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Alzheimer’s Disease Neuroimaging Initiative

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
A fundamental problem of supervised learning algorithms for brain imaging applications is that the number of features
far exceeds the number of subjects. In this paper, we propose a combined feature selection and extraction approach for
multiclass problems. This method starts with a bagging procedure which calculates the sign consistency of the multivariate
analysis (MVA) projection matrix feature-wise to determine the relevance of each feature. This relevance measure provides
a parsimonious matrix, which is combined with a hypothesis test to automatically determine the number of selected
features. Then, a novel MVA regularized with the sign and magnitude consistency of the features is used to generate a
reduced set of summary components providing a compact data description. We evaluated the proposed method with two
multiclass brain imaging problems: 1) the classification of the elderly subjects in four classes (cognitively normal, stable mild
cognitive impairment (MCI), MCI converting to AD in 3 years, and Alzheimer’s disease) based on structural brain imaging
data from the ADNI cohort; 2) the classification of children in 3 classes (typically developing, and 2 types of Attention
Deficit/Hyperactivity Disorder (ADHD)) based on functional connectivity. Experimental results confirmed that each brain
image (defined by 29.852 features in the ADNI database and 61.425 in the ADHD) could be represented with only 30−45%
of the original features. Furthermore, this information could be redefined into two or three summary components, providing
not only a gain of interpretability but also classification rate improvements when compared to state-of-art reference methods.
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Introduction

Machine Learning (ML) techniques can be used for the
design of imaging biomarkers for various brain disorders
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and, additionally, the inferred ML models can be analysed
as multivariate, discriminative representations of the brain
disease. Often in brain imaging applications of ML, the
number of features is larger than the number of training
subjects necessitating the use of dimensionality reduction
techniques such as Feature Selection (FS) or Feature
Extraction (FE). The usage of FS or FE is critical in
cases where the number of input variables is considerably
greater than the number of data samples. In these cases, the
usage of both methods entails dimensionality reduction and,
subsequently, avoids overfitting problems.

For these reasons, there exist numerous studies proposing
and applying dimensionality reduction methods in ML
applications to brain imaging problems. The dimensionality
reduction methods can be divided to three different
categories, and combinations of them: 1) using a-priori
neuroscientific information to select relevant features,
for instance, volumes of certain regions of interest
(Tanpitukpongse et al. 2017; Stoub et al. 2004; Douaud
et al. 2013; Varon et al. 2015); 2) using unsupervised
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dimensionality reduction before the design of the classifier
(e.g. Risacher et al. 2010; Klöppel et al. 2008; Hinrichs et al.
2011; Hardoon et al. 2007) This dimensionality reduction
is usually carried out with a principal component analysis
(PCA). 3) Utilizing feature selection, either prior to the
classifier design or jointly with the classifier design as a
regularizer (e.g. Tohka et al. 2016; Michel et al. 2011;
Cheng et al. 2017; Rondina et al. 2013; Dimitriadis et al.
2018; Jie et al. 2015; Du et al. 2018). An extensive review
on some of the most relevant feature reduction techniques
for neuroimaging can be read in Mwangi et al. (2014).

Incidentally, while FS and supervised classification have
been widely studied in brain imaging, the studies have
focused on the binary classification, and multiclass setups
have received only a limited amount of attention. The
developed algorithms for multiclass classification in brain
imaging are designed for specific problems (Bron et al.
2015; Qureshi et al. 2016; Yu et al. 2013; Cheng et al. 2019)
and can not be adapted to be used for other classification
tasks than that they are designed for.1 Furthermore, most
methods avoid dealing with high dimensional data and
do not use FS or FE to automatically learn the relevant
variables with the exception of regularized multinomial
logistic regression that has found only few applications in
brain imaging (Huttunen et al. 2013).

To address these shortcomings, we propose a Regularized
Bagged - Cannonical Correlation Analysis (RB-CCA)
method that is inspired by a recently proposed parsimonious
Multivariate Analysis (pMVA) method for FE and FS
(Muñoz-Romero et al. 2017). However, unlike with pMVA,
the FS procedure of the RB-CCA is implemented by the
calculation of a feature-wise sign consistency, analysed in
Gomez-Verdejo et al. (2019), through a bagged Cannonical
Correlation Analysis (CCA) approach. This, combined with
a statistical test introduced in this paper assigning a p-value
for the relevance of each feature, comprises an automatic
feature selection method of the optimum characteristics for
neuroimaging problems. The method’s goal is two-fold.
First, it generates a parsimonious matrix (Nie et al. 2010;
Chen and Huang 2012; Qureshi et al. 2016) which zeroes
complete rows of the projection matrix and, thus, is capable
of removing the irrelevant features. Second, the consistency
of the feature is used to emphasize (by means of a proper
regularization) the most relevant features of a subsequent
CCA. This regularized CCA is capable of projecting the

1The reference (Bron et al. 2015) summarizes the results of the data
analysis competition, where the task was to classify subjects into
Alzheimer’s disease (AD), mild cognitive impairment (MCI), and
cognitively normal classes. We use this summary paper as a reference
to all the methods in the competition if there is no particular reason to
specify a particular method.

selected features onto a lower dimension space and, thus,
providing a reduced subset of summary components to
characterize the disease based on imaging data.

Furthermore, we propose the following novel contri-
butions to pMVA to make it suitable for brain imaging
tasks: (1) Class-wise feature selection to provide additional
insights over the selected features; (2) A hypothesis test to
automatically determine the number of selected features; (3)
A dual formulation over the selected features to speed up
the final feature extraction step; (4) A balanced version of
the method to compensate the effect of class imbalance.

To analyse the performance of the proposed method, we
use two different neuroimaging databases: (1) Alzheimer’s
Disease Neuroimaging Initiative (ADNI), where subjects
have to be classified into 4 different groups: cognitively
normal (NC), progressive MCI (subjects who will convert
to AD within 3 years), stable MCI (subjects who do not
convert to AD during 3 years) (stable MCI), and and
subjects with AD. (2) ADHD-200 where the goal is to
classify subjects into 3 different groups: TDC (Typically
Developing Children), ADHD-I (ADHD of Inattentive type)
or ADHD-C (ADHD of Combined type).

To demonstrate the advantages of the proposed method,
its performance has been measured in comparison to various
baseline methods: a linear SVM, to obtain a reference error
without any dimensionality reduction, a standard CCA, to
show the limitations of a feature extraction on its own, the
feature selection (RFE) and classifying (HELM) methods
analysed by Qureshi et al. (2016) and the feature selection
method proposed by Abdulkadir et al. (2014), to analyse
the advantages of our feature selector. We show that the
proposed method outperforms the baseline methods in the
classification accuracy.

