
2168-2194 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2020.2994114, IEEE Journal of
Biomedical and Health Informatics

6 First Author et al.: Title 

 

  

Abstract—The morphological analysis of hippocampus 
is vital to various neurological studies including brain 
disorders and brain anatomy. To assist doctors in 
analyzing the shape and volume of the hippocampus, an 
accurate and automatic hippocampus segmentation 
method is highly demanded in the clinical practice. Given 
that fully convolutional networks (FCNs) have made 
significant contributions in biomedical image segmentation 
applications, we propose a notably discriminative feature 
network based on a hierarchical attention mechanism in 
hippocampal segmentation. First, considering the problem 
that the hippocampus is a rather small part in MR images, 
we design a context-aware high-level feature extraction 
module (CHFEM) to extract high-level features of scale 
invariance in the encoder stage. Further, we introduce a 
hierarchical attention mechanism into our segmentation 
framework. The mechanism is divided into three parts: a 
low-level feature spatial attention module (LFSAM) is 
developed to learn the spatial relationship between 
different pixels on each channel in the low-level stage of the 
encoder, a high-level feature channel attention module 
(HFCAM) is to model the semantic information relationship 
on different channel images in the high-level stage of the 
encoder, and a cross-connected attention module (CCAM) 
is designed in the decoder part to further suppress the 
noisy boundaries of hippocampus and simultaneously 
utilize the attentional low-level features from the encoder to 
better guide the high-level hippocampus edge 
segmentation in the decoder phase. The proposed 
approach achieves outstanding performance on the ADNI 
dataset and the Decathlon dataset compared with other 
semantic segmentation models and existing hippocampal 
segmentation approaches. Source code is available at 
https://github.com/LannyShi/Hippocampal-segmentation. 

 
Index Terms—hippocampal segmentation, encoder-

decoder network, high-level features, low-level features 

 

 
This research work is supported by the Zhejiang Provincial Public 

Welfare Technology Research Project (No. LGF18F020007), the 
National Natural Science Foundation of China (No. 61762078) and the 
Ningbo Municipal Natural Science Foundation of China (No.2018A610
057, 2018A610163). (Corresponding author:  Rong Zhang.) 

Jiali Shi is studying at Faculty of Electrical Engineering and Computer 
Science, Ningbo University, Ningbo Zhejiang, China. (e-mail: 
375956258@qq.com) 

Rong Zhang is with the Faculty of Electrical Engineering and 
Computer Science, Ningbo University, Ningbo Zhejiang, China. (e-mail: 
zhangrong@nbu.edu.cn) 

I. INTRODUCTION 

HE hippocampus is a very important tissue in the human 

brain and closely related to human cognitive functions such 

as learning and memory. The morphology analysis of the 

hippocampus is important for the diagnosis and prediction of 

various neurological diseases such as Alzheimer’s disease (AD) 

[1], schizophrenia [2], and epilepsy [3].  

The early clinical manifestation of these diseases is 

hippocampal atrophy in the brain [4], [5]. Doctors can use 

magnetic resonance technology to conduct three-dimensional 

imaging of the patient’s brain in order to diagnose and 

formulate relevant treatment plans based on the results of image 

analysis. To determine whether the hippocampus is atrophic, 

doctors often need to segment it on magnetic resonance (MR) 

images and analyze its shape and volume [6], [7]. At present, 

manual segmentation of the hippocampus is still considered the 

gold standard for the analysis of hippocampal volume and 

morphology. However, the process is tedious, time-consuming 

(two to three hours to completion), subjective, and not 

repeatable [8]. 

Automatic hippocampal segmentation is a pixel-wise 

semantic segmentation task. With the recent development of 

convolutional neural networks (CNNs) [9], [10] pixel-level 

semantic segmentation tasks have significantly progressed due 

to their efficient feature extraction capabilities [11]-[13]. 

However, as the hippocampus is a gray matter structure, it has 

a low contrast with the surrounding tissues in MR images, and 

the hippocampus is irregularly shaped, small in size, and 

without obvious boundary at the edge and has large individual 

differences. Therefore, automatic segmentation of the 

hippocampus from MR images is still a challenging task.  

Currently, the most effective semantic segmentation methods 

are based on the fully convolutional network (FCN) [14], which 

stacks multiple convolution and pooling layers to gradually 

increase the receptive field and generate high-level semantic 
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information. However, during encoding high-level features, the 

pooling layer reduces the size of the feature map and loses 

boundary information. Fusion of multi-scale features in 

semantic segmentation has been found to address these 

problems by effectively aggregating complementary 

information and complementing the missing boundaries of 

feature maps [15]-[17]. In the PSPNet [13] or DeepLab [18] 

system, spatial pyramid pooling is performed at different grid 

scales or dilating rates. The pyramid pooling module proposed 

in the PSPNet only fuse different scale features at a single scale 

level, resulting in insufficient multi-scale information. In 

addition, although some works [19], [20] capture different scale 

objects by fusing context, they do not consider effective fusion 

of local and global information. In medical MR image 

segmentation, we need to not only learn the relationship 

between different blocks on a channel but also model the 

relationship of semantic information from different channel 

images. Moreover, most multi-scale methods adopt 

complicated decoder modules that use low-level information to 

help high-level features recover image details. However, they 

are indistinguishable to fuse multi-scale features. Due to 

similarity in the components in the hippocampus and some 

surrounding tissues, inaccurate boundary information may be 

obtained from low-level features, leading to poor performance 

or even incorrect predictions. 

