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a b s t r a c t 

Multimodal classification methods using different modalities have great advantages over traditional 

single-modality-based ones for the diagnosis of Alzheimer’s disease (AD) and its prodromal stage mild 

cognitive impairment (MCI). With the increasing amount of high-dimensional heterogeneous data to be 

processed, multi-modality feature selection has become a crucial research direction for AD classification. 

However, traditional methods usually depict the data structure using pre-defined similarity matrix as 

a priori, which is difficult to precisely measure the intrinsic relationship across different modalities in 

high-dimensional space. In this paper, we propose a novel multimodal feature selection method called 

Adaptive-Similarity-based Multi-modality Feature Selection (ASMFS) which performs adaptive similarity 

learning and feature selection simultaneously. Specifically, a similarity matrix is learned by jointly con- 

sidering different modalities and at the same time, an efficient feature selection is conducted by im- 

posing group sparsity-inducing l 2 , 1 -norm constraint. Evaluated on the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database with baseline MRI and FDG-PET imaging data collected from 51 AD, 43 MCI 

converters (MCI-C), 56 MCI non-converters (MCI-NC) and 52 normal controls (NC), we demonstrate the 

effectiveness and superiority of our proposed method against other state-of-the-art approaches for multi- 

modality classification of AD/MCI. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Alzheimer’s disease (AD) is a chronic neurodegenerative disease 

hich is the main cause of dementia, leading to problems with 

anguage, disorientation, mood swings, bodily functions and, ulti- 

ately, death [1] . According to a recent report by Alzheimer’s As- 

ociation, about 5.3 million Americans have AD and 5.1 million of 

hem are old people who are aged over 65 [2] . In 2050, the AD

opulation will increase to beyond 100 million [3] . Although some 

herapies may temporarily improve symptoms of AD, there is no 

reatment that stops or reverses its progression so far. Hence, the 

arly diagnosis of AD and its prodromal condition known as mild 

ognitive impairment (MCI) is highly essential for timely therapy. 

or the last decades, neuroimaging technique has proven to be a 
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owerful tool to investigate the characteristics of neurodegener- 

tive progression between AD and normal controls (NC), for in- 

tance, structural magnetic resonance imaging (MRI) for brain at- 

ophy measurement [4] , functional imaging (e.g., fluorodeoxyglu- 

ose positron emission tomography, FDG-PET) for hypometabolism 

uantification [6] , and cerebrospinal fluid (CSF) for quantification 

f specific proteins [5 , 7] . 

In recent years, machine learning and pattern classification 

ethods have been widely applied for the early diagnosis of AD 

ased on single modality of biomarkers. For example, Lei et al. 

8] proposed to build a framework based on longitudinal multiple 

ime points data to predict clinical scores of AD. Liu et al. [9] de-

eloped an inherent structure-based multi-view learning method 

hich utilizes the structure information of MRI data well. In addi- 

ion to structural MRI, some researchers also used FDG-PET for AD 

r MCI classification [10] . However, these aforementioned meth- 

ds tend to treat each modality of biomarkers as independent in- 

ut without considering the intrinsic association among modali- 

https://doi.org/10.1016/j.patcog.2022.108566
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108566&domain=pdf
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ies, which may result in suboptimal performance in predicting the 

rogression of brain diseases. 

In fact, different modalities of biomarkers can provide inher- 

ntly complementary information for clinical diagnosis [12–15] . For 

xample, structural MRI reveals patterns of gray matter atrophy, 

hile FDG-PET measures the reduced glucose metabolism in the 

rain. It is reported that MRI and FDG-PET provide different sen- 

itivity for memory prediction between disease and health [11] . 

s a result, many studies have used multimodal data to further 

mprove the classification performance. For instance, Tong et al. 

12] presented a multi-modality classification framework using 

onlinear graph fusion to efficiently exploit the complementarity 

n the multi-modal data of PET and CSF. Hinrichs et al. [13] com- 

ined two modalities, i.e., MRI and PET, for classification of AD. 

hang et al. [14] further combined three modalities, i.e., MRI, FDG- 

ET and CSF, to classify AD/MCI from NC. Gray et al. [15] used 

RI, FDG-PET, CSF and categorical genetic information for AD/MCI 

lassification. These existing studies have suggested that different 

maging modalities can provide different views of brain structure 

r function that might be overlooked by using a single modality. 

hus, utilizing multiple modalities together to improve the accu- 

acy in disease diagnosis becomes a sensible idea for researches. 

