2D matrices were converted to lossless PNG format using the Python OpenCV
(opencv.org). The last 10 slices of each time course were removed since they included no
functional information. Also, the sum of pixel intensities of each slice was calculated and
any slices with zero sum of pixel intensities equal to zero were ignored to augment the data.
Equation 3 describes the conversion of a given slice to a PNG sample which applies to every
subject’s time course.

for YVz=1t0Z-10

forvt=1toT

X

Y
ifI, (S, (x.y) = Zl Z} S(X,Y) #0:
e @®)

S, (x.y) = PNG(S_ (x.))
otherwise:

IgnoreS . AX)

Where x, yand zare spatial dimensions (from 1 to X, Y, Z, respectively), tis a time point of
a given fMRI time course with 7 points, S; {x, y) is a given slice with a dimension of (x, )
for the position of (z #) and /z, frepresent the intensity function of S, {x, J). PNG represents
the lossless PNG transformation function. The preprocessed MRI data were also loaded into
memory using a similar approach to the fMRI pipeline and were converted from Nifti to
lossless PNG format using Nibabel and OpenCV, which created three groups (MCI, AD and
NC) of four preprocessed datasets (MRI samples with sigma = 0,2,3,4). Additionally, to
augment the data, the slices with zero mean pixels were removed from the datasets. The
conversion criteria are similar to Equation 4 but without removing any slice from the end of
3D image and represents the subject number in the stack of structural MRI data.

F. MCADNNet Topology

To recognize MCI, Alzheimer’s disease and Normal control brains through a unique
network, an efficient CNN-based topology called MCADNNet was designed and trained
from scratch. As discussed previously, various CNN-based architectures including LeNet-5
[18], DeepAD [57] with two and four layers [56] [57] [58], GoogleNet [23] and ResNet [26]
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were utilized to classify the dementia data. Although deep learning pipeline design requires
massive testing, grid search as well as applying various techniques for hyper parameters
optimization, a simultaneous understanding of the machine learning models and data usually
leads to an efficient topology. The experiments demonstrated that more complicated
networks including several convolutional layers do not necessarily produce higher accuracy
rates and that trade-off between network complexity and performance of classification must
be achieved through a valid hypothesis, for example, the input dimensions. Three layers of
convolution with three pooling layers followed by two fully-connected layers were utilized
in MCADNNet topology (https://github.com/samansarraf/MCADNNet). Finally, a softmax
layer to classify three classes was added to the end of the network. Three convolutional
layers were designed to extract deep but hierarchical features from data. Figure 1 images the
MCADNNet architecture. In this topology design, functional and structural MRI samples
were upsampled to 56x56 pixels, the closest dimension to the original image size after data
conversion. The upsampled images were fed into the first convolution layer that contains 10
filters of 5x5. In the second layer, the first max pooling layer downsampled the data by a
factor of two. Next, in the third layer that is the second convolution layer, the features were
passed through 20 filters of 5x5. As we will see later, the first Conv. layer extracted high-
level features. After, the second max pooling layer downsampled the outcome of the second
conv. layer which were mid-level features by a factor of two. The final convolution layer (the
5th layer) generated the low-level features to feed the last pooling layer. Two consecutive
fully-connected layers were learned from the hierarchical features and transferred the output
to the softmax layer for multiclass classification. Increasing the number of convolutional
layers as well as the number of filters generated a higher number of network parameters. To
avoid any potential overfitting or extraction of various features from the data, the pooling
layers were utilized, which also accelerated the training process. As described earlier,
DeepAD and MCADNNet were trained from scratch using ADNI data, so we considered no
fine-tuning of network parameters. Fine-tuning of parameters occurs when a pre-trained
network is employed; however, both of our architectures were freshly trained.