In this study, we aim at extracting discriminative features for 

hippocampal segmentation. First, considering the problem that 

the hippocampus is a rather small part in MR images, the 

context features of scale invariance are extracted in the high-

level stage of the encoder to further enrich hippocampal 

semantic information, with maintaining high-resolution 

representations throughout the process and repeatedly fusing 

multi-scale subnet features. Furthermore, our segmentation 

framework is designed specially to capture the spatial and 

channel dependencies with two attention modules. Specifically, 

we aggregate and update the features of all locations on the low-

level feature maps and all channels on the high-level feature 

maps by weighted summation, and then model the long-range 

dependencies between pixels at different locations on the 

feature map and the long-range dependencies between different 

channels. Finally, we build an effective decoder module to 

further suppress the noisy boundaries of hippocampus, and 

simultaneously take advantage of the attentional low-level 

features from the encoder to better guide high-level 

hippocampus features restore the boundaries in the decoder 

phase.  

The main contributions of this study can be summarized as 

follows:  

1. We propose a context-aware high-level feature 

extraction module (CHFEM) on high-level features to 

extract scale-invariant features. The CHFEM can capture 

multi-scale discriminative information for a small-sized 

input sample by repeatedly fusing high-to-low subnet 

features. 

2. We design a low-level feature spatial attention module 

(LFSAM) and a high-level feature channel attention 

module (HFCAM) to capture the spatial and channel 

dependencies between any two positions of the low-level 

feature maps and between any two channels of the high-

level feature maps, respectively. To the best of our 

knowledge, this is the first work to apply an attention 

mechanism to the hippocampal segmentation task. And we 

achieve state-of-the-art performance on the ADNI dataset. 

3. We develop a cross-connected attention module 

(CCAM) between the encoder and decoder to extract the 

global context of high-level features via global max-

pooling and global average-pooling. The global 

information from high-level features can be used as a 

guide to weight low-level features, and then select low-

level features that are more valuable to segmentation 

results, thereby helping high-level features restore the 

boundaries. 

4. We achieve new state-of-the-art results on two popular 

benchmarks, namely ADNI dataset and Decathlon dataset. 

The rest of the paper is organized as follows. Section II 

reviews the latest developments in semantic segmentation tasks. 

Section III introduces data preprocessing and the details of the 

four modules. In Section IV, we extensively investigate the 

performance of the proposed method under different parameters 

and verify the rationality and effectiveness of each step of the 

proposed method. Finally, the paper is summarized in Section 

V. 

II. RELATED WORKS 

Hippocampus Segmentation: Recently, with the 

development of deep learning, techniques such as convolutional 

neural networks (CNNs) have been used in hippocampal 

segmentation. In 2018, Thyreau et al. [21] proposed a deep-

learning appearance model by transferring algorithmic 

knowledge to segment the bilateral hippocampi. Cao et al. [22] 

proposed a multi-task deep-learning (MDL) method for joint 

hippocampal segmentation and clinical score regression using 

MRI scans. In 2019, Liu et al. [23] proposed a new 3D densely 

connected model based on 3D patches to extract and learn rich 

hippocampal features. However, the MRI datasets used for AD 

diagnosis are typically extremely small compared with the 

datasets used in computer vision and the hippocampus is small 

in size with no obvious boundary at the edge. Training deeper 

network models with a large number of parameters for 

hippocampal segmentation remains a major challenge [24]. 

Inspired by previous studies, in order to further improve the 

segmentation accuracy, we aim to extract discriminative 

features for hippocampal segmentation by using the 

hierarchical attention mechanism and to enhance the feature 

representation of the model. 

Multi-Scale Representation: Approaches toward the 

application of encoding the multi-scale context information are 

widely explored. The typical construction of an image pyramid 

[25], [26] is frequently used, resulting in various scales of 

objects in the network. Dilated or atrous convolution [14]-[18] 

deployed in parallel or in a cascaded structure expands the 

receptive fields while exhibiting no extra parameters. Further, 

atrous spatial pyramid pooling (ASPP) modified atrous 

convolution in parallel within spatial pyramid pooling to 

efficiently capture features of an arbitrary scale. In particular, 

in the PSPNet [13] or DeepLab [18] system, spatial pyramid 

pooling is performed at different grid scales. However, the 

pyramid pooling module proposed in the PSPNet fuse different 

scale features only at a single scale level, but not at different 
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scale levels, thus resulting in insufficient multi-scale 

information. In the ASPP module, dilated convolution is a type 

of sparse calculation that may cause grid artifacts [27]. In 

contrast to the above methods, inspired by the HRNet [28], we 

propose the CHFEM to extract the features of scale invariance. 

Due to the small size of the hippocampus, it is impossible to 

construct a deep network in a small input sample model. 

Therefore, unlike in the HRNet, the proposed CHFEM captures 

rich discriminative semantic information only on high-level 

features. Specifically, we connect high-to-low subnets in 

parallel, which can accurately estimate spatial heat maps by 

maintaining high-resolution representations throughout the 

process and repeatedly fusing high-to-low subnet features. 