Despite the promising performance of the above multi-modality 

lassification methods, they all face the challenges of handling 

igh dimensional features for the analysis. On the one hand, the 

urse of dimensionality, which tends to occur when there are in- 

ufficient training subjects versus large feature dimensions, lim- 

ts the further performance improvement of existing methods. On 

he other hand, the high dimensional feature vectors usually con- 

ain some irrelevant and redundant features, which could possibly 

ead to the overfitting problem and hurt the generalization abil- 

ty of the algorithm. Recently, in view of the capability of deep 

earning to automatically extract features, it has been widely ap- 

lied in many medical feilds, including medical image reconstr- 

ution [16–18] , medical image segmentation [19,20] , and radiation 

herapy [21,22] . As for AD classification, there still are some deep 

earning based methods works proposed to tackle the above chal- 

enges [23–26] . For instance, authors in [23–25] proposed convo- 

utional neural networks (CNNs) for AD diagnosis on MRI and PET. 

in et al. [26] constructed 3D reversible generative adversarial net- 

orks (GANs) for AD classification. Although these deep-learning- 

ased methods can achieve good performance, they always require 

arge amounts of data to train the deep network, which is diffi- 

ult to acquire in real practice. Moreover, in neuroimaging data 

nalysis, features may correspond to brain regions with brain at- 

ophy, pathological amyloid depositions or metabolic alterations. 

s black-box models, current deep-learning-based methods cannot 

xplicitly interpret the clinical relevance of their intermediate fea- 

ures and the final predictions, which to some extent weakens the 

rust of physicians. Hence, explicit multi-modality feature selection 

ethods still play an important role in clinical AD diagnosis. 

However, there are two main challenges for feature selection 

n the multi-modality setting [27] . First, because the feature rep- 

esentations extracted from different modalities may have distinct 

istributions in a variety of feature spaces, it is challenging to in- 

egrate these discriminative features into a unified form of fea- 

ure representation. Second, since various features from different 

odalities play distinctive roles in the classification task, how to 

valuate each feature group and select the relevant features for 

he task remains a problem. Concentrating on the above chal- 

enges, several multi-modality feature selection methods have been 

eveloped in recent years [14 , 28–32 ]. A typical example is the 

ulti-task feature selection (MTFS) proposed in [14] , which selects 

ommon subset of relevant features from each modality. Based 

n MTFS, Liu et al. [28] proposed a multi-task feature selection 

ethod (IMTFS) to preserve the complementary inter-modality in- 
2 
ormation. Different from MTFS, IMTFS imposes an inter-modality 

erm, which can maintain the geometry structure of different 

odalities from the same subject. Also, a manifold regularized 

ulti-task feature learning method (M2TFS) [29] was proposed to 

reserve the data distribution information by using a pre-defined 

imilarity matrix to embed the manifold information into the fea- 

ure selection procedure. Zhu et al. [31] proposed a multi-modality 

anonical feature selection (MCFS) method which considers the 

orrelations between features of different modalities by projecting 

hem into a canonical space determined by canonical correlation 

nalysis. In these approaches, MTFS focuses on feature selection 

ithout considering the underlying data structure. IMTFS, M2TFS, 

nd MCFS not only focus on feature selection, but also preserve 

he underlying data structure by modeling the relationship among 

ubjects. 

