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ABSTRACT
BACKGROUND: Individualized and reliable biomarkers are crucial for diagnosing Alzheimer’s disease (AD). However,
lack of accessibility and neurobiological correlation are the main obstacles to their clinical application. Machine
learning algorithms can effectively identify personalized biomarkers based on the prominent symptoms of AD.
METHODS: Episodic memory–related magnetic resonance imaging (MRI) features of 143 patients with amnesic mild
cognitive impairment (MCI) were identified using a multivariate relevance vector regression algorithm. The support
vector machine classification model was constructed using these MRI features and verified in 2 independent
datasets (N = 994). The neurobiological basis was also investigated based on cognitive assessments,
neuropathologic biomarkers of cerebrospinal fluid, and positron emission tomography images of amyloid-b plaques.
RESULTS: The combination of gray matter volume and amplitude of low-frequency fluctuation MRI features
accurately predicted episodic memory impairment in individual patients with amnesic MCI (r = .638) when
measured using an episodic memory assessment panel. The MRI features that contributed to episodic memory
prediction were primarily distributed across the default mode network and limbic network. The classification model
based on these features distinguished patients with AD from normal control subjects with more than 86%
accuracy. Furthermore, most identified episodic memory–related regions showed significantly different amyloid-b
positron emission tomography measurements among the AD, MCI, and normal control groups. Moreover, the
classification outputs significantly correlated with cognitive assessment scores and cerebrospinal fluid
pathological biomarkers' levels in the MCI and AD groups.
CONCLUSIONS: Neuroimaging features can reflect individual episodic memory function and serve as potential
diagnostic biomarkers of AD.

https://doi.org/10.1016/j.bpsc.2020.12.007
Alzheimer’s disease (AD) is a neurodegenerative disease
characterized by the accumulation of amyloid-b (Ab) plaques
and neurofibrillary tangles in the brain (1). Individuals with mild
cognitive impairment (MCI), especially amnesic MCI (aMCI),
are at higher risk of progressing to AD (2). The A/T/N (b amy-
loid/pathological tau/neurodegeneration) research framework
includes cerebrospinal fluid (CSF) and molecular positron
emission tomography (PET) imaging biomarkers (3), empha-
sizing the importance of reliable biomarkers for diagnosing AD.
However, the high invasiveness and costs of these approaches
limit their widespread use and potential in screening patients
for AD. Therefore, it is crucial to identify novel, accessible, and
individualized diagnostic biomarkers for AD.

Episodic memory refers to the ability to record, retain, and
recognize spatiotemporal information based on personal ex-
periences and is characteristically impaired during AD (4,5).
ª 2020 Society of B
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Magnetic resonance imaging (MRI) is a noninvasive means for
detecting changes in brain function (6,7). In a previous study,
we found that the functional connectivity (FC) of the hippo-
campal subregion with the prefrontal, temporal, and parietal
lobes was significantly decreased in patients with aMCI, indi-
cating that episodic memory deficit may be directly associated
with impaired hippocampal function (8). Furthermore, several
meta-analyses have reported a significant association of the
medial temporal lobe, including hippocampal and para-
hippocampal gyri and the entorhinal cortex, with episodic
memory recording and retrieval (9,10). In addition, the pre-
frontal cortex, parietal cortex, and occipital cortex are acti-
vated during encoding and recalling and interact with the
medial temporal lobe to establish the core network of episodic
memory processing (10,11). However, studies on the associ-
ation between episodic memory and neuroimaging biomarkers
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have been largely based on the group-level rather than indi-
vidual statistics, which has limited utility in clinical practice.

Multivariate machine learning regression algorithms have suc-
cessfully decoded continuous clinical assessments from neuro-
imaging scans at the single-subject level. Neuroimaging studies
use multiple algorithms, including linear support vector regression
(12), ridge regression (13), and relevance vector regression (RVR)
(14,15), which show similar predictive performance. RVR has the
following advantages over other equivalent algorithms: 1) selec-
tion of fewer relevance vectors, which reduces model complexity
and computational cost and increases predictive efficacy, and 2)
absence of within-algorithm parameters that obviate additional
computation for parameter optimization (16–18). Furthermore, the
support vector machine (SVM) can recognize subtle patterns from
complex datasets and is the most widely used supervised
learning method for building classification models (19).