Attention Mechanisms: Attention mechanisms have been 

successfully applied to various tasks [29], [30]. Ashish et al. [31] 

first proposed the self-attention mechanism to draw global 

dependencies of inputs and applied it in machine translation. 

Meanwhile, attention modules have been increasingly applied 

in the image vision field. Han et al. [32] introduced the self-

attention mechanism for the learning of an improved image 

generator. Zhao et al. [13] mainly explored the effectiveness of 

non-local operation in space-time dimension for videos and 

images with a self-attention module. However, they did not 

consider how to effectively fuse local and global information. 

As convolution extracts features through fixed-size local 

receptive fields, it is difficult to simultaneously consider local 

and global information. To overcome these problems, an 

attention model was introduced to the semantic segmentation 

network. Fu et al. [33] proposed a dual attention network 

(DANet) to enhance the discriminant ability of high-level 

feature representations for scene segmentation. However, the 

DANet ignores the different characteristics of the high-level 

and low-level features, which may affect the extraction of 

effective features. Because features of different layers have 

different semantic values for generating significant feature 

maps, high-level features usually contain global context-aware 

information, which is suitable for correct classification, while 

low-level features contain spatial structure details and are 

suitable for locating boundaries. Therefore, different from 

DANet, we introduce the LFSAM and the HFCAM to capture 

the spatial and channel dependencies between any two positions 

of low-level feature maps and between any two channels of 

high-level feature maps, respectively.  

Encoder–decoder: Most state-of-the-art segmentation 

frameworks are based on encoder–decoder networks [12], [34]-

[36], which have also been successfully applied to many 

segmentation tasks. Some types of U-shape networks such as 

SegNet [37], Refinenet [38], Large Kernel Matters [39], and 

even U-Net [34], which is widely used in the field of medical 

image segmentation, involve a complicated decoder module 

that uses low-level information to help high-level features 

recover image details. However, most methods of U-shape 

networks are indistinguishable to fuse multi-scale features. Due 

to the presence of similar components in the hippocampus and 

some surrounding tissues, low-level features may provide 

inaccurate boundary information, which can lead to poor 

performance or even incorrect predictions. To solve this issue, 

inspired by the global attention upsample (GAU) [35] module, 

we build an effective decoder module, i.e., CCAM, during cross 

connections, which can extract global context of high-level 

features as guidance to weight low-level feature information. In 

contrast to GAU, along with average-pooling, we also use max-

pooling to obtain global context of high-level features. Our 

experiments prove that jointly using these two features can 

greatly improve the representation power of the networks rather 

than using average-pooling alone. 

III. MATERIALS AND METHODS 

Herein, we present the details of the proposed segmentation 

method, including the data preprocessing and the structure of 

our network.  

A. Data preprocessing 

We adopt the public Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database [40] in this study. Specifically, the 

baseline ADNI database contains 1.5T T1-weighted structural 

MRI data of 140 subjects, including 48 normal controls (NC), 

45 subjects with mild cognitive impairment (MCI), and 47 AD 

subjects. We pre-process all studied MRI data using a standard 

pipeline. Specifically, we first resample all images to have the 

same size of 192×192×160, followed by intensity 

inhomogeneity correction via the N3 algorithm [41]. Then, we 

linearly align all images onto a template image. Note that, in 

this study, we do not need processes such as skull stripping or 

cerebellum removal. In addition, no nonlinear registration is 

required in image pre-processing. 

After pre-processing, all MR images are aligned onto a 

common template space wherein we define a bounding cube for 

the hippocampus and extract an image patch from this box of 

size 32×32×32. As a result, an area containing the hippocampus 

of all test objects is obtained, which is considered the region of 

interest (ROI) [42]. Because of the relatively small size of the 

hippocampus in the brain, this process helps us eliminate 

considerable confounding background information. Otherwise, 

the number of voxels in the background (i.e., negative samples) 

will be considerably larger than that of voxels in the 

hippocampus region (i.e., positive samples), leading to a severe 

class-imbalance problem. To model the structural similarity 

between adjacent slices and reduce the computational 

complexity, we adopt the 2.5D image patch extraction method. 

Particularly, we believe that there is complementary 

information between continuous slices of the MR image, 

therefore, we extract 2D slice containing the hippocampal 

information from ROI along the depth, and simultaneously 

extract the two adjacent slices before and after it. Finally, these 

three 32×32 images are used as three channels of the input 

image; subsequently, the spatial information of the 

hippocampus can be learned by 2D convolution. In this study, 

we use random rotation and translation to increase the number 

of training images, which not only ensures that enough 

information is extracted from the MR images but also 

effectively inhibits the over-fitting problem of the CNN. During 

the training process, since the output of the network is a single-

channel segmentation map, we only perform 2.5D image 

processing on the training data, and we input the corresponding 

single-channel ground truth. The test set is processed by the 

same procedure as that of the training set. 

B. Structure of Network 

In this section, we present a novel method for hippocampal 
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segmentation, and the overall framework of this study, which 

involves a process of encoding and decoding. The specific ideas 

of the algorithm are as follows. 
1) Overview 

Encoder part: As illustrated in Fig. 1, in the down sampling 

stage, we adopt different convolutional layers to extract 

hippocampal features. Inspired by DenseNet [43], we add dense 

connections to encoders. Specifically, each convolutional block 

is composed of a repeated cascaded structure of two 3 × 3 

convolution layers, all of which are followed by a batch 

normalization and a ReLU activation function. The shallow 

information extracted from the first two layers is considered 

low-level features, whereas the deep information extracted 

starting from the third layer is considered high-level features. 