To better illustrate the differences among the aforementioned 

ulti-modality feature selection methods, we plot the high-level 

verview of them in Fig. 1 . As shown in Fig. 1 (a) and (b), the

raditional methods like MTFS and IMTFS obtain the selected fea- 

ures from the multimodal data directly, while the M2TFS employs 

 pre-defined similarity matrix to integrate the manifold informa- 

ion. Compared with the direct feature selection manner, the con- 

truction of similarity matrix can capture the relationship among 

ll subjects within modalities, beneficial to reveal the underlying 

ata structure to some extent. Nevertheless, in M2TFS, the neigh- 

ors and the similarity between the original high-dimensional data 

re usually obtained separately from each individual modality. This 

rings about two risks that may result in inaccurate similarity ma- 

rix: (1) considering the existence of noisy and redundant features, 

he relationship of subjects in high-dimensional space may not 

ully reveal the underlying data structure in the low-dimensional 

pace after feature selection; (2) the similarity matrix is fixed be- 

ore feature selection, meaning that the construction of the similar- 

ty matrix is performed separately from the feature selection task, 

hich may lead to disturbed features in the classification stage. 

iven the performance of a mass of machine learning methods, 

uch as Support Vector Machine (SVM), Locality Preserving Pro- 

ection (LPP), K-means as well as other clustering algorithms, to a 

arge extent, are highly dependent on the similarity between each 

air of the subjects, the inaccurate similarity matrix could have 

egative impact on feature selection, thus potentially degrading 

he performance of AD classification. 

To further boost the accuracy of the AD classification, this pa- 

er argues that the similarity should not be fixed but adaptive to 

hange with the low-dimensional representation after feature se- 

ection. To this end, we propose a novel learning method termed 

s Adaptive-Similarity-based Multi-modality Feature Selection, or 

SMFS for short, which is able to simultaneously capture the in- 

rinsic similarity shared across different modality data, and select 

he most informative features. The high-level overview of our pro- 

osed method is shown in Fig. 1 (c), where the similarity matrix 

nd the feature selection procedure of the proposed method are 

pdated alternatively, thus gradually improving the feature selec- 

ion performance. 

Additionally, it is commonly accepted that a large amount 

f real-world high-dimensional data actually lie on the low- 

imensional manifolds embedded within a high-dimensional space 

33] . Provided there is sufficient data (such that the manifold is 

ell-sampled), we expect each data point and its neighbors to 

ie on or close to a locally linear patch of the manifold. We can 

haracterize the local geometry of these patches by linear coeffi- 

ients that are used to reconstruct each data point from its neigh- 

ors, which is called the manifold hypothesis [34] . Moreover, since 

eighborhood similarity is more reliable compared with the sim- 

larity retrieved from farther samples, preserving local neighbor- 

ood structure is of great help to construct an accurate similarity 
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Fig. 1. Illustrations on three different multi-modality feature selection frameworks for AD classification. 
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atrix. Therefore, instead of updating the similarities between ev- 

ry data pair, we only consider the local neighborhood similarities 

f every subject. 

Our contributions are as follows. 

A novel multi-modality feature selection method named ASMFS 

s proposed to simultaneously perform similarity learning and fea- 

ure selection. With the manifold hypothesis introduced, the simi- 

arity learning can derive a more accurate similarity matrix by pre- 

erving local structure information. 

An adaptive learning strategy with regard to the similarity ma- 

rix is proposed to better depict the structure of data in low- 

imensional space. In this manner, the similarity matrix is more 

nformative, and thus helpful to select the discriminative features. 

The similarity matrix is designed to be shared among differ- 

nt modality data collected from the same subject. By doing so, it 

an retrieve the collective information among multiple modalities 

s prior knowledge to further improve the performance of multi- 

odality feature selection. 

Evaluated on the AD classification task with the MRI and FDG- 

ET data from the ADNI database, our proposed ASMFS is demon- 

trated to be effective and superior in identifying disease status 

nd discovering the disease sensitive biomarkers compared with 

ther feature selection methods. 

The rest of this paper is organized as follows. Section 2 intro- 

uces our proposed multi-modality feature selection architecture 

nd methodology. Experiments and experimental results are pre- 

ented in Section 3 . Finally, we discuss and conclude this paper in 

ection 4 and Section 5 . 