To date, multiple machine learning models have been built
based on the MRI data in public AD-related datasets in hun-
dreds of published studies, in which the use of deep learning or
modified machine learning algorithms helped obtain better
classification or prediction performance (20–22). However,
fewer studies have constructed and validated such models
using several independent, multicenter datasets (23–40). The
primary challenge in the clinical use of machine learning
models is the poor generalizability and repeatability among
Figure 1. Schematic of the data analysis pipeline. (A) Imaging data preprocess
atlas. (B) Overview of the relevance vector regression (RVR) prediction framework
and validation of episodic memory–related support vector machine (SVM) classific
Alzheimer’s disease; ADAS13, Alzheimer’s Disease Assessment Scale 13-item C
cerebrospinal fluid; fMRI, functional magnetic resonance imaging; GMV, gray ma
Multi-Center Alzheimer Disease Imaging; MDD, major depressive disorder; M
operating characteristic; SUVR, standardized update value ratio; t-tau, total tau.
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different cohorts. Therefore, independent, multicenter dataset
cross-validation is essential for translation medicine.

In this study, we identified episodic memory–related neu-
roimaging biomarkers using the RVR method and investigated
the clinical value of these biomarkers (Figure 1). Briefly, the
episodic memory impairment that was measured by an
episodic memory assessment panel in individual patients with
aMCI were quantified using MRI data, and episodic memory–
related features with accurate predictions were selected for
building the SVM model for classifying patients with aMCI from
normal control (NC) subjects. The classification model was
validated on patients with MCI/AD and NC subjects in two
independent, multicenter datasets, and the specificity was
determined by testing on patients with major depressive dis-
order and NC subjects. Furthermore, cognitive assessments,
CSF Ab42 and total tau levels, and Ab PET measurements
were also analyzed to determine a possible neurological basis
of the episodic memory–related features and classification
outputs.

METHODS AND MATERIALS

Participants

Discovery Dataset for Building Models: ZhongDa
Hospital Dataset. A total of 143 patients with aMCI and 178
ing and feature extraction with each brain region based on the Brainnetome
in patients with amnesic mild cognitive impairment (aMCI). (C) Establishment
ation model. (D) Exploration of the neurobiological basis. Ab, amyloid-b; AD,
ognitive Subscale; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CSF,
tter volume; mALFF, mean amplitude of low-frequency fluctuation; MCADI,
MSE, Mini-Mental State Examination; NC, normal control; ROC, receiver
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NC subjects were recruited from the Affiliated ZhongDa Hos-
pital of Southeast University following approval of the ethics
committee. All participants or their legal guardians provided
signed consent forms before the start of the study. Global
cognition was assessed using the Mini-Mental State Exami-
nation (MMSE) (41), and episodic memory function was
assessed using the Auditory Verbal Learning Test 20-minute
Delayed Recall (42), Logical Memory Test 20-minute Delayed
Recall (43), and Rey-Osterrieth Complex Figure Test 20-minute
Delayed Recall (44). Detailed information is summarized in
Table 1 and the Supplement. All participants also underwent
multimodal MRI, and the acquisition protocol is outlined in
Table S1.

As described previously (45,46), the raw scores of each test
were initially transformed to z scores using the corresponding
mean and standard deviation, and the individual episodic
memory scores were calculated using the z-transformed
average of the relevant cognitive tests. Additional details are
provided in the Supplement.

Validation Dataset for Testing Models: Multi-Center
Alzheimer Disease Imaging Consortium Data-
set. The Multi-Center Alzheimer Disease Imaging (MCADI)
dataset included 687 participants (252 AD, 220 MCI, and 215
NC) from 6 datasets (Table 1 and Supplement) (47). MRI for
these participants was acquired from 6 different scanners
(Supplement and Table S1).

