
NeuroImage 231 (2021) 117845 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

Changing the face of neuroimaging research: Comparing a new MRI 
de-facing technique with popular alternatives 

Christopher G. Schwarz a , ∗ , Walter K. Kremers b , Heather J. Wiste 

b , Jeffrey L. Gunter a , c , 
Prashanthi Vemuri a , Anthony J. Spychalla 

a , Kejal Kantarci a , Aaron P. Schultz d , 
Reisa A. Sperling 

d , David S. Knopman 

e , Ronald C. Petersen 

e , Clifford R. Jack Jr. a , the 

Alzheimer’s Disease Neuroimaging Initiative 

† 

a Department of Radiology, Mayo Clinic, Rochester, MN, United States 
b Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States 
c Department of Information Technology, Mayo Clinic, Rochester, MN, United States 
d Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States 
e Department of Neurology, Mayo Clinic, Rochester, MN, United States 

a r t i c l e i n f o 

Keywords: 

Face Recognition 
De-Facing 
De-Identification 
Anonymization 
Reliability 

a b s t r a c t 

Recent advances in automated face recognition algorithms have increased the risk that de-identified research 
MRI scans may be re-identifiable by matching them to identified photographs using face recognition. A variety 
of software exist to de-face (remove faces from) MRI, but their ability to prevent face recognition has never been 
measured and their image modifications can alter automated brain measurements. In this study, we compared 
three popular de-facing techniques and introduce our mri_reface technique designed to minimize effects on brain 
measurements by replacing the face with a population average, rather than removing it. For each technique, we 
measured 1) how well it prevented automated face recognition (i.e. effects on exceptionally-motivated individu- 
als) and 2) how it altered brain measurements from SPM12, FreeSurfer, and FSL (i.e. effects on the average user 
of de-identified data). Before de-facing, 97% of scans from a sample of 157 volunteers were correctly matched 
to photographs using automated face recognition. After de-facing with popular software, 28-38% of scans still 
retained enough data for successful automated face matching. Our proposed mri_reface had similar performance 
with the best existing method ( fsl_deface ) at preventing face recognition (28-30%) and it had the smallest effects 
on brain measurements in more pipelines than any other, but these differences were modest. 
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. Introduction 

It has long been hypothesized that de-identified brain images may
otentially be re-identified by reconstructing the participant’s face from
he scan and applying face recognition. Consequently, many algorithmic
echniques have been developed for removing or distorting face imagery
 “de-facing ”) to prevent face recognition ( Alfaro-Almagro et al., 2018 ;
ischoff-Grethe et al., 2007 ; Fonov and Collins, 2018 ; Gulban et al., n.d. ;
anke, 2015 ; Milchenko and Marcus, 2013 ; Schimke and Hale, 2011 ;
ilva et al., 2018 ). A 2009 study tested whether human volunteers could
uccessfully match participant photographs to the correct MRI-based
ace reconstruction, and only 40% of volunteers performed the match-
ng with success rates greater than random chance ( Prior et al., 2009 ).
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 2012 study was the first to test automatic face recognition software
Google Picasa, launched in 2009), finding that 27.5% of CT-based re-
onstructions could be matched to the correct participant photographs
 Mazura et al., 2012 ). However, adoption of de-facing software across
esearch neuroimaging studies has been mixed, and many large stud-
es and data-sets have widely distributed images without attempting to
revent face recognition. Studies may have chosen to avoid de-facing
or multiple reasons: 1) desire to share minimally-altered data to max-
mize potential scientific utility; 2) concern that de-facing techniques
ay reduce the quality of measurements obtained from the images; 3)
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) belief that the threat of loss of privacy via face recognition was small
nough to be an acceptable level of risk for their scientific potential. 

Between 2013 and 2018, identification performance of face recog-
ition algorithms (for their designed purpose of matching photographs
o photographs) improved by approximately 20x industry-wide as older
lgorithms were replaced by convolutional neural networks and deep
earning ( Grother et al., 2018 ). Our recent study found that when ap-
lying more-recent face recognition algorithms, photos of 70/84 (83%)
f participants were matched to the correct MRI ( Schwarz et al., 2019 ),
emonstrating that face recognition now poses a much greater risk to the
rivacy of research participants than previously estimated. These find-
ngs have led to increased concern that a motivated individual could vi-
late research agreements by: 1) requesting access to de-identified MRI
ia data sharing, 2) reconstructing participants’ faces, and 3) match-
ng these to public photographs to re-identify participants. This re-
dentification would also re-identify all protected health information
PHI) released by the study about each participant, such as diagnoses,
enetic information, neuropsychiatric measures, family/personal his-
ory, etc. 

. Study design 

An ideal technique for de-facing images should: 1) minimize the risk
f face recognition; and 2) not significantly alter automated brain mea-
urements on the de-faced images. Other recent works have suggested
hat some popular de-facing techniques may provide inadequate pro-
ection ( Abramian and Eklund, 2019 ), and may substantially alter or
mpede automated brain measurements ( de Sitter et al., 2020 ). In this
tudy, we compare several popular de-facing techniques and introduce
ur mri_reface , which we designed to minimize effects on brain measure-
ents by replacing the face rather than removing it. We believe both of

hese criteria are equally important, but their consequences affect very
iscrete sets of people and therefore we first evaluate them separately
nd in very different contexts before we compare de-facing techniques
ccording to the combined findings. We used 3D Fluid-Attenuated Inver-
ion Recovery (FLAIR) scans for testing criterion 1 because these give
he best facial reconstructions (see supplementary material), but in con-
rast we used T1-weighted scans for criteria 2 because these are the most
ommonly analyzed images from public data sets. 

.1. Validation criterion 1: Protection from face recognition 

The hypothetical worst-case scenario caused by re-identification of
esearch participants would be if a highly-skilled and highly-motivated
ndividual were to re-identify and extort research participants using
heir sensitive protected health information. Regardless of whether they
argeted a single high-profile participant or large numbers of average
articipants, public disclosure of such an event would cause a devastat-
ng loss of public trust and participation in medical research, as vulner-
ble individuals would not trust research scientists to keep their par-
icipation and health information confidential. Therefore, we designed
alidation Criterion 1 to compare techniques according to how well

hey could potentially prevent re-identification by a motivated individ-
al with extensive skills and knowledge of MR image processing. Our
esign tests the scenario where a motivated individual has reason to be-
ieve that someone is part of a study, and they attempt to identify that
articipant within the study’s de-identified FLAIR image data. 

.2. Validation criterion 2: Minimizing effects on brain measurements 

The overwhelming majority of people who gain access to de-
dentified research data will have no motivation to re-identify research
articipants; they will only use the data for its intended scientific pur-
oses in accordance with applicable data use agreements. For most
sers, this means downloading de-identified T1-weighted images from
2 
 large public data-set (e.g. Alzheimer’s Disease Neuroimaging Initia-
ive (ADNI)), running standard popular software pipelines, and ana-
yzing resulting numeric data. This large majority of users are not af-
ected by whether the data can be re-identified but only by whether
he de-identification process hinders their analyses. Therefore, we de-
igned Validation Criteria 2 to compare and quantify how each de-
dentification technique affects these standard analyses by the average
ser. 