. Method 

.1. Multi-modality feature selection with adaptive similarity learning 

Fig. 2 gives the overview of the proposed method, which in- 

ludes two major steps: (1) adaptive similarity learning and multi- 

odality feature selection, and (2) multimodal classification. In 

his section, we first introduce how to learn similarity measure 

rom both single- and multi-modality data through adaptive simi- 
3 
arity learning. Then, we show how to embed this similarity learn- 

ng into our multi-modality feature selection framework. The se- 

ected features are eventually taken in a multi-kernel support vec- 

or machine (SVM) for disease classification [14] . 

.1.1. Adaptive similarity learning 

Let’s consider the single modality scenario first. Suppose that 

n a d dimensional feature space, the data matrix of n subjects 

s denoted as X = [ x 1 , x 2 , . . . , x n ] ∈ R 

d×n . The subjects can be di- 

ided into c classes and the corresponding label vector is given as 

 = [ y 1 , y 2 , ..., y n ] . The similarity matrix S that indicates the simi- 

arity of data pairs can be constructed by two assumptions: 1) it 

s hoped that the similarity between x i and x j can be reflected by 

heir Euclidean distance. If the distance || x i − x j || 2 2 between x i and 

 j is small, the similarity s i j should be large, 2) if x i and x j belong 

o different classes, the similarity s i j should be zero. In this sec- 

ion, we will first discuss two ideal cases according to the above 

wo assumptions, and then propose our case with consideration of 

he two cases. 

To begin with, we formulate the following objective to deter- 

ine the similarities s i j based on aforementioned assumptions: 

in 

s i 

n ∑ 

j=1 

x i − x j 
2 
2 
s i j , 

 . t .s T 
i 

1 = 1 , 0 ≤ s i j ≤ 1 

 i j = 0 , if y i � = y j , 

(1) 

here s i ∈ R 

n is a vector of which the j-th entry is S i j and 1 de-

otes a column vector with all the elements as one. However, by 

olving problem (1), it can be found that only one which is the 

losest neighbor to x i has the similarity s i j = 1 , while the others 

re 0. In other words, it is a trivial solution. 

Then, suppose the distance information is unavailable between 

ubjects and the following problem is solved to estimate the simi- 
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Fig. 2. Overview of multi-modality feature selection with adaptive similarity learning. 
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arities: 

in 

s i 

n ∑ 

j=1 

s 2 
i j 
, 

s . t s T 
i 

1 = 1 , 0 ≤ s i j ≤ 1 , 

s i j = 0 , if y i � = y j . 

(2) 

The solution of s i j = 

1 
n reveals that all the subjects will become 

he nearest neighbors of x i with 

1 
n probability. The problem (2) can 

e actually regarded as the prior of the nearest neighbor proba- 

ility when the pairwise subject distance is unknown. Considering 

roblems (1) and (2) jointly, we solve the following objective to 

btain the similarities s i j : 

in 

s i 

n ∑ 

j=1 

(‖ x i − x j ‖ 

2 
2 s i j + αs 2 

i j 

)
, 

s . t s T 
i 

1 = 1 , 0 ≤ s i j ≤ 1 , 

s i j = 0 , if y i � = y j . 

(3) 

The second term s 2 
i j 

can be regarded as a regularization term 

o avoid the trivial solution in problem (1) and α is the regular- 

zation parameter. It is notable that when α = 0 , Eq. (3) will de-

rade to Eq. (1) whose solution indicates that every subject only 

as one neighbor. On the other hand, when α = ∞ , the solution of 

q. (3) is the same as that of Eq. (2) , suggesting that for each sub-

ect, all the other subjects become the nearest neighbors with the 

ame similarity. Both of the extreme cases reveal that the regular- 

zation term of similarity learning is correlated with the number 

f subject’s nearest neighbors. The problem (3) can be applied to 

alculate the similarities for each subject x i . Consequently, in this 

aper we estimate the similarities for all subjects by solving the 

ollowing problem: 

in ∀ i, s i 

n ∑ 

i =1 

n ∑ 

j=1 

(‖ x i − x j ‖ 

2 
2 s i j + αs 2 

i j 

)
, 

s . t s T 
i 

1 = 1 , 0 ≤ s i j ≤ 1 , 

s i j = 0 , if y i � = y j . 