[1l. Results

A. Resting-State fMRI Pipeline

The 4D preprocessed fMRI time series were randomly shuffled in subject-level and five
training datasets including 75% of subjects for three classes (MCI, AD and NC) and five
validation datasets including 25% of subjects were generated. Based on subject-level data
selection, a given training and validation dataset has no samples from the same subject in
common. This approach enables aggressive testing and validation of the trained CNN
models by examining the robustness of the models against unseen data. Next, the 4D times
series were passed through the data conversion module, producing a total of 1433880 2D
PNG samples, including 640640 MCI, 270900 AD and 522340 NC images. DeepAD and
MCADNNet were trained and validated for various classifications as shown in Table I11. The
DeepAD architecture input layer received the resized samples to 28x28, while MCADNNet
was fed by the 56x56 images. The PNG samples were then converted to the Lightning
Memory-Mapped Database (LMDB) for high throughput for the Caffe Deep Learning
platform [19] used for this classification experiment. Both CNNs modes were adjusted for
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30 epochs and initialized for Stochastic Gradient Descent with gamma = 0.1, momentum =
0.9, learning rate = 0.01, weight decay = 0.005, and the step learning rate policy dropped the
learning rate in steps by a factor of gamma every stepsize iteration. The mean of images was
calculated and subtracted from each image. Training and validation of Caffe models were
performed and repeated five times on the Amazon AWS Linux G2.8xlarge, including four
high-performance NVIDIA GPUs, each with 1,536 CUDA cores and 4GB of video memory
and 32 High Frequency Intel Xeon E5-2670 (Sandy Bridge) vCPUs with 60 GB memory
overall. During the training and testing processes, the loss of training, testing and accuracy
of testing data were monitored. To confirm the reproducibility of the results, the entire
process described above was repeated five times on the same server using NVIDIA DIGITS
Caffe (the Deep Learning GPU Training System) and the identical results were replicated.
The accuracy rates, loss values of testing datasets and loss values for training datasets were
monitored during the training process. Figure 2 demonstrates the performance of training
and testing during 30 epochs in DeepAD and MCADNNet architectures using fMRI data for
coincident classification of MCI/AD/NC. In the first epoch, the loss values were slightly
above the unit value (one) derived from a random initialization. The convergence rapidly
occurred in the first epochs. Although DeepAD model against fMRI data converged in the
first iterations, the accuracy rate for testing dataset was lower than the 3-layer MCADNNet
model.

B. Structural MRI Pipeline

Using a similar methodology described above, the 3D MRI subjects were five randomly-
shuffled training and validation datasets by which we divided the data into 75% and 25%.
The data conversion module produced a total of 110002 2D samples including 58067 MClI,
43743 AD and 8192 images. In DeepAD, the effect of imbalanced data proved no impact on
the performance of classification in this case. To train and validate, both DeepAD and
MCADNNet 82419 and 27583 samples were utilized, respectively. As mentioned in the
MRI preprocessing section, to explore the effect of spatial smoothing on the model
development, four sets of samples per datasets were generated and a total of 20 training and
validation datasets were utilized. Additionally, the slices with zero mean pixels were
removed from the data, which was then converted to the LMDB format and resized to 28x28
pixels for DeepAD and 56x56 pixels for MCADNNet. The DeepAD model was set for 30
epochs and initiated for Stochastic Gradient Descent with gamma = 0.1, momentum = 0.9,
base learning rate = 0.01, weight-decay = 0.0005, and a step learning rate policy dropping
the learning rate in steps by a factor of gamma every stepsize iteration. The training and
testing processes were repeated five times on Amazon AWS Linux G2.8xlarge to ensure the
robustness of the network and achieved accuracy. The results are shown in Table 3 (Before
Decision Making’ section) for various models and spatially smoothed samples. The training
behaviors of two models against structural MRI data were shown in Figure 2. The impact of
utilizing stochastic gradient descent (SGC) in the training process was remarkable in loss
graph of the training and testing datasets. As MCADNNet included a higher number of
parameters representing a more complex architecture converged in the later iterations
compared to DeepAD. Higher volume of fMRI and higher pattern complexity in structural
MRI data result in a better performance of classification for fMRI data.
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C. Performance of Classification

The performance of MCADNNet trained models was qualitatively evaluated by calculating
the area under curve (AUC) for receiver operating characteristic (ROC) curves and the
accuracy rate per class to generate confusion matrices (CM). For the sake of performance
analysis, two approaches were considered. First, the ROC curves shown in Figure 3 were
extracted for binary classification tasks such as AD vs MCI or NC vs MCI where sensitivity
and specificity of each experience were calculated by obtaining the number of true and false
positive and negative results. In the second approach, the confusion matrices were calculated
for the 3-class MCADNNet models of both functional and Structural MRI data displayed in
Figure 4 where the items on the diagonal were cases that the models’ prediction were
correct. As shown in the figures, the performance of binary classification was close to a
perfect ROC curve in the most trained CNN models. The curves validated that the
classification was not impacted by the number of samples in each class and training process
was successfully completed. Additionally, the confusion matrices demonstrated that the
multi-class MCADNNet trained models could recognize the AD samples slightly better than
two other classes, although the AD class had a smaller contribution in training process in
terms of number of samples. MCI and NC samples showed higher similarity, therefore the
prediction rates closely competed with each other, proving this clinical fact that MCI is an
early stage of the disease and the brain has a similar function and structure of a normal aging
brain. In the structural MRI pipeline, the spatial smoothing affected the output where the
data sigma=0 mm (without smoothing) provided the lower accuracy rates while the samples
smoothed by sigma = 2 or 3 mm demonstrated a higher performance of classification. The
accuracy rate before decision making was measured by dividing the amount of correctly
predicted “slices” by the number of all slices in a given experiment according to the standard
definition of accuracy. This was called “slice-level” prediction, as described in the DeepAD
paper [57]. One of the particular strengths of CNN architectures is its extraction of
hierarchical features through several layers containing filters. Research showed paradoxical
results by visualizing the weights of filters that sometimes represent a pattern or random
shapes. Therefore, the interpretation of kernel weights is still challenging. However, the
researchers showed that the visualization of the features extracted by a given filter is often
meaningful and helps to better understand what features levels are represented by a given
CNN layer and its kernels. Also, some research works have recently shown the potential
benefit of using the hierarchical features among or instead of preprocessed data in the brain
studies. Figure 6 demonstrates the hierarchical features extracted from three different CNN
layers in MCADNNet for randomly selected one structural MRI subject per three groups.