. Materials and methods 

.1. Standard de-facing techniques 

We include three of what we believe to be the most popular de-
acing software in our comparison: mri_deface (FreeSurfer) ( Bischoff-
rethe et al., 2007 ), pydeface ( Gulban et al., n.d. ), and fsl_deface ( Alfaro-
lmagro et al., 2018 ). Although it is also relatively popular, we did
ot include mask_face ( Milchenko and Marcus, 2013 ) because previous
ork has already demonstrated that it provides inadequate protection
 Abramian and Eklund, 2019 ). We provide a comparative example of all
ested methods in Fig. 1 . 

mri_deface: mri_deface is a program included with FreeSurfer that
ocates face voxels using linear registration and a pre-defined mask cre-
ted from manual labeling of scans from 10 subjects. It was designed for
se with T1-w images. Face voxels are removed (set to zero intensity)
nly if they are not within 7mm of estimated brain tissue ( Bischoff-
rethe et al., 2007 ). We used mri_deface version 1.22 (the current re-

ease), with default settings. 
pydeface: pydeface ( Gulban et al., n.d. ) was initially released in 2017

nd has become popular among the python neuroimaging community.
ike mri_deface , it includes its own pre-defined mask of face voxels which
re located on the input image using linear registration (FSL’s linear
egistration tool (FLIRT) ( Jenkinson et al., 2002 )) and removed (set to
ero). We used the un-named version automatically installed through
he python package manager (pip) on December 6, 2019, with default
ettings (only image input/output name were specified). Its documen-
ation does not specify what types of MRI are supported. 

fsl_deface: The UK Biobank study uses a customized image process-
ng pipeline based on FSL ( Alfaro-Almagro et al., 2018 ), which includes
 de-facing approach also based on FSL tools. It was designed for use
ith T1-w images. This de-facing approach was later extracted from the

arger processing pipeline and released as part of the main FSL package
s fsl_deface . Like mri_deface and pydeface , this method uses linear regis-
ration (also FLIRT) to locate its own pre-defined mask of face voxels on
he target image, then sets voxels in the mask to zero. Unlike mri_deface

nd pydeface, this method also removes the ears. We used fsl_deface as
ncluded in FSL version 6.0.3 (the current version), with default settings
only image input/output name were specified). 

.2. Proposed face-replacement technique: mri_reface 

Method overview: We also propose and compare our in-house de-
acing technique, mri_reface : rather than removing or blurring the face
oxels, we replace them (i.e. perform a digital face “transplant ”) with
oxels from a population-average face. The goal of this approach was
o provide increased protection from re-identification while minimizing
ffects on brain measurements by generating de-faced images that bet-
er resemble the natural images that each measurement pipeline was de-
igned for. Another notable detail vs the other compared methods is that
ur implementation is based on nonlinear registration rather than only
inear, allowing for more precision in localizing face regions to ensure
heir accurate removal without altering brain regions. We also replace
he ears, to prevent ear recognition ( Emer š i č et al., 2017 ), and regions
f air that may contain image artifacts with identifiable features. Our
urrent implementation supports T1-, T2-, and FLAIR-weighted images.
e detail our approach below. 
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Fig. 1. Comparison of tested de-facing techniques on an input 3D FLAIR scan. Top: sagittal MRI slice (brain is omitted for participant privacy) Bottom: corresponding 
face reconstruction. Note that mri_deface retained the eyes and part of the nose. Our reconstruction process removes floating disconnected voxels, so the remaining 
nose is not visible on the corresponding render. Pydeface retained the top of the eyes. Among the three standard methods, only fsl_deface removed the ears, and 
entirely removed the eyes. In our proposed mri_reface , all face regions and ear regions were replaced with an average face and ears. This volunteer consented to allow 

publication of their photographs and corresponding MRI-based reconstructions for illustration purposes. 

Fig. 2. Population-average MRI and de-identification mask. Left: Our 
population-average T1-weighted MRI template Center: Reconstruction of the 
population-average face from the template Right: De-identification mask (over- 
laid) of face, ear, and behind-head (red, yellow, and orange respectively) voxels 
to be replaced. 
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Creation of population-average face templates: First, we cre-
ted a population-average template for each MRI contrast, using scans
f 177 Mayo Clinic participants age 30-89 (stratified by age-decade
nd sex; 120 cognitively unimpaired and 57 with clinically-diagnosed
lzheimer’s disease), imaged using 3D T1-weighted MPRAGE sequences
n Siemens Prisma scanners. We co-registered the scans using an unbi-
sed, group-wise approach ( Avants et al., 2010 ) with high-dimensional
ymmetric normalization ( Avants et al., 2008 ), and we normalized their
ntensities prior to voxel-wise averaging. In brief, a voxel-wise mean was
omputed from all 177 MRI, then each MRI was non-linearly deformed
its geometry was locally compressed and expanded) to match the mean
mage as closely as possible. The process was then repeated for several
terations until convergence (i.e. the average is no longer blurry). Fi-
ally, we used ANTs to transform the new template to the space of our
ayo Clinic Adult Lifespan Template (MCALT) ( Schwarz et al., 2017a ),

o match our in-house atlases. This process provides an unbiased av-
rage MRI ( Fig. 2 , Left), which includes a geometrically average face
 Fig. 2 , Center), from the sampled population. On this average MRI,
e then manually traced our de-identification mask: a mask of im-
ge voxels potentially containing face and ear structural information
 Fig. 2 , Right). We also created average T2-weighted and FLAIR tem-
lates from the same imaging sessions by linearly registering each of
hese images to their corresponding T1-weighted MRI and transform-
ng them through the linear and nonlinear parameters computed above
rom the T1-weighted scans. 
3 
Transforming between input image and template: ( Fig. 3 A-C)
iven a target MRI to de-identify, our method performs ANTs symmet-

ic non-linear registration ( Avants et al., 2008 ) between the input image
nd the population-average template image, in order to transform the
emplate to match the input image and identify all face/ear voxels. The
nput image modality is specified by the user, and the matching template
s used from the included library. The registration uses a mask ( –warp-

ask option) in the template space that includes only voxels that are
art of the head with those in the face and ear masks removed. Per-
orming the registration using this mask calculates parameters that use
nly linear registration in the air, face, and ears, but use nonlinear reg-
stration in the rest of the head and brain. We then apply these parame-
ers to transform and resample the template to the space of the original
nput image, which leaves the template face un-warped (aligned; modi-
ed only linearly) while warping the rest of the template image. At this
oint, the edges of the transformed face/ear regions align with those
f the target image, but within those regions, the contour is that of the
riginal average template, i.e., a population-average face rather than
he face in the target image. 

Intensity normalization: ( Fig. 3 D) Before copying face voxels from
he template image to the target image, the transformed template im-
ge must be intensity-normalized to match the target image. First, global
ntensity normalization is performed by a linear transform with the dif-
erence between air voxels for the intercept and the ratio between tis-
ue voxels (white matter for T1-weighted images and gray matter for
2-weighted or FLAIR images) for the slope. Because this global in-
ensity normalization alone would not account for local image inten-
ity variations (field inhomogeneity), we apply differential bias correc-
ion (DBC) for smooth local intensity normalization between the images
 Vemuri et al., 2015 ). To perform DBC, both images are smoothed with
 Gaussian 12mm FWHM isotropic Gaussian kernel and sampled on an
sotropic grid of approximately 10mm, omitting points where the differ-
nce between the images is large enough (differ by > 50%) to suggest
hat they likely do not contain analogous tissue. We compute the ratio
f the images at each remaining voxel and use the scatteredInterpolant

unction in Matlab to interpolate between sampled points. Finally, we
mooth the interpolated field with an 8mm FWHM Gaussian kernel and
ultiply the transformed template by the result to produce an image

hat is intensity-normalized to match the input image both globally and
ocally. 

