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Repeatedmeasures are increasingly collected in a study to investigate the trajectory of measures over time. One of the first research
questions is to determine the correlation between two measures. +e following five methods for correlation calculation are
compared: (1) Pearson correlation; (2) correlation of subject means; (3) partial correlation for subject effect; (4) partial correlation
for visit effect; and (5) a mixed model approach. Pearson correlation coefficient is traditionally used in a cross-sectional study.
Pearson correlation is close to the correlations computed from mixed-effects models that consider the correlation structure, but
Pearson correlation may not be theoretically appropriate in a repeated-measure study as it ignores the correlation of the outcomes
from multiple visits within the same subject. We compare these methods with regard to the average of correlation and the mean
squared error. In general, correlation under the mixed-effects model with the compound symmetric structure is recommended as
its correlation is close to the nominal level with small mean square error.

1. Introduction

Repeated-measure designs are increasingly used in practice
to evaluate the trajectory of measures. +e Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study is a longi-
tudinal study to investigate the progression of Alzheimer’s
disease (AD) [1, 2].+is study evaluates the normal cognitive
aging with the focus on mild cognitive impairment (MCI)
and early AD. Brain structure and function are two research
areas of interest in the ADNI study. As expected, brain
structure volumes are often highly associated with results
from cognitive tests [3–5]. In a longitudinal study, corre-
lation for repeated measures should be calculated and re-
ported. However, recent articles still only reported the
Pearson correlation coefficient that ignores the correlation of
outcomes from the same subject. For these reasons, it is
important to compare the existing correlations for repeated
measures and make recommendations for other researchers
to use.

Bland and Altman [6, 7] discussed several approaches to
compute correlations for repeated measures. +ey proposed
calculating subject means to compute the Pearson

correlation, where subject means eliminate the correlation of
outcomes from the same subject. +e second approach is to
fit a linear regression model with one measure as the de-
pendent variable and the other measure and the subject as
the predictor variables.+e second approach is similar to the
one proposed by Christensen [8] who suggested computing
correlation after adjusting for the subject effect [9–12]. In a
repeated-measure study, the visit effect is the correlation
within the subject. Lipsitz et al. [13] proposed computing
partial correlation adjusting the visit effect. When data are
correlated, mixed-effects models may be utilized to analyze
data while controlling for these additional correlations. Lam
et al. [14] were among the first to propose computing
correlation between repeatedmeasures under the compound
symmetric (CS) correlation structure. Later, Hamlett et al.
[15] developed programs to compute correlation under the
CS structure by using the commercially available statistical
software, SAS. In the work by Lam et al. [14], they also
computed the correlation under the autoregressive corre-
lation structure, AR(1). After that, Roy [16] developed SAS
macros to compute correlation under the AR(1) structure
and compared the correlations for repeated measures under
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these two correlation structures with limited simulation
studies.

+e objective of this manuscript is to conduct extensive
simulation studies to compare the existing correlations for
repeated measures with regard to the average of correlation
and the mean squared error (MSE) and identify the cor-
relation method that has the best performance to be used in
practice. In addition to the parameter of interest (correlation
for repeated measures), there are several nuisance param-
eters in the variance-covariance matrix: variances, correla-
tions within each outcome, and correlation between
outcomes from different visits [17–20]. It is computationally
intensive for these comparisons. We have to use super-
computers for simulation studies. However, it is computa-
tionally feasible to calculate correlations for an observed data
set. We use one example from the ADNI study to illustrate
the application of the considered methods to calculate
correlation between hippocampal volumes and a neuro-
psychological assessment to evaluate verbal memory.

We organize this article as follows. In Section 2, we
introduce the existing methods to calculate correlations for
repeated measures. In Section 3, we conduct extensive
Monte Carlo simulation studies to compare the performance
of the considered correlations with regard to the average of
correlation and the MSE. A real example from the ADNI
study is then used to illustrate the application of these
correlations. Lastly, we provide conclusions in Section 4 on
computing correlation for repeated measures when het-
erogeneity of correlation is observed across visits.