The encoder part contains a CHFEM on high-level features to 

extract the information of scale invariance; it can capture multi-

scale discriminative information from small-sized samples. In 

addition, we adopt an HFCAM on high-level features to model 

the association of semantic information of different channel 

images, and two LFSAMs on low-level features to aggregate 

similar features at all locations selectively. 

Decoder part: As illustrated in Fig. 1, in the up-sampling 

stage, we restore the edge details of high-level features. 

Similarly, we add dense connections to decoders. In addition, 

unlike in U-Net, we set two CCAMs during cross connection 

at this stage. It can select more efficient low-level features to 

help high-level features restore boundaries.  
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CCAM CCAM

Input

Output

Low-level 

Feature

Low-level 

Feature

High-level 

Feature

High-level 

Feature

High-level 

Feature

Downsample

UpsampleElement-wise Sum

LFSAM
Low-level Feature 

Spatial Attention Module
HFCAM

High-level Feature 

Channel Attention Module

CCAM Cross-Connected Attention Module

CHFEM Context-aware High-level Feature Extraction Module

Downsample

Upsample
 

Fig. 1. Overall architecture of the proposed method. (Best viewed in color) 

 
2) Context-aware High-level Feature Extraction Module 

Due to small size of the hippocampus, common deep 

networks cannot achieve accurate segmentation. Therefore, we 

extract multi-scale context features in the high-level stage of the 

encoder to further improve the hippocampal semantic 

information. It has been revealed that features from different 

layers of the network are complementary [25], [26]. The fusion 

of multi-scale features in semantic segmentation can effectively 

aggregate complementary information, and help complement 

the missing boundaries of feature maps. However, 

discriminative features cannot be effectively extracted with a 

deep network based on small-sized samples. Therefore, we 

propose a CHFEM on a high-level stage to capture the context 

information of multiple receptive fields, and the final extracted 

high-level features are scale invariant. Fig. 2 illustrates the 

structure of the CHFEM.  

We consider the third encoder layer information presented in 

Fig. 1 as the basic high-level features. To extract high-level 

features of scale invariance, we connect high-to-low subnets in 

parallel, which can accurately estimate spatial heat maps by 

maintaining high-resolution representations throughout the 

process and repeatedly fusing high-to-low subnet features. 

A1

high-level 

feature

Upsample Downsample Element-wise Sum

Q

  
Fig. 2. Details of context-aware high-level feature extraction module. 

(Best viewed in color) 

 

As illustrated in Fig. 2, we down sample high-level features 

(A1 in Fig. 2) into three different resolution features. First, we 

start from a high-resolution subnetwork as the first stage, and 

gradually connect high-to-low multi-resolution subnetworks in 

parallel one by one, forming new stages. The hippocampal 

feature is extracted by repeated 3 × 3 convolution with dense 

connections between same resolutions; the resolution is halved 

by the pooling operation between adjacent resolutions. In 

Authorized licensed use limited to: Univ of Calif San Francisco. Downloaded on June 02,2020 at 18:05:04 UTC from IEEE Xplore.  Restrictions apply. 



2168-2194 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2020.2994114, IEEE Journal of
Biomedical and Health Informatics

6 First Author et al.: Title 

 

addition, we fuse multi-scale features at different scale levels so 

that each subnetwork repeatedly receives the information from 

other parallel subnetworks. Subsequently, we obtain three 

different scale features with context-aware information, of 

which two smaller ones are then upsampled to the largest one. 

Finally, we combine them by element-wise summation to 

obtain the output (Q in Fig. 2) of the CHFEM.  
3) Spatial Attention Module and Channel Attention 

Module 

In medical MR image segmentation, not only is it important 

to learn the relationship between different blocks on a channel 

but also to model the relationship of semantic information on 

different channel images. However, because convolution 

extracts feature through fixed-size local receptive fields, it is 

difficult to simultaneously consider local and global 

information. To solve this problem, we introduce two attention 

modules to capture the spatial and channel dependencies 

between any two positions of the feature maps and between any 

two channel maps, respectively.  

Low-level Feature Spatial Attention Module: Since the 

convolution of the encoder stage can only model local features, 

it lacks the ability to model a larger range of spatial 

relationships. In addition, features of different layers have 

different semantic values for generating significant feature 

maps; low-level features contain spatial structural details and 

are suitable for locating boundaries. By introducing a spatial 

attention in two low-level layers, we can significantly enhance 

the spatial structure description ability of the feature of this 

layer, which plays a guiding role in segmentation. For example, 

the spatial correspondence between the head and tail of the 

hippocampus contributes to hippocampus segmentation. 

