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A B S T R A C T

In the clinical study of Alzheimer’s Disease (AD) with neuroimaging data, it is challenging to identify the
progressive Mild Cognitive Impairment (pMCI) subjects from the stableMCI (sMCI) subjects (i.e., the pMCI/sMCI
classification) in an individual level because of small inter-group differences between two groups (i.e., pMCIs
and sMCIs) as well as high intra-group variations within each group. Moreover, there are a very limited number
of subjects available, which cannot guarantee to find informative and discriminative patterns for achieving high
diagnostic accuracy. In this paper, we propose a novel sparse regression method to fuse the auxiliary data into
the predictor data for the pMCI/sMCI classification, where the predictor data is structural Magnetic Resonance
Imaging (MRI) information of both pMCI and sMCI subjects and the auxiliary data includes the ages of the
subjects, the Positron Emission Tomography (PET) information of the predictor data, and the structural MRI
information of AD and Normal Controls (NC). Specifically, we incorporate the auxiliary data and the predictor
data into a unified framework to jointly achieve the following objectives: i) jointly selecting informative features
from both the auxiliary data and the predictor data; ii) robust to outliers from both the auxiliary data and the
predictor data; and iii) reducing the aging effect due to the possible cause of brain atrophy induced by both the
normal aging and the disease progression. As a result, our proposed method jointly selects the useful features
from the auxiliary data and the predictor data by taking into account the influence of outliers and the age
of the two kinds of data, i.e., the pMCI and sMCI subjects as well as the AD and NC subjects. We further
employ the linear Support Vector Machine (SVM) with the selected features of the predictor data to conduct
the pMCI/sMCI classification. Experimental results on the public data of Alzheimer’s Disease Neuroimaging
Initiative (ADNI) show the proposed method achieved the best classification performance, compared to the
best comparison method, in terms of four evaluation metrics.
. Introduction and background

With the dramatic development and prevalence of Alzheimer’s Dis-
ase (AD), it becomes vital to identify AD pathology at its early stage or
ven before its onset because the neuropathological progression in AD
ay begin many years before the appearance of clinical symptoms [1–
]. Many studies employed neuroimaging data such as structural Mag-
etic Resonance Imaging (MRI) and Positron Emission Tomography
PET) to conduct early disease diagnosis of AD [4–6]. For example,

✩ This work was partially supported by the National Key Research and Development Program of China (Grant No. 2018AAA0102200), the National Natural Sci-
nce Foundation of China (Grants No: 61632007 and 61876046), Key Project of Shenzhen Municipal Technology Research (Grant No. JSGG20200103103401723),
nd the Sichuan Science and Technology Program (Grants No: 2018GZDZX0032 and 2019YFG0535).
∗ Corresponding authors.

Khedher et al. presented a computer aided system which uses partial
least squares and principle component analysis to conduct classification
among the data such as AD, Mild Cognitive Impairment (MCI) and
Normal Control (NC) [7], while Ortiz et al. investigated the ensemble
of two deep learning architectures to discriminate AD from NC [8].
Zhu et al. proposed a joint regression and classification model using
structural MRI and PET data [9].
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Fig. 1. An illustration of the proposed method. The boxes with purple solid lines, red solid lines, and blue solid lines, respectively, represent the original MRI images of ADs and
NCs, the original MRI images of pMCIs and sMCIs, and the original PET images of pMCIs and sMCI. The boxes with purple dot lines, red dot lines, and blue dot lines, respectively,
represent the MRI feature of ADs and NCs, the MRI features of pMCIs and sMCIs, and the PET features of pMCIs and sMCI. The green box indicates the combination process of
the auxiliary data and the predictor data using our proposed method. Moreover, the vertical red solid line denotes the removal of uninformative features and the horizontal yellow
dot line indicates robustness against outlier subjects. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Mild Cognitive Impairment (MCI) is the symptomatic predementia
stage of AD, characterized by cognitive and functional impairment not
severe enough to fulfill the criteria for dementia [10,11]. The MCI
possibly progressing to AD over times is called the progressive MCI
(pMCI) and the MCI remaining stable for a long time is called the
stable MCI (sMCI). In the early diagnosis of AD, it perhaps is the most
interesting problem to distinguish pMCI subjects from sMCI subjects,
i.e., the pMCI/sMCI classification, due to that (1) i n the pathological
spectrum of AD, MCI may be the optimal stage that clinical treatments
or interventions can be effectively administered to prevent or delay
decline to severe dementia; (2) 10% to 15% of MCI population will
progress to AD annually [12,13]; and (3) the intervention treatment is
more effective before the patients progress to AD [14–16].

However, due to the subtle pathological changes (i.e., brain atrophy)
which may be masked by the normal aging effect and/or the inter-
subject variations [17,18], it is very challenging to discriminate pMCI
from sMCI. First, the pMCI has minor inter-group difference, compared
to the sMCI so that many previous studies integrated the pMCI with
the sMCI as a single category, i.e., MCI [19]. Second, there is high intra-
group variations for either the pMCI subjects or the sMCI subjects [20].
That is, different subjects in the same group (i.e., either the pMCIs or
the sMCIs) have high intra-group variations, making difficult construct
classification models. Third, the number of MCI subjects is small,
but the feature number is usually high. As a result, the pMCI/sMCI
classification often suffers from the issues of small-sized sample and
high-dimensional data [21–23] to easily result in the problem of curse
of dimensionality [20,24]. Moreover, previous classification models are
affected by redundant features and subject-level noise [21,25]. Hence,
it is very vital to investigate informative and discriminative patterns to
address above issues.

Recent studies have proposed a number of pattern recognition
methods to improve the performance of the pMCI/sMCI classification
by addressing one or more of the above issues [26]. For example, Zhu
et al. proposed a Bayesian method to detect the association between
structural MRI and genetic data by taking into account the ages of
the subjects [27], assuming that brain atrophy is influenced by both
the normal aging and the disease [17]. Wang et al. first demonstrated
that the AD/NC classification is similar to the pMCI/sMCI classification,
considering that the pMCI is like to the AD and the sMCI is like to the
NC, and then employed the AD data and NC data for the pMCI/sMCI
classification [28]. With the above assumption, the studies [25,29,30]
designed transfer learning techniques for the pMCI/sMCI classifica-
tion. Previous techniques share the common characteristics as follows,
i.e., using auxiliary information to improve the classification perfor-
mance of the predictor data. By regarding the MRI information of both
pMCI and sMCI subjects as the predictor data, the auxiliary data can be
the information, such as the ages of the subjects, the MRI information
of the AD and NC subjects, the PET data, and the genetic information.
In practice, each kind of auxiliary information could be heterogeneous
55
to others [31]. Hence, using these heterogeneous information together
for the pMCI/sMCI classification is complex and challengeable.

In this paper, we extend our conference version in [20] to use
MRI features as the predictor data to identify whether a MCI subject
progresses to AD (i.e., pMCI) or not (i.e., sMCI) within 24 months.
However, unlike the existing approaches that mostly utilized the predic-
tor data only, we further exploit source information of a subject’s age
and available PET features. Specifically, we formulate a novel sparse
regression model that jointly uses the auxiliary data and the predictor
data for feature selection, so that the useful knowledge of the auxiliary
data can be transferred to the predictor data. There are three key factors
strengthening our method, (i) (feature selection) we use the auxiliary
data to select informative features in the predictor data; (ii) (outlier
robustness) our formulation is robust to outliers from both the auxiliary
data and the predictor data; and (iii) (aging effect removal) we also
include a subject’s age as one of the features in each subject to learn its
relationship with the neuroimaging features in the prediction model.