(4) 

We can transform problem (4) to linearly constrained quadratic 

rogramming which can be solved by KKT conditions [35] . And the 

atrix S = [ s 1 , s 2 , ..., s n ] 
T ∈ R 

n ×n can be treated as a similarity ma- 

rix of n subjects. 

Now, we extend the above adaptive similarity learning to 

ulti-modality case. The multi-modality data are denoted as 

 1 , X 2 , ..., X M 

, where M is the number of modalities. The data ma- 

rix of the m -th modality is defined as X m 

= [ x (m ) 
1 

, x (m ) 
2 

, ..., x (m ) 
n ] . 
4 
or all the multi-modality data, we solve the following problem 

o obtain the similarity matrix S: 

in 

S 

n ∑ 

i =1 

n ∑ 

j=1 

(
M ∑ 

m =1 

‖x ( 
m ) 

i 
− x ( 

m ) 
j 

‖ 

2 
2 s i j + αs 2 

i j 

)
, 

s . t s T 
i 

1 = 1 , 0 ≤ s i j ≤ 1 , 

s i j = 0 , if y i � = y j . 

(5) 

Please note that different from traditional multi-modality meth- 

ds which calculate the similarity for each modality separately, the 

imilarity matrix S obtained in (5) is shared by different modal- 

ty data. Thus, the similarities of these data in diverse modalities 

ould be identical. 

Then, we embed the adaptive similarity learning into multi- 

odality feature selection in order to learn the optimal neighbor- 

ood similarity for feature selection, thereby improving the perfor- 

ance of multi-modality classification by utilizing more discrimi- 

ative information. 

.1.2. Multi-modality feature selection with adaptive similarity 

earning 

To integrate the similarity learning problem (5) with multi- 

odality feature selection, the objective function of our proposed 

ethod is defined as: 

in 

W,S 

M ∑ 

m 

N ∑ 

i 

‖ y i − w 

T 
m 

x m 

i ‖ 

2 
2 + μ ‖W ‖ 2 , 1 

+ λ
N ∑ 

i 

∑ 

k ∈ { k | y i = y k } 

( 

M ∑ 

m 

‖w 

T 
m 

x m 

i − w 

T 
m 

x m 

k ‖ 

2 
2 s ik + αs 2 ik 

) 

 . t . 

n ∑ 

k 

s ik = 1 , 

 ≤ s ik ≤ 1 , (6) 

here W = [ w 1 , w 2 , . . . , w M 

] ∈ R 

d × M is the coefficient matrix, 

 m 

∈ R 

d is the coefficient of the m -th modality. The l 2 , 1 norm of 

 is defined as ‖W ‖ 2 , 1 = �d 
i 

√ 

M ∑ 

j 

w 

2 
i j 
, which can result in sparse 

ows of W to achieve feature selection. ASMFS considers different 

odalities of subjects into similarity construction. λ, μ and α are 

arameters to balance the terms in (6). 

What is noteworthy is that by using ‖W ‖ 2 , 1 , features are se- 

ected in the same brain regions from different modalities. These 
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(

elected features are essentially different from each other. For in- 

tance, MRI and PET images of hippocampus describe different 

haracteristics of this brain region from the perspective of space 

nd function respectively. As discussed in Section 2.1.1 , in this pa- 

er, we aim to select features by utilizing inherently complemen- 

ary information from different modalities. So by using ‖W ‖ 2 , 1 , we 

an not only investigate how AD affects the same brain regions 

rom different perspectives, but also reduce the negative impact 

n feature selection caused by noise from data sampling and pre- 

rocessing. 

From Eq. (6) , we can capture the accurate inherent similarity 

hared across different modality data and then use this structure 

nformation to guide feature selection. Specifically, by performing 

daptive similarity learning and feature selection in an alternate 

anner, similarity matrix in every learning step is able to de- 

ict the neighborhood information of data points in current low- 

imensional space and helps to select the most discriminative fea- 

ures in the next step. Then, the selected feature in the next step 

ill in turn be used to update similarity matrix. Procedure de- 

cribed above will be repeated until they converge. 

.2. Optimization algorithm 

The objective function (6) is optimized in an alternate manner. 

pecifically, we fix S and optimize W and then fix W and optimize 

. 