Validation Dataset for Testing Models: Alzheimer’s
Disease Neuroimaging Initiative Dataset. The Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) dataset (www.
loni.ucla.edu/ADNI) comprised 1077 participants (291 AD, 452
MCI, and 334 NC) with Ab PET images, part of which had been
Table 1. Demographic and Neuropsychological Data of Subject

Dataset Group n Age, Years
Sex,
M/F

Global
Assessmentsa

A

ZhongDa Hospital
Dataset

NC 178 66.51 6 7.31 84/94 28.33 6 1.36

aMCI 143 66.78 6 7.53 66/77 27.04 6 1.79

MCADI Consortium
Dataset

NC 215 66.67 6 6.57 84/131 28.44 6 1.73

MCI 220 68.35 6 9.21 101/119 24.94 6 3.48

AD 252 68.58 6 8.29 105/147 16.61 6 6.17

ADNI Dataset
(PET Analysis)

NC 334 73.78 6 6.01 167/167 29.10 6 1.21

MCI 452 73.48 6 6.63 272/180 27.83 6 2.00

AD 291 74.69 6 7.26 173/118 21.49 6 4.37

ADNI Dataset
(MRI Analysis)

NC 105 72.69 6 5.61 43/62 28.96 6 1.14

MCI 149 73.25 6 6.60 85/64 27.11 6 2.39

AD 53 73.89 6 6.85 27/26 21.89 6 2.80

REST-meta-MDD
Consortium Dataset

NC 251 39.64 6 15.87 87/164 –

MDD 248 38.85 6 13.38 85/163 21.35 6 4.98

Data are presented as mean 6 SD or n.
AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging In

Auditory Verbal Learning Test 20-minute Delayed Recall; F, female; LMT-2
MCADI, Multi-Center Alzheimer Disease Imaging; MCI, mild cognitive imp
imaging; NC, normal control; PET, positron emission tomography; ROCFT
Recall.

aMini-Mental State Examination scale was used for assessing patients
Scale for Depression was used for assessing patients with MDD.

Biological Psychiatry: Cognitive Neuroscien
used in our previous study (48). The structural MRI and resting-
state functional MRI data, MMSE and Alzheimer’s Disease
Assessment Scale 13-item Cognitive Subscale evaluations,
and CSF Ab42 and total tau measurements were available for
307 of these participants (53 AD, 149 MCI, and 105 NC).
Clinical details are provided in Table 1 and Table S2. The im-
aging acquisition protocol is outlined in Table S1.

Validation Dataset for Testing Models: REST-meta-
MDD Consortium Dataset. This dataset was obtained
from 25 research groups across 17 Chinese hospitals, and the
largest dataset with 248 patients with major depressive dis-
order and 251 NC subjects was used in the present study (49).
The patient details are summarized in Table 1 and the
Supplement, and imaging acquisition parameters are pre-
sented in Table S1.

PET Imaging in the ADNI Dataset

The PET methodology has been previously described (50).
Standardized update value ratios (SUVRs) were calculated with
a standardized cortical anatomical automatic labeling volume-
of-interest template placed on spatially normalized image
volumes using a whole-cerebellum reference region. SUVRs of
all brain regions were subsequently obtained based on the
Brainnetome Atlas (Table S3) (51).

Image Acquisition and Preprocessing

Data acquisition and preprocessing for each dataset have
been described in detail in our previous studies (48,52) and the
Supplement. The average modulate gray matter volume (GMV)
values of 210 cortical and 36 subcortical subregions
(Table S3), as described in the Brainnetome Atlas (51), were
s

VLT-20-min-DR z
Scores

ROCFT-20-min-
DR z Scores

LMT-20-min-DR
z Scores

Episodic Memory
z Scores

0.76 6 0.62 0.43 6 0.80 0.44 6 0.89 0.54 6 0.52

20.94 6 0.40 20.53 6 0.96 20.55 6 0.85 20.67 6 0.59

– – – –

– – – –

– – – –

– – – –

– – – –

– – – –

– – – –

– – – –

– – – –

– – – –

– – – –

itiative; aMCI, amnesic mild cognitive impairment; AVLT-20-min-DR,
0-min-DR, Logical Memory Test 20-minute Delayed Recall; M, male;
airment; MDD, major depressive disorder; MRI, magnetic resonance
-20-min-DR, Rey-Osterrieth Complex Figure Test 20-minute Delayed

with aMCI or MCI and patients with AD, and 17-Item Hamilton Rating
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extracted for each subject. Besides, the average amplitude of
low frequency fluctuation (ALFF), across the 0.01–0.08
frequency band, was computed within each voxel, and the
ALFF of each voxel was divided by the global mean ALFF
(mALFF) value for each subject, providing mALFF spatial maps
(53). Subsequently, for each subject, mALFF values of the
above-mentioned 246 brain regions (Table S3) in the Brain-
netome Atlas (51) were also extracted. As a result, the GMV
and mALFF values were used as feature vectors to perform
subsequent analyses.