Face and ear replacement: We then de-identify the target image by
eplacing all voxels in the face and ear regions ( Fig. 3 E) with those from
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Fig. 3. Steps in our proposed face replacement ( mri_reface ) approach: Top: MRI voxel slice Bottom: Image of face reconstructed from above image. A) Input image 
(brain is omitted for participant privacy) B) Template co-registered (affine) to input image C) Template warped (nonlinear) to input image (only affine transformation 
in face/ear regions) D) Image C after DBC intensity normalization E) Mask of regions to be replaced F) Output image, a blend of images A and D as defined by E. 
This volunteer consented to allow publication of their photographs and corresponding MRI-based reconstructions for illustration purposes. 
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he transformed template, thereby “transplanting ” the template face and
ars onto the target. The binary mask of face and ear regions to replace
s smoothed (8mm FWHM Gaussian kernel), and the spatial transition
etween original and replaced parts of the image is interpolated accord-
ng to this smoothed mask ( Fig. 3 F). All voxels within the mask of TIV
as defined in the template space) are never altered, regardless of their
roximity to the face or the smoothed/interpolated transitional area. 

Removal of identifiable artifacts in air: MRI voxels in front of
he face and behind the head may contain identifiable information. For
xample, participant movement of the eyes/eyelids (more common) or
ose/mouth (less common) during the scan can cause faint aliases of
heir contours in front of the face. To address this, we first compute a
obust mean of air voxels in the input image, as identified by a mask in
he template space, and replace air voxels > 10x the mean (i.e. brighter
han the surrounding air and may contain identifiable artifacts) with the
orresponding voxels from the template. Relatedly, if the image field of
iew is too large to contain the nose/mouth/chin, these features are
ometimes aliased into the air behind the head. Such locations are not
ypically modified by other de-facing methods, but they could be auto-
atically un-wrapped and re-attached when generating MRI-based face

econstructions (as we do for face reconstructions in this work). To pre-
ent this, we calculate the median of non-zero voxels in a mask-defined
egion of air voxels behind the head, then replace all voxels with inten-
ity > 2x the median with intensities from a random normal distribution.

.3. Validation criterion 1: Protection from face recognition 

We assessed the performance of each de-facing method according to
wo distinct criteria. The first was the relative ability of each de-facing
ethod to prevent re-identification of research participants if attempted

y an exceptionally skilled and motivated individual. We believe that
uch an individual would have the skills needed to attempt reconstruct-
ng faces from images with partially-removed faces, and thus we com-
ared de-facing methods by their ability to prevent re-identification in
his scenario. 

.3.1. Validation data-set 

This data-set included 84 individuals from our previous face recog-
ition study ( Schwarz et al., 2019 ), as well as 73 additional volunteers
rom continuing recruitment. In total, we recruited 157 volunteers (ages
4-93; mean = 63.0, SD = 16.3) stratified by sex and age-decade who had
n existing brain MRI (3D FLAIR sequence) within the previous six
4 
onths as part of their existing enrollment in the Mayo Clinic Study of
ging (MCSA ( Petersen et al., 2010 ; Roberts et al., 2008 )) or Alzheimer’s
isease Research Center studies. All participants provided informed con-

ent for this specific study, which was approved by the Mayo Clinic In-
titutional Review Board. 

We photographed each individual’s faces under indoor lighting con-
itions using standard iPads (Apple Inc., Cupertino, CA; models Air 2
nd 6 th generation). Participants were instructed to look directly at the
amera, and then approximately 10 degrees up, down, left, and right, for
 total of five photos, designed to provide somewhat-unique photos of
ach individual suitable for face recognition with minimal participant
urden. Photos were manually cropped loosely around the head and
onverted to grayscale to better match MRI (which does not capture
olor). Our image cropping retained the head/hair/ears and removed
nly distant background and torso, in order to reduce unnecessary im-
ge size and speed up repeated image uploading during testing. 

Sagittal 3D FLAIR head MRI were acquired using Siemens Prisma
canners using standard protocols matching those from ADNI3: res-
lution 1.0 ×1.0 ×1.2mm, repetition time = 4800ms, echo time = 441ms,
nd inversion time = 1650ms. We used 3D FLAIR (rather than 3D T1-
eighted) scans because these sequences provided more-recognizable

ace reconstructions (see supplementary material). 

.3.2. Validation methods 

Standard Face Reconstructions : We refer to generating a synthetic
mage of a face from an MRI scan as “face reconstruction ”. For our “stan-
ard ” face reconstructions, we used the same process as previously de-
cribed ( Schwarz et al., 2019 ). In brief, a threshold was automatically
hosen to binarize each image based on Otsu’s method ( Otsu, 1979 ),
liased nose parts behind the head were automatically detected and re-
ttached to the face for applicable images, and any remaining, float-
ng regions disconnected from the head (e.g. motion artifacts) were re-
oved. Finally, each volume was converted to a surface using an auto-
ated threshold based on and the nii_nii2gii utility provided with surf_ice

 Rorden, n.d. ). For each reconstruction, 81 2D render images (analogous
o a synthetic photograph) were automatically generated using surf_ice

ith the “Phong_Matte ” shader under a variety of simulated lighting and
iewing angles and saved as .png files ( Schwarz et al., 2019 ). A random
ubset of 10 of these render images (chosen consistently across meth-
ds) was selected for each scan and used to train the face recognition
oftware to recognize each MRI-based face reconstruction. 
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Fig. 4. Left: For images where faces have not been removed, we used our “standard ” face reconstruction with minimal preprocessing. Center: mri_deface and py_deface 

frequently (but not always) retain the eyes, but the removed nose/mouth can prevent testing automated face recognition because no face is detected. Right: To test 
whether a highly skilled and motivated individual could perform automated face recognition using only the remaining facial features, we applied our “advanced ”
face reconstruction, where we filled-in missing regions with those from the average template. 
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Advanced Face Reconstructions (for de-faced scans with par-

ial faces): For images where faces have been removed by de-face tech-
iques, our “standard ” face reconstructions ( Fig. 4 , left) produce images
ithout faces or with only partial faces, which can prevent detection of
 face by automatic algorithms ( Fig. 4 , center). However, we noticed
hat mri_deface and pydeface frequently (but not always) retain the eyes.
ecause some face recognition algorithms can attain good match per-
ormance with only partial faces ( Elmahmudi and Ugail, 2019 ), we hy-
othesized that these de-faced images may still contain enough informa-
ion for a skilled individual to perform partially-effective automatic face
ecognition. To test this hypothesis, we created our “advanced ” face re-
onstructions as follows. We used ANTs ( Avants et al., 2008 ) to warp a
emplate MRI (the same as the average faces used in our own approach)
o each de-faced scan, performed global intensity normalization, and
eplaced all missing voxels (those that were subthreshold in the input
e-faced image but super-threshold in the template image) with those
rom the template. This replaced all removed voxels with those from
he average face, allowing us to then use our standard method to create
 face reconstruction containing a composite of: 1) the image regions
hat were not removed, and 2) the average face (in the areas that were
emoved) ( Fig. 4 , right). We used this process only when assessing Crite-
ion 1 (preventing face recognition) with de-facing methods that remove
ace regions. 