(1) Fix S and optimize W . 

Removing the irrelative part to W from (6), we get the follow- 

ng objective: 

in 

W 

L ( W ) = 

M ∑ 

m =1 

n ∑ 

i 

‖ y i − w 

T 
m 

x m 

i ‖ 

2 
2 + μ ‖W ‖ 2 , 1 

+ λ
n ∑ 

i =1 

∑ 

k ∈ { k | y i = y k } 

( 

M ∑ 

m =1 

‖w 

T 
m 

x m 

i − w 

T 
m 

x m 

k ‖ 

2 
2 s ik 

) 

. (7) 

Inspired by [38] , we solve (7) using the weighted and iterative 

ethod. When the row elements in W are nonezero, that is w i, : � = 

 , i = 1 , 2 , ..., d, we take the derivative of ‖W ‖ 2 , 1 in terms of w i, j :

∂ ‖W ‖ 2 , 1 

∂ w i j 

= 

w i j √ ∑ M 

p w 

2 
ip 

= 2 d ii w i j , (8) 

here we set d ii = 

1 
2 ‖ w i, : ‖ −1 

2 
. 

Then, following equation can be derived from (8): 

∂ ‖W ‖ 2 , 1 

∂W 

= 2 DW, (9) 

here D ∈ R 

d×d is a diagonal matrix, the i -th diagonal element is 

 ii . 

Taking the antiderivative of (8): 

W ‖ 2 , 1 = 

∑ 

i , j 
d ii w 

2 
i j + c 

 

∑ 

i 

d ii 

( ∑ 

j 

w 

2 
i j 

) 

+ c 

 Tr 
(
W 

T DW 

)
+ c (10) 

When D is fixed, taking the derivative of W in (7) is equivalent 

o doing so in the following objective: 

in 

W 

L ( W ) = 

M ∑ 

m =1 

n ∑ 

i 

‖ y i − w 

T 
m 

x m 

i ‖ 

2 
2 + μTr 

(
W 

T DW 

)

5 
+ λ
n ∑ 

i 

∑ 

k ∈ { k | y i = y k } 

( 

M ∑ 

m =1 

‖w 

T 
m 

x m 

i − w 

T 
m 

x m 

k ‖ 

2 
2 s ik 

) 

. (11) 

Please note that, the analytical form of W can be obtained 

ia solving (11), and therefore (11) substitutes (7) in our learning 

ramework. 

(2) Fix W and optimize S. 

Removing the irrelative part to S from (6), we can get the fol- 

owing objective: 

in 

s 

n ∑ 

i =1 

∑ 

k ∈ { k | y i = y k } 

(
M ∑ 

m =1 

w 

T 
m 

x m 

i 
− w 

T 
m 

x m 2 
k 2 

s ik + αs 2 
ik 

)

 . t . 
n ∑ 

k 

s ik = 1 , 

 ≤ s ik ≤ 1 . 

(12) 

In Section 2.1.1 , we assumed that if x i and x j belong to different 

lasses, the similarity s i j should be zero. So when k ∈ { k | y i � = y k } , 
hen s ik = 0 , which means w 

T 
m 

x i 
m − w 

T 
m 

x m 2 
k 2 S ik = 0 . Hence, we 

nly need to consider the similarity between subjects from the 

ame class, i.e., s ik when k ∈ { k | y i = y k } . 
Since the similarity learning of one subject is independent with 

espect to the learning of the others, we can safely decompose 

he similarity of individual subject according to the objective from 

12): 

in 

s i 

∑ 

k ∈ { k | y i = y k } 

(
M ∑ 

m =1 

w 

T 
m 

x m 

i 
− w 

T 
m 

x m 2 
k 2 

s ik + αs 2 
ik 

)
, 

 . t . 
n ∑ 

k 

s ik = 1 , 

 ≤ s ik ≤ 1 . 