2. Methods

For a repeated-measure study with n participants, each
participant has several scheduled visits (mi visits for the i-th
subject). Suppose U and W are the two measures in a re-
peated-measure study and Uij and Wij are the outcomes of
the i-th subject at the j-th visit, where i � 1, 2, . . ., n and j � 1,
2, . . ., mi. +e correlation between U and W, ρUW, is the
parameter of interest to quantify a relationship between
them. Several methods have been proposed to calculate ρUW,
including independence models, partial correlation models,
and mixed-effects models.

2.1. Independent Assumption. Bland and Altman [6, 7] were
among the first to provide methods to compute longitudinal
correlation coefficient. One of their approaches assumes the
independence between outcomes from the same subject: Uij
⊥ Uij′ and Wij⊥Wij′

. +e longitudinal correlation ρUW is
computed as the Pearson correlation by ignoring the cor-
relation structure from repeated measures. +is approach is
referred to as the I approach, with the computed correlation
as ρI. +is is a naive approach that is easy to apply. Irimata
and Li [21] found that ρI for a pharmacokinetics data set is
very close to other correlations computed from other
complicated models.

2.2. Subject Means. As suggested by Bland and Altman [6],
the correlation can be computed by using the averages at the

subject level to eliminate the subject effect in repeated
measures. +is correlation is able to address the research
question whether the average of onemeasure is related to the
average of another. When correlation within eachmeasure is
large, ρUW at different visits should be similar to each other,
and this average correlation model would have good per-
formance. We refer to this correlation approach as the M
approach with the notation of ρM.

+ese two correlations for repeated measures, ρI and ρM,
are the Pearson correlation and can be computed by using
many statistical software: such as the Proc corr procedure in
SAS and the function cor or cor.test in R [22]. +e next five
correlations are computed from regression models (e.g.,
mixed-effects models), and we would like to suggest using
SAS Proc mixed procedure for implementation. Detailed
SAS programs are provided in the Appendix.

2.3. Correlation Adjusting for the Subject Effect.
Christensen [8] proposed computing correlation for re-
peated measures by partialling out the subject effect. +e
subject effect can be removed from the two measures by
fitting a multivariate regression model with both measures
being the outcomes and the subject ID as the only covariate.
+e residuals are used to compute the final correlation,
which is essentially a partial correlation method for repeated
data. +is correlation is referred to as the PS correlation that
partials out the subject effect, ρPS.

2.4. Correlation Adjusting for the Visit Effect. In the ρPS

calculation, the correlation between the two measures is
included in the multivariate model. In addition to that
correlation, another correlation between measures at dif-
ferent visits may be considered. Lipsitz et al. [13] proposed
computing partial correlation between outcome and one of
the covariates by using this approach. When one of the two
measures (e.g., measure U) is considered as the dependent
variable, the other measure (W) is considered as the co-
variate. +e correlation structure between visits is assumed
to be compound symmetric. We refer this correlation as the
ρPVa correlation. We use ρPVb for another correlation when
W is considered as the dependent variable in the model. One
of the properties for correlation is ρUW � ρWU, but this
property is not met here: ρPVa is generally not equal to ρPVb.

2.5. Mixed-Effects Model. Let Yi � (Ui1, Wi1, Ui2, Wi2, . . . ,

Uimi
, Wimi

) be the outcomes from the i-th subject, with the
vector length of 2mi. +e complete data can be reorganized
in a long format, with the columns subject ID, visit, mtype,
and outcome, where mtype� “U” for the U measure and
mtype� “W” for the W measure. +e long format utilizes
2mi rows for the outcomes from Yi.