Different from previous studies of the pMCI/sMCI classification, the
contributions of our method are twofold. First, we consider three kinds
of auxiliary information, i.e., the age, the MRI data of the AD and
NC subjects, and the PET data of the pMCI and sMCI subjects. The
auxiliary information is jointly involved in selecting features, which
discriminates our method from the existing methods [17,29,32,33] that
only used a part of them. We argue that the auxiliary information
can be complementary and related to each other in some ways, and
thus utilizing such information separately and sequentially is inevitably
limited. Our method, in contrast, integrates all auxiliary information in
a unified framework. Second, we conduct the pMCI/sMCI classification
with the consideration of outlier influence on both the auxiliary data
and the predictor data, to select useful features jointly and robustly.
In contrast, Moradi et al. used the auxiliary data for feature selection
only [17].

2. Method

We denote matrices as boldface uppercase letters, vectors as bold-
face lowercase letters, and scalars as normal italic letters, respectively,
followed by denoting the Frobenius norm and the 𝓁2,1-norm, respec-
tively, of a matrix 𝐗, as ‖𝐗‖𝐹 and ‖𝐗‖2,1. We also denote the transpose
operator, the trace operator, the rank, and the inverse of 𝐗 as 𝐗⊤,
𝑡𝑟(𝐗), 𝑟𝑎𝑛𝑘(𝐗), and 𝐗−1, respectively. We further denote 𝛼, 𝛽, and 𝜆𝑖
(𝑖 = 1,… , 5) as non-negative parameters.

We denote the MRI feature matrix, the PET feature matrix, and the
label matrix, respectively, for 𝑛𝑡 subjects of the pMCIs and the sMCIs, as
𝐗𝑡 ∈ R𝑛𝑡×𝑑 , 𝐗𝑝 ∈ R𝑛𝑡×𝑑 , and 𝐘𝑡 ∈ {0, 1}𝑛𝑡×𝑐𝑡 , where 𝑑 denotes the feature
dimension and 𝑐𝑡 is the number of classes of the predictor data. We also
denote the MRI feature matrix and the label matrix, of 𝑛𝑎 subjects of
the ADs and the NCs, respectively, as 𝐗 ∈ R𝑛𝑎×𝑑 and 𝐘 ∈ {0, 1}𝑛𝑎×𝑐𝑎 ,
𝑎 𝑎
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where 𝑐𝑎 is the number of classes of the auxiliary data. We further
denote the age factors of the predictor data and the auxiliary data, as
𝐱𝑡𝑔 ∈ R𝑛𝑡 and 𝐱𝑎𝑔 ∈ R𝑛𝑎 , respectively. In this paper, we extract Region-
f-Interests (ROIs) based features for all neuroimaging data to conduct
inary classification, i.e., 𝑐𝑡 = 𝑐𝑎 = 2, which is straightforward to be
xtended to the multi-class classification problem.

.1. Framework overview

In this paper, we propose to predict a subject to be either pMCI
r sMCI based on MRI features, whose schematic illustration is shown
n Fig. 1. Specifically, we devise a novel sparse regression method
y taking MRI features of predictor group subjects (i.e., pMCIs and
MCIs) as the predictors for prediction. Moreover,we further utilize PET
eatures of the non-predictor group subjects and MRI features of the
on-predictor group subjects (i.e., ADs and NCs), and use subject’s age
o regress out the normal aging effect. Since the MRI features are used
s predictors in our model, we regard other information including the
ges of the subjects, PET features, and MRI features of the non-predictor
roup as ‘auxiliary’ data. Specifically, we use the auxiliary MRI data
f AD and NC subjects in selecting useful features with the proposed
oint feature selection formulation, while using the auxiliary PET data
f pMCI and sMCI subjects to enhance the feature weight learning of the
redictor data with the constraint of the consistency of label prediction.
e further regard the ages of subjects as an additional feature to lessen

he normal aging effect in the diagnosis.

.2. Feature selection on predictor data

Given the predictor data 𝐗𝑡 and its corresponding label matrix 𝐘𝑡, a
obust sparse regression method linearly estimates a coefficient matrix
𝑡 ∈ R𝑑×𝑐𝑡 by optimizing the following objective function:

in
𝐖𝑡

‖𝐘𝑡 − 𝐗𝑡𝐖𝑡‖2,1 + 𝜆1‖𝐖𝑡‖2,1 (1)

he 𝓁2,1-norm loss function, i.e., a robust loss function in first term of
q. (1), makes Eq. (1) robust against the subject-level outliers [34–
6]. Specifically, each row of (𝐘𝑡 − 𝐗𝑡𝐖𝑡) in Eq. (1) corresponds to
he prediction residual of one subject. Under the 𝓁2,1-norm operation,
he residual value of each row (i.e., subject) is combined via 𝓁2-norm,
.e., the square root of the sum of the squares, and thus are less affected
y the outliers, compared to the least square loss function [37,38]. The
2,1-norm regularization term on 𝐖𝑡 penalizes 𝐖𝑡 by encouraging the
ow sparsity, i.e., all elements of some rows of 𝐖𝑡 are all zeros, to select
he corresponding features in 𝐗𝑡 [39,40].

.3. Feature selection on predictor and auxiliary data

Using Eq. (1) directly on the predictor data (i.e., the MRI features
f the pMCI and sMCI subjects) for the MCI conversion classification
ould still be ineffective due to the limited training data. To circumvent
he lack of training samples, recent studies [17,33,41,42] exploited
uxiliary information from non-predictor groups, e.g., AD and NC sub-
ects. The rationale of using such auxiliary data is that in terms of
he AD pathological spectrum, i.e., the sMCI is closer to the NC while
he pMCI is closer to the AD. Thus, the features that are informative
or the AD/NC classification could be also useful for the pMCI/sMCI
lassification [41,42]. In this paper, we also utilize such auxiliary
ata for feature selection. However, unlike previous methods [33,42]
hat mostly first learned a classification model over only the auxiliary
ata and then transferred the learned model to build a target-oriented
odel, we devise a novel sparse feature selection model that jointly

xploits both the predictor data and the auxiliary data.
With the assumption that MRI features selected for the AD/NC clas-

ification could be also informative for the pMCI/sMCI classification,
56

e propose to use MRI features of AD and NC subjects (i.e., auxiliary
data 𝐗𝑎), to help in selecting MRI features of pMCI and sMCI subjects
as follows:

min
𝐖𝑡 ,𝐖𝑎

‖𝐘𝑡 − 𝐗𝑡𝐖𝑡‖2,1 + 𝜆1‖𝐘𝑎 − 𝐗𝑎𝐖𝑎‖2,1

+ 𝜆2‖[𝐖𝑡,𝐖𝑎]‖2,1 + 𝜆3‖[𝐖𝑡,𝐖𝑎]‖2𝐹
(2)

here 𝐖𝑎 ∈ R𝑑×𝑐𝑎 is a coefficient matrix for the auxiliary data. The
eason to use 𝓁2,1-norm on the loss function of auxiliary data (i.e., the
econd term in Eq. (2)) is similar to Eq. (1), i.e., for robustness to