(13) 

By defining d ik = 

M ∑ 

m =1 

|| w 

T 
m 

x m 

i 
− w 

T 
m 

x m 

k 
|| 2 

2 
, (13) can be simplified 

o the following form: 

in 

s i 

∑ 

k ∈ { k | y i = y k } 
(
d ik s ik + αi s 

2 
ik 

)
 min 

s i 

∑ 

k ∈ { k | y i = y k } 
(
αi 

(
s ik + 

1 
2 αi 

d ik 
)2 − d 2 

ik 

4 αi 

)
 min 

s i 

∑ 

k ∈ { k | y i = y k } 
(
αi 

(
s ik + 

1 
2 αi 

d ik 
)2 

)
 min 

s i 
αi 

∑ 

k ∈ { k | y i = y k } 
(
s ik + 

1 
2 αi 

d ik 
)2 

 min 

s i 
αi s i + 

1 
2 αi 

d i 
2 
2 

(14) 

Accordingly, the following objective is formulated: 

min 

s i 
s i + 

1 
2 αi 

d i 
2 
2 , 

 . t . 
∑ n 

k =1 s ik = 1 , 

0 ≤ s ik ≤ 1 . 

(15) 

We can solve (15) by KKT conditions. 

The above objective is a convex function which can be solved 

tilizing Lagrange method: 

 ( s i , η, β) = 

1 

2 

s i + 

1 

2 αi 

d i 
2 
2 − η

(
s T i 1 − 1 

)
− βT s i , (16) 

here β ≥ 0 , η ≥ 0 are Lagrange multipliers and 1 denotes a col- 

mn vector with all the elements as one. Taking the derivative of 

16) with respect to s i and setting it equal to 0, we have: 

∂L ( s i , η, β) 

∂ s i 
= 

∂ 

∂ s i 

(
1 

2 

s i + 

1 

2 αi 

d i 
2 
2 − η

(
s T i 1 − 1 

)
− βT s i 

)

= s i + 

1 

2 α
d i − η1 − β = 0 . (17) 
i 
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Algorithm 1 

Multi-modality feature selection with adaptive similarity learning. 

Input:Multi-modality sample matrix { X 1 , X 2 , . . . , X M } and label matrix 

y = [ y 1 , y 2 , . . . , y n ] . 

Initial: λ > 0 , μ > 0 , K > 0 , D = I, initialize S by solving problem (5). 

Repeat 

1. Update W using Eq. (11); 

2. Update D using Eq. (8); 

3. Update S using Eq. (21); 

Until converges 

Output: W 

∑

β

w

i

d

({

s

s

t

t

l

t

t

f

t

z  

t{

k

⇒

α

Table 1 

Clinical and demographic information of the study population. 

AD MCI-C MCI-NC NC 

Subjects number 51 43 56 52 

Age 75.2 ±7.4 75.8 ±6.8 74.7 ±7.7 75.3 ±5.2 

Education 14.7 ±3.6 16.1 ±2.6 16.1 ±3.0 15.8 ±3.2 

MMSE 23.8 ±2.0 26.6 ±1.7 27.5 ±1.5 29.0 ±1.2 

CDR 0.7 ±0.3 0.5 ±0.0 0.5 ±0.0 0.0 ±0.0 
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According to KKT conditions, we can get following equations: 

n 
 

k =1 

βk s 
∗
ik = 0 (18) 

k ≥ 0 , for k = 1 , . . . , n, (19) 

here s ∗
ik 

is the optimal solution, (18) and (19) are dual feasibil- 

ty condition and complementary slackness condition in KKT con- 

itions respectively. Then, (20) can be derived from (17), (18) and 

19): 

s ∗
ik 

= 0 , βi > 0 

s ∗
ik 

= − d ik 
2 αi 

+ η, βi = 0 . 
(20) 

Hence, the optimal solution can be figured out from (20): 

 

∗
ik = 

(
− d ik 

2 αi 

+ η

)
+ 

= max 

(
− d ik 

2 αi 

+ η, 0 

)
. (21) 

Practically, as discussed in Section 1 , keeping the local manifold 

tructure of data is proved well effective [36 , 37] in feature selec- 

ion. One can improve the classification performance with atten- 

ion only to the local structure of data. Therefore, we expect to 

earn a sparse s i . That is, only the nearest K neighbors of x i have 

he opportunity to connect with x i . Moreover, sparse similarity ma- 

rix learning is of great help to reduce the computational burden 

or the later processing. 

