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Abstract

Methods: Alzheimer’s disease (AD) is a worldwide prevalent age-related neurodegenerative
disease with no available cure yet. Early prognosis is therefore crucial for planning proper clini-
cal intervention. It is especially true for people diagnosed with mild cognitive impairment, to
whom the prediction of whether and when the future disease onset would happen is particularly
valuable. However, such prognostic prediction has been proven to be challenging, and previous
studies have only achieved limited success.

Approach: In this study, we seek to extract the principal component of the longitudinal disease
progression trajectory in the early stage of AD, measured as the magnetic resonance imaging
(MRI)-derived structural volume, to predict the onset of AD for mild cognitive impaired patients
two years ahead.

Results: Cross-validation results of LASSO regression using the longitudinal functional prin-
cipal component (FPC) features show significant improved predictive power compared to train-
ing using the baseline volume 12 months before AD conversion [area under the receiver
operating characteristic curve (AUC) of 0.802 versus 0.732] and 24 months before AD conver-
sion (AUC of 0.816 versus 0.717).

Conclusions: We present a framework using the FPCA to extract features from MRI-derived
information collected from multiple timepoints. The results of our study demonstrate the advan-
tageous predictive power of the population-based longitudinal features to predict the disease
onset compared with using only cross-sectional data-based on volumetric features extracted from
a single timepoint, demonstrating the improved prediction power using FPC-derived longi-
tudinal features.
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1 Introduction

Alzheimer’s disease (AD) is a type of dementia associated with age-related neurodegeneration
and cognitive decline. AD affects a large proportion of the population, anticipated to worsen with
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increasing societal longevity. Predicting AD onset at an early stage is important for improving
patients care and developing therapeutic interventions. Medical imaging techniques, such as
magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography
(PET), have been playing a crucial role in the diagnosis of AD before the manifest of clinical
symptoms.1

Depending on the severity of the symptom, the diagnoses of AD are categorized into three
stages: cognitive normal (CN), mild cognitive impairment (MCI), and finally being diagnosed as
AD. Subjects diagnosed as MCI are regarded as the at-risk group, and the prediction of their
disease onset is important for planning of the patient care, early intervention, and potential
treatment.2 Studies have been conducted to predict disease onset for MCI patients based on brain
structure volume features such as temporal lobe atrophy,3 corpus callosum atrophy,4 and hippo-
campus subfield volume.5 In addition to brain structure volume features, other MRI-based im-
aging features have also been studied as early biomarkers of AD, such as hippocampal texture6

and gray/white matter contrast difference.7 Coupé et al.8 introduced an MRI-based hippocampal
grading score based on patch-based image similarity comparison between test images and train-
ing templates to predict AD onset seven years before the conversion. Furthermore, an increasing
number of recent studies has achieved improvement in compute-aided AD diagnosis through the
extraction of multi-dimensional imaging-based features using statistical or machine-learning
approaches.9–13 However, most of the previous studies in the literature only use single timepoint
images to predict the onset of AD. However, the pathological progression of AD is a longitudinal
process, which has been analogous to an accelerated aging process with structural change.14

Therefore, temporal features, which are missing in the single timepoint analysis, consist of a
critical source of information to be taken into account.

Studies have attempted to take advantage of the information embedded in the longitudinal
pathological progression as revealed in the images, e.g., the volume changes over time of AD-
specific structures, such as the hippocampal atrophy, and the ventricle expansion. Zhang and
Shen15 proposed to use multi-modal image (MRI + PET) and longitudinal data from multiple
timepoints using a sparse linear model for feature selection. Several studies have been proposed
to capture the temporal changes through longitudinal image registration. Fiot et al.16 introduced a
classifier for MCI converters versus non-converters based on the logistic loss and spatial regu-
larization of the longitudinal hippocampal deformation between two timepoints. Later on,
Lorenzi et al.17 introduced a longitudinal model of disease-specific morphological age based
on the longitudinal deformation from baseline to follow-up scans. More recently, Sun et al.18

achieved high accuracy in classifying MCI converters against non-converters for up to three
years by leveraging the stationary velocity field from the non-rigid registration between the base-
line and follow-up images.