Therefore, we only build a spatial attention module for low-

level features. Next, we elaborate the process to adaptively 

aggregate spatial contexts.  
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 Fig. 3. Details of low-level feature spatial attention module. (Best 

viewed in color) 

 

For the LFSAM, we introduce the self-attention mechanism 

to capture the spatial dependencies between any two positions 

of the low-level feature maps. As illustrated in Fig. 3, the low-

level feature map A  𝑅𝐶×𝐻×𝑊  first obtains three identical 

feature maps B through three convolution layers, respectively, 

where B  𝑅𝐶×𝐻×𝑊; these feature maps are then reshaped to 

𝑅𝐶×𝑁, where N = H ×W is the number of pixels. Next, matrix 

multiplication between the transpose of B and B is performed, 

and a softmax layer is applied to calculate the spatial attention 

map M  𝑅𝑁×𝑁: 

                         𝑀𝑗𝑖 =
𝑒𝑥𝑝(𝐵𝑖∙𝐵𝑗)

∑ 𝑒𝑥𝑝(𝐵𝑖∙𝐵𝑗)
𝑁
𝑖=1

                        (1) 

where 𝑀𝑗𝑖  indicates the 𝑖𝑡ℎ  position’s impact on the 𝑗𝑡ℎ 

position. In addition, a matrix multiplication between B and the 

transpose of M is performed and the result is reshaped to 

𝑅𝐶×𝐻×𝑊. Finally, this is multiplied by a scale parameter α and 

an element-wise sum operation with features A is performed to 

obtain the final output E  𝑅𝐶×𝐻×𝑊 as follows:  

                          𝐸𝑗 = 𝛼∑ (𝑀𝑗𝑖
𝑁
𝑖=1 𝐵𝑖) + 𝐴𝑗                        (2) 

where α is initialized to 0 and gradually learns to assign more 

weight. It can be inferred that the resulting feature E at each 

position is a weighted sum of the features across all positions 

and original features. The spatial attention modules enhance 

their representation capabilities by encoding a wide range of 

contextual information into local low-level features. 

High-level Feature Channel Attention Module: Different 

channels model different semantic information. In addition, 

high-level features usually contain global context-aware 

semantic information, which is suitable for accurate 

classification. Therefore, by adding a channel attention to high-

level different channels, we can enhance the semantic 

correlation between different channels, which also plays a 

guiding role in segmentation. Therefore, we build a channel 

attention module only for high-level features. Our HFCAM is 

built behind the CHFEM, which aims to further enhance the 

capability of multi-scale high-level semantic feature 

representation.  
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Fig. 4. Details of high-level feature channel attention module. (Best 

viewed in color) 
 

For the HFCAM, we use the similar self-attention 

mechanism used for the LFSAM to capture the channel 

dependencies between any two channel maps, and update each 

channel map with a weighted sum of all channel maps. The 

structure of the HFCAM is illustrated in Fig. 4. The high-level 

feature map A1  𝑅𝐶×𝐻×𝑊; different from the LFSAM, A1 is 

directly reshaped to 𝑅𝐶×𝑁, where N = H ×W is the number of 

pixels. Further, this high-level feature map A1 obtains three 

identical feature maps B1, where B1  𝑅𝐶×𝑁. Then, a matrix 

multiplication is performed between B1 and the transpose of B1, 

and a SoftMax layer is applied to obtain the channel attention 

map N  𝑅𝐶×𝐶: 

                              𝑁𝑗𝑖 =
𝑒𝑥𝑝(𝐵1𝑖∙𝐵1𝑗)

∑ 𝑒𝑥𝑝(𝐵1𝑖∙𝐵1𝑗)
𝐶
𝑖=1

                          (3)                                                           

where 𝑁𝑗𝑖 indicates the 𝑖𝑡ℎ channel’s impact on the 𝑗𝑡ℎ channel. 

In addition, a matrix multiplication is performed between the 

transpose of N and B1 and their result is reshaped to 𝑅𝐶×𝐻×𝑊. 

Finally, the result is multiplied by a scale parameter β and an 
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element-wise sum operation with the features A1 is performed 

to obtain the final output 𝐺  𝑅𝐶×𝐻×𝑊 as follows: 

                            Gj = β∑ (Nji
C
i=1 B1i) + A1j                        (4) 

where 𝛽  is initialized as 0 and gradually learns to assign 
more weight. It can be inferred that the resulting feature 𝐺 
at each channel is a weighted sum of the features across all 
channels and original features. The channel attention 
module encodes a wider range of semantic dependencies 
between high-level feature maps, thus boosting feature 
discriminability. 
4) Cross-Connected Attention Module 

Automatic segmentation of the hippocampus in MR images 

is a challenging process. The gray levels of the hippocampus in 

MR images are very similar as other neighboring structures, 

such as the amygdala, caudate nucleus, and thalamus. In 

addition, there are no well-defined borders around the 

hippocampus with these adjacent regions, which increases the 

difficulty of hippocampus segmentation. Recent research has 

shown that some types of U-shape networks involve 

complicated decoder modules that use low-level information to 

help high-level features recover images detail. However, these 

methods are indistinguishable to fuse multi-scale features. Due 

to similar texture between the hippocampus and some 

surrounding tissues, the boundaries from low-level features 

may be inaccurate, leading to poor performance or incorrect 

predictions. To resolve this issue, we build an effective decoder 

module, the CCAM, during cross connections, which can 

further suppress the noisy features of the hippocampus, as well 

as make use of the attentional low-level features from the 

encoder to better guide the high-level hippocampus features 

restore the boundaries. 