Face Recognition Testing: We used the same process for testing face
ecognition detailed in our previous publication ( Schwarz et al., 2019 ),
ith the exception that we now use Microsoft Azure’s recently updated

ecognition_02 model with higher accuracy. In brief, we used the Mi-
rosoft Azure Cognitive Face API ( Microsoft Corporation, 2019 ), which
s designed to match an input face photo with one of a user-defined set
f possible faces. This is analogous to a digital police “line-up ”, where
he software is trained to recognize a “training set ” of faces, and then
 new “test image ” is input with the question “which of the training
aces does it best match? ” The details of how the software works are
npublished proprietary technology using pre-trained models for face
etection and encoding, and it operates as a cloud-based service that is
vailable to the public. We trained an instance of Azure’s “PersonGroup ”
lassifier to recognize each participant based only on their MRI-based
ace reconstructions (i.e. the MRI faces comprised the “line-up ” of po-
ential faces to be recognized). Then, we input each of the five pho-
ographs for each participant and queried the software using the “Face-
dentify ” function. For each photograph, Azure returned a ranked list of
he 50 best matches (with match confidence scores for each) from among
 t  

5 
he MRI-based face reconstructions in the training set. We summed the
atch confidence scores for each potential match across each partici-
ant’s five photographs and ranked each candidate MRI according to
hese summed scores. The resulting ranking reflected the combined set
f five photos for each participant. 

.4. Validation criterion 2: Minimizing effects on brain measurements 

Our second criterion for assessing de-facing methods was measur-
ng how each affects the ability of an average data user to generate
nd compare brain measurements using SPM12, FreeSurfer, and FSL.
e considered the results of each pipeline on the unmodified image to

e the gold standard, and we compared the de-facing methods accord-
ng to how much each pipeline’s measurements on the de-faced images
eviated from these original measurements. Aside from de-facing, no
ther pre-processing was performed on images before inputting them to
ach pipeline. This criterion was designed to reflect the experience of
he typical downloader of shared de-identified images from public data
ets (e.g. ADNI) who would run standard measurement pipelines on the
e-identified (de-faced) data. We used ADNI data for this criterion be-
ause it is one of the largest public repositories of neuroimaging data
nd because it allowed us to construct a large data-set with a balanced
et of scans from multiple MRI vendors. 

.4.1. Validation data-set 

We constructed a data-set of 300 3-Tesla T1-weighted accelerated
RI scans from the ADNI database (adni.loni.usc.edu). For up-to-date

nformation, see the ADNI homepage ( “ADNI Home, ” 2013 ). One hun-
red scans were included from each of the three MRI vendors (GE,
iemens, and Philips). Among each set of 100 within-vendor scans, 50
articipants were cognitively unimpaired (CU) and 50 participants (indi-
idually sex- and age-matched within 3 years) had clinically-diagnosed
lzheimer’s disease. Details of ADNI image acquisition parameters have
een previously published ( Jack et al., 2010 ). We used T1-weighted
cans because these are what the most popular analysis pipelines are
esigned to analyze. 

.4.2. Software measurement pipelines 

We compare the effects of each de-facing method on three different
oftware pipelines, each described below. 

SPM12: We constructed this automated pipeline to represent a tradi-
ional GM volumes analysis with Statistical Parametric Mapping version
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2 (SPM12) and default settings. For each input T1-weighted image,
nified Segmentation ( Ashburner and Friston, 2005 ) was performed as

mplemented in SPM12 ( “Segment ” function) with the default priors and
ettings. The deformation parameters produced by Unified Segmenta-
ion were used to resample the atlas from MNI space into the space
f the input image using nearest-neighbor interpolation. Per-region GM
olumes were measured in subject space as the sum of the estimated GM
robabilities in each voxel within the ROI, multiplied by the per-voxel
olume. To produce per-region GM volume measurements, we used the
euromorphometrics atlas included with SPM12 (omitting regions that
re primarily WM or CSF). Total volume measurements were produced
rom segmentation outputs by using the included “Tissue Volumes ” util-
ty to sum total GM, WM, and CSF volumes. We summed GM + WM for
otal tissue volume (TTV) and GW + WM + CSF for total intracranial vol-
me (TIV). 

FreeSurfer: We used FreeSurfer ( Fischl, 2012 ) version 6.0 in the
ross-sectional stream. We ran recon-all using the flags “-all -3T -notal-

heck -no-isrunning ” and analyzed regional GM volume, cortical thick-
ess, TTV, and TIV measurements from the aparc and aseg outputs (omit-
ing non-GM regions). We used EstimatedTotalIntraCranialVol for TIV and
rainSegVolNotVent for TTV (even though this excludes brainstem and
erebellum, it is used analogously and we are not comparing values
cross pipelines). 

FSL-UKBB: To measure the effects of de-facing on FMRIB Software
ibrary (FSL) tools, we included the UK Biobank Pipeline version 1
 Alfaro-Almagro et al., 2018 ), which uses FSL tools and was written with
nput from several primary authors of FSL. In their standard pipeline,
egmentations are performed on images after applying the internal de-
acing, but from bb_struct_init we separated the portions of code related
o de-facing (described above) from the portions related to image seg-
entation (described here) so that we could test each independently

nd in combination with the other methods. We also removed the gra-
ient distortion correction step, as our images have this already applied
uring preprocessing. This pipeline does not produce per-region GM vol-
me measurements analogous to the other tested pipelines, so to create
omparable measurements we transformed the HarvardOxford cortical
nd subcortical atlases ( Desikan et al., 2006 ) included with FSL, using
he same FNIRT ( Andersson et al., 2008 ) nonlinear registration parame-
ers the pipeline previously computed, and over each region we summed
he per-voxel values previously computed by FAST ( Zhang et al., 2001 ),
hen multiplied by the per-voxel volume. We used outputs from SienaX

 Smith et al., 2002 ) for TTV ( “BRAIN ”) and TIV ( “VSCALING ”). SienaX

oes not directly produce a TIV as a volume, but it provides the VSCAL-

NG ratio to be used for scaling tissue volume measurements; since that
s arguably the primary use of TIV measurements, we analyzed this value
n place of TIV (we performed all comparisons within each pipeline, so
he difference in units or scale across pipelines is not an issue). 

.4.3. Validation methods 

The 300 images in the validation data-set were used as input to
ach of the three pipelines above, to produce per-region measurements
f gray matter volumes and (where applicable) cortical thickness. We
hen input each image through each pipeline after using each de-facing
ethod (without any other pre-processing). The per-region numeric val-
es produced for the unmodified images were treated as the gold stan-
ard, and we measured systematic (bias) and non-systematic (noise) de-
iations from these values when measured from the de-faced images as
escribed below. 