Some other studies have proposed to model the longitudinal disease trajectories using linear
mixed-effect model,19–22 in which case the individualized variations are considered as random
effects either toward the intercept or the slope of the longitudinal scan time in the linear model.
However, the nature of the linear model in these studies relies on the underlying assumption that
the structural change is linear.22 On the other hand, brain structural atrophy rate is age-dependent,
and thus a linear model would be sub-optimal.23

Current existing longitudinal analysis methods using conventional linear least-squared model
or linear mixed model are unable to completely capture the complexity of longitudinal disease
progression trajectories, especially under the presence of complicated non-linear trend.
Moreover, it is difficult to estimate the change in the longitudinal trajectories when the data
are sparsely and irregularly observed or even missing.24 To characterize the variations in the
longitudinal trajectories and to capture its relationship with the MCI-to-AD conversion, we pro-
pose to use functional principal component analysis (FPCA) and functional linear regression
(FLR) to fit the trajectories and produce prediction using machine learning techniques.

FPCA is a data-driven methodology for detecting the principal direction of variations in
longitudinal trajectories and thereby converting the infinite-dimensional curves into low-
dimensional vectors. Depending on how the data points are sampled from the curves, various
methods for conducting FPCA have been proposed.25–27 Of particular interest is the case where
the data are sparsely sampled, as it relates directly to our application. For such sparse and irregular
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longitudinal data, Yao et al.28 proposed the principal analysis by conditional expectation, and Hall
et al.29 established its mathematical validity in terms of asymptotical statistical properties.

When a random process is sampled at multiple timepoints, the data can be viewed as a func-
tion of time and are generally referred to as the functional data. FLR is a novel regression frame-
work for handling functional predictors. It can be used to model the relationship between the
response and the functional covariates and to predict a scalar response from the observed data.
Theoretical properties of FLR have been well established in the literature. Yao et al.30 studied
FLR for sparse data and proposed a flexible method for prediction based on FPCA. Gertheiss
et al.31 developed a new type of functional regression model by extending the classical functional
regression to accommodate variation in subject-specific trends. A systematic review of FLR can
be found in Morris.32

In this paper, the FPCA is used for extracting the main sources of variations of the longi-
tudinal disease progression trajectories, and the FLR is used for predicting the AD. The FPCA
allows us to summarize the information in the nonlinear longitudinal trajectories into a few sim-
plistic FPC scores. These FPC scores enable us to build functional regression models and can be
used as pathological-progression related features to apply machine learning methods for predict-
ing the AD. We evaluated the application by measuring the accuracy of predicting the disease
onset one and two years in advance.

2 Methods

2.1 Experimental Data and Data Preparation

A total of 7656 T1-weighted MPRAGE brain MRI images were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database,33,34,34–37 which contains longitudinally
scanned images from 1727 subjects. The subjects’ demographic information, along with the
diagnoses at all the scanning timepoints were provided in the ADNI database.37 Each patient
was diagnosed as one of the three categories: CN, MCI, or AD. Each subject’s brain structural
volumes were measured around every six months in the first two years and subsequently every
12 months until the end of their follow-up periods.

2.1.1 FreeSurfer structure segmentation and volume extraction

The brain MRI was segmented into 87 laterally separated anatomical structures using FreeSurfer
processing framework (version 5.3)38 following the pipeline of: (1) affine registration to the
MNI205 probability atlas; (2) B1 bias field correction; (3) non-rigid registration to correct for
the local morphological variance; (4) expectation-maximization-based structural labeling and
parcellation.39,40 A total of five AD-related regions of interest (ROI), i.e., hippocampus, lateral
ventricle, amygdala, entorhinal, and parahippocampal, were included in the study.

Under the functional regression model framework, longitudinal trajectories of biomarker
measurements within the first 24 months are used for constructing the functional predictors.
Binary outcomes of whether the diagnosed status of the individual converts from MCI to
AD as at month 36 (one-year-ahead prediction) and month 48 (two-year-ahead prediction) are
used as the dependent variables in the functional regression model, respectively. It is worth not-
ing that the actual time of follow-up and diagnosis is not exactly 24/36/48 months and may differ
by the nominal time by a few days. For more accurate modeling, the actual time of diagnosis
rather than the nominal one is used in our analysis.

2.1.2 Data harmonization

The general linear model (GLM) is used to correct for the residual effects of field strength, sex,
and total intracranial volume (TIV).41 We use the field strength, sex, and TIV as predictors, and
fit the GLM to the structural volume data on the reference group consisting of subjects diagnosed
with CN only,8,41 and calculate the standardized residual between the predicted and actual
volumes (also known as W-score, defined as Wi ¼ ðεi − μεCN Þ∕σεCN ).42–44 The demographic
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information (i.e., age and sex)37 and the scanner-specific information (i.e., field strength)34 are
obtained from the ADNI database alongside with the T1 image data. The TIV is estimated by the
multi-atlas label-fusion method.41 Volumes of the five brain ROI are subsequently corrected for
the joint effects related to age, sex, and TIV using the respective regression models. We refer to
the resulting corrected values as “GLM-corrected volumes”.