outliers. The Frobenius norm on [𝐖𝑡 𝐖𝑎] in the fourth term of Eq. (2) is
used to provide a group effect, which tends to select highly correlated
features together, by countering for some weaknesses of the sparsity
constraint [43,44]. The 𝓁2,1-norm regularizer on [𝐖𝑡,𝐖𝑎] ∈ R𝑑×(𝑐𝑡+𝑐𝑎)

encourages the row-wise joint sparsity [37,38]. This sparsity constraint
encourages the same set of features to be selected for both 𝐗𝑡 and
𝐗𝑎 (recall that 𝐗𝑡 and 𝐗𝑎 denote the feature matrix for the predictor
and auxiliary data, respectively). With the sparsity regularization term
‖[𝐖𝑡,𝐖𝑎]‖2,1, the useful features are kept by satisfying the AD/NC
classification constraint (via 𝐖𝑎) and the AD/NC classification (via
𝐖𝑡), simultaneously. The jointly learned model is more robust than the
individual models of either only satisfying the pMCI/sMCI classification
constraint (via 𝐖𝑎) [17,41] which does not consider the pathologi-
cal difference in the pMCI and sMCI subjects, or only satisfying the
pMCI/sMCI classification constraint (via 𝐖𝑡) in [33,42] which has been
reported to have limited performance due to the small number of
subjects.

In the multiple-modality AD study, it has shown that the PET data
and the MRI data could provide complementary information to each
other [17,29,42]. In this paper, we use the PET data of the pMCI and
sMCI subjects, i.e., 𝐗𝑝, as other kind of auxiliary data, to help learn
the coefficient matrix 𝐖𝑡 of the predictor data. More specifically, we
constrain the predicted values from the PET data and the MRI data
to be close to each other, as both modalities share the same label
information. As a result, we have the following objective function

min
𝐖𝑡 ,𝐖𝑝

‖𝐗𝑡𝐖𝑡 − 𝐗𝑝𝐖𝑝‖2,1 + 𝜆4‖𝐖𝑝‖2,1 (3)

where 𝐖𝑝 ∈ R𝑑×𝑐𝑡 is a coefficient matrix to the PET data. 𝐗𝑡𝐖𝑡 and
𝐗𝑝𝐖𝑝 are the predictions of the label matrix using the MRI and PET
data, respectively. Thus, their difference, measured by the summation
of element-wise similarity, should be as small as possible. Combining
Eq. (2) with Eq. (3), we obtain the following objective function, which
learns 𝐖𝑡 with the MRI data of AD/NC subjects and the PET data of
pMCI/sMCI subjects,

min
𝐖𝑡 ,𝐖𝑎 ,𝐖𝑝

‖𝐘𝑡 − 𝐗𝑡𝐖𝑡‖2,1 + 𝜆1‖𝐘𝑎 − 𝐗𝑎𝐖𝑎‖2,1

+ 𝜆2‖𝐗𝑡𝐖𝑡 − 𝐗𝑝𝐖𝑝‖2,1 + 𝜆3‖[𝐖𝑡,𝐖𝑎]‖2,1
+ 𝜆4‖[𝐖𝑡,𝐖𝑎]‖2𝐹 + 𝜆5‖𝐖𝑝‖2,1.

(4)

2.4. Aging effect removal

The studies (e.g., [17,45]) showed that both the normal aging and
he AD pathology contribute to brain atrophy and it is necessary to
emove the aging effect to the brain atrophy before analysis. The first
ethod designed for the aging effect removal fits a linear regression
odel between the features and the age of NC subjects to obtain a

oefficient matrix [17,45]. This coefficient matrix denotes how the age
ffects the feature values. The second method directly fits the model by
sing both features and the age as covariates [17,27]. Actually, both of
hem assume that there is linear relationship among the labels, features
nd ages. Hence, we use the ages of the subjects as one feature in both
he predictor data and the auxiliary data to have our final objective
unction as follows.

min
𝐖𝑡 ,𝐰𝑡𝑔 ,𝐖𝑎 ,𝐰𝑎𝑔 ,𝐖𝑝

‖𝐘𝑡 − [𝐗𝑡, 𝐱𝑡𝑔][𝐖⊤
𝑡 ,𝐰

⊤
𝑡𝑔]

⊤
‖2,1

+ 𝜆1‖𝐘𝑎 − [𝐗𝑎, 𝐱𝑎𝑔][𝐖⊤
𝑎 ,𝐰

⊤
𝑎𝑔]

⊤
‖2,1

+ 𝜆2‖𝐗𝑡𝐖𝑡 − 𝐗𝑝𝐖𝑝‖2,1
+ 𝜆3‖[𝐖𝑡,𝐰𝑡𝑔 ,𝐖𝑎,𝐰𝑎𝑔]‖2𝐹

(5)
+ 𝛼‖[𝐖𝑡,𝐖𝑎]‖2,1 + 𝛽‖𝐖𝑝‖2,1
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where 𝐰𝑡𝑔 ∈ R1×𝑐𝑡 and 𝐰𝑎𝑔 ∈ R1×𝑐𝑎 are coefficient matrices. In Eq. (5),
he last two terms help select common useful features for the first
wo data fitting terms, while the third term imposes label prediction
onsistency between 𝐗𝑡 and 𝐗𝑝. In addition, the use of the 𝓁2,1-norm
oss function helps to learn 𝐗𝑡, 𝐗𝑝, and 𝐗𝑎 by reducing the influence of
utliers.

It is time-consuming to tune 5 parameters (i.e., 𝜆1, 𝜆2, 𝜆3, 𝛼, and 𝛽)
or the optimization of Eq. (5). To address this issue, we add a square
oot operator in the terms, i.e., the 2nd term, the 3rd term, and the 4th
erm, in Eq. (5) and obtain our final objective function as follows

min
𝐖𝑡 ,𝐰𝑡𝑔 ,𝐖𝑎 ,𝐰𝑎𝑔 ,𝐖𝑝

‖𝐘𝑡 − [𝐗𝑡, 𝐱𝑡𝑔][𝐖⊤
𝑡 ,𝐰

⊤
𝑡𝑔]

⊤
‖2,1

+
√

‖𝐘𝑎 − [𝐗𝑎, 𝐱𝑎𝑔][𝐖⊤
𝑎 ,𝐰⊤

𝑎𝑔]⊤‖2,1

+
√

‖𝐗𝑡𝐖𝑡 − 𝐗𝑝𝐖𝑝‖2,1

+
√

‖[𝐖𝑡,𝐰𝑡𝑔 ,𝐖𝑎,𝐰𝑎𝑔]‖2𝐹

+ 𝛼‖[𝐖𝑡,𝐖𝑎]‖2,1 + 𝛽‖𝐖𝑝‖2,1

(6)

There is no explicit weight between the loss function and the regu-
larization terms. The square root operators in Eq. (6) facilitate to learn
implicit weights to balance the loss function and each regularization
term. Specifically, the Lagrange function of Eq. (6) is

min
𝐖𝑡 ,𝐰𝑡𝑔 ,𝐖𝑎 ,𝐰𝑎𝑔 ,𝐖𝑝

‖𝐘𝑡 − [𝐗𝑡, 𝐱𝑡𝑔][𝐖⊤
𝑡 ,𝐰

⊤
𝑡𝑔]