At present, for aggregating spatial information, average-

pooling has been commonly adopted. Li et al. [35] used it in 

their GAU to learn global context, and Hu et al. [44] adopted it 

in their attention module to compute spatial statistics. In 

addition to the findings of the previous works, we believe that 

max-pooling collects other important clues about distinctive 

object features, which helps achieve more refined channel-wise 

features. Therefore, we use both average-pooled and max-

pooled features simultaneously. We empirically demonstrate 

that exploiting both features greatly improves the representation 

capability of the network rather than using average-pooling 

alone. We describe the details below. 
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Fig. 5. Details of cross-connected attention module. (Best viewed in 

color) 
 

As illustrated in Fig. 5, the spatial information of A1  

𝑅𝐶×𝐻×𝑊 is first aggregated by using the average-pooling and 

max-pooling operations, generating two different spatial 

context descriptors, 𝐹𝑎𝑣𝑔
𝑐  and 𝐹𝑚𝑎𝑥

𝑐 , which represent the 

average-pooled and max-pooled features, respectively. Then, 

they are merged using element-wise summation. In addition, to 

limit the complexity of the model and aid generalization, the 

gating mechanism is parameterized by forming a bottleneck 

with two fully connected (FC) layers around the non-linearity. 

Subsequently, the global context attention map P  𝑅1×1×𝐶  is 

obtained through sigmoid operation. Next, 3 × 3 convolution on 

the low-level features (A in Fig. 5) is performed to obtain O  

𝑅𝐶×𝐻×𝑊. Then, a matrix multiplication is performed between O 

and the transpose of P and their result is reshaped to obtain X  

𝑅𝐶×𝐻×𝑊. In short, the global attention is computed as 

P = σ(𝑊1 (𝛿 (𝑊0(𝐹𝑎𝑣𝑔
𝑐 + 𝐹𝑚𝑎𝑥

𝑐 ))))                        (5) 

where W refers to parameters in a channel-wise attention block, 

𝑊0   𝑅1×1×
𝐶

4  and 𝑊1   𝑅1×1×𝐶 ; σ  denotes the sigmoid 

function; and 𝛿refers to the ReLU function. Finally, we perform 

an element-wise sum operation between A1 and X to obtain the 

final output H  𝑅𝐶×𝐻×𝑊. 

IV. EXPERIMENTS AND RESULTS 

To evaluate the proposed method, we carry out 

comprehensive experiments on ADNI dataset and dataset from 

the Medical Segmentation Decathlon challenge. Experimental 

results demonstrate that proposed method achieves state-of-the-

art performance on two datasets. In the following section, we 

will first introduce the dataset and implementation details, and 

then performed empirical comparation with a few other 

competing methods. We also compared the results with 

different parameter setting. 

A. Dataset and Implementation Details 

ADNI Dataset: The baseline ADNI database contains 1.5T 

T1-weighted structural MRI data of 140 subjects, to evaluate 

the proposed hippocampal segmentation method, we divided 

140 subjects into five parts; one (28 subjects) was used for 

testing, while the other 4 parts (112 subjects) were for training. 

For the training process, we used cross validation with 20% of 

the training data used as a validation set. Then, the training 

parameters were updated iteratively according to each 

validation result. The testing set was not used for model training 

and parameter tuning but for general performance evaluation.  

Decathlon Dataset: We selected the hippocampus dataset 

from the Medical Segmentation Decathlon challenge [45], 

including 265 training data and 130 test data; each training 

image has a unique label. In the training process, we adopted 

the same cross-validation method to adjust the network 

parameters. 

Implementation Details: We implemented our method using 

Keras and TensorFlow. We employed a poly learning rate 

policy, where the initial learning rate is multiplied by 

(1 −
𝑖𝑡𝑒𝑟

𝑡𝑜𝑡𝑎𝑙_𝑖𝑡𝑒𝑟
)
0.9

 after each iteration. The base learning rate 

was set to 0.01 for the ADNI dataset. Momentum and weight 

decay coefficients were set to 0.9 and 0.00001, respectively. We 

trained our model with Synchronized BN. The batch size was 
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set to 32 and the training time was set to 300 epochs for the 

ADNI dataset. For data augmentation, we applied random 

rotation and random translation during training for the ADNI 

dataset. In addition, the dice similarity coefficient (DSC) was 

measured to evaluate the performance of the proposed method. 

The segmentation results with a higher DSC represent better 

segmentation performance.  

DSC =
2（𝑉𝑓𝑐𝑛∩𝑉𝑚𝑎𝑛𝑢）

𝑉𝑓𝑐𝑛∪𝑉𝑚𝑎𝑛𝑢
                               (6) 

where 𝑉𝑓𝑐𝑛  represents the results of the segmentation method 

and 𝑉𝑚𝑎𝑛𝑢  represents the information of the corresponding 

label. 

B. Results on Hippocampal Segmentation 

1） Results on ADNI Dataset  

Comparison of different methods: In this experiment, we 

compared the results of our method with the latest results of 

other four hippocampal segmentation methods including multi-

alas based method [46], Thyreau’s method [21], Cao’s method 

[22] and Liu’s method [23]. For these four methods, only the 

trained model of the Thyreau’s method was available online 

(https://github.com/bthyreau/hippodeep), we downloaded it to 

test on our dataset for comparison. Experimental results of the 

other three methods were obtained from related references. 