Multivariate RVR Analysis in Patients With aMCI in
the Discovery Dataset

The association between episodic memory scores and GMV
and mALFF values was analyzed using multivariate RVR (16)
with a linear kernel as implemented in PRoNTo (http://www.mlnl.
cs.ucl.ac.uk/pronto/) running under MATLAB (The MathWorks,
Inc., Natick, MA) (Supplement). Leave-one-out cross-validation
was performed to estimate the generalizability of the model
(14,17). The Pearson correlation coefficient (r) and mean abso-
lute error (MAE) between actual and predicted episodic memory
scores were used to assess the prediction performance (14,54),
and the significance was determined using a permutation test
whereby the input-target data were randomly reassigned and
the RVR was repeated 1000 times. Subsequently, the distribu-
tion of correlation coefficients and MAE values was obtained,
and the p value was calculated by dividing the number of times
the permuted value was greater (or less) than or equal to the true
value by 1000. Furthermore, the absolute value of the weight of
each feature was used to quantify its predictive contribution
(14,55), and a feature was selected if that value was in the top
10%. This threshold can eliminate noise components to some
extent, thus enabling better visualization of the most predictive
features. The use of different types of features together in the
model may improve prediction performance; therefore, com-
posite MRI features were also analyzed by combining the GMV
and mALFF features that were in the top 10% absolute weight
scores of the respective RVR model.

SVM Classification

The LIBSVM toolbox of MATLAB was used for the SVM-based
classification model (56,57). The SVM classifier was built in the
discovery dataset and validated using three validation data-
sets. Leave-one-out cross-validation was used to validate the
generalizability of the model (58), and the performance of the
latter was assessed in terms of accuracy, sensitivity, speci-
ficity, positive predictive value, and negative predictive value.
The area under the curve (AUC) of the receiver operating
characteristic curve was used to calculate and determine the
distinguishing ability of each model. Lastly, the contribution of
each feature in the SVM model was calculated based on the
respective weights.

The features in the RVR model were used as input features
for SVM classification for distinguishing patients with aMCI
from NC subjects in the discovery dataset. As some features
may not have contributed to the classifier, a selection step
feature was introduced. The primary SVM-based model was
first constructed using all features and then arranged in
descending order of their absolute SVM weight value.
4 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
Subsequently, the top N features were selected sequentially to
construct a new SVM model for classifying patients with aMCI
and NC subjects, and the most accurate SVM model was
identified by comparing the accuracies of all SVM models.
Lastly, the optimal SVM model was verified in 2 independent
datasets.

Statistical Analysis

Statistical analyses were performed using MedCalc Statistical
Software version 15.2.2 (MedCalc Software bvba, Ostend,
Belgium). Continuous variables were analyzed using the
Kruskal-Wallis test based on normal distribution as determined
using the Kolmogorov-Smirnov test. Partial correlation analysis
was performed to determine the association between the
classification outputs and clinical indices by adjusting for age
and sex at p , .05.

RESULTS

Multivariate RVR Analysis in the Discovery Dataset

The clinical features of the 143 patients with aMCI from the
discovery dataset are summarized in Table 1. The application
of RVR to the combined GMV and mALFF features allowed
individualized prediction of episodic memory scores (r = .638,
MAE = 0.374, all p , .001) (Figure 2A–C), which was more
accurate compared with a single metric (GMV: r = .564, MAE =
0.402; mALFF: r = .183, MAE = 0.504) and the optimal RVR
prediction model. Twenty-five GMV features and 25 mALFF
features contributed to RVR prediction, mainly localized in the
default mode network (DMN), limbic network (LN), and ventral
attention network (Figure 2D, E and Table S4).

SVM Analysis

Building and Screening of SVM-Based Models in the
Discovery Dataset. To determine whether episodic
memory-related features can identify early AD, a primary SVM
model was constructed with 50 MRI features derived from the
optimal RVR model for classifying the aMCI and NC groups in
the discovery dataset (accuracy = 0.517). The model weights
of the features are listed in Table S5. The optimal classifier was
then identified by sequentially constructing 50 new SVM
models as described in Methods and Materials. As shown in
Figure S1, the 19th model most accurately distinguished the
patients with aMCI from NC subjects (accuracy = 0.651) and
was therefore considered to be the optimal classification
model. It consisted of 9 GMV features and 10 mALFF features
located primarily in the DMN and LN (Figures S2 and S3).