Quality Control (QC): Trained medical image analysts visually ex-
mined the output segmentations produced by each of the three process-
ng pipelines for each of the 300 unmodified scans. For any combina-
ion of scan + pipeline (900 total) where numeric results for unmodified
mages were not produced (missing, zero, or NaN) or where analysts
udged the visual segmentation or atlas images to be gross failures, that
can was removed from analyses of the effects of de-facing on that par-
icular pipeline. 
6 
Statistical methods: We measured the differences between per-
egion brain measurements produced by each pipeline for each im-
ge before vs. after each de-facing method. Analyses used R statisti-
al software (R Development Core Team, 2008 ) version 3.6.2 with tidy-

erse packages ( Wickham, 2017 ). For each combination of measurement
ipeline, output regional brain measurement, and de-facing method, we
easured a) non-systematic error (noise) with intra-class correlation co-

fficient (ICC) and b) systematic error (bias) across the 300 measure-
ents from each scan before vs. after de-facing. For ICC, we used the

CC function from the R pysch package ( Revelle, 2019 ) to calculate the
xed-raters ICC3 variant that is not sensitive to differences in means
etween raters (i.e. is not sensitive to systematic error). We then sepa-
ately measured the systematic error (bias) of the de-faced image mea-
urements as the percent difference between the x = y line and a linear
east-squares fit ( lm function) of the original vs. de-faced measurements,
aken at the “centercept ” point (mean value across the x axis, i.e. all
easurements from the unmodified image) ( Wainer, 2000 ). We then

ummarized these ICC and bias values (across all regions, within each
ombination of pipeline and de-facing method) using median values and
ox plots. We measured p values for pair-wise differences between de-
acing methods using paired Wilcoxon Signed Rank tests ( wilcox.test()

n R). Non-GM atlas regions were omitted from summary measures of
M volumes. The total numbers of summarized atlas GM regions for
ach pipeline were: 116 with SPM12, 78 with FreeSurfer (70 for corti-
al thickness), and 64 for FSL-UKBB. 

Simulated test-retest: To provide a reference for these values, we
lso measured the differences in regional measurements produced by
odifying the input image headers (Nifti image format s-form matrix

nd q-form values) to simulate the head moving 5mm downward and ro-
ating (pitch) 2 degrees upward. The image voxels were not resampled or
therwise modified; only the image headers were altered. This technique
imulates the effects of varying participant position in the scanner upon
ownstream measurements ( Schwarz et al., 2017b ), and we include it in
he comparison of de-facing methods as “simulated test-retest ”. Because
he image voxels are identical, this simulation measures variability in
iomarker measurement software but excludes the variability in imag-
ng hardware and patient motion that would both be present in “true ”
est-retest MRI scan-pairs. However, since correctly-working de-facing
oftware would modify only non-brain regions and leave all brain vox-
ls completely identical to the original image, we expected their effects
n brain measurements to be smaller than or similar to those of this
imulated test-retest experiment. 

ADNI test-retest data set: We also compared the effects of de-facing
o the effects of a more-traditional MRI test-retest (scan-rescan) experi-
ent using back-to-back T1-weighted MRI scan-pairs of 117 ADNI par-

icipants. Identical 3T MPRAGE sequences were used for both scans, and
atients were not repositioned ( Jack et al., 2008 ). This measure of test-
etest uses a discrete set of participants vs. our other experiments and
epresents a more traditional measure of test-retest precision that in-
ludes variance from scanner noise and patient movement, in addition
o variability of the biomarker measurement software. Because the vox-
ls in brain regions are re-imaged and thus not identical, we expected
hese test-retest effects on brain measurements to be larger than both
he simulated test-retest experiments (above) and those of the de-facing
oftware. 

. Results 

.1. Validation criterion 1: Protection from face recognition 

We present the results of face recognition testing, both with and
ithout each of the de-facing techniques, in Table 1 . 

Standard face reconstruction: Using unmodified (non-de-faced)
RI, 97% (153/157) of participants were automatically matched to

heir correct corresponding MRI. Our proposed mri_reface reduced
he rate to 30%. When using the standard face reconstructions with
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Table 1. 

Rates of automatically matching 5 photos of each participant to their correct corresponding MRI-based face reconstruction, using Microsoft Azure, before and after 
each de-facing technique. 

Standard Face Reconstruction(using the input MRI only)(person 
attempting the matching is less skilled in MR image processing) 

Advanced Face Reconstruction (missing face regions automatically replaced 
with an average template)(person attempting the matching is highly skilled 
in MR image processing) 

MRI-based face recons 
where any face was 
detected 

Participants correctly 
matched photos →MRI Participants correctly matched photos →MRI 

Original 

Images 

157/157 (100%) 153/157 (97%) N/A 

mri_deface 18/157 (11%) 16/157 (10%) 52/157 (33%) 

Pydeface 20/157 (13%) 16/157 (10%) 59/157 (38%) 

fsl_deface 5/157 (3%) 5/157 (3%) 44/157 (28%) 

mri_reface 157/157 (100%) 47/157 (30%) N/A 
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ri_deface, pydeface , and fsl_deface , the missing face parts prevented
ace detection in a large majority of images ( Table 1 , column 1). Con-
equently, with these methods only 3-13% of participants’ MRI-based
econstructions could be included in the “training set ” of potential
atches (the software cannot “learn ” to recognize a face where it be-

ieves none exists). The resulting match rates across all photos (including
hose participants that could not be included in the training set) were
etween 3% ( fsl_deface ) and 13% ( pydeface ) ( Table 1 , column 2). These
esults may represent success rates of re-identifying de-faced data when
ttempted by an individual who lacks the skill in image processing to
vercome the face detection issue. 

Advanced face reconstruction: When we used our advanced face
econstructions ( Fig. 4 ), faces were almost-always detected, and this al-
owed for face recognition upon the partially de-faced images with suc-
ess rates of 33% after mri_deface , 38% after pydeface , and 28% after
sl_deface ( Table 1 column 3). We directly compare these rates with the
0% from mri_reface when using the standard reconstructions, because
ts outputs already contain (altered, but standard-reconstructable) faces.
hese results may represent success rates of re-identifying de-faced data
hen attempted by a highly-skilled individual who adapts their recon-

truction approach to each de-facing method. 
Analyses of which participants were correctly matched: All but

our participants were correctly matched without de-facing, so this was
ot enough to establish trends. The common set of participants that were
orrectly recognized after all four de-facing methods methods (using ad-
anced reconstructions for fsl_deface, pydeface , and mri_deface ) was only
/157 (5.1%). Across the 7 de-faced experiments in Table 1 (basic re-
onstructions only for mri_reface and basic + advanced for the 3 al-
ernatives), we summed for each participant how many times (out of
) they were correctly identified, and we tested this number for de-
ographic correlations. Men were identified more often than women

t-test p < .001), and identified participants had larger head sizes (Spear-
an p = 0.02). Trends were also observed toward increased correlations
ith older age (Spearman p = 0.15), taller height (Spearman p = 0.07),
nd greater weight (Spearman p = 0.07). No correlation was observed
ith body mass index (BMI; Spearman p = 0.74). We present plots of

hese data in supplementary material. 

.2. Validation criterion 2: Minimizing effects on brain measurements 

Effects of each de-facing method on GM volume and cortical thick-
ess measures are plotted in Fig. 5 . In supplementary material, we also
rovide the raw values from Fig. 5 , the ICC and bias values for all re-
ions individually, and a corresponding plot of un-signed (magnitude)
ias. We show several examples of instances where de-facing procedures
roduced large changes in segmentation results in Fig. 6 . 