⊤
‖2,1

+
√

‖𝐘𝑎 − [𝐗𝑎, 𝐱𝑎𝑔][𝐖⊤
𝑎 ,𝐰⊤

𝑎𝑔]⊤‖2,1

+
√

‖𝐗𝑡𝐖𝑡 − 𝐗𝑝𝐖𝑝‖2,1

+
√

‖[𝐖𝑡,𝐰𝑡𝑔 ,𝐖𝑎,𝐰𝑎𝑔]‖2𝐹

+ 𝛼‖[𝐖𝑡,𝐖𝑎]‖2,1 + 𝛽‖𝐖𝑝‖2,1

+G(𝜦,𝐖𝑡,𝐰𝑡𝑔 ,𝐖𝑎,𝐰𝑎𝑔 ,𝐖𝑝)

(7)

where 𝜦 is the Lagrange multiplier and G(𝜦,𝐖𝑡,𝐰𝑡𝑔 ,𝐖𝑎,𝐰𝑎𝑔 ,𝐖𝑝) is the
formalized term derived from the constraints. Taking the derivative of
Eq. (7) w.r.t. 𝐖𝑝 and setting the derivative to zero, we have

𝜆2
𝜕‖𝐗𝑡𝐖𝑡−𝐗𝑝𝐖𝑝‖2,1

𝜕𝐖𝑝
+ 𝛽2

𝜕‖𝐖𝑝‖2,1
𝜕𝐖𝑝

+ 𝜕G(𝜦,𝐁,𝐅)
𝜕𝐅 = 0, (8)

here

𝜆2 =
1

2
√

‖𝐗𝑡𝐖𝑡−𝐗𝑝𝐖𝑝‖2,1
. (9)

It is noteworthy that 𝜆2 in Eq. (9) is dependent on the variable of
𝑝 and Eq. (8) cannot be directly solved without knowing the value of

2. Once the value of 𝜆2 is available, Eq. (8) can be considered as the
olution of the following problem

min
𝐖𝑝

𝜆2‖𝐗𝑡𝐖𝑡 − 𝐗𝑝𝐖𝑝‖2,1 + 𝛽‖𝐖𝑝‖2,1. (10)

The optimization of 𝐖𝑝 in Eq. (10) is straightforward shown in next
ection. Once the value of 𝐖𝑝 is obtained, the value of 𝜆2 in Eq. (9) can

be obtained as well. This motivates us to optimize 𝐖𝑝 and 𝜆2 using the
alternating optimization strategy [46]. As a result, the solution of 𝐖𝑝
is a local optimal solution of Eq. (6) and the value of 𝜆2 is the weight
between the loss function and the second term in Eq. (6). Moreover, if
the alternating optimization strategy converges (it will be proved later),
the solution of 𝐖𝑝 in Eq. (10) satisfies the Karush–Kuhn–Tucker (KKT)
onditions of Eq. (6).

The value of 𝜆2 is also related to the update of 𝐖𝑡. Moreover, the
alue of 𝜆1 is related to the updates of 𝐖𝑎 and 𝐰𝑎𝑔 , and the value of 𝜆3
s related to the optimization of 𝐖𝑡 and 𝐰𝑡𝑔 . Based on the similar steps
rom Eq. (7) to Eq. (10), we have the following result while individually
57
optimizing 𝐖𝑝, 𝐖𝑎, 𝐰𝑎𝑔 , 𝐖𝑡, and 𝐰𝑡𝑔
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⎪
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⎪

⎪

⎨

⎪
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⎪

⎪

⎪

⎪

⎪
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min
𝐖𝑡 ,𝐰𝑡𝑔 ,𝐖𝑎 ,𝐰𝑎𝑔 ,𝐖𝑝

‖𝐘𝑡 − [𝐗𝑡, 𝐱𝑡𝑔][𝐖⊤
𝑡 ,𝐰

⊤
𝑡𝑔]

⊤
‖2,1

+ 𝜆1‖𝐘𝑎 − [𝐗𝑎, 𝐱𝑎𝑔][𝐖⊤
𝑎 ,𝐰

⊤
𝑎𝑔]

⊤
‖2,1

+ 𝜆2‖𝐗𝑡𝐖𝑡 − 𝐗𝑝𝐖𝑝‖2,1

+ 𝜆3‖[𝐖𝑡,𝐰𝑡𝑔 ,𝐖𝑎,𝐰𝑎𝑔]‖2𝐹
+ 𝛼‖[𝐖𝑡,𝐖𝑎]‖2,1 + 𝛽‖𝐖𝑝‖2,1 (a)

𝜆1 =
1

2
√

‖𝐘𝑎−[𝐗𝑎 ,𝐱𝑎𝑔 ][𝐖⊤
𝑎 ,𝐰⊤

𝑎𝑔 ]⊤‖2,1
(b)

𝜆2 =
1

2
√

‖𝐗𝑡𝐖𝑡−𝐗𝑝𝐖𝑝‖2,1
(c)

𝜆3 =
1

2
√

‖[𝐖𝑡 ,𝐰𝑡𝑔 ,𝐖𝑎 ,𝐰𝑎𝑔 ]‖2𝐹
. (d)

(11)

Algorithm 1: The pseudo of solving Eq. (6).
Input: 𝐗𝑡, 𝐗𝑝, 𝐘𝑡, 𝐗𝑎, 𝐘𝑎, 𝐱𝑡𝑔 , 𝐱𝑎𝑔 , 𝛼, and 𝛽;
Output: 𝐰𝑡𝑔 , 𝐰𝑎𝑔 , 𝐖𝑡, 𝐖𝑎, and 𝐖𝑝;

1 Randomly initialize 𝐖𝑡, 𝐰𝑡𝑔 , 𝐖𝑝, 𝐖𝑎, and 𝐰𝑎𝑔 ;
2 Initialize 𝜆2 via 𝜆2 =

1
2‖[𝐖𝑡 ,𝐰𝑡𝑔 ,𝐖𝑎 ,𝐰𝑎𝑔 ]‖𝐹

;

3 repeat
4 Calculate 𝐀 and 𝐁 by Eq. (13);
5 Calculate 𝐂 and 𝐔 by Eq. (16);
6 Calculate 𝐕 by Eq. (21);
7 Update 𝐰𝑡𝑔 and 𝐰𝑎𝑔 by Eq. (12);
8 Update 𝐖𝑎 by Eq. (18);
9 Update 𝐖𝑡 by Eq. (15);
10 Update 𝐖𝑝 by Eq. (20);
11 Update 𝜆1 by Eq. (11b);
12 Update 𝜆2 by Eq. (11c);
13 Update 𝜆3 by Eq. (11d);
14 until Eq. (6) converges;

The values of 𝜆1, 𝜆2, and 𝜆3 are automatically obtained without the
tuning process and can be regarded as the weight of the corresponding
term. For example, if the prediction error is small, the value of 𝜆1 is
large, i.e., the second term in Eq. (6) is more important. Hence, the
optimization of the value of 𝜆1 automatically balances the contribution
of the second term in Eq. (6). As a result, the optimization of Eq. (6)
is changed to optimize Eq. (11a). It is noteworthy that we keep two
parameters (i.e., 𝛼 and 𝛽) in Eq. (6) to be tuned because they control
the sparsity of the terms ‖[𝐖𝑡,𝐖𝑎]‖2,1 and ‖𝐖𝑝‖2,1. Moreover, their
sparsity will change based on the data distribution [23,37,39].