Methods: Regularized Bagged - CCA
for Multiclass Learning

This section presents the Regularized Bagged - CCA (RB-
CCA) method. As shown in the diagram in Fig. 1, the
method consists of two main steps:

1. Feature selection process. This first step combines
a standard CCA with a bagging procedure to obtain
a subset of selected voxels (XS) together with a
measure of the relevance for each selected feature
(ρ). Furthermore, the subset of selected voxels can be
automatically determined by including the statistical
test.

2. Feature extraction for summary components design
to characterize each subject. This second step is based
on a regularized version of CCA, guided by the variable
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Fig. 1 RB-CCA scheme for neuromarkers design

relevance ρ, to reduce the input set of selected features
to a subset of summary components (XB ).

Review of theMVA Framework

This section reviews the generalized MVA formulation
presented in Muñoz-Romero et al. (2017) and Muñoz-
Romero et al. (2016), which unifies into a single framework
the formulations of the most well-known MVA methods:
PCA, CCA and OPLS.

In this context, a ML problem is given by N input/output
data pairs {(xn, yn)}Nn=1, where the observations xn have
d features and the targets yn have c output variables.
Therefore, the problem is defined by two matrices: an input
data matrix X ∈ R

N×d and an output matrix Y ∈ R
N×c.

In classification problems, this output matrix is encoded
knowing yn

i = 1 when xn belongs to class i and yn
i =

0 otherwise. In this work, we consider that matrix X is
centred.

Our goal is to find a d × R projection matrix, U , that
maps the input data onto a lower dimensional space with R

features by solving the following optimization problem:

minimize L(W, U) =
∥
∥
∥(Y − XUWT )Γ 1/2

∥
∥
∥

2

F
,

s.t . UT XT XU = I (1)

where ‖·‖F
2 the Frobenius norm operator, W is a c × R

regression matrix and Γ is the matrix that will define
the different MVA algorithms considered: CCA (Γ =
N(YT Y )−1), PCA (Γ = I and Y = X) and OPLS (Γ = I ).

The constraint in Eq. 1 can be replaced by one over W ,
obtaining an equivalent optimization problem:

minimize L(W, U) =
∥
∥
∥(Y − XUWT )Γ 1/2

∥
∥
∥

2

F
,

s.t . WT Γ W = I (2)

As this paper is focused on high dimensional small-
sample problems (d >> N), working with the dual for-
mulation results more computationally efficient algorithms.

Noting that U can be expressed as a linear combination of
the inputs and some dual variables A, U can be defined as
U = XT A to express (2) as:

minimize L(W,A) =
∥
∥
∥(Y − KxAWT )Γ 1/2

∥
∥
∥

2

F
+ λ1 ‖A‖2

F ,

s.t . WT Γ W = I (3)

where we have defined Kx = XXT as the linear
kernel matrix of the input data and we have included a
regularization term over A to overcome the ill-conditioned
problems.

To solve our MVA problem, we firstly express A as a
function of W :2

A = (KxKx + λ1I )−1KxYΓ W (4)

and, then, we substitute Eqs. 4 into 3. Finally, W is obtained
as the solution of the following eigenvalue problem:

Γ 1/2YT Kx(KxKx + λ1I )−1KxYΓ 1/2V = V Σ (5)

where V = Γ 1/2W is introduced to simplify the
computations. In a similar way, V can be computed and used
to calculate A:

A = (KxKx + λ1I )−1KxYΓ 1/2V (6)

Note that the solution of Eq. 5 involves operating with
matrices of size of the order of c, instead of classical MVA
approaches which work with matrices of size of the order
of N . This advantage signifies a reduction of computational
cost in almost all cases as the number of classes in a
classification problem are usually considerably lower than
the number of training data (c << N).

2Note that the inclusion of the regularization term over A prevents
problems in the calculation of the inverse of KxKx . These issues
should not appear when working with high dimensional data, however
they can occur in case of high redundancy among variables.
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BaggedMVA for Feature Selection

When a MVA method is applied, we obtain a new low-
dimensional representation of the data given by

zr =
∑

j

xjUjr , r = 1, ..., R,

where R is the number of principal components found by
the MVA method. Intuitively, one could analyse matrix U

to measure the relevance of each characteristic according
to the magnitude of the associated weights and, therefore,
to generate a feature selector; however, in practice, this
could cause overfitting problems when dealing with high
dimensional problems. Therefore, as in Bi et al. (2003)
and Parrado-Hernández et al. (2014), overfitting can be
mitigated by including of a bagging procedure (Breiman
2001).

Here, we propose to construct a set of P bagged MVA,
where each MVA is trained with a randomly subsampled
input data XM . This process is carried out class-wise,
computing C sets of projection matrices for each bagging
iteration, {U1

c , ...Up
c }Pp=1.

Since the presented MVA framework works over the dual
variables, the projection matrix in the dual space, A, can
be calculated before the bagging procedure, as proposed
in Muñoz-Romero et al. (2017). At the same time, using
the labels corresponding to each subject, matrices X and
A can be divided into the different classes, Xc and Ac,
where these matrices are defined by the rows of X and
A corresponding to class c. This way the FS is able to
work class-wise, having a more informative selection of
the most relevant characteristics. Finally, these matrices can
be randomly subsampled for the bagging procedure, and
then, by calculating the product of both matrices U

p
c =

XT
Mc

AMc , with c = 1, . . . , C, we can obtain the projection
matrix for each class. This approach is fast, needing just to
iterate a single matrix-product per class, which is a low cost
operation.

Once the projection matrices, {Up
c }Pp=1 are computed, we

can analyse their sign consistency to measure the relevance
of each input feature for each eigenvector over the c-th class
as:

(7)

where is the indicator function, which assigns a
1 to all the positive values in the matrix and, conversely, a
0 to the negative values. This new d × R matrix provides a
high value when the j-th feature is sign consistent in the k-
th eigenvector over the bagging iterations for the c-th class.
This measures can be converted into a single measure for

each feature and class by calculating their averaged value
over the different eigenvectors:

bjc = 1

R

R
∑

r=1

Bjcr , j = 1, ..., d; c = 1, .., C.

Note that the value of bjc is normalized, so a value close
to 1 implies a highly consistent feature, whilst a value close
to 0 implies a non relevant feature with no consistency. By
sorting the bjc values, we have the class-wise most relevant
features and can choose the number of those features we
want to use. This selection could be carried out by adjusting
the percentage of most relevant features (or selecting a
threshold) by CV process. To avoid the computational cost
of this process, next subsection introduces a hypothesis test
to automatically fix the number of selected features. The
scheme of this approach, in combination with the statistical
test, is presented in Fig. 2.

Hypothesis Test for Feature Selection

After applying the bagged MVA approach, a variable is
irrelevant when it has positive and negative signs with the
same probability. To be more precise, a variable j can be
considered as irrelevant for the class c and the eigenvector r
if its associated success probability

(8)

is equal to 0.5. Then, we can formulate the following
hypothesis test:

{

H0 : pjcr = 0.5, j is not relevant for c-th class and r-th eigenvector.