Independent Repeatability Verification in the Vali-
dation Datasets. The optimal SVM classification model was
validated on the MCI/AD and NC groups in the MCADI dataset
(Table 2). It classified the MCI and NC groups with 69.0%
accuracy (sensitivity = 83.3%, specificity = 55.0%, AUC =
0.728) (Figure S4A), and AD and NC groups with 86.9% ac-
curacy (sensitivity = 93.0%, specificity = 81.8%, AUC = 0.921)
(Figure S4B). In addition, the classification accuracy of the
SVM model in the ADNI dataset (Table 2) was 70.5% (sensi-
tivity = 75.2%, specificity = 63.8%, AUC = 0.780) and 87.3%
(sensitivity = 91.4%, specificity = 79.3%, AUC = 0.891),
021; -:-–- www.sobp.org/BPCNNI
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Figure 2. Multivariate relevance vector regression analysis in the discovery dataset. (A) Scatterplot showing the predicted episodic memory score for each
participant derived from their imaging features compared with their actual episodic memory score. (B, C) Distribution of permutation of the prediction r and
mean absolute error. The values obtained using real scores are indicated by the dashed line. (D, E) Visualizations of 25 gray matter volume features and 25
mean amplitude of low-frequency fluctuation features using relevance vector regression analysis for the prediction of episodic memory score. Amyg,
amygdala; BG, basal ganglia; CG, cingulate gyrus; Hipp, hippocampus; INS, insular gyrus; IPL, inferior parietal lobule; ITG, inferior temporal gyrus; LOcC,
lateral occipital cortex; MFG, middle frontal gyrus; MTG, middle temporal gyrus; PCL, paracentral lobule; Pcun, precuneus; PhG, parahippocampal gyrus; PoG,
postcentral gyrus; PrG, precentral gyrus; pSTS, posterior superior temporal sulcus; SFG, superior frontal gyrus; SPL, superior parietal lobule; STG, superior
temporal gyrus.
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respectively, for classifying patients with MCI and patients with
AD from NC subjects (Figure S5).

Specificity Verification in the Validation Dataset. The
SVM model was then used on the REST-meta-MDD con-
sortium dataset to differentiate patients with major depressive
disorder from NC subjects (Table 2). The classification accu-
racy was only 51.3% (sensitivity = 47.8%, specificity = 54.8%,
AUC = 0.516) (Figure S6).

Exploration of Neuroscientific Interpretability

Neurobiological Basis of Episodic Memory–Related
Brain Regions. In the ADNI dataset, among the 47 identi-
fied episodic memory–related brain regions (there were 3
Biological Psychiatry: Cognitive Neuroscien
overlapping brain regions between the GMV and mALFF fea-
tures), the SUVRs of 40 regions (approximately 85.1%) were
significantly different across the AD, MCI, and NC groups
(Table S6). In addition, 15 of the 19 brain regions included in
the optimal SVM model also had significantly different SUVRs
among 3 groups in the ADNI dataset (Figure S7).

Relationships Between SVM Model Decision Values
and Cognitive Ability, Levels of CSF Biomarkers, and
Ab PET SUVRs. The classification outputs and MMSE
scores showed significant associations in the MCI and AD
groups of the MCADI dataset (Figure 3A, B). Likewise, MMSE
and Alzheimer’s Disease Assessment Scale 13-item Cognitive
Subscale scores showed a significant correlation with the
ce and Neuroimaging - 2021; -:-–- www.sobp.org/BPCNNI 5
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Table 2. Classification Performance of Proposed 19 Episodic Memory-Related Imaging Features

ACC SEN SPE PPV NPV AUC

MCI vs. NC

MCADI dataset 0.690 0.833 0.550 0.644 0.771 0.728

ADNI dataset 0.705 0.752 0.638 0.747 0.644 0.780

AD vs. NC

MCADI dataset 0.869 0.930 0.818 0.813 0.932 0.921

ADNI dataset 0.873 0.914 0.793 0.897 0.824 0.891

MDD vs. NC

REST-meta-MDD Consortium 0.513 0.478 0.548 0.517 0.509 0.516

ACC, accuracy; AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AUC, area under the curve of the receiver operating
characteristic; MCADI, Multi-Center Alzheimer Disease Imaging; MCI, mild cognitive impairment; MDD, major depressive disorder; NC, normal
control; NPV, negative predictive value; PPV, positive predictive value; SEN, sensitivity; SPE, specificity.
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classification outputs in the MCI and AD groups of the ADNI
dataset (Figure 3C–F). The classification outputs were signifi-
cantly correlated with CSF Ab42 and total tau levels in the MCI
group (Figure 3G, H); however, in the AD group the classifi-
cation outputs were significantly correlated only with CSF
Ab42 levels (Figure 3I, J).