2.5. Optimization

Eq. (11a) is not convex to all variables, i.e., 𝐰𝑡𝑔 , 𝐰𝑎𝑔 , 𝐖𝑡, 𝐖𝑎,
and 𝐖𝑝, but is convex to each variable while fixing the others to
achieve a local minima. Hence, in this paper, we employ the alternating
optimization strategy [46] to solve Eq. (11a). Specifically, our method
iteratively optimizes each parameter by fixing the others until the
objective function value is stable. We list the pseudo of our method
in Algorithm 1.

2.5.1. Update 𝐰𝑡𝑔 and 𝐰𝑎𝑔 by fixing 𝐖𝑡, 𝐖𝑎, and 𝐖𝑝
With the fixed 𝐖𝑡, 𝐖𝑎, and 𝐖𝑝, the optimization with respect to

the variables 𝐰𝑡𝑔 and 𝐰𝑎𝑔 are independent to each other. Thus we
individually set the derivative of Eq. (11a) with respect to 𝐰𝑡𝑔 and 𝐰𝑎𝑔
to zero to obtain
�̂�𝑡𝑔 = (𝐱⊤𝑡𝑔𝐀𝐱𝑡𝑔 + 𝜆2)−1𝐱⊤𝑡𝑔𝐀(𝐘𝑡 − 𝐗𝑡𝐖𝑡)
�̂�𝑎𝑔 = (𝐱⊤𝑎𝑔𝐁𝐱𝑎𝑔 + 𝜆2)−1𝐱⊤𝑎𝑔𝐁(𝐘𝑎 − 𝐗𝑎𝐖𝑎)

(12)

where 𝐀 ∈ R𝑛×𝑛 and 𝐁 ∈ R𝑛×𝑛, respectively, are diagonal matrices
where the diagonal elements are defined as

⎧

⎪

⎨

⎪

𝑎𝑗𝑗 =
1

2‖(𝐘𝑡−[𝐗𝑡 ,𝐱𝑡𝑔 ][𝐖⊤
𝑡 ,𝐰

⊤
𝑡𝑔 ]

⊤)𝑗‖22
, 𝑗 = 1,… , 𝑛.

𝑏𝑗𝑗 =
1

2‖(𝐘 −[𝐗 ,𝐱 ][𝐖⊤ ,𝐰⊤ ]⊤)𝑗‖2
, 𝑗 = 1,… , 𝑛.

(13)
⎩

𝑎 𝑎 𝑎𝑔 𝑎 𝑎𝑔 2
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2.5.2. Update 𝐖𝑡 by fixing 𝐰𝑡𝑔 , 𝐰𝑎𝑔 , 𝐖𝑎, and 𝐖𝑝
Given 𝐰𝑡𝑔 , 𝐰𝑎𝑔 , 𝐖𝑎, and 𝐖𝑝, Eq. (11a) is change to

min
𝐖𝑡

‖𝐘𝑡 − [𝐗𝑡, 𝐱𝑡𝑔][𝐖⊤
𝑡 ,𝐰

⊤
𝑡𝑔]

⊤
‖2,1

+ ‖𝐗𝑡𝐖𝑡 − 𝐗𝑝𝐖𝑝‖2,1 + 𝜆1‖[𝐖𝑡,𝐖𝑎]‖2,1
+ ‖[𝐖𝑡,𝐰𝑡𝑔 ,𝐖𝑎,𝐰𝑎𝑔]‖𝐹 .

(14)

By setting the derivative of Eq. (14) with respect to 𝐖𝑡 to zero and
olving the resulting equations, we can obtain

�̂�𝑡 = 𝐆−1𝐇 (15)

here 𝐆 = (𝐗⊤
𝑡 (𝐀 + 𝐂)𝐗𝑡 + 𝜆1𝐔 + 𝜆2𝐈𝑑 ) and 𝐇 = (𝐗⊤

𝑡 𝐀(𝐘𝑡 − 𝐱𝑡𝑔𝐰𝑡𝑔) +
⊤
𝑡 𝐂𝐗𝑝𝐖𝑝), 𝐈𝑑 ∈ R𝑑×𝑑 is an identity matrix, and 𝐂 ∈ R𝑛×𝑛 and 𝐔 ∈ R𝑑×𝑑

re diagonal matrices and their respective diagonal elements are

𝑐𝑗𝑗 =
1

2‖(𝐗𝑡𝐖𝑡−𝐗𝑝𝐖𝑝)𝑗‖22
, 𝑗 = 1,… , 𝑛.

𝑢𝑘𝑘 = 1
2‖(𝐖𝑡 ,𝐖𝑎)𝑘‖22

, 𝑗 = 1,… , 𝑛.
(16)

.5.3. Update 𝐖𝑎 by fixing 𝐰𝑡𝑔 , 𝐰𝑎𝑔 , 𝐖𝑡, and 𝐖𝑝
With fixed 𝐰𝑡𝑔 , 𝐰𝑎𝑔 , 𝐖𝑡, and 𝐖𝑝, Eq. (11a) becomes:

min
𝐖𝑎

‖𝐘𝑎 − [𝐗𝑎, 𝐱𝑎𝑔][𝐖⊤
𝑎 ,𝐰

⊤
𝑎𝑔]

⊤
‖2,1

+ 𝜆1‖[𝐖𝑡,𝐖𝑎]‖2,1 + ‖[𝐖𝑡,𝐰𝑡𝑔 ,𝐖𝑎,𝐰𝑎𝑔]‖𝐹 .
(17)

By setting the derivative of Eq. (17) with respect to 𝐖𝑡 to zero and
olving the equations, we obtain

�̂�𝑎 = (𝐗⊤
𝑎𝐁𝐗𝑡 + 𝜆1𝐔 + 𝜆2𝐈𝑑 )−1𝐗⊤

𝑎𝐁(𝐘𝑡 − 𝐱𝑡𝑔𝐰𝑡𝑔). (18)

2.5.4. Update 𝐖𝑝 by fixing 𝐰𝑡𝑔 , 𝐰𝑎𝑔 , 𝐖𝑡, and 𝐖𝑎
Given 𝐰𝑡𝑔 , 𝐰𝑎𝑔 , 𝐖𝑡, and 𝐖𝑎, Eq. (11a) becomes:

min
𝐖𝑝

‖𝐗𝑡𝐖𝑡 − 𝐗𝑝𝐖𝑝‖2,1 + 𝜆3‖𝐖𝑝‖2,1. (19)

By setting the derivative of Eq. (19) with respect to 𝐖𝑡 to zero and
solving the equations, we obtain

�̂�𝑝 = (𝐗⊤
𝑝𝐂𝐗𝑝 + 𝜆3𝐕)−1𝐗⊤

𝑝𝐂𝐗𝑡𝐖𝑡 (20)

where 𝐕 ∈ R𝑑×𝑑 is a diagonal matrix whose diagonal elements are
defined as

𝑣𝑘𝑘 = 1
2‖(𝐖𝑝)𝑘‖22

, 𝑘 = 1,… , 𝑑. (21)

.5.5. Convergence, initialization, and complexity
Algorithm 1 iteratively optimizes the variables (i.e., 𝐰𝑡𝑔 , 𝐰𝑎𝑔 , 𝐖𝑡,

𝑎, and 𝐖𝑝) under the framework of the alternating optimization
trategy in [46]. Moreover, each variable has closed-form solution. The
onvergence of the alternating optimization strategy framework has
een theoretically proved, therefore Algorithm 1 converges to a local
inimization.