H1 : pjcr �= 0.5, j is relevant for c-th class and r-th eigenvector.

(9)

To statistically evaluate if pjcr differs from 0.5, we
define the statistic tjcr which is given by the success
probability divided by a scaling factor associated with the
standard deviation of the probability. The derivation of this
scaling factor is presented in Appendix A:

tjcr = pjcr − 0.5
√

M
1−M

pjcr (1 − pjcr )

, (10)

where M is the subsampling rate.
Under the null hypothesis, the statistic tjcr follows

a normal distribution with zero mean and unit standard
deviation. Therefore, we can apply the test by selecting the
values that correspond to the tails of the normal distribution.

Once the statistic tjcr is computed, the class-wise feature
selection can be determined by majority vote of the r
parameter. This way, the selection takes into account if a
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Fig. 2 Class-wise feature Selection scheme for parsimonious MVA

feature is relevant for most eigenvectors or just for some of
them.

Thanks to the inclusion of the statistical test, the cross-
validation (CV) of the optimum number of selected features
is not needed reducing the computational time. Further-
more, this efficient approach allows the selection of features
in a class-wise manner, improving the interpretability of the
results and posing an advantage over the approach presented
in Muñoz-Romero et al. (2017).

RegularizedMVA

This section introduces the final step of the proposed
method that, combining the parsimonious pattern and the
relevance of each feature (learned in the previous step), will
allow to compute the desired summary components.

Once the bagged MVA-based feature selection
(BagMVA-ST) is applied, we obtain a parsimonious pattern
defined by sets of indexes Sc, with c = 1, . . . , C, which
indicate which features are relevant for each class. These
sets of indexes are then reduced to a single set of selected
features, S, composed by the union of all Sc subsets. So,
from the original data matrix X, here, we will use as input
for this stage the matrix XS consisting of the columns
indexed by S.

Moreover, from the bagging process, we have also
obtained information about the relevance of each feature.
Here, we will also use this information to regularize
this MVA so that we can guide the summary component
design with the relevance of each feature. In this way, this
regularization will aim to assign lower (/higher) penalties

to more (/less) relevant features, increasing (/reducing)
their influence over the projected data. To define which
features are considered more or less relevant, two criteria
are combined:

– The sign consistency of the eigenvectors. As the bagged
feature selection does, we can use the consistency
values bjc to evaluate the usefulness of a feature.

– The associated eigenvector magnitude. It is expected
that the eigenvector weights associated to relevant
variables have a greater value than useless ones. So we
can reinforce the consistency values with the following
measure of the magnitude the associated eigenvector
components:

ujr = max
c

⎧

⎨

⎩

1

P

P
∑

p=1

u
p
jcr

⎫

⎬

⎭
(11)

Then, we can combine both criteria to define the following
relevance measure:

ωj = 1

ρj

= 1

bj

∥
∥uj

∥
∥

2

(12)

As high magnitude values imply more consistency,
Eq. 12 uses the inverse of the consistencies to indicate the
relevancies for the regularization, in this way, more relevant
features will have a low penalties and the regularized MVA
will let them reach higher values.
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Now, we can include this regularization over the MVA
framework by replacing the penalty over dual variables of
Eq. 3 by a penalty over primal variables given by ωj that is,

L(W,A) =
∥
∥
∥(Y − KxS

AWT )Γ 1/2
∥
∥
∥

2

F
+ λ2

∥
∥
∥Ω1/2XT

S A

∥
∥
∥

2

F
,

s.t . WT Γ W = I (13)

where KxS
is the linear kernel matrix of the selected data,

Ω is a diagonal matrix of the relevance measure values
ωj and λ2 is a regularization parameter. Despite feature
selection, we are still dealing with a scenario where the
input dimension (size of S) is still higher than N , so the dual
space formulation leads to computational savings.

Then we can follow a similar procedure to that of
Section “Review of the MVA Framework”, so we can define
the matrix V as Γ 1/2W and obtain its value solving the
following eigenvalue problem:

Γ 1/2YT Kx(KxKx + λ2XSΩXT
S )−1KxYΓ 1/2V = V Σ

(14)

and, then, we can compute the solution of A by means of

A = (KxKx + λ2XSΩXT
S )−1KxYΓ 1/2V (15)

Balanced RegularizedMVA

Neuroimaging problems can be highly imbalanced. The
(class) imbalance refers here to the problem that there
are different numbers of representative examples of each
class, perhaps not reflecting the true (often unknown) class
distribution. If we want to obtain a representative set
of summary components (over all the classes), we have
to make MVA approach pay more attention to the less
populated classes.

For this purpose, we can define a new Frobenius norm as:

‖D‖2
FΘ

= Tr{DT ΘD}
where Θ is a diagonal matrix which uses the values of Y
to adjust weights inversely proportional to class frequencies
in the input data as N/Nc, being Nc the amount of samples
of one class. Then, in order to balance the classes, Eq. 14
would be redefined as:

Γ 1/2YT ΘKx(KxΘKx + λ2XSΩXT
S )−1KxΘYΓ 1/2V = V Σ (16)

Conversely, with the inclusion of the class balance,
Eq. 15 could be rewritten as:

A = (KxΘKx + λ2XSΩXT
S )−1KxΘYΓ 1/2V (17)

Implementation Details

We calculated the reported results with a nested 10-folds
cross-validation. The outer CV is used to divide the dataset
into training and test partitions, while the inner CV is in
charge of validation and, therefore, it divides the training
partition into a second training set and a validation set. This
way we were able to estimate the performance of the whole
framework and, additionally, validate the model parameters.
We decided to use CV over other validation techniques like
the hold-out because it tends to have lower variations in the
results, as it uses the entire training dataset, at the expense
of increasing the computational costs.

We used balanced classification accuracy of a one vs. all
SVM to compare the performance of the different variations
of the methods and to adjust the method hyperparameters.
This balanced accuracy improves the performance of
the methods on low-populated classes. The value of the
hyperparameter C of the SVM was validated using a SVM
with all the input voxels and was set to a rather small value
(C = 0.035). We evaluated this value over the remaining
approaches and we checked that their performance was
good. Therefore, the parameter C of the SVM was set to
C = 0.035 for all the methods under study, simplifying the
CV of the MVA versions.

Despite the proposed framework includes several MVA
approaches, for the sake of simplicity, we have limited
the experimental comparison to the CCA approach. We
made this decision based on the fact that CCA works in
a supervised way and that it has been seen that CCA and
OPLS work in a similar way in classification problems (Sun
et al. 2009).

We analysed the dependency on the subsampling rate and
saw that the performance of the method does not depend
on this value. Therefore, the subsampling rate was set to
50%. However, in order to have a balanced feature extractor
and, learning the consistency of each input voxel equally
over all the classes, the data was balanced in the bagging
by randomly selecting the same number of samples in each
class.