2.1.3 Training data augmentation

The final study subjects are selected based on the following criteria: (1) The initial status of the
subjects should be MCI. (2) Subjects should have information at the end of the second and the
third year (for one-year-ahead analysis) or the fourth year (for two-year-ahead analysis).
(3) Subjects should have more than two-time points. Figure 1 shows the flowchart of the data
inclusion.

ADNI data include longitudinal scans for each individual subject. At the time when this study
was conducted, the maximum period between the baseline and follow-up scans was 10 years. We
augment the training data using a sliding window of 12 months along an individual’s temporal
trajectory. For example, consider an individual whose baseline and follow-up scans are collected
on 0, 6, 12, 18, 24, 36, and 48 months, and the one-year-ahead prediction (i.e., month 36) given
the first 24 months’ trajectory (i.e., month 0, 6, 12, 18, and 24) is of interest. We may augment the
data by treating month 12 as the starting time point and moving the 12-month sliding window
ahead by 12 months, thereby creating an augmented record that is based on the trajectory of
month 12, 18, 24, 36, and one-year-ahead prediction on month 48. Table 1 shows the detailed
breakdown of the individuals classified as non-converter (MCI → MCI) and converter
(MCI → AD) as at month 24 for one-year-ahead and two-year-ahead predictions.

2.2 Longitudinal Disease Trajectory Feature Extraction

Functional data analysis is a useful tool for analyzing sparse and noisy longitudinal data. In
particular, the FPCA is used for extracting the primary mode of variations in the longitudinal
trajectories, thereby decomposing the underlying stochastic process into several orthogonal
functional components. These uncorrelated components, referred to as the FPC, can be further
used as a foundation for functional regression modeling.

Fig. 1 Flowchart of the data inclusion for one-year-ahead and two-year-ahead analysis. The num-
ber in the parenthesis is the number of subjects of the one-year-ahead and two-year-ahead
studies.
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2.2.1 Functional principal component analysis

We propose to analyze the trajectories of the GLM-corrected volumes within the paradigm of
functional data analysis. The first step is to extract the FPCs from each group of volume tra-
jectories. We model the trajectories of a certain brain region as independent realizations from a
stochastic process XðtÞ and let XiðtÞ denote the trajectory realization of the ith subject. Let
μðtÞ ¼ EðXðtÞÞ and Gðs; tÞ ¼ CovðXðsÞ − μðsÞ; XðtÞ − μðtÞÞ denote the mean function and the
covariance function, respectively. Based on the Karhunen–Lovève decomposition, XiðtÞ can be
expressed as

EQ-TARGET;temp:intralink-;e001;116;462XiðtÞ ¼ μðtÞ þ
X∞
k¼1

ξikϕkðtÞ; (1)

where ϕkðtÞ is the k’th eigenfunction, and ξik is the associated FPC score for the i’th subject.
The eigenfunctions should satisfy

EQ-TARGET;temp:intralink-;sec2.2.1;116;392

Z
T
ϕkðtÞϕjðtÞ ¼ δkj;

where δkj ¼ 1 if k ¼ j and 0 otherwise.
The FPC score is defined as

EQ-TARGET;temp:intralink-;e002;116;324ξik ¼
Z
T
ðXiðtÞ − μðtÞÞϕkðtÞdt: (2)

The magnitude of ξik represents the degree of similarity between the XiðtÞ − μðtÞ and the
eigenfunction ϕkðtÞ. The mean and variance of the distribution of ξik are EðξikÞ ¼ 0 and
VarðξikÞ ¼ λk, where λ1 ≥ λ2 ≥ : : : ≥ 0.

By the Mercer’s theorem, the covariance function Gðs; tÞ can be expressed as

EQ-TARGET;temp:intralink-;e003;116;231Gðs; tÞ ¼
X∞
k¼1

λkϕkðsÞϕkðtÞ: (3)

As it would be unrealistic to estimate an infinite number of eigenfunctions, in reality, XiðtÞ is
usually well approximated by retaining only the first K leading eigenfunctions and the related
FPC scores,

EQ-TARGET;temp:intralink-;e004;116;146XiðtÞ ¼ μðtÞ þ
XK
k¼1

ξikϕkðtÞ: (4)

In the case of sparse data with possible measurement error, the eigenfunctions and FPC
scores can be obtained by applying the principal components analysis through the conditional
expectation (PACE) method.28 The eigenfunctions and FPC scores under the PACE method are

Table 1 Breakdown of number of subjects in the original and augmented data sets for one-year-
ahead and two-year-ahead predictions.