QC Results: Scans from 9 participants were removed from analy-
es with the SPM12 pipeline because its segmentations of the original,
nmodified images were visually judged by trained image analysts as
rossly invalid. By the same criteria, 10 scans were removed from anal-
 t  

7 
ses with the FSL-UKBB pipeline, and 7 were removed from analyses
ith FreeSurfer 6.0. 

Rates of failure to generate measurements: In Table 2 , we present
he number of scans (out of 300) where each de-facing method caused
 pipeline to produce no measurements or produce only zero or NaN
easurements. Scans where this occurred for the unmodified image (see

bove) are counted only in the first row. Our proposed mri_reface caused
he smallest number of failures (1 vs 2-3). 

Global measurements: First we measured how each de-facing al-
orithm affected global measurements of each scan: total tissue volume
TTV; sum of gray matter and white matter, used as a global biomarker)
nd total intracranial volume (TIV; aka ICV, frequently used as a nui-
ance covariate in tissue volumes analyses). TIV and TTV measure-
ents with all pipelines and all de-facing techniques had biases < 1%

all but one combination were < 0.5%) in magnitude. ICC’s of TIV and
TV measurements were > 0.99 with SPM12 and > 0.96 with FreeSurfer.
CC’s of TIV’s from the FSL-UKBB pipeline were 0.89 when used
ith fsl_deface , but were > 0.95 with all other combinations. Overall,

hese global measurements were only minimally affected by de-facing
echniques. 

ICC (non-systematic error) of regional measurements: There
as no de-facing method that outperformed all others across all
ipelines. SPM-based regional measurements with de-facing methods
ad ICC values > 0.9, except for left/right frontal pole with fsl_deface

left/right ICC = 0.84/0.86). FreeSurfer-based measurements all had
CC’s > 0.83, except for left/right frontal pole with fsl_deface (thickness
eft/right ICC = 0.70/0.67; volume left/right ICC = 0.63/0.65). The FSL-
KBB pipeline had ICC’s > 0.88, except for left pallidum GM volumes
ith mri_reface, pydeface , and fsl_deface (ICC = 0.77, 0.77, 0.81 respec-

ively). Our mri_reface had the largest median ICC for GM volumes
rom SPM12 (0.996, p < .001 vs. mri_deface ) and from FreeSurfer (0.977,
 < .001 vs. fsl_deface ), but for both of these the difference in median ICC
rom the next-best method was < 0.005. For FreeSurfer cortical thick-
ess, the largest median ICC was also with mri_reface (0.964), but the
ifference between it and the next best method ( pydeface ) was < 0.001
nd not statistically significant ( p = 0.547). The lowest-performing re-
ional measurement with mri_reface had ICC = 0.78 (left pallidum volume
ith the FSL-UKBB pipeline), and all other regional ICCs with mri_reface

ere > 0.87. 
ICCs with only perturbing image geometry headers (simulated test-

etest) were greatly higher than all de-face methods with the SPM and
SL-based pipelines. With FreeSurfer, this modification actually added
ore noise to cortical thickness measurements than any tested de-face

echnique despite not altering the image voxels, and for GM volumes it
dded more noise than all de-facers except mri_deface . Conversely, this
eader modification had no effect on the FSL-UKBB pipeline. ICCs for
he test-retest data set were substantially lower than all defacers, for all
ipelines. 

Bias (systematic error) of regional measurements: As with ICC,
here was no de-facing method that outperformed all others across all
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Fig. 5. Effects of de-facing methods on regional measurements of GM volume and Cortical Thickness from SPM, FreeSurfer, and FSL. Left: Intra-class correlation 
measurements (ICC) measure non-systematic error (noise) of measurements from unmodified vs de-faced scans with each de-facing method, and two different 
measures of test-retest error. Each plot shows the summary of ICC across atlas regions, where ICC between original vs. de-faced measurements were independently 
calculated for each region across scans of 300 participants. Higher ICC values indicate less noise. Right: Bias measures the systematic error as the percentage offset 
between the 1 = 1 line and a fit linear line, evaluated at the centercept (center of the x axis) for each region. Values near 0 are best. Each plot shows the summary of 
bias across atlas regions. We also provide the raw values for these plots, and a corresponding plot of un-signed (magnitude) bias, in supplementary material. 

Table 2. 

Numbers of scans (out of 300) where each pipeline + method combination produced 
no measurements or produced only zero or NaN measurements. Scans that failed using 
the original (unmodified) image are counted only in the first row. 

Method / Pipeline SPM12 FreeSurfer 6.0 FSL-UKBB Sum across pipelines 

Original (unmodified) 9 7 10 26 

mri_deface 2 0 1 3 

Pydeface 2 0 0 2 

fsl_deface 0 1 1 2 

mri_reface 0 1 0 1 
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ipelines. Across all pipelines, the greatest measurement biases occurred
n GM volume measurements of the pallidum with FSL-UKBB, where vol-
mes measured with de-faced data were an average of 6-11% larger than
ith unaltered images. The next-largest measurement biases occurred in
easurements of the frontal pole; FreeSurfer measured these regions

both volume and thickness) as an average of 3-6.75% smaller after
he fsl_deface and mri_deface methods, and SPM12 measured these as
n average of 4.5-5.0% larger after fsl_deface . After these exceptions, all
easurements had average biases < 3.3%. Our mri_reface had the small-

st median biases (closest to 0) with SPM12 GM volumes ( p = .084 vs.
ydeface (not significant)). With FreeSurfer GM volumes, pydeface had
he smallest median biases ( p = .034 vs. mri_reface ), and with FreeSurfer
ortical thickness, fsl_deface had the smallest median biases ( p < .001 vs.
ri_reface ). For FSL-UKBB GM volumes, the best method was mri_deface

 p < .001 vs. fsl_deface at rank 2; p < .001 vs. mri_reface at rank 3). Modify-
ng the image header geometry had minimal systematic bias effects on
he SPM- or FSL-based pipelines, but FreeSurfer volume and thickness
easurements were biased to larger magnitudes (mostly toward smaller
easurements) with modifying the image header than with any de-face
ethod. In the test-retest data set, GM volumes in the repeat scan vs.

he first scan were substantially larger for the SPM12 and FSL-UKBB
ipelines, and substantially smaller for FreeSurfer. Despite their differ-
ng directions, the magnitudes of the biases for all three GM volume
ipelines were substantially greater than the effects of any de-facing
8 
ipeline. However, test-retest biases with FreeSurfer cortical thickness
ere relatively small and were comparable with the de-face methods. 