We cross-validated the regularization hyperparameter λ2,
as its value was indeed critical for the final method’s
performance. Its optimum value was cross-validated,
exploring 17 values in a logarithmic scale from [10−4 to
103]. At the same time, we set the number of extracted
features to the maximum, #classes −1, although some tests
have been carried out to discard the relevance of using less
features.

The implementation of this project was done using
Python 2.7.13 and the cross validation was carried out using
the package StratifiedKFold from Scikit-learn (Pedregosa
et al. 2011). An exemplary notebook, including the
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complete code of the proposed method, is available at
https://github.com/sevisal/regMVA.git.

Materials

ADNI Data

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led
by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD).

The initial goal of ADNI (ADNI-1) was to recruit
800 subjects but ADNI has been followed by ADNI-GO
and ADNI-2. To date these three protocols have recruited
over 1500 adults, ages 55 to 90, to participate in the
research, consisting of cognitively normal older individuals,
people with early or late MCI, and people with early AD.
The follow-up duration of each group is specified in the
protocols for ADNI-1, ADNI-2 and ADNI-GO. For up-to-
date information, see www.adni-info.org.

Data used in this work included MRIs from 200 AD
patients, 164 pMCI subjects, 100 sMCI subjects and 231
NCs ( T1-weighted MP-RAGE sequence at 1.5 T, typically
256×256×170 voxels with the voxel size of approximately
1mm × 1mm × 1.2mm) for whom baseline MRI data
were available. The characteristics of these subjects are
summarized in Table 1. The conversion status of the MCI
subjects was defined as in Moradi et al. (2015). Briefly, a
subject was considered to be in progressive MCI group if the
diagnosis was MCI at the baseline and the subject converted
to AD in three years. A subject was considered to be in
stable MCI group if the diagnosis was MCI at the baseline
and the subject did not convert to AD during the follow-up.

Subjects who had less than 3 years of follow-up and subjects
whose diagnostic status fluctuated were excluded.

The MRIs were preprocessed into gray matter tissue
images in the stereostatic space, as described by Gaser
et al. (2013), and thereafter they were smoothed with the
8-mm FWHM Gaussian kernel, resampled to 4 mm spatial
resolution and masked into 29.852 voxels.

Atrophic regions detected in AD patients were found to
overlap with those regions showing a normal age-related
decline in healthy control subjects (Dukart et al. 2011).
Therefore, the data was age-corrected by regressing out the
age of the subject on a voxel-by-voxel basis (Moradi et al.
2015).

ADHDData

We have also studied functional connectivity in ADHD using
ADHD200 data (Milham et al. 2012). The data consists of
973 resting state fMRI and anatomical MRI datasets col-
lected at eight independent imaging sites, all from children
and adolescents between the ages of 7 and 21 years. The
characteristics of these subjects are summarized in Table 2.
We used the resting state fMRIs preprocessed by the Neuro
Bureau using the Athena computer cluster of Virginia Tech
as described by Bellec et al. (2017). Briefly, the prepro-
cessing was done with AFNI (https://afni.nimh.nih.gov/) as
detailed in https://www.nitrc.org/plugins/mwiki/index.php/
neurobureau:AthenaPipeline#Extracted Time Courses.

The time courses of brain regions corresponding to
CC400 atlas (ADHD-200 version, Craddock et al. (2012))
were obtained by averaging voxel-wise fMRI intensities
within regions. This yielded 351 regional time courses per
subject. Based on these 351 regional time courses, we
computed a 351 x 351 correlation matrix describing the
strength of the functional connectivity between region pairs.
Vectorizing correlation matrix and removing redundant
elements yields 61425 features per subject. We removed the
datasets that did not pass the quality control of the Neuro
Bureau. After this, data from 922 subjects remained (555
Typically Developing, 204 ADHD-Combined, 12 ADHD-
Hyperactive/Impulsive, and 127 ADHD-Inattentive). We

Table 1 ADNI - Characteristic of data samples used in this work

Characteristic AD pMCI sMCI NC

No. of subjects 200 164 100 231

Age 75.6 ± 7.7 74.57 ± 7.0 75.4 ± 7.2 76.0 ± 5.0

Gender (M/F) 103/97 97/67 66/34 119/112
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Table 2 ADHD - Characteristic of data samples used in this work

Characteristic ADHD-C ADHD-I TDC

No. of subjects 204 127 555

Age 11.94 ± 2.6 11.3 ± 3.2 12.2 ± 3.5

Gender (M/F) 170/34 92/35 288/267

still removed 12 ADHD-Hyperactive/impulsive cases from
consideration as the number of subjects in this group was
not sufficient for meaningful classification.

Results

Performance Compared to Baseline Methods

This section presents the experimental results obtained
using the presented methods with both the ADNI and
the ADHD databases. To analyse the performance of our
algorithm, we have compared it with the following baseline
approaches:

– SVM classifier (SVM): A set of original features are fed
to a linear SVM.

– Standard CCA with a SVM (CCA): The original
features are processed by a standard CCA and, later,
classified by a linear SVM.

– SVM significance map with a SVM (p-map): The
features are fed to the p-map of the SVM which carries
out the feature selection, being after classified by a
linear SVM. The p-map+SVM method was used by
Abdulkadir et al. (2014) in the CADDementia challenge
(Bron et al. 2015) as a multiclass classification
approach following a one vs. all approach, providing a
set of selected features for each class.

Regarding the ADHD database, we have implemented
the methods used by Qureshi et al. (2016) for multiclass
classification with feature selection. One should note that
Qureshi et al. (2016) used 320 cortical features based on
structural MRI whereas we have 61425 features based on
resting-state fMRI. Three different implementations of the
method have been used, using ELM with all the features
(ELM), ELM along with the feature selection obtained
with the RFE (ELM+RFE) and HELM with the feature
selection of the RFE (HELM+RFE). When cross-validating
the number of selected features, we used CV Stability Point
(CV-SP) to select the optimum threshold.3

3As the accuracy validation curves tend to present a saturation profile
and their maximum value is given when almost all features are used,
we have selected as optimum working point the CV Stability Point
(CV-SP), the point of the curve where the saturation begins. In this

We compared the baseline approaches to the RB-
CCA+ST (RB-CCA along with statistical test) version of
our method with balanced CCA. We made use of our
balancing MVA scheme (Section “Balanced Regularized
MVA”) along with the balanced version of the final SVM
classifier. Different versions of our method are compared in
Section “Analysis of the Different Stages of the Method”.

The results obtained with the different methods with
the ADNI database are listed in Table 3. These show that
the proposed approach outperformed the baseline methods
both in terms of balanced accuracy and AUC. In addition,
this performance improvement was achieved using one
third of the original features. Comparing our approach
with the p-map baseline, the proposed approach resulted
in better classification accuracy with smaller standard
deviation in the number of selected features and could
thus be considered to lead to more consistent and relevant
characterization of the classification problem.