D. Further Performance Evaluation

To further evaluate the performance of classification for the MCADNNet model, we
employed three other metrics (precision, recall, and F1-score) through three methods of
calculation called micro, macro, and weighted average. Therefore, we measured nine metrics
for each experiment using structural and functional MRI. A macro-metric will compute the
metric independently for each class and then take the average, thereby treating all classes
equally. A micro-metric will aggregate the contributions of all classes to compute the
average metric, a weighted-metric for each class, and find their average weighted by support
of the number of true instances for each class. This approach alters the macro to account for
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class imbalance. In a multi-class classification setup, the micro-average is preferable if you
suspect a class imbalance. As known, precision represents the total true positive over
summation of the true positive and false positive, whereas recall is calculated by the total
true positive over summation of the true positive and false negative. Additionally, the F1-
score is a function of precision and recall and is calculated as in Equation 4:

Precision XRecall

Fl=2x Precision +Recall @

The F1-score produces balance precision and recalls where a false positive and negative
might have significant cost, which is not considered in an accuracy rate. Using those nine
additional metrics allowed us to fully evaluate the performance of classification
independently from the accuracy rates. Tables 5 and VI demonstrate the results from
MCADNNet and DeepAD using functional MRI data, respectively. Also, Tables 7 and 8
show the results of the two architectures using structural MRI data for various sigma values
and classifications. The analysis using the nine metrics showed a very high correlation with
the accuracy metrics and therefore validates our finding and discussion in the previous
section.

E. Decision Making: Vote for Majority

A decision-maker algorithm is a means for discovering the best choice among a list of
alternatives based on the preferred single criterion or multi-criteria and values. In a majority
rule-based system, a multi-class decision is made by voting for the class or group that has
the highest number of candidates. The deep learning-based pipeline implemented in this
study uses 2D images from subjects in all three classes that are separated in the subject-level
for training and testing. The performance of classification is measured by counting the
number of slices correctly recognized. In order to recognize a given scan that includes the
slices of a given subject whether it belongs to MCI, AD or NC group, the decision making
algorithm is required. In the given scan, the number of slices for each class was calculated,
then the number of slices for each class within a subject was compared, and the class with
most slices was presented as the candidate. Furthermore, the decision-maker system
stabilized both fMRI and MRI pipeline by significantly improving the accuracy rates. The
algorithm description is as follows: The decision-maker algorithm as a post-classification
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Stepl : Calculate the number of AD or NC slices in a
given class where 1 is slice number.
for i=1 to N do
if slice(i) € AD then
| Counter AD +=1
else if slice(i) € NC then

| Counter NC +=1
end

Step2 : Calculate the probability of each class by
dividing the number of slices in a class by the total
number of slices.

Probability(AD) = Counter of AD / Total number of
slices in the subject

Probability(NC') = Counter of NC / Total number of
slices in the subject

Step3 : Compare the two probabilities for the AD and
NC classes.

if Probability(AD) = Probability(NC') then

F'lag = Decision is to be made based on clinical
measures.

if Probability(AD) > Probability(NC') then
| Flag = AD

else
| Flag = NC

end

Step4 : Vote for the majority and assign the label of
“majority group” to the given subject. Assign Flag to
the given subject.

method was applied to all DeepAD and MCADNNet models for both structural MRI and rs-
fMRI. The final results shown in Table 11 and Table 111 indicate a significant improvement in
the accuracy rate of subject-level recognition. After applying the rapid with low complexity
decision making algorithm to the output of classification, most of the subject-level
accuracies reached a rate of 100%, demonstrating a superior confidence level of the pipeline.
MCADNNEet topology is a CNN-based mode which offers an optimal solution to recognize
three major stages of Alzheimer’s disease. The performance of this optimal topology has
been obtained because of massive and precise preprocessing steps, and an optimal CNN-
based model followed a decision-making algorithm which improved and stabilized the
outcome of the network. Unlike other works that emphasize the classification part of the
entire pipeline, MCADNNet aggressively preprocess the data and decomposes the data into
2D samples to develop a three-layer CNN model. The advantages of using MCADNNet over
other architectures are aggressive preprocessing, an optimal deep learning model, and
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decision making in which a trade-off between network complexity and performance of
classification exists.