Number of subjects

One-year-ahead Two-year-ahead

Diagnosed status Original Augmented Original Augmented

Non-converter (MCI → MCI) 146 184 142 174 [t]

Converter (MCI → AD) 21 35 35 47

Total (converter + non-converter) 167 219 177 221
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computed as follows. The mean function μðtÞ is first estimated by pooling the data points from
all the trajectories together and applying local linear smoothing; the covariance function Gðs; tÞ
is estimated by a two-dimensional kernel smoother. Let μ̂ðtÞ and Ĝðs; tÞ denote the estimated
mean trajectory and the estimated smoothed covariance surface. The eigenfunction ϕkðtÞ sat-
isfies the eigenequation

EQ-TARGET;temp:intralink-;e005;116;673

Z
T
Ĝðs; tÞϕkðsÞds ¼ λkϕkðtÞ; (5)

with the constraints kϕkk2 ¼ 1 and hϕk;ϕji ¼ 1 if k ¼ j, and 0 otherwise. The solution to such

an eigenequation ϕ̂kðtÞ can be found by applying spectral decomposition on the discretized

covariance function Ĝðs; tÞ.
Let Yij ¼ XiðtijÞ þ ϵij be the measurement at the j’th time point (j ¼ 1; : : : ; ni) of the i’th

subject’s curve, and ϵij is assumed to be a random error term following a normal distribution

with mean 0 and variance σ2. Let ϕ̂ik and μ̂i denote the vectors of values of ϕ̂kðtÞ and μ̂ðtÞ
evaluated at time points tij, and let G̃i denote the matrix of values of Ĝðs; tÞ evaluated at the
two-dimensional grid consisting of tij.

The FPC score of the i’th subject and the k’th eigenfunction is computed from the conditional
expectation

EQ-TARGET;temp:intralink-;sec2.2.1;116;496ξ̂ik ¼ ÊðξikjYiÞ ¼ λkϕ̂
T
ikΣ̂

−1
Yi
ðYi − μ̂iÞ;

where Yi ¼ ðYi1; · · · ; Yimi
ÞT , Σ̂Yi

¼ G̃i þ σ̂2Ini .

2.2.2 Feature selection and regularized-model-based analysis

The classic functional regression model aims at discovering the relationship between the func-
tional data, i.e., the longitudinal trajectories, and a scalar response, i.e., the binary status of AD in
our context. As the eigenfunctions are orthogonal to each other, the resultant product of the
regression coefficient function and the longitudinal trajectory can be transformed and simplified
as a linear combination of the FPC scores. Therefore, the FPC scores can be directly used as
predictors in the usual framework of the generalized linear model.

Let Di denote the binary AD status of the i’th subject, and let Zi denote the vector of scalar
predictors, for example, Zi may consist of a subject’s age and sex in our context. The functional
regression model is constructed as

EQ-TARGET;temp:intralink-;e006;116;302logitfPrðDi ¼ 1jXiðtÞ; ZiÞg ¼
Z
T
XiðtÞβðtÞdtþ Z⊤

i γ; (6)

where βðtÞ is the function of the regression coefficient for the longitudinal trajectories and γ is
the vector of coefficients for the scalar predictors.

By expanding on the basis of eigenfunctions fϕkðtÞ; k ¼ 1; : : : ; Kg, the regression coeffi-
cient function βðtÞ can be expressed as

EQ-TARGET;temp:intralink-;sec2.2.2;116;211βðtÞ ¼
XK
k¼1

ckϕkðtÞ;

where ck ¼ ∫ T βðtÞϕkðtÞdt is the basis coefficient and can be subsequently estimated from the
generalized linear model. Therefore, we may rewrite Eq. (6) as

EQ-TARGET;temp:intralink-;sec2.2.2;116;136logitfPrðDi ¼ 1jXiðtÞ; ZiÞg ¼
XK
k¼1

ckξik þ Z⊤
i γ:

We first estimate the FPC scores ξik using the PACE method, and use the estimated FPC
scores as the predictors in the generalized linear model.
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Using the FPC scores as predictors, we are able to recover the relationship between the MCI/
AD conversion and the functional shapes of the longitudinal volumes change trajectories. Not all
the predictors would be of statistical significance or predictive value. As a variable selection
procedure, we apply the LASSO algorithm to identify the influential variables and thereby pre-
dict the MCI/AD conversion status in a more accurate fashion.