Table 4 shows the results obtained on the ADHD
database. The studied methods improved the results that
would be obtained by chance (33, 3% accuracy when
randomly assigning a subject to one of the three possible
classes). When comparing our method with the one
proposed by Qureshi et al. (2016), our method outperformed
it in both AUC and balanced accuracy term. In this
dataset, the main advantages are in terms of interpretability,
since we are capable of reducing the amount of input
variables one fifth from the original, maintaining a good a
classification score; note that the p-map approach presents
poor performance results when reducing the number of
input features.

Analysis of the Different Stages of theMethod

The proposed method combines different steps: a feature
selection step, a statistical test and a regularized CCA. In
this subsection, we will analyse the effect of these steps to
the final performance of our method. To do so, we have
included different combinations of the proposed feature
selection (no FS, Bagged CCA with the statistical test based
threshold (BagCCA+ST), Bagged CCA with the CV-based
threshold (BagCCA+CV)) and extraction methods (no FE,

way, we obtain a good performance point using a reduced set of
features.
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Table 3 ADNI - Accuracy results with the proposed method compared with the baselines

Method No. feat Accuracy class AUC AUC

NC sMCI pMCI AD

SVM 29.852 56,47
±5, 97%

0,892 0,694 0,792 0,860 0,831
±0, 024

Standard CCA 29.852 52,15
±5, 17%

0,854 0,603 0,751 0,825 0,786
±0, 029

p-map 19.637
±6.959

55,98
±5, 95%

0.886 0.694 0.795 0.862 0,830
±0, 024

RB-CCA+ST
(Balanced)

13.222 ±
1.004

62,91
±4,64 %

0,915 0,766 0,830 0,882 0,864
±0,024

This values have been obtained validating using the balanced accuracy. In this case, the balanced accuracy value obtained by chance would be
25%. The results show that the proposed method outperforms the baselines in terms of both accuracy and AUC

standard CCA, regularized CCA). When using the CV-
based thresholding, we used CV Stability Point to select the
optimum threshold.

Table 5 depicts the accuracy results with the different
versions of the method. All the methods in Table 5 are
with balancing and the results of unbalanced method are
presented in Appendix B. As is visible in the table, feature
selection improved the performance. Between the two types
of feature selection the statistical test based threshold
slightly outperforms with respect to accuracy, while leading
to substantial savings in computation time. Also, adding
regularization to the CCA was beneficial.

Table 6 lists the results on the ADHD database with the
different versions of the method. Comparing the selection
methods BagCCA+ST and BagCCA+CV, the accuracy

differences were minimal, however, BagCCA+ST was
orders of magnitude faster due to the elimination of one
CV loop. Furthermore, the number of selected features by
the CV-SP had a greater standard deviation than by the ST
meaning that the threshold selection by ST resulted in more
stable feature selection. Feature selection using CV-SP, in
some cases, was too conservative, selecting too few features.

In conclusion, the usage of the regularized CCA with the
bagged CCA and the statistical test (RB-CCA+ST) led to
the best performance among the presented methods.

Balanced Accuracy in Validation

Tables 7 and 8 show the confusion matrices of the classifiers
obtained based on the balanced accuracy and standard

Table 4 ADHD - Accuracy results with the proposed method compared with the baselines

Method No. feat Accuracy class AUC AUC

TDC ADHD-I ADHD-C

SVM 61.425 39,40
±14, 66%

0,592 0,502 0,649 0,582
±0, 057

Standard CCA 61.425 36,94
±8, 40%

0,597 0,500 0,632 0,581
±0, 053

p-map 969 ±61 36,54
±6, 33%

0,568 0,484 0,635 0,568
±0, 032

ELM 61.425 24,26
±10, 05%

0,533 0,504 0,567 0,537
±0, 065

ELM + RFE 7.025
±2.376

22,64
±5, 26%

0,507 0,511 0,534 0,514
±0, 060

HELM + RFE 7.025
±2.376

28,99
±8, 56%

0,525 0,505 0,564 0,531
±0, 057

RB-CCA+ST
(Balanced)

18.295
±4.393

38,48
±8,18 %

0,600 0,530 0,644 0,600
±0,058

This values have been obtained validating using the balanced accuracy. In this case, the balanced accuracy value obtained by chance would be
33, 3%. The results show that the proposed method performs in a similar way to the baselines, while been capable of reducing one fifth the amount
of used voxels
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Table 5 ADNI - Accuracies with the different versions of the method

Extraction Selection method No. feat Accuracy class AUC AUC

NC sMCI pMCI AD

No None 29.852 56,47
±5, 97%

0,892 0,694 0,792 0,860 0,831
±0, 024

BagCCA+CV 11.642
±5.373

60,55
±6, 48%

0,908 0,737 0,825 0,883 0,857
±0, 026

BagCCA+ST 13.222
±1.004

61,90
±9, 65%

0,912 0,739 0,835 0,884 0,861
±0, 024

Standard CCA None 29.852 52,09
±5, 16%

0,854 0,593 0,747 0,825 0,783
±0, 030

BagCCA+CV 15.075
±5.602

52,12
±5, 89%

0,850 0,598 0,745 0,831 0,783
±0, 030

BagCCA+ST 13.222
±1.004

52,07
±5, 95%

0,856 0,635 0,754 0,828 0,792
±0, 028

Regularized CCA None 29.852 58,19
±6, 42%

0,911 0,718 0,816 0,870 0,849
±0, 019

BagCCA+CV 6.862
±5.135

62,04
±5, 50%

0,909 0,785 0,835 0,887 0,868
±0,025

BagCCA+ST 13.222
±1.004

62,91
±4,64 %

0,915 0,766 0,830 0,882 0,864
±0, 024

This table justifies the need of adding the regularisation to the CCA as well as the usage of a selection method. The feature selection not only
provides a better performance, but also improves the interpretability of the results. Furthermore, feature selecting with the statistical test is more
efficient in terms of computational time than the validation

Table 6 ADHD - Accuracy results with the different versions of the method, considering the usage of the proposed selection and extraction
methods in their balanced version

Extraction Selection method No. feat Accuracy class AUC AUC

TDC ADHD-I ADHD-C

No None 61.425 39,40
±14,66 %

0,592 0,502 0,649 0,582
±0, 057

BagCCA+CV 21.806
±19.202

36,11
±10, 52%

0,564 0,501 0,634 0,571
±0, 045

BagCCA+ST 18.295
±4.393

38,65
±12, 23%

0,589 0,516 0,634 0,588
±0, 044

Standard CCA None 61.425 34,53
±8, 78%

0,593 0,506 0,629 0,589
±0, 057

BagCCA+CV 16.277
±11.978

37,18
±8, 72%

0,582 0,513 0,619 0,580
±0, 051

BagCCA+ST 18.295
±4.393

36,18
±8, 96%

0,598 0,528 0,624 0,594
±0, 039

Regularized CCA None 61.425 37,10
±8, 73%

0,597 0,492 0,627 0,589
±0, 055

BagCCA+CV 24.877
±17.879

37,40
±6, 96%

0,590 0,518 0,625 0,587
±0, 050

BagCCA+ST 18.295
±4.393

38, 48
±8, 18%

0,600 0,530 0,644 0,600
±0,058

The feature selection improves the interpretability of the results, reducing them by one fifth while keeping a similar performance. Furthermore,
feature selecting with the statistical test is more efficient in terms of computational time than the validation