V. Conclusion

The number samples extracted from fMRI data through the converting algorithm sufficed to
train both MCADNNet and DeepAD in the early stages of the training process. In addition,
aggressively preprocessing the fMRI data removed noise, allowing the samples to be
distinguished more readily, which enabled the models to converge in the very first epochs.
The slight improvement in the accuracy rate using MCADNNet compared to DeepAD
revealed that high-level features were extracted from the highly correlated fMRI samples.
However, the number of structural MRI samples used for training the models was
significantly less than fMRI experiments due to 3D vs 4D data decomposition into 2D
images, which explains the early convergence of the models in fMRI data and the
convergence of the MRI models in later epochs. Decomposing data to 2D images and thus
adding an extra step to the pipeline provided more samples during the training processes.
Furthermore, MCADNNet showed an improvement in the accuracy rates in recognizing
three classes compared to DeepAD because a sufficiently deeper set of features was
extracted. The decision-making algorithm provided subject-level accuracy rates for
stabilizing the output of the classification. For future work, a simultaneous classification of
MCI subcategories and a potential pipeline with lower sensitivity to preprocessing steps
should be considered. Also, a less dependent framework of preprocessing steps for
classifying Alzheimer’s stages could be designed as a future project in which the pipeline
would ideally receive raw data from users and perform classification.

Acknowledgment

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number
W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s
Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers
Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company;
Eurolmmun; F. Ho mann-La Roche Ltd and it’s a liated company Genentech, Inc.; Fujirebio; GE Healthcare;
IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson
Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics,
LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal
Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health
Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by
the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern
California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic
Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for
Neuro Imaging at the University of Southern California.

References

[1]. Reisberg B, Ferris SH, Kluger A, Franssen E, Wegiel J, and De Leon MJ, “Mild cognitive (mci): a
historical perspective,” International Psychogeriatrics, vol. 20, no. 1, pp. 18-31, 2008. [PubMed:
18031593]

[2]. Tampi RR, Tampi DJ, Chandran S, Ghori A, and Durning M, “Mild cognitive: A comprehensive
review,” Healthy Aging Research, vol. 4, pp. 1-11, 2015.

IEEE Access. Author manuscript; available in PMC 2020 February 04.


http://www.fnih.org/

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

SARRAF et al.

Page 15

[3]. Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings J, and DeKosky S, “Practice
parameter: early detection of dementia: mild cognitive (an evidence-based review): report of the
quality standards subcommittee of the american academy of neurology,” Neurology, vol. 56, no.
9, pp. 1133-1142, 2001. [PubMed: 11342677]

[4]. Luck T, Luppa M, Briel S, and Riedel-Heller SG, “Incidence of mild cognitive: a systematic
review,” Dementia and geriatric cognitive disorders, vol. 29, no. 2, pp. 164-175, 2010. [PubMed:
20150735]

[5]. Jean L, Bergeron M.-v., Thivierge S, and Simard M, “Cognitive intervention programs for
individuals with mild cognitive: systematic review of the literature,” The American Journal of
Geriatric Psychiatry, vol. 18, no. 4, pp. 281-296, 2010. [PubMed: 20220584]

[6]. Petersen RC, “Mild cognitive as a diagnostic entity,” Journal of internal medicine, vol. 256, no. 3,
pp. 183-194, 2004. [PubMed: 15324362]

[7]. Apostolova LG and Cummings JL, “Neuropsychiatric manifestations in mild cognitive: a
systematic review of the literature,” Dementia and geriatric cognitive disorders, vol. 25, no. 2, pp.
115-126, 2008. [PubMed: 18087152]

[8]. Monastero R, Mangialasche F, Camarda C, Ercolani S, and Camarda R, “A systematic review of
neuropsychiatric symptoms in mild cognitive,” Journal of Alzheimer’ disease, vol. 18, no. 1, pp.
11-30, 2009.

[9]. Gallagher D, Fischer CE, and laboni A, “Neuropsychiatric symptoms in mild cognitive: an update
on prevalence, mechanisms, and clinical significance,” The Canadian Journal of Psychiatry, vol.
62, no. 3, pp. 161-169, 2017. [PubMed: 28212495]

[10]. Fitzpatrick-Lewis D, Warren R, Ali MU, Sherifali D, and Raina P, “Treatment for mild cognitive:
a systematic review and meta-analysis,” CMAJ open, vol. 3, no. 4, p. E419, 2015.