+e linear mixed-effects model is presented as

Yi � Xiβ + Zibi + ϵi, (1)

where Xi and Zi are the design matrices for the fixed effect
and the random effect, respectively. +e random effect bi
follows a multivariate normal distribution N (0, D), and the
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measurement error ϵi follows a multivariate normal distri-
bution N (0, Ri). +e detailed formula for D and Ri may be
found in the article by Hamlett et al. [15]. +e fixed effect is
β � (β0, βU, βW)′, where β0 is the intercept, and βU and βW
are the fixed effects of U and W, respectively. Correlation
between U and W is computed as

ρUW � Corr(U, W), (2)

which is assumed to be independent of the visit.
Each subject has multiple visits, correlation within U is

Corr(Uij, Uij′) � ρd(j−j′)
U , and the correlation within W is

Corr(Wij, Wij′) � ρd(j−j′)
W , where d (j − j′) � 1 for the CS

structure and d (j − j′) � |j − j′| for the AR(1) structure. Since
Wij is correlated with both Uij and Wij′ , therefore, Uij and
Wij′ are correlated and their correlation is assumed to be
δρUW, where δ is a factor which is generally less than 1. Let
σ2U and σ2W be the variances of U and W, respectively. +ese
variances and covariances are used to derive the variance-
covariance matrix under the CS structure (see Lam et al. [14]
and Hamlett et al. [15]) and that under the AR(1) structure
(see Lam et al. [14] and Roy [16]).

3. Results

We conduct simulation studies to compare the performance
of the considered 7 methods for the correlation between
repeated measures for a study with four visits. +e mean
values of U and W are assumed to be (2.0, 1.9, 1.7, 1.4) and
(0.8, 0.7, 0.6, 0.5), with both measures decreasing as time
goes. Such data are commonly available from cognitive tests
on elderly population and other studies. +e prespecified
correlation for repeated measures is ρUW � 0.2, 0.5, and 0.8.

In the simulation studies for the AR(1) structure for the
visit effect, the correlation within U is Corr(Uij, Uij′) � ρ|j−j′|

U ,
with ρU � 0.2, 0.5, and 0.8, and the correlation within W is
Corr(Wij, Wij′) � ρ|j−j′|

W , with ρW � 0.2, 0.5, and 0.8. +e
factor δ in the correlation between Uij and Wij′ is assumed to
be 0.6 in all simulations. +e considered variances are σ2U � 1
and 3 and σ2W � 0.5 and 1.+e variance-covariance matrix can
be separated into two parts: ZiDZi

′ and Ri. We assume that a
quarter of variance is fromRi and the remaining is fromZiDZi

′.
+is weight is needed in order to calculate the covariances. For
each configuration, we simulate B � 2,000 data sets.

Under the AR(1) structure for the visit effect, Figure 1
presents the average of correlation ρUW and the MSE when
ρUW � 0.2, σ2U � 1, and n � 60 subjects. +e MSE is defined
as

MSE �
1
B

􏽘

B

b�1
􏽢ρUW(b) − ρUW( 􏼁

2
, (3)

where 􏽢ρUW(b) is the estimator of ρUW by using the b-th
simulated data set. It can be seen that the correlations
adjusting the visit effect, ρPVa and ρPVb, often underestimate
the correlation, while the correlation adjusting the subject
effect, ρPS, always overestimate the correlation. +e remaining

methods have correlations close to the nominal level. Although
ρM is the best with the correlation around the nominal level, its
MSE is much larger than the ones that have the correlations
close to the nominal level. In the calculation of ρM, each subject
only has one outcome for each measure, as compared to
multiple outcomes in other correlation calculations. Due to the
reduced number of outcomes, the variance of ρM is much large
that leads to a large MSE. It is noted that ρPVa or ρPVb could
have the lowest MSE in some cases, but their estimated cor-
relations are generally much below the nominal level. For this
reason, we exclude ρPVa and ρPVb in the following simulation
studies. When a study has the same number of visits for each
subject, the estimated correlation by using the mixed-effects
model with the CS structure, ρCS, is very similar to ρI under the
independent assumption. +e other mixed-effects model
correlation ρAR has a similar correlation as ρCS and ρI. +e
MSE of ρAR is slightly smaller than the MSEs of ρCS and ρI

when the correlations withinU orW are small, and this trend is
reversed when ρU and ρW are large. Similar results are observed
when σ2U is increased to 3.