650 Neuroinform (2020) 18:641–659



Table 7 Classifier’s confusion
matrix with the balanced
RB-CCA+ST and validating
with the balanced accuracy

Predicted label

NC sMCI pMCI AD

T
ru
e
la
be
l NC 82 % 9 % 3 % 6 %

sMCI 23 % 40 % 30 % 7 %

pMCI 6 % 19 % 54 % 21 %

AD 13 % 3 % 12 % 72 %

Predicted label

TDC ADHD-I ADHD-C
T
ru
e
la
be
l TDC 59 % 10 % 31 %

ADHD-I 60 % 7 % 33 %

ADHD-C 43 % 9 % 48 %

With the ADNI database (up) the method is capable of correctly classify around 50% of the least populated
classes while separating them from the most populated ones. With the ADHD database (down) the method
provides a good classification of the highly less populated classes regarding the complexity of the problem

accuracy, respectively. These were calculated as the sum
of the confusion matrices over the 10 outer CV-folds. The
validation is used to select the regularization parameter λ2

as outlined in section 2.6. If the balanced accuracy was
used as the validation measure, the influence of the most
populated classes was mitigated to give more importance

to less populated classes. Instead, if the standard accuracy
was used as validation measure, the influence of the more
populated classes was not mitigated and, therefore, the
misclassification of the less populated ones increased. In the
case of ADHD-200 database, this led to useless classifiers
typically selecting the most populated class.

Table 8 Classifier’s confusion
matrix with the balanced
RB-CCA+ST and validating
with the standard accuracy

Predicted label

NC sMCI pMCI AD

T
ru
e
la
be
l NC 81 % 7 % 3 % 9 %

sMCI 27 % 34 % 33 % 6 %

pMCI 6 % 21 % 52 % 21 %

AD 13 % 2 % 11 % 74 %

Predicted label

TDC ADHD-I ADHD-C

T
ru
e
la
be
l TDC 87 % 2 % 11 %

ADHD-I 86 % 4 % 10 %

ADHD-C 79 % 2 % 19 %

With the ADNI database (up) the validation provides a greater misclassification of the least populated class
(sMCI) while slightly improving the classification of the most populated ones. With the ADHD database
(down) validating with the standard accuracy implies a substantial reduction of the classification of both
least populated classes
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Selected Features and Summary Components

Figure 3 represents which voxels have been selected using
RB-CCA+ST with ADNI data.4 The selected voxels by
the proposed method agreed with expectations based on
AD literature: the selected voxels were in the temporal,
frontal and parietal areas, hypothalamus, cingulate gyrus
and hippocampus that are known to be relevant for AD
related pathology (Weiner et al. 2017; Frisoni et al.
2010). A more detailed figure of the class-wise selection
including more complete set of axial slices is available in
supplementary material.

Figure 4 shows the mean values of sign consistency
parameters bjc over 10 CV-folds, note bjc takes values
between 0 and 1. Similarly to Figs. 3, and 4 shows first
class-wise sign consistencies, and the bottom row shows the
combined relevance of all classes.

The summary components were generated by the CCA
as a projection of the data in an orthogonal space that
decorrelates the data (15). In our four-class problem with
ADNI data, three summary components were obtained
using the information of the sign and magnitude voxel-
wise consistency and were subsequently used by the
classifier. In the feature extractor CCA (1), the summary
components are given by the primal projection matrix U ,
which shows the relation between the original features and
the summary components. Figure 5 shows the first, second
and third eigenvectors averaged over the 10 folds, which
indicates how the selected voxels influence the construction
of the three summary components. Figure 6 visualizes
the summary components values for one representative
CV fold. Figure 6a depicts the first two summary
components along with the SVM boundaries between each
pair of classes for a particular fold. The two summary
components are decorrelated and orthogonal. The first
summary component separated AD subjects from the rest
and the second summary component separates the three
other classes. Note that the class overlapping in Fig. 6 is
intuitive as pMCI subjects should be more similar to AD
subjects and sMCI subjects should share a certain degree of
similarity with NC subjects. Figure 6b shows the projection
of the data using the three extracted summary components,
which have been normalised for a better interpretation.
The complete projection of the summary components is
not as intuitive as its two dimensional form and the third
component provides less help in the discrimination between
the different classes.

4Note that the T1w template (MNI152 from SPM12) is smaller than
our brain mask because our brain mask includes all voxel containing
gray matter (GM) for any subject. Therefore, some of the selected
voxels appear to be slightly outside the template with the voxel-size of
4mm3 and the smoothing applied to GM volumes magnifying effects.

Regarding the ADHD database the same procedure has
been followed as with the ADNI database. However, as
this database is composed by fMRI, the plot of the data is
less intuitive, complicating the interpretation of the results.
For this reason, the images related to the selected features
and the summary components have been included in the
supplementary material.

For the ADHD dataset, the summary component values
are shown in Fig. 7, having the plot of the summary
components along with the SVM boundaries between each
pair of classes for a particular fold. As happened with the
previous database, the main problem with this data resides
on the discrimination of the minority classes. This can be
seen in this figure, were the less populated classes are
partially separated but do not provide any kind of conclusive
result.

Discussion

This paper has presented a RB-CCA framework for the
extraction of summary components in neuroimaging data.
The method first carries out a bagging procedure, which
calculates the sign consistency of the CCA projection matrix
feature-wise, to determine the relevance of each feature.
Then, it uses the learned relevance to select the most
significant features and to regularize the posterior CCA. To
select the optimum number of features, we have proposed a
novel hypothesis test based approach as a replacement for
the CV-based model selection, which is time consuming and
prone to high variance of the CV based error estimates. The
proposed method combines a FS and a supervised FE step
capable of using the information obtained in the FS process
to influence, according to the importance of each feature,
the subsequent supervised FE stage which is also guided by
the classification task. The final result of the method are the
summary components which reduce the original number of
features to just c − 1 orthogonal components that are easy
to visualize and provide insights to the data.