2.3 Longitudinal Disease Prediction and Cross-Validation

After calculating the FPC scores for each trajectory, we adopt a stratified five-fold cross-
validation approach to assess the prognostic accuracy of the functional regression model for
classifying the patient into potential converter (MCI → AD) and non-converter (MCI → MCI).
Specifically, in the proposed cross-validation approach, data are randomly partitioned into five
folds and individuals are stratified, i.e., each partition is equally sized, and the ratio of the
converter/non-converter is roughly the same across all the folds. Within the five-fold cross-
validation framework, the number of subjects in a training data set is roughly 175 and 177 for
one-year-ahead and two-year-ahead prediction task, respectively. The number of subjects in
the testing data set is 44. The analysis is repeated five times to obtain stable estimates of the
prediction performance metrics. Among these five partitions, one partition is kept to be used
separately for testing the model, and the rest of the partitions are used for training the model.
The cross-validation process is repeated five times, with each partition used as the testing set.
Because multiple augmented data record may originate from the same individual, data contami-
nation may occur if these records appear both in the training and testing data set, leading to
false-positive improvement in the prediction performance. To ensure the objectiveness of the
cross-validation process, we avoid potential data contamination by enforcing the rule that
augmented data points can only appear in the training set and an individual can appear either
in the training set only or in the testing set only, but not both. We implement such a rule by
partitioning the original subjects of the augmented data records into five groups and assigning
the corresponding records to each cross-validation fold. The classification performance is
assessed in terms of the area under the receiver operating characteristic curve (AUC).

FPC scores can be calculated from a reference group that consists of either the whole or a
subset of the population. To better understand the effect of the choice of reference group on the
accuracy of disease prediction, we perform six parallel experiments with different combinations
of diagnosis groups to calculate the FPC scores for the training data in each fold of the cross-
validation. The choice of the reference group in the six experiments are: (1) CN only, (2) AD
only, (3) MCI only, (4) CN + MCI, (5) AD + MCI, and (6) CN + MCI + AD. For each reference
group, we fit an FPCA model to extract the first five FPCs of the volume trajectories of the five
ROIs. The resultant FPCA models are used for computing the FPC scores of the subjects in the
MCI group, which are used as the covariates in the functional regression model with LASSO.

Furthermore, we also compare the prediction accuracy of the same classifier with two types
of input features: (1) the proposed longitudinal FPC score and (2) the single-timepoint structure
volume. A common practice in single-timepoint-based prediction is to train the classifier using
only the CN and AD group and then test on the MCI group so that the classifier learns from the
two extreme sides of the disease spectrum (CN and AD) and then test on the more difficult cases
in the MCI group.3,6,8,45 For the purpose of a side-to-side comparison, we also choose the CN and
AD groups for training with the longitudinal FPC score feature.

3 Results

3.1 Longitudinal Structural Change along with Disease Progression

We first investigate the overall ROI volume change along time, both in terms of structural atro-
phy and ventricle expansion. We plot the mean trajectories of the converter and non-converter
groups in Fig. 2. The average trajectories show both Atrophy (A-D) and ventricle expansion (E),
although considerable variation exists in the longitudinal trajectories of the five brain regions, as
shown in Fig. 2. Interestingly, comparison between the mean longitudinal trend of the non-
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converter group (blue line, Fig. 2) with that of the converter group (red line, Fig. 2) reveals a
trend of not only smaller atrophy but also at a relatively reduced atrophy rate in hippocampus,
amygdala, entorhinal, and parahippocampus (A-D). Similarly, compared with the converter
group, the ventricle expansion (E) is smaller and progresses with a reduced rate for the non-
converter group.

3.2 Longitudinal FPC Feature Extraction for Early AD Prediction

We apply the FPCA to the longitudinal trajectories of the GLM-corrected ROI volumes to further
explore the in-depth information for the volume changes over time that are embedded in the
disease progression trend. The PACE method is used to extract the functional principal com-
ponents from the pool of longitudinal measurements in each group.30