DISCUSSION

In the present study, episodic memory impairment was
quantified for individual patients with aMCI using the RVR
Figure 3. Correlation between the support vector machine model decision va
patients with mild cognitive impairment (MCI) (A) and patients with Alzheimer’s dis
scores (C) and Alzheimer’s Disease Assessment Scale 13-item Cognitive Subs
ADAS13 scores (F) of patients with AD in the Alzheimer’s Disease Neuroimaging I
CSF total tau (t-tau) (H) levels of patients with MCI and CSF Ab42 levels (I) and CS
Initiative dataset.
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model, and the distinguishing power, reproducibility, and
generalizability of episodic memory–related MRI features were
systematically validated in several independent datasets using
the SVM method. In addition, the association of these imaging
biomarkers with the cognitive and pathological indices of AD
was measured to determine their clinical value. We found that
the combined use of GMV and mALFF features could predict
episodic memory scores of individual patients with aMCI with
greater accuracy. Furthermore, an SVM classifier with 19
episodic memory–related MRI features was identified, which
lues and clinical indices. Mini-Mental State Examination (MMSE) scores of
ease (AD) (B) in the Multi-Center Alzheimer Disease Imaging dataset. MMSE
cale (ADAS13) scores (D) of patients with MCI and MMSE scores (E) and
nitiative dataset. Cerebrospinal fluid (CSF) amyloid-b 42 (Ab42) levels (G) and
F t-tau (J) levels of patients with AD in the Alzheimer’s Disease Neuroimaging
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consistently distinguished between patients with MCI and NC
subjects in several datasets with moderate accuracy and also
showed excellent diagnostic performance for AD. The episodic
memory–related regions identified using RVR showed signifi-
cantly different SUVRs among the AD, MCI, and NC groups.
Importantly, the classification outputs showed a strong asso-
ciation with the cognitive assessments and levels of CSF
biomarkers in patients with MCI/AD. Taken together, these
comprehensive sets of results indicated that the imaging bio-
markers could predict episodic memory impairment and
contribute to identifying MCI/AD.

Using the RVR method, 50 episodic memory–related MRI
features were identified at the individual level that were mainly
distributed in the DMN, LN, and ventral attention network. Also,
19 of these features that localized to the DMN and LN showed
better classification performance in the SVM model. The DMN is
primarily implicated in episodic memory retrieval and deactivated
during the processing of external stimuli in cognitively
demanding tasks (59,60). Furthermore, the DMN system, espe-
cially the medial temporal lobe subsystem, is frequently dis-
rupted in AD and correlates with disease severity (61,62). The
brain regions comprising the DMN and areas with high Ab load
also show considerable overlap, and subjects with positive 11C
Pittsburgh Compound B PET scans showed significantly lower
resting-state FC in the DMN compared with subjects with
negative 11C Pittsburgh Compound B PET scans (63–65).
Furthermore, the limbic region of patients with AD exhibits sig-
nificant gray matter atrophy and accumulation of phosphorylated
tau protein, which likely influences the behavioral, emotional, and
memory-processing functions of this system (66). Pini et al.
found that subjects with late-onset AD have greater memory
dysfunction and significantly reduced FC in the LN, indicating a
significant association between limbic network FC and memory
composite score (67). Altogether, simultaneous impairment of
multiple brain networks in MCI/AD subjects can result in
abnormal episodic memory function.