The proposed method is inspired by Muñoz-Romero
et al. (2017), but contains several novel aspects as compared
to it: 1) We have adapted the bagging procedure to obtain
a class-wise FS which improves the interpretability of
the feature selection, having the features that are most
relevant for each class. 2) The additional computational
cost derived from this change is solved by the inclusion
of a statistical hypothesis test, specifically designed for
the bagged CCA scheme, to be able to automatically
select the optimum number of selected features per class.
The hypothesis test removes the necessity to carry our
computationally expensive CV to select the optimum
threshold for feature selection and we have shown that
it leads to equal classification accuracy than the use of
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Fig. 3 Locations of the most
frequently selected voxels using
RB-CCA with ADNI data. Note
that the selection is first
class-wise and each class-wise
selected voxel is included in the
final set of voxels. The overlay
intensity gives the number of
times a voxel has been selected
during the 10-fold CV and we
have used a threshold 5 to show
only those voxels which have
been selected in 50% of the
folds. Four axial slices are
shown, at z =
50mm, 20mm, −10mm, −40mm

of the MNI space. The first 4
rows show the features selected
for each class. The fifth row
shows the complete selection
which will be applied to the
input data. The bottom row
visualizes the classes providing
the selected voxels

Fig. 4 Variable relevance in
ADNI data using RB-CCA.
Only relevances of voxels which
have been selected at least in 5
of 10 CV-folds are shown. Four
axial slices are shown, at z =
50mm, 20mm, −10mm, −40mm

of the MNI space. Four top rows
show the class-wise relevances
of the voxels and the bottom row
shows the complete the
relevance of all the selected
voxels
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Fig. 5 Normalised mean values
of the generated summary
components using RB-CCA
with ADNI data. Masked with
the most selected voxels in the
10-folds CV

CV. 3) We have improved the regularized CCA by making
it use the sign consistency, which is obtained through
the bagged CCA, in its regularization term. This leads
to novel regularization based in both sign and magnitude
consistency. This modification provides a more informative
regularization by the inclusion of extra relevance criterion

that has been learned during the CCA bagging. 4) We
have introduced the dual space formulation of CCA leading
computational savings in small-sample high dimensional
scenarios. The previous approach assumed that having
regularized feature extractor was enough to use the primal
formulation, which is advantageous when (N > d), where

Fig. 6 Normalised summary
component values for one
representative fold with the
SVM’s decision boundaries
using ADNI data. The proposed
method finds a projection of the
data capable of representing the
dataset with 3 values. The first
two summary components are
the most informative and the
ones that have the biggest role in
the projection of the data. The
first summary component is
capable of discriminating
between sMCI and AD. The
second summary component
separates NC from pMCI
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Fig. 7 ADHD - Normalised
summary components for one
representative fold with the
SVM’s boundaries. The
proposed method finds a
projection of the data capable of
representing the dataset with 2
values

d refers to the number of selected features. However,
when sample sizes are small enough compared to the
data dimensionality, as often in brain imaging, the dual
formulation is advantageous. 5) Finally, we have introduced
balanced formulation of MVA to enable its use in heavily
imbalanced problems as these are typical in brain imaging.

We have applied the different variations of the proposed
method to two different databases. With the ADNI database
using the proposed parsimonious MVA along with the
feature selection and the ST provide the best results in
terms of balanced accuracy and AUC. At the same time, the
balanced version of the method outperforms the unbalanced
when there is a dataset with highly unbalanced classes.
Using this optimum set-up the method provides a balanced
accuracy of 61, 56% in the multiclass classification setting,
which poses an improvement of 5% in the balanced
accuracy compared to the different analysed baselines and
0,036 in terms of AUC.

The accuracy results obtained with our method in the
ADNI database compared to the one presented by Liu et al.
(2015) for the 4 classes classification, pose an improvement
of almost 0,14 in the standard (not balanced) accuracy.
Furthermore, we have implemented the method p-map used
by Abdulkadir et al. (2014) in the CADDementia challenge
(Bron et al. 2015). The comparison between our method and
p-map showed an improvement of 0,07 in terms of accuracy
and 0,03 in terms of AUC.

Our results suggested that in the ADNI database the
sMCI class was the most difficult to classify. This matches
with Dong et al. (2016) where different clusters where
defined to differentiate MCI subjects. In this sense, the
proposed balanced version was able to pay more attention
over the sMCI class, facilitating the detection of this group
of subjects.

The advantages were not as clear with the ADHD
database as with the ADNI database. If we compare our
performance to that of the baseline methods without feature
selection (SVM and CCA), the results show that our method
was capable of providing similar results in terms of balanced
accuracy and slightly better in terms of AUC while using
roughly 30% of the original variables.

In relation to the methods which carry out feature
selection, we have compared to p-map (Liu et al. 2015)
and RFE+HELM (Qureshi et al. 2016), which have been
implemented and validated using the balanced accuracy
measure. Note that we can not directly compare to the
results obtained in Qureshi et al. (2016) as they were
working with ROIs instead of voxels and they did not use the
balanced accuracy to validate their method and to evaluate
its performance. Our experiments showed that our method
achieves an improvement of 0,02 and 0,09 in balanced
accuracy and 0,03 and 0,07 in AUC, compared to p-map and
RFE+HELM, respectively.

The balanced version of our method outperforms the
unbalanced version, which overfits to the majority class.
Most multiclass methods proposed in neuroimaging (e.g.,
Qureshi et al. 2016, 2017) deal with class imbalance by
reducing the number of subjects of all classes to the number
of subjects of the minority class. Our method tackles the
class imbalance by the definition of a balanced version able
to maintain all the available data.

While most methods for multiclass taks in neuroimaging
are problem-specific (Bron et al. 2015; Qureshi et al.
2016), our approach is more generic. The method is able
to work with very high dimensional data, and as shown
in the experiments, overcomes the limitations by other
methods designed to use fewer variables. Regardless of
the limits imposed by the difficulty of the datasets, our
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method showed a good performance at the selection of most
relevant features, the definition of summary components
and classification. The summary components have proven
to by sufficiently informative to describe with two or
three of them the whole set of original variables. Finally,
the scoring results show that the method is capable of
working with the multiclass setting, which has not been
widely studied, providing consistent results for the different
scenarios analysed.
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Appendix A: Hypothesis Test

Considering the success probability pjcr = (1/P )
∑P

p=1

(U
p
c > 0), we can formulate the following hypothesis test:

{

H0 : pjcr = 0.5, j is not relevant for c-th class and r-th eigenvector.

H1 : pjcr �= 0.5, j is relevant for c-th class and r-th eigenvector.