[11]. Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH, and Berg L, “Mild cognitive
represents early-stage alzheimer disease,” Archives of neurology, vol. 58, no. 3, pp. 397-405,
2001. [PubMed: 11255443]

[12]. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, and Kokmen E, “Mild cognitive:
clinical characterization and outcome,” Archives of neurology, vol. 56, no. 3, pp. 303-308, 1999.
[PubMed: 10190820]

[13]. Grundman M, Petersen RC, Ferris SH, Thomas RG, Aisen PS, Bennett DA, Foster NL, Jack CR
Jr, Galasko DR, and Doody R, “Mild cognitive can be distinguished from alzheimer disease and
normal aging for clinical trials,” Archives of neurology, vol. 61, no. 1, pp. 59-66, 2004.
[PubMed: 14732621]

[14]. Jack CR Jr, Lowe VJ, Senjem ML, Weigand SD, Kemp BJ, Shiung MM, Knopman DS, Boeve
BF, Klunk WE, and Mathis CA, “11c pib and structural mri provide complementary information
in imaging of alzheimer’ disease and amnestic mild cognitive,” Brain, vol. 131, no. 3, pp. 665—
680, 2008. [PubMed: 18263627]

[15]. Jack CR Jr, Lowe VJ, Weigand SD, Wiste HJ, Senjem ML, Knopman DS, Shiung MM, Gunter
JL, Boeve BF, and Kemp BJ, “Serial pib and mri in normal, mild cognitive and alzheimer’
disease: implications for sequence of pathological events in alzheimer’ disease,” Brain, vol. 132,
no. 5, pp. 1355-1365, 2009. [PubMed: 19339253]

[16]. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund L, Nordberg A, Bckman L,
Albert M, and Almkvist O, “Mild cognitive—beyond controversies, towards a consensus: report of
the international working group on mild cognitive,” Journal of internal medicine, vol. 256, no. 3,
pp. 240-246, 2004. [PubMed: 15324367]

[17]. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM,
Jagust WJ, Petersen RC, et al., “The diagnosis of mild cognitive impairment due to alzheimer’s
disease: Recommendations from the national institute on aging-alzheimer’s association
workgroups on diagnostic guidelines for alzheimer’s disease,” Alzheimer’s & dementia, vol. 7,
no. 3, pp. 270-279, 2011.

[18]. LeCun Y, Bottou L, Bengio Y, and Haffner P, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

IEEE Access. Author manuscript; available in PMC 2020 February 04.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

SARRAF et al.

Page 16

[19]. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, and Darrell T,
“Caffe: Convolutional architecture for fast feature embedding,” in Proceedings of the 22nd ACM
international conference on Multimedia, pp. 675-678, ACM.

[20]. Arel I, Rose DC, and Karnowski TP, “Deep machine learning-a new frontier in artificial
intelligence research,” IEEE computational intelligence magazine, vol. 5, no. 4, pp. 13-18, 2010.

[21]. Erhan D, Bengio Y, Courville A, Manzagol P-A, Vincent P, and Bengio S, “Why does
unsupervised pre-training help deep learning?,” Journal of Machine Learning Research, vol. 11,
no. Feb, pp. 625-660, 2010.

[22]. Schmidhuber J, “Deep learning in neural networks: An overview,” Neural networks, vol. 61, pp.
85-117, 2015. [PubMed: 25462637]

[23]. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, and
Rabinovich A, “Going deeper with convolutions,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1-9.

[24]. Krizhevsky A, Sutskever I, and Hinton GE, “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information processing systems, pp. 1097-1105.

[25]. Simonyan K and Zisserman A, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:14091556, 2014.

[26]. He K, Zhang X, Ren S, and Sun J, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778.

[27]. Xie S, Girshick R, Dollr P, Tu Z, and He K, “Aggregated residual transformations for deep neural
networks,” in Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, pp.
5987-5995, IEEE.

[28]. Redmon J, Divvala S, Girshick R, and Farhadi A, “You only look once: Unified, real-time object
detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 779-788.

[29]. landola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, and Keutzer K, “Squeezenet: Alexnet-
level accuracy with 50x fewer parameters andj 0.5 mb model size,” arXiv preprint arXiv:
160207360, 2016.

[30]. Badrinarayanan V, Kendall A, and Cipolla R, “Segnet: A deep convolutional encoder-decoder
architecture for image segmentation,” arXiv preprint arXiv:151100561, 2015.

[31]. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D,Ozair S, Courville A, and
Bengio Y, “Generative adversarial nets,” in Advances in neural information processing systems,
pp. 2672-2680.

[32]. Liu S, Liu S, Cai W, Pujol S, Kikinis R, and Feng D, “Early diagnosis of alzheimer’ disease with
deep learning,” in Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on, pp.
1015-1018, IEEE.

[33]. Suk H-1 and Shen D, “Deep learning-based feature representation for ad/mci classification,” in
International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.
583-590, Springer.