Figures 3 exhibits the plots of the trajectories of the first three eigenfunctions (or FPCs) for
the parahippocampal. A particular aspect of interest of the FPC curve is its sign, which indicates
the direction of variation in the change of the trajectory along time. To be specific, the first FPC is
constant above zero. It represents that the main source of variation among the parahippocampal
comes from the weighted average of their volume trajectories. The second FPC crosses the x axis
once: it is positive in [0, 15.5] and negative afterward, representing the change in the volume
trajectory after the 15.5 month. Moreover, the magnitude of change after the 15.5 month appears
to be larger, indicating a sharper shift in the volume curve. The third FPC crosses the x axis twice
and is primarily positive in [2.9, 12.1] and negative in the other intervals, which can be inter-
preted as the difference in the volume trajectory during [2.9, 12.1] and the other time intervals.
It should be noted that the estimation of the FPC near the boundary (around 24 months) could be
subject to larger variances due to lesser data points on the time grid, and thus we are primarily
focused on changes in the curve inside the boundary region. The FPCs of the other four ROIs
show similar longitudinal patterns.

Table 2 shows the proportions of variation among the population that are explained by the top
five FPCs. For example, the first five FPCs of hippocampus volume trajectories explains
95.56%, 3.40%, 0.70%, 0.13%, and 0.11% of the total variation, respectively. The first FPC
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Fig. 2 Mean curves of the GLM-corrected volumes of the five brain regions for AD (solid) and
non-AD (dashed) subjects.
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captures more than 95% of the total variation of all the evaluated structures, with each following
FPC capturing the largest proportion of the remaining total variation.

3.3 Analysis of Feature Importance and Feature Selection

We utilize the extracted FPC scores of the longitudinal structural volume change as the features
for predicting whether an MCI subject would develop AD (converter) at a later time point (either
one year later or two years later). For each subject, a total of 5 × 5 ¼ 25 FPC scores (five struc-
tures for each subject, and the first five FPCs for each structure) are used as the covariates for the
one-year-ahead and two-year-ahead AD prediction. As the number of predictors is relatively
large, conventional GLM, e.g., logistic regression, would either fail to converge or provide esti-
mates with high variances. Feature selection is imperative and we resort to the LASSO algorithm
to find the FPC scores that have the most predictive value on distinguishing between the con-
verter and the non-converter.

In the LASSO model, the identified influential FPC scores for the converter/non-converter
classification are grouped according to the brain region they belong to and are shown in Fig. 4.
The variable importance scores of FPCs from the same category are grouped and summed for
comparison, and the scores are normalized to the range of 0 and 1. The FPC scores of the para-
hippocampal are identified as the most influential features, and their variable importances are
significantly higher than those of the remaining regions.

3.4 Model Evaluation and Cross-Validation for AD Classification

In this section, results of model performance in terms of the predictive power of classifying
the MCI-AD converter and MCI-MCI non-converter are presented. The AUC averaged
across the five-folds cross-validation is used as the summary measure for the overall predictive
power.
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Fig. 3 Breakdown of the first three FPCs (from left to right) of longitudinal trajectories of the GLM-
corrected volumes of the parahippocampal.

Table 2 Proportion of variation (in percentages) explained by the top five FPCs.

Predictors FPC1 FPC2 FPC3 FPC4 FPC5

Hippocampus 95.56 3.40 0.70 0.13 0.11

Lateral ventricle 95.82 2.96 0.71 0.28 0.12

Amygdala 95.70 3.85 0.22 0.12 0.04

Entorhinal 96.86 2.31 0.65 0.08 0.04

Parahippocampal 95.74 3.83 0.21 0.10 0.06
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Table 3 shows the average AUC in the testing set for different models and predictors. We first
compare the approaches using longitudinal FPCA against the one based on the baseline volume.
The training data consist of the stable AD versus the stable CN subjects, which has been shown
to improve the classification power compared with training using MCI subject only.3,6,8,45 Table 3
shows further improvement in classification accuracy when incorporating different reference
groups to calculate the FPC scores. Three reference groups are considered: stable AD, stable
CN, and MCI (converter and non-converter). To have a side-to-side comparison, we used the
same folds of training/testing split across all the models using longitudinal FPC scores as

Age

Sex

Lateral ventricle

Parahippocampal

Entorhinal

Amygdala

Hippocampus

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4 Variable importance of the FPC scores of the five brain regions and the scalor predictors
(age and sex) under the LASSO model.

Table 3 Average classification performance on the testing set of MCI group for models using
different types of feature as predictor (first column) and different groups as source of feature (sec-
ond column). Paired t -test was conducted between each longitudinal FPC-based experiment to
the baseline volume feature experiment. Multiple comparison was corrected with false discovery
rate (FDR) set to 0.05.