When ρU is increased to 0.5 (the top plot in Figure 2), the
averages of ρI, ρCS, and ρAR are generally above the nominal
level, and the first two correlations are closer to the nominal
level as compared to the third correlation ρAR. We also present
the correlation estimates when sample size n is 100 in Figure 2.
It can be seen that theMSEs become smaller as compared to the
MSEs in the top plot (Figure 2) when sample size is 60.

Figure 3 shows the results when data sets are simulated
under the CS structure given ρU � 0.5, σ2U � 1, and n � 60.
Correlation ρPS does not perform well with the average
correlations much below the nominal level in many con-
figurations. We also found that ρM is likely to overestimate
the correlation. It seems that ρM and ρPS have different
trajectories as ρW increases. Both of these methods do not
have satisfactory performance with regard to correlation
under the CS structure, although ρPS has very good corre-
lation estimates under the AR(1) structure. +e other three
correlations (ρI, ρCS, and ρAR) have similar good perfor-
mance with regard to correlation and the MSE. It should be
noted that the variance-covariance matrix is not positively
defined when ρU � ρW � 0.8. +erefore, data sets cannot be
generated for that configuration. We also simulate data
under the unstructured correlation structure and found that
ρI, ρCS, and ρAR are still the best correlation estimates.

+e aforementioned simulations have data sets that each
subject has the same number of visits. In practice, it is
possible that the number of visits may not be exactly the
same for all subjects. We assume the number of visits is
either 2, 3, or 4. Each subject is randomly assigned to have 2,
3, or 4 visits with the same probability. We present the
results with n � 60 in Figure 4 when variances are small
(σ2U � 1 and σ2W � 0.5 and 1) and large (σ2U � 20 and σ2W � 10
and 30). +e MSE of ρCS is slightly smaller than that of ρI,
and their biggest difference occurs when both ρU and ρW are
large. ρAR is more likely to overestimate the correlation.
Although ρM has the correlation very close to the nominal
level, it has the largest MSE as compared to other correla-
tions. When variance is large, ρI and ρCS are the best cor-
relations with the estimated correlations much closer to the
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nominal level as to the configurations with small variances.
+e mixed-effects model correlation ρCS performs slightly
better than ρI with regard to the average of correlation and
the MSE.

3.1. Example. We use one data set from the ADNI study to
illustrate the application of the considered correlation

methods, with 47 participants who had 5-year visits and
completed imaging volumes and memory scores. Hippo-
campal volumes are found to be highly associated with the
delayed recall scores from the Rey Auditory Verbal Learning
Test (RAVLTdelayed recall) [23]. +e RAVLTdelayed recall
has the possible integer score from 0 to 15, which is often
used to assess verbal memory. +e higher the score is, the
better the memory is.
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Figure 1: Average correlation and the MSE for the 7 methods under the AR(1) correlation structure when ρUW � 0.2, σ2U � 1, and n � 60.
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Figure 2: Continued.
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+e computed correlations are presented in Table 1.
Participants in this data set have the same number of visits.
For this reason, ρI is very similar to ρCS. ρM is slightly larger
than them, and ρAR is smaller than them. Correlation ad-
justed by the subject effect ρPS is much smaller than ρCS.
Correlations adjusted by the visit effect highly depend on
which variable is considered as the dependent variable in the
linear regression model. When hippocampal volumes are
used as the dependent variable, the estimated correlation is

high (0.686), and it becomes too low (0.016) when RAVLT
delayed recalls are considered as the dependent variable.

It was reported by Wang et al. [23] that the Pearson
correlation ρI between hippocampal volumes and RAVLT
delayed recall scores is slightly above 0.4. +ey also provided
the Pearson correlations for each group (AD, MCI, and
control) which are all below the correlation using combined
samples. +e correlation within the control group is the
lowest.
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Figure 2: Average correlation and the MSE under the AR(1) correlation structure with n � 60 (top) and n � 100 (bottom) when ρUW � 0.5
and σ2U � 1.