Our proposed method randomly initializes the variables, i.e., 𝐰𝑡𝑔 ,
𝑎𝑔 , 𝐖𝑡, 𝐖𝑎, and 𝐖𝑝 to result in that Algorithm 1 typically achieves
onvergence within 30 iterations.

The time complexity of optimizing 𝐰𝑡𝑔 , 𝐰𝑎𝑔 , 𝐖𝑡, 𝐖𝑎, and 𝐖𝑝,
espectively, is 𝑂(𝑛2𝑐), 𝑂(𝑛2𝑐), 𝑂(𝑑3𝑛), 𝑂(𝑑3𝑛), and 𝑂(𝑑3𝑛), where n,
d, and c, respectively, represent the numbers of the samples, the fea-
tures, and the classes. Hence, the time complexity of Algorithm 1 is
𝑚𝑖𝑛{𝑂(𝑑3𝑛), 𝑂(𝑛2)}.

3. Experiments

3.1. Data sets

In our experiments, we used the Alzheimer’s Disease Neuro-
58

imaging Initiative (ADNI) data set publicly available on the web C
(adni.loni.usc.edu).1 We preprocessed the MRI and PET images by
sequentially applying spatial distortion correction, skull-stripping, and
cerebellum removal, followed by segmenting the MRI images into gray
matter, white matter, and cerebrospinal fluid, and then warped them
into the AAL template to obtain 90 regions. We further aligned the PET
images to their respective MRI images. We finally obtained 90 gray
matter volumes from a MRI image and 90 mean intensities from a PET
image and used them for features. Besides, the age feature was the age
of the subject in this paper.

We generated two data sets from the ADNI cohort: (1) ‘Data1’
included all subjects with complete MRI and PET data, consisting of 93
AD, 99 NC, 55 pMCI, and 59 sMCI subjects, and (2) ‘Data2’ includes
all subjects with complete MRI, PET, and CerebroSpinal Fluid (CSF),2
consisting of 50 AD, 51 NC, 31 pMCI, and 30 sMCI subjects. The pMCI
subjects were those who converted to AD within 24 months, while sMCI
subjects were those who did not convert to AD within 24 months.

3.2. Experimental settings

We defined a baseline model that utilized the original features
for classification (‘Original’) and also considered other state-of-the-
art feature selection methods, namely, General Sparsity Regularized
feature selection (GSR) [47], Semi-Supervised Learning (SSL) [17],
and Domain Transfer Learning (DTL) [29]. We list the detail of the
comparison methods as follows.

• Original is the baseline method which uses all predictor data to
perform classification without removing any features.

• GSR conducts feature selection by optimizing an 𝓁2,𝑟-norm (0 <
𝑟 ≤ 2) loss function and an 𝓁2,𝑝-norm (0 < 𝑝 ≤ 1) regularization
term to reduce the influence of subject-level outliers. In our exper-
iments, we considered to form its two variants: ‘GSR-Pre’ (using
the predictor data alone) and ‘GSR-Aux’ (using the auxiliary data
of the AD and NC subjects alone, i.e., [33]).

• SSL sequentially performs the aging effect removal and feature
selection using the AD and NC subjects.

• DTL conducts feature selection using both the predictor data and
the auxiliary data, without taking into account the aging effect
removal and the robustness against outliers in the data.

We have two proposed methods, i.e., Pro-Age in Eq. (5) tuning
5 parameters and ProAuto-Age in Eq. (6) only tuning 2 parameters.
It is noteworthy that most of comparison methods did not take the
aging effect removal into account. Hence, we used ‘Pro-noAge’ and
‘ProAuto-noAge’, to denote our two proposed methods without taking
into account the aging effect removal.

We repeated the 10-fold cross-validation for 100 times on all meth-
ods, each of which conducted 5-fold nested cross-validations for model
selection. We used grid search in the search range of {10−5,… , 105}
to determine the related parameter values and in the search range
of 𝐶 ∈ {2−5, 2−4,… , 25} in SVM, for all methods so that all methods
outputted their best performance.

In this paper, we conducted the experiments using two sets of pre-
dictor data, i.e., ‘MRI’, and ‘MRI + PET’, respectively, to indicate single
modality predictors (only MRI features) and multi-modality predictors

1 The ADNI was launched in 2003 by the National Institute on Aging (NIA),
he National Institute of Biomedical Imaging and Bioengineering (NIBIB), the
ood and Drug Administration (FDA), private pharmaceutical companies, and
on-profit organizations. The main goal of ADNI was designed to test if the
erial of MRI, PET, other biological markers, and clinical and neuropsycholog-
cal assessment can be combined to measure the progression of MCI and early
D. The investigators in ADNI contributed to provide the ADNI data, but did
ot participate in either the analysis or the writing of this report.

2 It is noteworthy that we did not use CSF features in our experiments and

SF features only help us to decide the used subjects.
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Table 1
Classification performance (%) of all methods on two real data sets with different features. The value in parentheses is the standard deviation
and ‘Data 1 (MRI) indicates the data set ‘Data 1’ with the MRI feature.
Data set Metrics Original GSR-Pre GSR-Aux SSL DTL Pro-noAge ProAuto-noAge

Data 1 (MRI)

Accuracy 53.40 (1.3) 55.60 (0.6) 57.60 (1.0) 58.60 (0.8) 57.70 (2.1) 64.80 (0.7) 65.70 (1.0)
Sensitivity 62.95 (2.2) 62.04 (1.3) 63.07 (1.5) 54.85 (1.1) 56.40 (2.4) 63.19 (2.2) 65.49 (1.6)
Specificity 44.50 (0.9) 49.60 (1.6) 52.50 (0.5) 62.10 (0.7) 58.90 (0.2) 66.30 (0.3) 65.90 (0.2)
AUC 59.60 (0.1) 64.20 (0.2) 65.10 (0.3) 63.90 (0.5) 63.80 (0.6) 65.90 (0.1) 69.60 (0.2)

Data 2 (MRI)

Accuracy 50.30 (0.8) 52.43 (0.7) 54.60 (1.0) 56.80 (1.4) 61.90 (1.1) 62.50 (2.1) 65.90 (1.1)
Sensitivity 49.08 (0.8) 52.20 (0.7) 55.50 (1.0) 57.92 (1.4) 62.13 (1.1) 62.22 (2.1) 69.11 (1.2)
Specificity 51.57 (0.9) 52.61 (0.6) 53.62 (1.1) 55.65 (1.0) 61.66 (1.8) 62.79 (1.4) 62.58 (0.6)
AUC 60.50 (0.4) 61.90 (0.2) 63.01 (0.2) 63.85 (1.6) 65.76 (1.7) 66.93 (0.9) 68.43 (1.4)

Data 1 (MRI + PET)

Accuracy 65.50 (1.4) 67.20 (0.7) 68.90 (1.9) 68.88 (0.6) 70.90 (1.7) 76.60 (0.6) 78.70 (0.2)
Sensitivity 67.90 (0.5) 56.26 (2.0) 58.60 (1.8) 60.86 (1.2) 62.96 (1.3) 74.56 (1.1) 77.30 (0.9)
Specificity 63.20 (1.9) 77.40 (2.3) 78.50 (1.7) 76.20 (1.0) 78.30 (2.0) 78.50 (1.5) 80.00 (1.0)
AUC 64.20 (1.4) 68.50 (1.8) 70.20 (2.0) 68.90 (0.9) 71.10 (1.3) 75.60 (1.3) 77.56 (0.8)