(18)

To be able to statically evaluate if pjcr differs from 0.5,
we define the following statistic:

tjcr = pjcr − 0.5

σjcr

, (19)

where σjcr is a scaling factor proportional to the standard
error of pjcr . We now derive this scaling factor. The
term

∑P
p=1 (U

p
c > 0) counts of the number of times

that a feature is positive over P bagging iterations. Thus,
assuming that the bagging iterations are independent, it
can be modelled as a rescaled Binomial distribution with
parameters P (number of experiments) and pjcr (success
probability). Further, since the number of bagging iterations
is very large, the binomial distribution can be approximated
by a Normal distribution with mean P · pjcr and variance
P ·pjcr (1 −pjcr ). So, under the independence assumption,
we can define σjcr as the standard deviation of the term
1
P

∑P
p=1 (U

p
c > 0), which is straightforwardly computed

by rescaling the variance of the Normal distribution:

σjcr =
√

1

P
· pjcr (1 − pjcr ). (20)

However, we need to take into account that the
observations are coming from a bagging process and
independence can not be assumed. To address this problem,
the standard deviation is computed with an unbiased
estimator (Nadeau and Bengio 2000) which, applied to our
scenario, provides the following corrected estimator for the
standard deviation:

σ̃ corr
jcr =

√

1

P

(

1 + P
M

1 − M

)

pjcr (1 − pjcr )

�
√

M

1 − M
pjcr (1 − pjcr ) (21)

and, therefore, the statistic tj becomes:

tjcr = pjcr − 0.5
√

M
1−M

pjcr (1 − pjcr )

. (22)

The statistic tjcr is distributed according to the t-distribution
with P − 1 degrees of freedom. Since P is very large, one
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Table 9 ADNI - Accuracy results with the different versions of the method, considering the usage of the proposed selection and extraction methods
in their unbalanced version

Extraction Selection method No. feat Accuracy class AUC AUC

NC sMCI pMCI AD

No None 29.852 56,47
±5, 97%

0,892 0,694 0,792 0,860 0,831
±0, 024

BagCCA + CV-SP 11.642
±5.373

60,55
±6, 48%

0,908 0,737 0,825 0,883 0,857
±0, 026

BagCCA + ST 13.222
±1.004

61,90
±9, 65%

0,912 0,739 0,835 0,884 0,861
±0, 024

Standard CCA None 29.852 52,15
±5, 17%

0,854 0,603 0,751 0,825 0,783
±0, 030

BagCCA + CV-SP 15.821
±6.409

52,10
±5, 62%

0,849 0,597 0,745 0,830 0,783
±0, 026

BagCCA + ST 13.222
±1.004

52,07
±6, 02%

0,856 0,635 0,754 0,828 0,792
±0, 028

Regularized CCA None 29.852 59,94
±8, 72%

0,909 0,730 0,812 0,875 0,851
±0, 027

BagCCA + CV-SP 8.956
±8.857

63,10
±7, 44%

0,907 0,785 0,841 0,884 0,867
±0, 022

BagCCA + ST 13.222
±1.004

61,05
±6, 24%

0,911 0,755 0,822 0,878 0,858
±0, 022

This table justifies the need of adding the regularisation to the CCA as well as the usage of a selection method. Furthermore, this table depicts the
need to include the balanced version for the correct classification of less populated classes

Table 10 ADHD - Accuracy results with the different versions of the method, considering the usage of the proposed selection and extraction
methods in their unbalanced version

Extraction Selection method No. feat Accuracy class AUC AUC

TDC ADHD-I ADHD-C

No None 61.425 39,40
±14, 66%

0,592 0,502 0,649 0,582
±0, 057

BagCCA + CV-SP 21.806
±19.202

36,11
±10, 52%

0,564 0,501 0,634 0,571
±0, 045

BagCCA + ST 18.295
±4.393

38,65
±12, 23%

0,589 0,516 0,634 0,588
±0, 044

Standard MVA None 61.425 36,49
±8, 40%

0,597 0,500 0,632 0,581
±0, 053

BagCCA + CV-SP 20.270
±16.889

36,31
±6, 84%

0,576 0,510 0,616 0,576
±0, 048

BagCCA + ST 18.295
±4.393

36,84
±7, 18%

0,597 0,517 0,626 0,592
±0, 036

Regularized MVA None 61.425 35,68
±10, 00%

0,602 0,504 0,639 0,596
±0, 059

BagCCA + CV-SP 17.199
±16.436

35,26
±8, 33%

0,584 0,510 0,634 0,585
±0, 059

BagCCA + ST 18.295
±4.393

38, 48
±10, 74%

0,595 0,518 0,627 0,591
±0, 048

The feature selection improves the interpretability of the results, reducing them by one fifth while keeping a similar performance. Nevertheless,
the results obtained without the balanced version imply overfitting the most populated class and do not provide reliable results
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can safely approximate the t-distribution by the standard
normal distribution.

Once this statistic is calculated, the class-wise feature
selection can be carried out by majority-voting r. This means
that for each class we select the features that are considered
as relevant by the majority of the eigenvectors.

Thanks to the inclusion of the statistical test, the
cross-validation (CV) of the optimum amount of selected
features is not needed, therefore reducing the computational
time. Furthermore, this efficient approach allows the
selection of features in a class-wise manner, improving the
interpretability of the results and posing an advantage over
the approach presented in Muñoz-Romero et al. (2017).

Appendix B: UnbalancedMethod Results

In this appendix further results obtained with different
versions of the method are depicted. In particular, here we
present the results obtained in both databases when not
using the balanced version of the method.

Regarding Table 9, the results are similar to the ones
obtained in Table 5 in terms of accuracy and slightly worse
considering the AUC. The main advantage of using the
balanced version in this database is the improvement in the
classification of the most critical class, sMCI.

In Table 10 we can see the results obtained using the
unbalanced version of the method in the ADHD database. In
this highly unbalanced database, the results are worse than
the ones obtained in Table 6 in terms of accuracy, having
that without the usage of the balanced version the method
overfits to the most populated class. Therefore, it is critical
in this database to use the balanced version.
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Klöppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I.,
Rohrer, J.D., Fox, N.C., Jack, J.r. C.R., Ashburner, J., Frackowiak,
R.S. (2008). Automatic classification of MR scans in Alzheimer’s
disease. Brain: A Journal of Neurology, 131(3), 681–689.

Liu, S., Liu, S., Cai, W., Che, H., Pujol, S., Kikinis, R., Feng, D.,
Fulham, M.J., et al. (2015). Multimodal neuroimaging feature
learning for multiclass diagnosis of Alzheimer’s disease. IEEE
Transactions on Biomedical Engineering, 62(4), 1132–1140.

Michel, V., Gramfort, A., Varoquaux, G., Eger, E., Thirion, B.
(2011). Total variation regularization for fMRI-based prediction of
behavior. IEEE Transactions on Medical Imaging, 30(7), 1328–
1340.

Milham, M.P., Fair, D., Mennes, M., Mostofsky, S.H., et al. (2012).
The ADHD-200 consortium: a model to advance the translational
potential of neuroimaging in clinical neuroscience. Frontiers in
Systems Neuroscience, 6, 62.

Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., et al.
(2015). Alzheimer’s Disease Neuroimaging Initiative Machine
learning framework for early MRI-based Alzheimer’s conversion
prediction in MCI subjects. NeuroImage, 104, 398–412.
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