AUC (SD)

Feature type Feature source 12 months 24 months

Baseline volume CN + AD 0.732(0.140) 0.717 (0.157)

Longitudinal FPC CN + AD 0.802(0.145)*** 0.816 (0.094)

Longitudinal FPC CN 0.726(0.173) 0.789 (0.110)

Longitudinal FPC AD 0.819(0.127)*** 0.800 (0.100)

Longitudinal FPC MCI 0.740(0.059) 0.775 (0.108)

Longitudinal FPC CN + MCI 0.790(0.128)** 0.774 (0.138)**

Longitudinal FPC MCI + AD 0.818(0.127)*** 0.802 (0.090)

Longitudinal FPC CN + MCI + AD 0.814(0.135)*** 0.811 (0.091)

*FDR-corrected P-value <0.05
**FDR-corrected P-value <0.01
***FDR-corrected P-value <0.001.
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features. When using the MCI group as the training set to derive the longitudinal FPC features,
we include the longitudinal volume information from multiple timepoints and improve the pre-
dictive accuracy as indicated by an increase in the AUC. It is evident that the classifier trained
with the FPC-based longitudinal features outperforms the single-timepoint volume features.
Using the AD group to train the FPC model results in a significant improvement in the clas-
sification power compared with the model with CN- or MCI-based FPC features. Inclusion of
the CN and MCI reference groups on top of the AD data leads to mild improvement. Moreover,
it is observed that there is no evident difference between the predictive accuracies of the one-
year-ahead and two-year-ahead predictions.

4 Discussion and Conclusion

Dementia of the Alzheimer type is a prevalent disease worldwide with no definitive cure avail-
able yet, and it is therefore important to detect and predict the disease onset earlier to create
enough time-windows, which are precious for disease intervention. Given the fact that the risk
of disease onset increases with age, it would be beneficial to grasp subtle time-dependent
changes in the brain structures within a short period of follow-up in the early stage of the disease
before the symptoms manifest.

In this paper, we present a novel framework using the FPCA to extract features from MRI-
derived information collected from multiple timepoints. Our study shows promising results and
demonstrates improved prediction power using FPC-derived longitudinal features compared to
naive features based on single timepoint.

4.1 Importance of Incorporating Longitudinal Information for Early Disease
Prediction

Longitudinal information is important for early prediction of potential future disease onset.
However, most of the current literature in AD study only use the single timepoint cross-sectional
data to build the classifier. It has been shown that incorporating longitudinal information can
improve the classification power for determining disease progression or for identifying potential
treatment effect.46 In this study, we showcase the application of extracting the longitudinal
disease progress information (in terms of MCI-to-AD conversion) through the FPCA, and dem-
onstrate improved classification performance over using the single-timepoint volume feature.

4.2 Advantage of FPCA over other Methods

Aimed at incorporating the trajectory information of the volume into the prediction of AD, we
suggest a regularized function regression approach based on FPCA. The comparison results
indicate that the proposed trajectory-based method leads to an increase in the predictive accuracy
over the conventional single timepoint based models. The reason for such an improvement is as
follows. As Eq. (6) suggests, the integral of the product between the trajectory value and the
coefficient function is a versatile and comprehensive summary of the cumulative effect of the
volume trajectory in distinguishing between the converter versus non-converter. The FPCA is
able to extract the information from the longitudinal trend and has shown promising successful
applications in many fields, including biomedical and clinical studies,47,48 ecology,49 psychol-
ogy,50 and econometrics.51

4.3 Choice of the Reference Group for FPC Score

In its essence, FPCA is a dimension reduction approach to project the longitudinal information of
the data into a more representative low-dimensional coordinate system. Therefore, the choice of
the reference group for constructing such a coordinate system, i.e., reference sample data, is
crucial. In the results of our study, as shown in Table 3, choosing the MCI-only group as the
reference group for FPCA results in the least discriminative features sets, compared to the CN-
only and AD-only reference group. This can be explained by the fact that MCI group consists of
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subjects who are in between the healthy control and diseased population. Therefore, their coor-
dinates in the projected FPC space would have less predictive variation than the ones in the
projected FPC space based on CN and AD group’s longitudinal trajectories. As a result, the
coordinates in the projected FPC space based on the MCI group would be less discriminative,
resulting in a sub-optimal classification result.