[34]. Suk H-1, Lee S-W, Shen D, and Initiative ADN, “Hierarchical feature representation and
multimodal fusion with deep learning for ad/mci diagnosis,” Neurolmage, vol. 101, pp. 569-582,
2014. [PubMed: 25042445]

[35]. Suk H-1, Lee S-W, Shen D, and Initiative ADN, “Latent feature representation with stacked auto-
encoder for ad/mci diagnosis,” Brain Structure and Function, vol. 220, no. 2, pp. 841-859, 2015.
[PubMed: 24363140]

[36]. Suk H-I, Shen D, and Initiative ADN, Deep learning in diagnosis of brain disorders, pp. 203-213.
Springer, 2015.

[37]. Ithapu VK, Singh V, Okonkwo OC, Chappell RJ, Dowling NM, Johnson SC, Initiative ADN, et
al., “Imaging-based enrichment criteria using deep learning algorithms for efficient clinical trials
in mild cognitive impairment,” Alzheimer’s & Dementia, vol. 11, no. 12, pp. 1489-1499, 2015.

[38]. 2018.

[39]. Senanayake U, Sowmya A, Dawes L, Kochan NA, Wen W, and Sachdev PS, “Deep learning
approach for classification of mild cognitive subtypes,” in ICPRAM, pp. 655-662.

IEEE Access. Author manuscript; available in PMC 2020 February 04.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

SARRAF et al.

[40].
[41].

[42].

[43].

[44].

[45].

[46].

[47].

[48].

[49].

[50].

[51].

[52].

[53].

[54].

[55].

[56].

[57].

Page 17

Payan A and Montana G, “Predicting alzheimer’ disease: a neuroimaging study with 3d
convolutional neural networks,” arXiv preprint arXiv:150202506, 2015.

Liu S, Liu S, Cai W, Che H, Pujol S, Kikinis R, Feng D, and Fulham MJ, “Multimodal
neuroimaging feature learning for multiclass diagnosis of alzheimer’ disease,” IEEE Transactions
on Biomedical Engineering, vol. 62, no. 4, pp. 1132-1140, 2015. [PubMed: 25423647]

Arvesen E, Automatic classification of alzheimer’ disease from structural MRI. Thesis, 2015.
Liu F and Shen C, “Learning deep convolutional features for mri based alzheimer’ disease
classification,” arXiv preprint arXiv:14043366, 2014.

Liu S, Liu S, Cai W, Che H, Pujol S, Kikinis R, Fulham M, and Feng D, “High-level feature
based pet image retrieval with deep learning architecture,” Journal of Nuclear Medicine, vol. 55,
no. supplement 1, pp. 2028-2028, 2014.

Brosch T, Tam R, and Initiative ADN, “Manifold learning of brain mris by deep learning,” in
International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.
633-640, Springer.

Rampasek L and Goldenberg A, “Tensorflow: Biology’s gateway to deep learning?,” Cell
systems, vol. 2, no. 1, pp. 12-14, 2016. [PubMed: 27136685]

de Brebisson A and Montana G, “Deep neural networks for anatomical brain segmentation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pp. 20-28.

ljjina EP and Mohan CK, “Hybrid deep neural network model for human action recognition,”
Applied Soft Computing, vol. 46, pp. 936-952, 2016.

Qiu S, Chang GH, Panagia M, Gopal DM, Au R, and Kolachalama VB, “Fusion of deep learning
models of mri scans, mini-mental state examination, and logical memory test enhances diagnosis
of mild cognitive impairment,” Alzheimer’s & Dementia: Diagnosis, Assessment & Disease
Monitoring, vol. 10, pp. 737-749, 2018.

Lin W, Tong T, Gao Q, Guo D, Du X, Yang Y, Guo G, Xiao M, Du M, and Qu X, “Convolutional
neural networks-based mri image analysis for the alzheimer’s disease prediction from mild
cognitive,” Frontiers in Neuroscience, vol. 12, p. 777, 2018. [PubMed: 30455622]

Mazrina MS, Chiotis K, Colato E, Nordberg AK, and Rodriguez-Vieitez E, “Modelling the
associations between [18f] av1451,[18f] fdg pet and cognition in mild cognitive impairment and
ad dementia,” Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, vol. 14, no.
7, pp. P1573-P1574, 2018.

Wen D, Wei Z, Zhou Y, Li G, Zhang X, and Han W, “Deep learning methods to process fmri data
and their application in the diagnosis of cognitive: A brief overview and our opinion,” Frontiers
in neuroinformatics, vol. 12, p. 23, 2018. [PubMed: 29755334]

Srinivasan A, Battacharjee P, Prasad A, and Sanyal G, “Brain mr image analysis using discrete
wavelet transform with fractal feature analysis,” in 2018 Second International Conference on
Electronics, Communication and Aerospace Technology (ICECA), pp. 1660-1664, IEEE.