Hippocampal and Entorhinal Measurements: These regions were
ncluded in the above analyses, but we also examine them separately
ecause they are of specific interest to studies of aging and Alzheimer’s
isease (in supplementary material, we provide the quantitative results
or all regions). Across all de-facing methods, ICC’s of hippocampal vol-
me measurements were > 0.99 with SPM12, > 0.96 with FreeSurfer, and
 0.96 with FSL-UKBB. Entorhinal cortical thickness values had ICC’s
 0.94 with FreeSurfer. Across all de-facing methods, median biases were
 1% for all hippocampal volume and entorhinal thickness measures. Al-

hough the effects of de-facing on these regions were relatively small,
t is notable that they were affected at all given their distance from al-
ered face or ear regions. For each pipeline’s hippocampal volume mea-
urements, and FreeSurfer’s entorhinal thickness measurements, we also
easured the effects of these de-facing techniques on: a) Area Under

he Receiving Operating Characteristic Curve (AUROC) separation of
ognitively unimpaired vs. Alzheimer’s disease participants; b) Spear-
an correlation (rho) with each participant’s Mini-Mental State Exam

MMSE) score ( Folstein et al., 1975 ); or c) Spearman correlation with
ach participant’s Clinical Dementia Rating-Sum of Boxes ( Lynch et al.,
006 ). We assessed AUROC using the roc function from the pROC pack-
ge ( Robin et al., 2011 ), and Spearman correlation (with confidence
ntervals) using the SpearmanRho function from the desctools package
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Fig. 6. Examples of quantification errors due to de-facing. In all instances, 
outputs from the unmodified images did not have these errors. A) Pyde- 
face + FreeSurfer: voxels in frontal lobe were segmented as non-brain tissue 
(not colored), despite not being adjacent to the tissue removed by de-facing. B) 
mri_deface: voxels in the cerebellum were removed by defacing while the face 
itself was left intact (affects all pipelines). C) fsl_deface + SPM12: gray matter 
in precentral gyrus and other superior regions was misclassified (not marked 
yellow) as a result of de-facing. De-facing did not remove any tissue nearby 
these regions. D) fsl_deface + FSL-UKBB: gray matter in most of the cortex was 
misclassified (not marked red/yellow) as a result of de-facing. 
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 Signorell, 2019 ). Compared within each pipeline across de-facing meth-
ds, 95% confidence intervals for each measure greatly overlapped and
o meaningful differences or consistent trends were observed (these
nalyses are shown only in supplementary material). 

Run times: We recorded the run times for each de-facing program
hen we ran each of the 300 ADNI T1-w images in our validation data-

et using our local compute cluster of 28 “white box ” servers with Intel
eon processors (manufactured between 2010 and 2020) with 24-40
ores (assigned one core/job) and 128GB + RAM. Mean (sd) runtimes in
inutes for each method were: mri_deface: 5.06 (1.59); pydeface: 1.80

0.52); fsl_deface: 2.32 (1.05); mri_reface: 51.95 (17.65). 

. Discussion 

.1. Face recognition rates 

Recognition rates without de-facing : Since our previous study
 Schwarz et al., 2019 ), our measured face recognition rates on unaltered
RI have improved from 83% of 84 participants to 97% of 157 partici-

ants. The improved detection rate with the recently-updated Microsoft
lgorithm (see further discussion in supplementary material) is prima
acie evidence of the inevitable improvement of face recognition tech-
ology with time. The threat of individual re-identification will continue
o increase with advancing face recognition technology, suggesting that
n the future some form of de-facing should be considered a necessary
art of image de-identification prior to external data sharing. 

Recognition rates across de-facing methods: We found that a
ighly-skilled individual could re-identify up to 38% of scans, even af-

er popular de-facing programs. Even with our standard face reconstruc-
ions (i.e. assuming re-identification attempted by a less-skilled indi-
idual), recognition rates after these popular programs were as high as
0%. These results suggest that for the goal of preventing face recog-
ition, effective de-facing is a much more difficult problem than previ-
9 
usly appreciated. We also found that after de-facing, men were still rec-
gnized significantly more often than women. Unsurprisingly (because
hese variables are themselves correlated with sex), we also found cor-
elations of varying significance with larger head size (TIV), weight, and
eight. However, these correlations disappeared when using BMI, sug-
esting that this is an effect of participants’ sex or gender rather than
heir relative size or physical fitness. We expected that larger partici-
ants would be less recognizable due to larger heads increasingly mak-
ng contact with (being deformed by) the MRI head coil, but we found
he opposite effect. These results are difficult to interpret because we
annot separate (due to too-few participants that were mismatched us-
ng non-defaced scans) between potential demographic biases in the de-
acing software vs. potential demographic biases in the face recognition
ystem. We will explore this further in future work. 

.2. Effects of de-facing on brain measurements 

Another surprising result was that effects on downstream regional
easurements were measureable, even in regions distant from any mod-

fied parts of the image. Although frontal pole, orbitofrontal, and tem-
oral pole regions (relatively near to the face) often had the largest
ifferences, some of the largest effects also occurred in measurements
f deep grey structures, far from any modified voxels. Original valida-
ions of many de-facing techniques have focused on ensuring that min-
mal brain voxels are modified ( Alfaro-Almagro et al., 2018 ; Bischoff-
rethe et al., 2007 ; Schimke and Hale, 2011 ), but our findings agree
ith another recent study ( de Sitter et al., 2020 ) in showing that mea-

urable effects can also occur in measurements from unmodified, distant
rain regions. These distant effects may arise from both local and non-
ocal effects on linear or nonlinear registration between each scan and
tandard templates, or from generative/Bayesian segmentation frame-
orks where the estimated probability of a given tissue type at each

ocation is defined relative to the appearance of all other tissue types
n the image. Therefore, creating de-facing software that does not alter
rain measurements is also much more difficult than previously appre-
iated. 

Comparisons with test-retest: It is reasonable to expect that ideal
e-facing software should produce effects on brain measurements that
re smaller than those of re-scanning the same participant without sig-
ificant time passage (test-retest). We tested this expectation against two
ifferent measurements of test-retest. The “ADNI test-retest data set ” is a
true ” test-retest experiment that includes scans of 117 (different) ADNI
articipants who were scanned back-to-back. These test-retest scans did
ot reposition participants between the scans, so its effects are likely un-
erestimated vs. typical test-retest (scan-rescan) experiments. Even so,
ll of the de-facing pipelines achieved the goal of having smaller effects
han (this underestimate of) test-retest: ICCs were substantially higher
nd biases were somewhat smaller (nearer to zero). 

However, all the tested brain measurements involve (only) brain re-
ions, which all the de-facing programs are designed to not modify.
n theory, one would expect identical brain voxels to produce iden-
ical brain measurements, but this is not the case. Consequently, we
rgue that ideal de-facing software should have effects on brain mea-
urements that are more comparable to test-retest with identical brain

oxels (i.e. measuring variance of the measurement software without
ariance in the imaging/participant) than with standard test-retest ex-
eriments (which measure both sources of variance). To this end, our
imulated test-retest data used the same 300 scans as all the other exper-
ments; geometry in the image header was modified but no resampling
as performed and all image voxels (not just the brain) were identical

o the original. All the de-facing programs had effects on the SPM- and
SL-based pipelines that were substantially larger than this standard of
same-voxels) test-retest, but the opposite was true for FreeSurfer. In to-
al, effects of de-facing programs on brain measurements were smaller
han test-retest, but still measureable and (mostly) larger than our sim-
lated identical-voxel test-retest. We expected them to lie in between
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hese two measures, but closer to the simulated than “true ” test-retest
ariants. 