6 Computational and Mathematical Methods in Medicine



0.2

0.4

0.6

0.8

Lo
ng

itu
di

na
l c

or
re

lat
io

n

0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

0.2 0.5 0.8 0.2 0.5 0.8

0.5 1

CS
AR

I
M
PS

ρw
ρu

σ 2 w

(a)

0.00

0.05

0.10

0.15

M
SE

0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

0.2 0.5 0.8 0.2 0.5 0.8

0.5 1

ρw

ρu

σ 2 w

CS
AR

I
M
PS

(b)

Figure 3: Average correlation and the MSE under the CS correlation structure when ρUW � 0.5, σ2U � 1, and n � 60.
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Figure 4: Continued.
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Figure 4: Average correlation and the MSE under the AR(1) correlation structure with a small variance σ2U � 1 (top) and a large variance
σ2U � 20 (bottom) when ρUW � 0.5 and n � 60 for a study with unequal numbers of visits (2, 3, or 4 visits).

Table 1: Correlation between hippocampal volumes and RAVLT delayed recall scores using 47 participants with 5 visits from the ADNI
study.

ρI ρM ρPS ρPVa ρPVb ρCS ρAR

Left hippocampal and RAVLT delayed recall scores 0.421 0.468 0.151 0.016 0.686 0.421 0.392
Left hippocampal and RAVLT immediate recall scores 0.352 0.421 0.208 0.023 0.447 0.365 0.399
Right hippocampal and RAVLT delayed recall scores 0.361 0.398 0.149 0.014 0.652 0.361 0.327
Right hippocampal and RAVLT immediate recall scores 0.316 0.373 0.211 0.021 0.443 0.335 0.343
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From Table 1, RAVLTdelayed recall scores always have a
larger correlation with left hippocampal volumes than the
correlation with right hippocampal volumes for each cor-
relation method. We also add RAVLT immediate recall
scores to further illustrate the application of the considered
methods. Its correlation with left hippocampal volumes is
often larger than its correlation with right hippocampal
volumes. +e estimated ρCS between hippocampal volumes
and RAVLT delayed recalls is larger than that between
hippocampal volumes and RAVLT immediate recalls.

4. Conclusions

From the simulation studies, ρI under the independence
assumption and ρCS using the mixed-effects model with CS
variance-covariance structure are shown to have similar
correlation estimates when subjects have the same number
of visits. But, ρCS is appropriate as it models the data
properly. +e mixed-effects model correlation ρCS is rec-
ommended for use as its correlation is close to the nominal
level with small mean square error.

5. Discussions

Lam et al. [14] derived the detailed variance and co-
variance. +e variances σ2U and σ2W and covariance σUW are
used to calculate ρUW. +ese variances and covariance
estimates are not exactly the same from the independent
model and the mixed-effects model with the CS structure:
σ2W � 16.6846 in the ρI calculation and 16.6136 from the
CS model. Because these estimated variances and co-
variance are very close between these two methods, the
final estimated correlations are very similar. When a study
has different number of follow-up for each participant, ρI
and ρCS differ from each other [18, 24–26]. For a study
with some possible outliers as seen in the data testing
association between pH and PaCO2 [6], their difference is
substantial. We provide the SAS programs by using that
example in the Appendix.

When CS or AR(1) correlation structure for the visit
effect is applied in the mixed-effects models [10, 25, 27],
the computed correlation is the same at different visits. In
the observation of the heterogeneity of correlations at
different visits, the unstructured correlation may be
considered for the visit effect. Under the heterogeneity
assumption, correlation can be computed at each visit
from a mixed-effects model [28–30]. +is brings some
challenges to explain the results, such as the overall cor-
relation and the trend of correlation. Alternatively, when a
study has a monotonic relationship between correlation
and visit, one may include an additional predictor: visit, in
the statistical model, to calculate a monotonic correlation
for repeated measures.
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