Smith SM, “Fast robust automated brain extraction,” Human brain mapping, vol. 17, no. 3, pp.
143-155, 2002. [PubMed: 12391568]

Jenkinson M, Bannister P, Brady M, and Smith S, “Improved optimization for the robust and
accurate linear registration and motion correction of brain images,” Neuroimage, vol. 17, no. 2,
pp. 825-841, 2002. [PubMed: 12377157]

Sarraf S and Tofighi G, “Deep learning-based pipeline to recognize alzheimer’ disease using fmri
data,” in 2016 Future Technologies Conference (FTC), pp. 816-820.

Sarraf S, Tofighi G, et al., “Deepad: Alzheimer’ s disease classification via deep convolutional
neural networks using mri and fmri,” bioRxiv, p. 070441, 2016.

[58]. Hosseini-Asl E, Keynto R, and El-Baz A, “Alzheimer’ disease diagnostics by adaptation of 3d

convolutional network,” arXiv preprint arXiv:160700455, 2016.

[59]. Amoroso N, Diacono D, Fanizzi A, La Rocca M, Monaco A, Lombardi A, Guaragnella C,

Bellotti R, Tangaro S, Initiative ADN, et al., “Deep learning reveals alzheimer’s disease onset in
mci subjects: results from an international challenge,” Journal of neuroscience methods, vol. 302,
pp. 3-9, 2018. [PubMed: 29287745]

IEEE Access. Author manuscript; available in PMC 2020 February 04.



1duosnue Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

SARRAF et al.

Page 18

[60]. Shi J, Zheng X, Li Y, Zhang Q, and Ying S, “Multimodal neuroimaging feature learning with
multimodal stacked deep polynomial networks for diagnosis of alzheimer’s disease,” IEEE
journal of biomedical and health informatics, vol. 22, no. 1, pp. 173-183, 2018. [PubMed:
28113353]

[61]. Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, Lituiev D, Copeland TP,
Aboian MS, Mari Aparici C, et al., “A deep learning model to predict a diagnosis of alzheimer
disease by using 18f-fdg pet of the brain,” Radiology, vol. 290, no. 2, pp. 456-464, 2018.
[PubMed: 30398430]

[62]. Basaia S, Agosta F, Wagner L, Magnani G, and Filippi M, “Automatic classification of patients
with alzheimer’s disease (ad) and mild cognitive impairment (mci) who will convert to ad using
deep neural networks (p3.179),” 2018.

[63]. Jabason E, Ahmad MO, and Swamy MS, “Deep structural and clinical feature learning for semi-
supervised multiclass prediction of alzheimer’s disease,” in 2018 IEEE 61st International
Midwest Symposium on Circuits and Systems (MWSCAS), pp. 791-794, IEEE, 2018.

[64]. Lee G, Nho K, Kang B, Sohn K-A, and Kim D, “Predicting alzheimer’s disease progression
using multi-modal deep learning approach,” Scientific reports, vol. 9, no. 1, p. 1952, 2019.
[PubMed: 30760848]

[65]. Spasov S, Passamonti L, Duggento A, Lio P, Toschi N, Initiative ADN, et al., “A parameter-
efficient deep learning approach to predict conversion from mild cognitive impairment to
alzheimer’s disease,” Neuroimage, vol. 189, pp. 276-287, 2019. [PubMed: 30654174]

[66]. Basaia S, Agosta F, Wagner L, Canu E, Magnani G, Santangelo R, Filippi M, Initiative ADN, et
al., “Automated classification of alzheimer’s disease and mild cognitive impairment using a
single mri and deep neural networks,” Neurolmage: Clinical, vol. 21, p. 101645, 2019.

[67]. Spasov S, Passamonti L, Duggento A, Lio P, Toschi N, Initiative ADN, et al., “A parameter-
efficient deep learning approach to predict conversion from mild cognitive impairment to
alzheimer’s disease,” Neuroimage, vol. 189, pp. 276-287, 2019. [PubMed: 30654174]

[68]. Kruthika K, Maheshappa H, Initiative ADN, et al., “Cbir system using capsule networks and 3d
cnn for alzheimer’s disease diagnosis,” Informatics in Medicine Unlocked, vol. 14, pp. 59-68,
2019.

IEEE Access. Author manuscript; available in PMC 2020 February 04.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

SARRAF et al. Page 19

S Convi ) °C 2
Pool2 Pool3 Fci “" Softmax

Convl Pooll Conv2
10x5x5 Kernel 2 20x5x§ Kernel 2 S0x5xS Kernel2 500

Fig. 1.