Table I shows the comparison of segmentation results in terms 

of DSC on the ADNI dataset. In addition, we further compared 

the experimental results with some deep semantic segmentation 

models on the ADNI dataset. Since U-Net has obtained 

significant advantages in the field of medical image 

segmentation, more and more improved models based on U-Net 

have been developed. Table II shows the different segmentation 

results of our method and some state-of-the-art improved U-Net 

models on the ADNI dataset. These models include U-Net [34], 

U-Net++ [47], Attention U-Net [48] and nnU-Net [49]. Their 

code was available online, and we downloaded it to test on our 

ADNI dataset for comparison. Furthermore, Fig. 6 visualizes 

the segmentation results of different improved U-Net models. 

The original images, corresponding ground truth and the 

segmentation results of different deep models are demonstrated 

in columns from left to right in Fig. 6. 

 
TABLE I 

DSC OF DIFFERENT HIPPOCAMPAL SEGMENTATION APPROACHES ON 

THE ADNI TEST DATASET 

Method DSC% 

Multi-alas based on method (2017) 87.11 

Thyreau’s method (2018) 73.48 

Cao’s method (2018) 85.63 

Liu’s method (2019) 87.00 

Proposed Method 91.24 

 

TABLE  II 

DSC OF DIFFERENT SEMANTIC SEGMENTATION APPROACHES ON THE 

ADNI TEST DATASET 

Method DSC% 

U-Net (2015) 81.24 

U-Net++ (2018) 86.03 

Attention U-Net (2018) 88.45 

nnU-Net (2019) 87.91 

Proposed Method 91.24 

 

From Table I and Table II, our method achieves the best 

performance compared to other methods. In addition, from the 

original images in Fig. 6, we notice that it is not easy to 

distinguish the hippocampal regions from the adjacent tissues 

due to the small difference between their intensity values. 

Proposed network can capture the overall contour of the 

hippocampus well after the training is completed, and the 

segmented hippocampal regions obtained by our method appear 

to be smoother and more accurate than those by other methods. 

Ablation Study of Different Modules: To verify the 

performance of the CHFEM, HFCAM, LFSAM, and CCAM in 

hippocampus segmentation, we conducted experiments with 

different settings presented in Table III. 

As shown in Table III, the proposed modules remarkably 

improved the performance. Compared with the baseline U-net 

(Residual Connection), employing the CHFEM yielded 80.21% 

DSC, resulting in 2.18% improvement. Meanwhile, the 

HFCAM individually outperformed the baseline by 3.36%. In 

addition, the LFSAM improved the performance from 78.03% 

to 80.92%. The CCAM yielded 4.42% improvement. When the 

four modules were integrated, the performance further 

improved to 85.74%. Furthermore, when we adopted dense 

connection in each layer, the network with four modules 

significantly improved the segmentation performance to 91.24% 

over the baseline model. 

Visualization of Attention Module: For spatial attention 

based on low-level features, we visualized the feature maps of 

spatial attention in the early stages of training, as shown in Fig. 

7c, it can be seen that the attention of network in the training 

process are mainly activated in the middle area, especially the 

region close to red, which is consistent with the position of the 

real hippocampus. It fully illustrates that the spatial attention 

module could capture clear semantic similarities and long-term 

relationships, and then locate the approximate position of 

hippocampus. 

For channel attention based on high-level features, it is hard 

to directly give comprehensible visualization about the 

attention map. Instead, we show an attended channel to see 

whether they highlight semantic areas. In Fig. 7d, we displayed 

the fourth attended channel in the feature map of the encoder's 

last layer. We found that the area near the red color is the 

location of the most relevant features of the segmentation task, 

indicating that the response of specific semantic is noticeable 

after channel attention module enhances. In short, these 

visualizations further prove the necessity of capturing long-

term dependencies for improving feature representation in 

hippocampal segmentation. 
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Fig. 6. Visual comparison of the proposed method and the state-of-the-art semantic segmentation algorithms on the ADNI test dataset. For each 
row, we show the input image and corresponding ground truth. Meanwhile, the segmentation results of the proposed method and nnU-Net, Attention 
U-Net, U-Net++ and U-net are provided. 

TABLE III 
ABLATION STUDY OF DIFFERENT MODULES ON THE ADNI DATASET 

Method Connection Type CHFEM HFCAM LFSAM CCAM DSC% 

U-net Residual Connection     78.03 

Ours Residual Connection     80.21 

Ours Residual Connection     81.39 

Ours Residual Connection     80.92 

Ours Residual Connection     82.45 

Ours Residual Connection     85.74 

U-net Dense Connection     83.45 

Ours Dense Connection     85.13 

Ours Dense Connection     86.56 

Ours Dense Connection     85.91 

Ours Dense Connection     87.62 

Proposed Method Dense Connection     91.24 

 