Comparisons with effect sizes of the biology of interest: We
ound that the effects of de-facing were extremely negligible in cross-
ectional comparisons of AD pathology in the hippocampus and entorhi-
al cortex. However, the statistical power of those particular compar-
sons (before de-facing) is very large, and these regions were also among
he most robust in all the brain in our test-retest measurements, so these
ase-control comparisons represent a best-case scenario. We found much
arger effects in other regions (mainly frontal and subcortical), where
e-facing with some techniques biased average GM volumes by as much
s 11%. By comparison, the rate of annual hippocampal atrophy in AD
articipants is only 2-4% ( Josephs et al., 2017 ) and many brain patholo-
ies have effects far smaller than AD. Thus, even though the effects of
e-facing were smaller than test-retest, they were sometimes large and
roblematic in comparison to biological effect sizes. 

.3. Comparing de-facing methods 

When face recognition was performed using the advanced face
econstructions as-needed, the de-facing methods that best pre-
ented face recognition were fsl_deface (44/157 = 28%) and mri_reface

47/157 = 30%). We designed this scenario to reflect recognition per-
ormance when the person attempting re-identification has the skills
o exploit more remaining information in the images. However, when
e used standard face reconstructions with minimal image processing,

sl_deface had the lowest face recognition rate (3%). This low rate is
argely due to the fact that only 3% of reconstructions were detected as
aces i.e. recognition could not be performed on the rest. The mri_reface

nd fsl_deface methods reliably removed the eye regions, which is likely
hy they prevented face recognition substantially better than mri_deface

r pydeface . The mri_deface and pydeface methods also do not attempt to
emove the ears, although our study did not attempt ear recognition.
ur mri_reface is also the only method that attempts to remove aliased

ace regions (artifacts) in front or behind the head, although our study
id not attempt to exploit that information during face recognition. 

No de-facing method consistently outperformed all others in min-
mizing effects on brain measurements. Median ICC’s with mri_reface

ere the best for GM volumes with SPM12 and with FreeSurfer. Al-
hough both differences were statistically significant, their magnitudes
s. the next-best methods were < .005 ICC. For FreeSurfer cortical thick-
ess, ICC values were also the smallest with mri_reface , but the differ-
nce between it and the next-best method ( pydeface ) was within 0.001
nd not statistically significant. Its measurement biases were the near-
st to zero for SPM12 GM volumes, and they were second-smallest for
reeSurfer GM volumes (the smallest was pydeface ). It was also caused
ewer instances (1 vs 2-3) where pipelined to fail to produce measure-
ents for any scan that had worked prior to de-facing. We attribute

hese advantages to its generation of outputs that resemble natural im-
ges with realistic image statistics. One cost to these improvements is
hat mri_reface has a significantly longer run-time ( ≈50 minutes) than the
ested alternatives ( < 5 minutes). These costs occur primarily in comput-
ng the nonlinear registration (vs. affine with other methods) needed for
ore-accurate localization of face regions. 

Taken together, our proposed mri_reface was the second best method
or preventing re-identification via face recognition, and it had the
mallest effects on brain measurements in more pipelines than any other
ethod. We hypothesize that its relatively better protection from face

ecognition is because it was designed to remove (replace) more/larger
dentifiable portions of input images (than mri_deface or pydeface ), and
ts smaller effects on brain measurements are because it replaces rather
han removes voxels to produce output images that better resemble
hose that SPM, FreeSurfer, and FSL were designed for. fsl_deface also
erformed well; it was the best for preventing face recognition (28% vs
0% with mri_reface ), and it was also among the leading methods for
inimizing measurement effects for each pipeline. 
10 
.4. Strengths and limitations of current study 

Strengths: We took a comprehensive approach to comparing MRI-
efacing techniques by simultaneously considering 1) their efficacy at
reventing re-identification via face recognition, and 2) their effects on
rain measures from output scans; previous studies comparing de-facing
echniques have considered only the latter ( de Sitter et al., 2020 ). We
lso compared these measurement effects with two different variants of
est-rest experiments. 

Face recognition scenarios: Our face recognition testing method-
logy of matching participant photos to MRIs reflects a hypothetical
ituation where a highly motivated and skilled individual has reason
o believe that a participant is part of a particular study and wishes to
nd them among shared de-identified study data. The opposite prob-

em, where someone has a de-identified MRI and wishes to re-identify
t using face recognition from among potentially all humans on earth,
s of course much more difficult. However, the 97% recognition rate on
he current scenario suggests that MRI scans of the brain can provide
omparable face-recognizing information with that of standard pho-
ographs, and because existing technologies can successfully identify
ace photos from databases of > 12 million people with failure rates < 1%
 Grother et al., 2018 ), we hypothesize that identifying a fully-unknown
rain MRI is not implausible with current or near-future technology.
oreover, the ability to re-identify an individual will only improve as

echnology inevitably advances. 
Alternate face recognition algorithms: We did not compare mul-

iple face recognition algorithms. We used Microsoft Azure because of
n existing Mayo Clinic service agreement with Microsoft that allowed
s to test the Azure face recognition services under a secure private
latform without potentially exposing data to the public. Microsoft’s
ace recognition algorithms have also ranked #1 in ongoing NIST face
ecognition software comparisons ( Grother et al., 2018 ). Because most
eading face recognition algorithms are proprietary cloud-based tech-
ologies, securing the data used for testing presents complicated legal
nd technical challenges. Thus, although we acknowledge that testing
he relative performance of de-facing techniques against multiple face
ecognition systems would be of value, we must leave this exercise for
uture work. We also did not examine human-based face matching be-
ause comprehensive prior work ( Prior et al., 2009 ) has shown that it
as much lower matching rates (40% of participants could perform the
atching with success rates exceeding statistical chance) than with au-

omatic face recognition. 
De-facing approaches: We included what we believed to be the

ost popular de-facing approaches currently in use, and we tested each
sing its default (or only available) settings. It is possible that alternate
ettings or pre-processing approaches that we were not aware of may
ave improved the other software’s performances. Future work would
deally include a “grand challenge ”-like competition, where software
uthors would each run their own approaches on a shared data-set and
he results would be compared by third parties. 

Demographics: We performed tests using images of older adults
rom studies of aging and Alzheimer’s disease. It is possible that the per-
ormance of either criterion may not generalize to other populations.
ur mri_reface and fsl_deface were both designed for older adults, so pe-
iatric populations may be especially challenging. In future work, we
lan to test images from other populations and adapt our method as
eeded (e.g. by generating population-specific templates). 

. Conclusion 

Without de-facing, automated face recognition was able to match
articipant photographs to the correct MRI with 97% accuracy, sug-
esting that in the future some form of de-facing should be considered a
ecessary part of image de-identification prior to external data transmis-
ion or sharing. After de-facing with popular programs, recognition rates
till ranged from 28%-38%. Effects on SPM12, FreeSurfer 6, and FSL’s re-
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ional brain measurements of de-faced scans were modest but measure-
ble: smaller than standard test-retest but larger than would be expected
iven that by-design these software alter only non-brain voxels. Com-
ared to tested popular de-facers, our proposed mri_reface performed
econd best at preventing face recognition (30% vs 28% with fsl_deface )
nd modestly reduced effects on brain volume/thickness measurements.
till, our proposed method’s improvements were very modest, and fur-
her work is needed to greatly improve MRI de-facing techniques while
inimizing and reducing their impacts on brain measurements. 
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