M%ZADNNet is a unique and optimized topology that simultaneously recognizes MCI, AD,
NC participants in MRI and fMRI data. The architecture includes three layers of convolution
(Grey-Blue layers) including 10, 20 and 50 filters of 5x5, as well as three Max Pooling
layers (Black-Blue layers). MCADNNet ends with two fully connected layers of 500 and
two hidden neurons (Black layers) followed by a softmax function (Blue layer). In both
cases of MRI and fMRI, the first layer receives 56x56 images, the closest dimension to
preprocessed images enabling the architecture to extract more details from the images. Also,
compared to the DeepAD model, the 3-layer MCADNNet extracts more hierarchical
features that result in high performance of multi-class recognition.
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Fig. 2.

T(?p: Training process in one of the fMRI experiments for DeepAD (left) and MCADNNet
(right) architectures indicate the models that produce a very high performance of
classification. The random initiation at the zeroth epoch was above one, which dropped
dramatically after the first iterations (can occur due to Caffe DIGITS implementation). The
model converged in the first iterations due to utilizing high-volume, aggressively-
preprocessed fMRI data. The final accuracy rate achieved from this MCADNNet model
(utilized in this visualization) was 92.35% in the subject-level experience before decision
making, while the accuracy rate was 90.76% from the DeepAD model trained and tested by
the same dataset.Bottom: Training processes for MCADNNet against structural MRI data
(right) and DeepAD (left) architecture were figured. The random initialization of loss values
began above one and dramatically dropped after the first epoch. Additionally, the slight
fluctuation in the loss of training datasets explains the impact of SGD as a randomly-
selected block of data was injected into the network in order to train the model. The highest
accuracy rate achieved was 95.44% from MCADNNet and 94.80% from DeepAD against a
given MRI testing dataset.
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Fig. 3.
ROC Curves show the performance of classification for the trained models. In this study, the

ROC and AUC indicate classification was accurately performed and each curve representing
an experiment was very far from the random guess in the binary classification tasks where
the structural and functional MRI data were used for training both DeepAD and
MCADNNet architectures. The figure top-left shows the performance of MCADNNet for
binary classification including fMRI testing data (AD/NC, AD/MCI, NC/MCI). As
mentioned in the discussion of the structural MRI preprocessing pipeline, four Gaussian
kernels including o=0, 2, 3, and 4 mm were utilized. The performance of binary
classification for MRI testing data is shown in Figure 3 (top-right, bottom-left, and bottom-
right) for AD/NC, AD/MCI and NC/MCI (and different Gaussian kernels used for
smoothing). The ROC curves show that all the binary classifications provide high
performance as they are extremely close to the upper left corner of the plot.
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Fig. 4.

anfusion matrices for simultaneously classifying MCI, AD and NC classes through
MCADNNet architecture were extracted indicating the quality of prediction for the three
classes. As seen, in most cases including both fMRI and MRI, the performance of
classification (prediction) was very high for classes specifying that the trained models were
unbiased to any of three classes. However, in the fMRI experiment, the highest score
belonged to MCI class and the lowest prediction scores were obtained from the normal
brains, confirming that MCI is the early stage of the dementia. In structural MRI, the highest
accuracy rate belonged to the MCI group and interestingly the highest error rate also
occurred in recognizing AD from MCI, revealing the fact of structural similarity between
certain brain regions in AD and MCI groups. However, in the MRI classification experiment,
the number of samples utilized in training and validation was significantly smaller than
fMRI methods (3D vs 4D data) that also played an important role in the model convergence
in the early epochs as well as in the performance of classification. This figure shows the
normalized confusion matrices for fMRI and MRI experiments for AD vs NC vs MCI
multi-class classification. The top-left figure shows the performance of classification for
fMRI testing data. All accuracy rates for three classes are located in the diagonal of the
confusion matrix; the rates are 97%, 88%, and 90%, respectively, for AD, NC, and MCI.
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Fig. 5.
Structural MRI AD, MCI, and NC Features are visualized through MCADNNent Conv.

layer 1,2 and 3. The hierarchical features extracted by convolutional layers have opened
new avenues to investigate the brain structure and function. We aimed to classify three
classes of brains, so called NC, which is the blue framed group at left. The MCl is green
framed group in the middle and Alzheimer’s brains are the red framed group at right. When
the performance of classification in CNN-based experiment is fairly high, the features
extracted by various CNN layers can be utilized for other analyses. One randomly selected
sample from each of three classes was used and passed through the prediction module of the
final trained version of MCADNNet. The features extracted from each CNN layer were
visualized and shown above.
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fl\/lgRI and MRI Pipelines. In this work, we designed a new CNN-based topology to predict
NC, MCI and AD using functional and structural MRI data. The new topology contains
three layers of CNNs in which the efficient parameters were utilized. Furthermore, a
decision-making algorithm was developed to stabilize the results from the deep learning
engine.
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