 
Fig. 7. Visualization results of attention modules on ADNI dataset. For each row, we show an input image and corresponding ground truth. Meanwhile, 
we give a spatial attention map and a channel attention map. Finally, the segmentation result of proposed method is provided.  
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Comparison of Different Pooling Type in CCAM: We 

experimentally verified that using both average-pooled and 

max-pooled features enables finer attention inference in our 

CCAM. We compared three variants of CCAM: average 

pooling, max pooling, and combined use of both. Note that the 

CCAM with an average pooling was the same as the GAU [35] 

module. We conducted experiments using the different settings 

presented in Table IV.  
TABLE IV 

ABLATION STUDY OF DIFFERENT POOLING TYPE IN CCAM ON THE ADNI 
DATASET 

Method AvgPool MaxPool DSC% 

U-net (Dense)   83.45 

Ours (Dense)   89.76 

Ours (Dense)    88.53 

Proposed Method (Dense)   91.24 

Experimental results of various pooling methods are 

presented in Table IV. We can observe that the max-pooled 

features were as significant as the average-pooled features in 

terms of the improvement of DSC from the baseline. However, 

in GAU’s work, only the average-pooled features were 

considered, while ignoring the max-pooled features. We believe 

that the max-pooled features encoding the most significant part 

can compensate the average-pooled features that encode global 

statistics. Therefore, we recommend using both features and 

then integrating them through element-wise summation. Our 

empirical results show that our CCAM is an effective way to 

drive the segmentation performance further from that of GAU. 

Analysis of Different Input Scales: This experiment was to 

test the impact of sample size on the performance of the model. 

Since the proposed model is built based on 2D image patches, 

so the size of the image patch has effects on hippocampus 

segmentation. Here, we gradually increased the image patch 

size from 24×24, 32×32 to 64×64 to test hippocampal 

segmentation. The Table V demonstrates that the segmentation 

performance is improved by decreasing the patch size from 64

×64 to 24×24. However, smaller image patches might have 

limited contextual information, while larger image patches 

could include unnecessary background pixels increasing both 

overfitting risk and computational burden. With this 

observation, we set the image patch size to 32×32 in the 

following experiments. 
TABLE V 

STUDY OF DIFFERENT INPUT SCALES ON THE ADNI DATASET  
Input Scale DSC% 

24×24 92.83 

32×32 (Ours) 91.24 

64×64 87.62 

Analysis of Different Data Processing: To model the spatial 

structural information and reduce the computational complexity, 

we constructed two 2.5D image patch extraction methods. One 

is to learn the spatial information between different dimensions 

of MR image. Specifically, we extract three slices of the same 

number from ROI along the x-axis, y-axis, and z-axis, 

respectively, and they intersect in space. The other is to capture 

the structural relationship between adjacent slices in the same 

dimension. We extract the slice containing the hippocampal 

information from ROI along the depth, and simultaneously 

extract the two adjacent slices before and after it. Three 32 × 32 

image patches from the previous two methods are used as three 

channels of the input image; subsequently, the spatial 

information of the hippocampus can be learned by 2D 

convolution. In addition, we compared the segmentation results 

of multi-channel input samples with single-channel input 

samples. The size of single-channel data is 32 × 32. The Table 

VI demonstrates that multi-channel input samples based on 

adjacent slices achieves the highest segmentation performance 

in our hippocampal segmentation model. 
TABLE VI 

STUDY OF DIFFERENT DATA PROCESSING ON THE ADNI DATASET 

Method DSC% 

Single-channel Data 86.54 

Different Dimensions 89.02 

Adjacent Slices (Ours) 91.24 

2） Results on Decathlon Dataset  

Since the same hippocampal label definition was used for 

training and testing in our experiments, there may be a bias in 

the comparison of segmentation results because some 

competitive methods were not trained using this particular label 

definition. To address this issue, we tested our segmentation 

method on the hippocampus dataset from the Medical 

Segmentation Decathlon challenge to further evaluate the 

effectiveness of our model. Comparisons with state-of-the-art 

semantic segmentation models are reported in Table VII. 

Results show that our method achieves the highest 

segmentation performance, and it can capture the long-range 

contextual information more effectively and learn better feature 

representation in hippocampal segmentation. 
TABLE VII 

DSC OF DIFFERENT SEMANTIC SEGMENTATION APPROACHES ON THE 

DECATHLON TEST DATASET 

Method DSC% 

U-Net (2015) 83.17 

U-Net++ (2018) 85.93 

Attention U-Net (2018) 87.45 

nnU-Net (2019) 89.01 

Proposed Method 90.38 

V. CONCLUSION 

This paper has proposed a deep network with a hierarchical 

attention mechanism to extract notably discriminative features 

for hippocampal segmentation. Experimental evaluations 

suggest that this method yields the best segmentation results on 

the ADNI dataset. The significant improvement stems from the 

combination of the context-aware multi-scale feature extraction 

and the hierarchical attention mechanism. Among them, the 

high-level context-aware features extracted by CHFEM are 

scale-invariant and solve the problem that deep networks 

cannot extract features of small-sized samples. In addition, the 

attention modules, including LFSAM, HFCAM, and CCAM, 

contribute to the discriminative feature extraction in different 

stages of the encoder–decoder framework. LFSAM and 

HFCAM capture the spatial and channel dependence of 

hippocampus, respectively, and further improve the expression 

of features. Furthermore, as the hippocampus is a gray matter 

structure, it has a low contrast with the surrounding tissues in 

MR images, CCAM not only inhibits the noisy boundaries with 

similar components in the hippocampus and surrounding tissues 

but also utilizes the attentional low-level features from the 

encoder to better guide the high-level hippocampus edge 

segmentation in the decoder phase. Above all, the proposed 
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approach achieves state-of-the-art performance consistently on 

two hippocampus segmentation datasets, i.e. ADNI dataset and 

Decathlon dataset.  
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