Data 2 (MRI + PET)

Accuracy 62.30 (1.5) 64.30 (1.2) 66.80 (1.7) 69.80 (1.8) 72.10 (1.8) 76.20 (1.3) 78.20 (1.0)
Sensitivity 68.20 (2.3) 70.40 (1.9) 68.93 (2.0) 73.19 (0.8) 74.85 (1.2) 76.10 (1.0) 77.51 (1.7)
Specificity 56.20 (0.6) 57.90 (1.9) 64.60 (1.7) 66.30 (2.2) 69.20 (2.0) 76.30 (2.2) 78.90 (2.1)
AUC 70.20 (1.0) 73.50 (0.6) 76.80 (1.9) 75.90 (1.6) 77.20 (1.7) 78.20 (2.4) 79.00 (1.9)
s
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Fig. 2. Classification performance of all methods on four simulated data sets, where
the tuple (𝑛𝑡, 𝑛𝑎, 𝑑𝑡, 𝑑𝑝, 𝑑𝑎, 𝑟𝑎𝑡𝑖𝑜) was set as (1000, 200, 400, 400, 200, 0.2), (1000,
00, 400, 400, 200, 0.6), (1000, 2000, 400, 400, 200, 0.2), and (1000, 2000, 400,
00, 200, 0.6), respectively, for S-Data 1, S-Data 2, S-Data 3, and S-Data 4.

MRI and PET features). That is, we total conducted 4 experiments on
wo data sets with two different kinds of features.

We employed classification ACCuracy (ACC), SENsitivity (SEN),
PEcificity (SPE), and Area Under the receiver operating characteristic
urve (AUC) as the evaluation metrics.

.3. Simulation study

In this section, we investigate the validity of our proposed method
ompared with all comparison methods on the simulation data. By
etting the linear regression model as 𝐘 = 𝐗𝐖 + 𝐄 where 𝐗 ∈ R𝑛×𝑑

is a regressor matrix, 𝐖 ∈ R𝑑×2 is a coefficient matrix, 𝐄 ∈ R𝑛×2 is a
noise matrix, and 𝐘 = {0, 1}𝑛×2 is a response matrix, we first generated
the data pairs (𝐘𝑡,𝐗𝑡) by three steps as follows. (i) The samples of each
class were generated from multivariate normal distribution. Moreover,
the first 𝑑0 rows of 𝑛𝑖 (𝑖 = 1, 2) samples were related to the classes and
the remaining 𝑑 − 𝑑0 rows were unrelated to the classes. (ii) The first
𝑑0 rows in 𝐖 were drawn from  (0, 1) and the rest 𝑑 − 𝑑0 rows were
set as zero. (iii) 𝐄 was generated from  (0, 10−3𝛴(0.1)), where 𝛴(0.1)
was a covariance matrix with the diagonal elements of 1 and the off-
diagonal elements of 0.1. We followed the above steps to obtain data
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pairs (𝐘𝑎,𝐗𝑎) and (𝐘𝑡,𝐗𝑝). Moreover, the samples of each class in 𝐗𝑎
came from multivariate normal distribution and the samples of each
class in 𝐗𝑝 were from multivariate t-distribution.

By setting different values to the tuple (𝑛𝑡, 𝑛𝑎, 𝑑𝑡, 𝑑𝑝, 𝑑𝑎, 𝑟𝑎𝑡𝑖𝑜) where
𝑛𝑡, 𝑛𝑎, 𝑑𝑡, 𝑑𝑝, 𝑑𝑎, and 𝑟𝑎𝑡𝑖𝑜, respectively, represent the number of the
amples of 𝐗𝑡, the samples of 𝐗𝑎, the dimensions of 𝐗𝑡, the dimensions
f 𝐗𝑝, the dimensions of 𝐗𝑎, and the percentage of kept features,
e evaluated our proposed methods and all comparison methods on

our simulated data sets with the experimental setting in Section 3.2
n terms of classification accuracy. We reported the results in Fig. 2,
here our proposed method obtained the best performance on all

our data sets. This verified the advantages of our proposed methods,
ompared to all comparison methods. Moreover, Original conducting
lassification with all features obtained the worst classification perfor-
ance. This indicates that it is essential to conduct feature selection for
igh-dimensional data, shown in the literature [9,22,25].

.4. Results analysis on ADNI data sets

Table 1 lists the classification performance of all methods at differ-
nt scenarios. We listed our observations as follows.

First, our proposed methods (i.e., ProAuto-noAge and Pro-noAge)
chieved the best performance, followed by DTL, SSL, GSR-Aux, GRS-
re, and Original. Specifically, ProAuto-noAge and Pro-noAge im-
roved on average by 6.48% and 4.38%, compared to the best compari-
on method, i.e., DTL, in terms of the classification accuracy across two
ata sets with two different kinds of features. In particular, ProAuto-
oAge improved on averages by 13.11%, compared to the worst com-
arison method, i.e., Original, in terms of all evaluation metrics across
ll 4 experiments. This verifies the effectiveness of our proposed
ethod for the pMCI/sMCI classification.

Second, all methods achieved larger improvement (in comparison
ith Original) on Data 2, compared to their corresponding improve-
ent on Data 1. For example, the difference between our ProAuto-
oAge and Original was on average 7.88% and 5.86%, respectively,
n Data 2 and Data 1 across two different kinds of features. This may
mply that the auxiliary information can improve the prediction ability
f the predictor data, especially when the sample size of the predictor
ata is small while the sample size of the auxiliary data are the same.

Third, by regarding the use of the auxiliary data from the AD and
C subjects, GSR-Aux consistently outperformed its counterpart GSR-
re in all experiments. Specifically, GSR-Aux used the AD and NC
ubjects to construct the AD/NC classifier to classify the predictor data,
.e., distinguishing pMCI subjects from sMCI subjects, while GSR-Pre
mploys the pMCI and sMCI subjects to classify the target data. In our
xperiments, the AD/NC classifier (i.e., GSR-Aux) improves the classifi-

ation performance by 2.10% in terms of all evaluation metrics across
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Fig. 3. The feature selection frequency map (i.e., how frequent a feature out of 90 ROIs is selected in 1000 experiments) of MRI features in the pMCI/sMCI classification. In this
map, only MRI features are used as the predictor data on Data1 (upper) and Data2 (bottom). The horizontal axis indicates the indices of ROIs..
Fig. 4. The feature selection frequency map of MRI features in the pMCI/sMCI classification. In this map, MRI and PET features are used as the predictor data on Data1 (upper)
and Data2 (bottom). The horizontal axis indicates the indices of ROIs..
Fig. 5. The feature selection frequency map of PET features in the pMCI/sMCI classification. In this map, MRI and PET features are used as the predictor data on Data1 (upper)
and Data2 (bottom). The horizontal axis indicates the indices of ROIs..
all 4 experiments, compared to GSR-Pre, since they select different fea-
tures to conduct classification tasks. It is noteworthy that the features
selected by GSR-Pre were more than the features selected by GSR-Aux.
The reason may be that GSR-Pre could not capture subtle structure
difference among ROIs with a limited number of high-dimensional
samples.
60
3.5. Top selected ROIs

In this section, we list the top features (i.e., the ROIs) selected by all
methods in Figs. 3–5, which could help the clinicians to improve the
efficiency and the effectiveness of the disease diagnosis. To do this, we
first obtained the totally selected number for each feature across 1000
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Fig. 6. Classification performance of our proposed methods on two data sets with different kinds of features.
t

experiments, i.e., repeating the 10-fold cross validation scheme 100
times, and then reported the frequencies (i.e., the selected times divided
by 1000 for each feature) for all features. We list our observations as
follows.