In comparison, choosing AD group as the reference sample to conduct the FPCA signifi-
cantly improves the classification power for both the 12 months and 24 months predictive tasks,
but interestingly, choosing the CN group as the reference sample shows similar classification
results compared to the case where MCI-group is used as the reference sample. This observation
may indicate more similarity of the MCI group to the CN group when comparing their longi-
tudinal disease progression trend using FPCA. To sum up, the above observations indicate that
the feature of longitudinal volume change demonstrated larger separation between the MCI
group and the AD group compared to the features based on absolute structure volume. Such
insights demonstrate the advantage of longitudinal-based analysis to achieve the task of distin-
guishing MCI subjects with AD patients. Furthermore, it would be interesting to further divide
the MCI group into converter and non-converter, and to include the converter-MCI subjects as a
separate reference group, as suggested by Popuri et al.52 It is possible to investigate whether such
a stratified group definition would better reflect the more detailed difference in the longitudinal
information within each diagnosis subgroup.

4.4 Difference between the Proportion of Total Variance and the Importance
of Variable for Classification

Table 2 shows the importance of FPC in terms of the proportion of the population’s variation for
each structural ROI biomarker that the corresponding FPC can capture. On the other hand, Fig. 4
shows the importance of the features that can classify and explain the difference between the
converter and the non-converter groups. It is worth noting that, although the first FPC (FPC1)
always explains the largest proportion of populational variation for each feature (as shown in
Table 2), they are not necessarily the most important features responsible for capturing the
group difference for classification. Such a difference is indicative of the fact that the populational
variation on that particular FPC may contain more intra-group variation than the inter-group
variation.

4.5 Other Methods of Early Disease Prediction

Several previous studies have attempted to extract longitudinal disease trajectory for AD pre-
diction. The temporal-image-registration between two or more time-points16–18 are prone to
registration error, require heavy computation, and are usually restrained the analysis within
a single structure. The attempt to construct longitudinal features by simply combining all the
coefficient at all the timepoints15 suffers from overfitting due to an overly large number of
parameters. On the other hand, linear disease trajectory models19–23 assume that the longitudinal
structural change are linear, resulting in model under-fitting.

Comparatively, our method defines a fixed number of longitudinal features (¼ 5 FPC scores
per ROI), which captures the most significant five principal functional components of the longi-
tudinal trajectories. Furthermore, comparing with our longitudinal feature selection method,
Zhang and Shen15 used a feature weight vector with a group regularization constraint, and per-
formed the linear feature selection based on the feature weights.

Recent studies have also explored the utility of deep neural networks to incorporate longi-
tudinal information for improving early disease prediction of AD. Bhagwat et al.53 proposed
longitudinal siamese neural network with novel architectural modules for combining multimodal
data from two timepoints to predict clinical scores. Recently, Cui and Liu54 adopted a recursive
neural network to incorporate longitudinal information with cascaded three bi-directional gated
recurrent unit, and combined it with the convolutional neural networks to improve the longi-
tudinal disease prediction. It would be interesting to compare the statistically modeled longi-
tudinal method and the deep-learning-based approach, and seek ways to combine the two.
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4.6 Limitation of the Current Study

In this study, we investigate the improvement of FPCA by incorporating the longitudinal data
from the first 24 months with a total of four timepoints (six months apart in the first three time-
points, and 12 month apart between the third and fourth timepoint) and demonstrate significant
improvement in terms of disease prediction compared with the classification method that utilizes
only the single-timepoint data. A natural extension of the current approach would be to inves-
tigate the effect of the number of follow-up timepoints incorporated on the classification per-
formance of the FPCA model. The effect of different number of the follow-up timepoints from
longitudinal data can be accessed in a step-wise fashion by gradually increasing the number of
follow-up timepoints.

Furthermore, the FPCA is a statistical method that can capture the overall sample variations
of the longitudinal trends in disease progression along multiple timepoints within the study
period. In this study, our approach is to recover the FPC using a limited number of early time-
points to predict the probability of future disease onset through classification. Taking a step
further, an alternative approach would be to directly predict the future measurement of the fea-
tures, the structural volume in our case, as a surrogate representation of the longitudinal trend of
disease progression. The FPCA in this case essentially serves as a statistically sound method for
missing-data-recovery. In this setup, data across all the timepoints can be included, leading to
the construction of a more comprehensive statistical model that takes a full representation of the
whole data set.

Finally, the histopathological characterization of AD defined as the presence of the brain
pathologies such as the beta-amyloid (Aβ) plaques, neurofibrillary tangles, and neuritic plaques.
On the other hand, clinical AD is restricted to demented subject only, therefore doesn’t include
those patients with AD-related brain pathology but without clinical syndrome, the latter of which
has been proposed to be categorized as preclinical AD or asymptomatic AD. In this study,
we mainly focused on the clinically diagnosed AD, rather than the cases with asymptotic AD.
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