Compared with the previous studies that used the RVR
method (55,68,69), the combination of multimodal MRI data
provided greater prediction performance and more clinical in-
formation that included the potential value of these MRI features
to differentiate between patients with MCI/AD and NC subjects.
In addition, Long et al. (70) reported a valid SVM-based model
including structural and functional MRI features that distin-
guished MCI subjects from healthy subjects with 96.67% ac-
curacy; however, this classifier may have low generalizability
owing to the small sample size. In our study, the classification
model achieved higher accuracy in the discovery as well as the
multicenter validation datasets, which suggests better general-
ization. Furthermore, principal component analysis could be
used for dimensionality reduction during feature selection (71),
and some studies used significantly different features between
groups for building classifiers (72). However, we selected
episodic memory–related MRI features for the SVM model to
increase the diagnostic specificity for AD, which was also sup-
ported by the results.

To validate the diagnostic utility of MRI indicators in AD, it is
necessary to demonstrate the relationship between these in-
dicators and the pathology markers of AD. In this study, most
episodic memory–related regions overlapped with sites of Ab
deposition in patients with MCI/AD, which suggested that RVR
Biological Psychiatry: Cognitive Neuroscien
captured episodic memory–related regions with a solid neuro-
biological basis. We also observed a significant correlation be-
tween the classification outputs and MMSE and Alzheimer’s
Disease Assessment Scale 13-item Cognitive Subscale scores,
indicating that the probability of MCI/AD diagnosis depends on
the degree of cognitive impairment. Likewise, a strong correla-
tion between the classification outputs and the levels of the
pathological biomarker in the CSF in patients with MCI and
patients with AD indicated that the diagnostic model performed
better with higher disease risk. Consequently, our findings
illustrate a potential association between brain MRI and the
personalized clinical features of AD.

Additionally, an episodic memory function prediction model
and an episodic memory–related classification model based on
the MRI data were proposed in this study. On one hand, for the
prediction model, individual episodic memory function could
be assessed accurately and conveniently in a clinical setting
using objective MRI markers. On the other hand, the proposed
model achieved good results in detecting important episodic
memory–related regions and building the classification model
for diagnosing MCI and AD. In particular, the present classifi-
cation model was validated in 3 multicenter databases, where
it was found to have good generalization and specificity. Thus,
it may be used as a promising prescreening tool for identifying
individuals with potential risk for AD.

Several limitations in our study ought to be considered.
First, as fewer patients with AD had complete episodic mem-
ory assessments, the RVR prediction model was constructed
in patients with aMCi who presented with relatively mild
episodic memory impairment. Second, fractional ALFF data
were not used in the present study, as fractional ALFFs were
suboptimal for predicting the episodic memory status in our
preliminary study, which may result in some underlying infor-
mation (e.g., unique frequency variance associated with the
resting-state band) not being presented. Furthermore, other
MRI measures [e.g., FC (52,73), functional network (53),
amplitude (47)] may be able to better capture variability in the
resting-state data and provide better performance to predict
episodic memory score. We will investigate these potential
MRI indicators in a subsequent study and assess their clinical
utility for early diagnosis of AD. Third, our model effectively
diagnosed AD in 2 multicenter datasets but showed relatively
lower accuracy in distinguishing between patients with MCI
and NC subjects. One possible reason is the heterogeneity of
diagnosis of MCI. Another possible reason is that the variations
in acquisition methods and the distribution of features between
datasets may obfuscate the performance across independent
sites/ethnicity validations. Thus, the classification model
should be further validated in other subjects with MCI
screened strictly according to the A/T/N criteria (3). Additional
clinical data (e.g., genetic information) should also be incor-
porated to improve the classification performance of MCI.
Fourth, the clinical value of the present MRI feature classifiers
will be assessed in our future study by comparing other non-
MRI measures, such as the measurement of blood-related
indicators. Fifth, owing to the paucity of clinical information
in the MCADI dataset, the neurobiological value of the classi-
fication model was assessed with the ADNI dataset. Finally, it
is unclear whether these episodic memory–related features
can predict the progression of disease owing to the lack of
ce and Neuroimaging - 2021; -:-–- www.sobp.org/BPCNNI 7
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longitudinal data. Nevertheless, our findings provide novel in-
sights into the neuroimaging features and present a noninva-
sive method to identify AD.

Conclusions

The combination of functional and structural MRI data can
quantitatively and accurately predict episodic memory status
in individual patients with aMCI based on a multivariate RVR
algorithm, and the objective episodic memory–related MRI
features can be used as a diagnostic aid for distinguishing
patients with MCI/AD from NC subjects. In addition, the
neurobiological interpretability of the classification outputs can
further facilitate the application of a classification model for AD.
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