All methods select similar brain regions as the top regions. For
example, for only using MRI features on the two data sets, all methods
selected the following MRI features, including globus palladus right,
subthalamic nucleus right, uncus right, occipital lobe WM right, nucleus
accumbens left, occipital lobe WM left, and fornix right. For using both
MRI and PET features, all methods outputted the MRI features including
globus palladus right, globus palladus left, uncus right, occipital lobe
WM right, nucleus accumbens left, and fornix right, and PET features
including globus palladus right, globus palladus left, precuneus right,
subthalamic nucleus left, precuneus left, middle occipital gyrus left, and
angular gyrus left. Those selected ROIs were verified to be related to AD
in previous studies [29,48]. Although all methods selected similar fea-
tures as the top features, our methods are with the highest frequencies,
compared to all comparison methods. This indicates the effectiveness of
our proposed methods. Moreover, the ROIs, e.g., globus palladus right,
occipital lobe WM right, nucleus accumbens left, and fornix right, were
selected by both the data sets with MRI features and the data set with
MRI+PET features. The ROIs, e.g., globus palladus right and globus
palladus left, were selected by both MRI and PET features on the data
sets with MRI+PET features. In particular, the ROI, i.e., globus palladus
right, was selected from the data sets with MRI features, as well as from
both MRI and PET features on the data sets with MRI+PET features. The
overlapped features across different data sets should be very important
in the pMCI/sMCI classification.

All methods do not select some brains for the pMCI/sMCI classifi-
cation, such as MRI features (e.g., angular gyrus right and postcentral
gyrus left) for the classification task with the MRI features, and MRI
features (e.g., angular gyrus right and postcentral gyrus left) and PET
features (e.g., nucleus accumbens left, lingual gyrus right, and thalamus
right) for the classification task with the MRI + PET features. This
indicates that these features have little contributions for the pMCI/sMCI
classification.

It is noteworthy that our methods selected some ROIs more often
han the comparison methods, such as hippocampal formation right,
iddle temporal gyrus left, and hippocampal formation left, which
ave been demonstrated to be related to AD in [29,48]. We believe that
he selection of these ROIs could contribute to enhance the performance
n our methods.

.6. Discussion

In this section, we investigate the influence of the subject age as we
ssume that the ages of the subjects may influence the pMCI/sMCI clas-
ification. To do this, we report the classification performance of four
ethods of our proposed framework (i.e., Pro-noAge, ProAuto-noAge,
ro-Age, and ProAuto-Age) in Fig. 6.

First, Pro-Age and ProAuto-Age outperform Pro-noAge and ProAuto-
oAge, respectively. For example, Pro-Age improved on average by
.96% and 4.60%, respectively, compared to Pro-NoAge and the best
61
comparison method DTL, in terms of the classification accuracy across
all 4 experiments. Moreover, based on the p-values from the paired
t-tests at 95% significance level, Pro-Age statistically outperforms Pro-
noAge and ProAuto-Age is statistically superior to ProAuto-noAge.
Furthermore, each of them (e.g., either Pro-Age or ProAuto-Age) is
statistically superior to every comparison method. This indicates that
age is one of the risk factor for AD, consistent with the conclusion
in [17] that has validated the importance of removing aging effect.
However, the small improvement between our methods with the age
feature and our method without the age feature shows that the age can
affect the classification result but not much. This could be due to the
fact that age is only used as one of the features, and other features and
auxiliary information may dominant over the aging effect.

Second, we need to tune 5 and 2 parameters, respectively, for
the optimization of Eq. (5) (i.e., Pro-Age and Pro-noAge) and Eq. (6)
(i.e., ProAuto-Age and ProAuto-noAge). The training process in the
former methods need more running time than the latter methods. For
example, we set the search rang of {10−5,… , 105} for each parameter so
that the former methods need to run the code at least 115 times while
he latter methods only run the code 112 times, i.e., the former methods

is 1000 times as fast as the latter methods. However, the latter methods
cannot guarantee to outperform the former methods. For example,
ProAuto-Age improved on average by −0.34%, compared to Pro-Age
in terms of classification accuracy, while ProAuto-noAge improved on
average by 1.23%, compared to Pro-noAge in terms of classification
accuracy, for all 4 experiments. Moreover, the p-values are 0.066
and 0.078, respectively, for the comparison between ProAuto-Age and
Pro-Age and the comparison between ProAuto-noAge and Pro-noAge.
This indicates that the comparison groups have no statistically signifi-
cant difference. Hence, by regarding the efficiency, it is reasonable to
replace Eq. (5) with Eq. (6).

3.7. Limitations

Although our proposed framework achieved the best classification
performance compared to the comparison methods, there are still other
issues that should be tackled for further performance improvement.

First, the proposed framework can be extended to handle samples
with missing values. The samples in the ADNI cohort were collected
in a longitudinal way at different time phases and for some subjects,
there are no values available due to high measurement cost, poor
data quality, and unwillingness of the patients to receive invasive
tests [23,25,49]. Specifically, while all the subjects in ADNI-I have MRI
data, PET data are available for only about half of them. In such a case,
it is possible to use the available data (such as complete MRI data)
to estimate the missing PET data by the proposed framework. In our
future work, we plan to extend our proposed framework to conduct
the pMCI/sMCI classification with missing data.

Second, our proposed methods are only devised to measure the lin-
ear relations between the neuroimaging-based features and the clinical

labels. Hence, it can fail to capture their inherent complex relations,
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e.g., nonlinear-based high-order relationship. To circumvent this lim-
itation, it will be possible to use kernel methods by measuring pair-
wise subject relations among data to further incorporate the structural
differences between pMCI subjects and sMCI subjects.

Third, the prediction accuracy for the pMCI/sMCI classification
varies in the range of 56%–82% in recent studies. The variations in
the reported results can be caused by two reasons, i.e., the data set
selection and the technique selection. The key factors of the data set
selection include different biomarkers, different subsets from ADNI,
different definitions of the pMCI and the sMCI. The factors of the
technique selection include different methods to deal with the small-
size samples, different cross validations, etc. In the future work, we plan
to design new techniques to generate new samples to solve the issue
of small-sized samples, such as over-sampling methods and generative
adversarial networks [50].

4. Conclusion

In this paper, we proposed to use the auxiliary information from
samples of auxiliary group subjects (i.e., AD/NC), of other imaging

odality (i.e., PET), and of a subject’s age, to improve the diagnostic
ccuracy for the pMCI/sMCI identification. The proposed methods used
hree ways to incorporate the auxiliary data and the predictor data
nto one formulation, i.e., 𝓁2,1-norm on the weight matrices for joint
eature selection, 𝓁2,1-norm loss function for outliers robustness, and
ncluding the age factor in the feature matrix for removing aging-effect.
n our experiments, the proposed methods outperformed all comparison
ethods.
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