Let us suppose that d i 1 , d i 2 , ..., d in are sorted from the lowest to 

he highest. Provided that the optimal solution s ∗
i 

has only K non- 

ero elements, using (21), we know s ∗
iK 

> 0 and s ∗
i,K+1 

≤ 0 . Hence,

he following inequalities hold: 
 

s ∗
ik 

= − d ik 
2 αi 

+ η > 0 , k ≤ K 

s ∗
ik 

= − d ik 
2 αi 

+ η ≤ 0 , k > K. 
(22) 

Substituting the constraint 
K ∑ 

k =1 

s ∗
ik 

= 1 into the (22), we have: 

K ∑ 

 =1 

(
− d ik 

2 αi 
+ η

)
= 1 

 η= 

1 
K 

+ 

1 
2 K αi 

K ∑ 

k =1 

d ik . 

(23) 

Plugging η into (22) leads to the constraint of αi : 

K 

2 

d iK −
1 

2 

K ∑ 

k =1 

d ik < αi ≤
K 

2 

d i,K+1 −
1 

2 

K ∑ 

k =1 

d ik . (24) 

Finally, we have the optimal a ∗1 derived from (21) and (24): 

∗
i = 

K 

2 

d i,K+1 −
1 

2 

K ∑ 

k =1 

d ik . (25) 

The procedure is summarized in Algorithm 1 . 
6 
.3. Multi-kernel support vector machine 

Multi-kernel support vector machine (MKSVM) [39] is adopted 

or classification after feature selection processing. First, we gen- 

rate a kernel matrix k m ( x m 

i 
, x m 

j 
) = φm ( ( x m 

i 
) T ( x m 

j 
) ) for each 

odality data after feature selection. And the M kernel matri- 

es are linearly combined k ( x i , x j ) = 

M ∑ 

m =1 

βm 

k m ( x m 

i 
, x m 

j 
) where 

M ∑ 

m =1 

βm 

= 1 , βm 

≥ 0 . Then, MKSVM is trained by the selected 

ernel combination weights and linear kernels. It is notable that in 

ur experiments, the optimal βm 

is determined via a coarse-grid 

earch through cross-validation on the training set. Finally, when 

n unseen subject comes, the trained MKSVM model is able to 

redict the category of the new subject by the following decision 

unction: 

f ( x ) = sign 

(
n ∑ 

i =1 

y i αi 

M ∑ 

m =1 

βm 

k m 

(
x m 

i 
, x m 

)
+ b 

)
. (26) 

In particular, we adopt a linear SVM as the classifier because it 

ntrinsically uses a feature weighting mechanism, i.e., the absolute 

alues of components in the normal vector of SVM’s hyperplane 

an be regarded as weights on features [40] . In this way, we can 

ank the features according to their averaged SVM weights. Then, 

he most discriminative brain regions can be determined by these 

anked features. Detailed discussion about feature selection result 

s presented in Section 3.3 . 

. Experiments 

.1. Dataset and settings 

Dataset: The data involved in this paper are obtained from 

he Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 

 www.loni.usc.edu ). The ADNI was launched by a wide range of 

cademic institutions and private corporations and the subjects 

ere collected from approximately 200 cognitively normal older 

ndividuals with 3 years of follow-up, 400 MCI patients with 3 

ears of follow-up, and 200 early AD patients with 2 years of 

ollow-up across the United States and Canada. 

In this paper, subjects with all corresponding MRI and PET 

aseline data are included. This yields a total of 202 subjects. In 

articular, it includes 51 AD patients, 99 MCI patients and 52 NC. 

he MCI patients were divided into 43 MCI converters (MCI-C) who 

ave progressed to AD with 18 months and 56 MCI non-converters 

MCI-NC) whose diagnoses have still remained stable within 18 

onths. A detailed description on acquiring MRI, PET data from 

DNI can be found at [14] . Table 1 lists the clinical and demo- 

raphic information of the study population. 

In this study, image pre-processing is performed for all MRI and 

ET images following the same procedures as in [14 , 41 , 42] . Specif-

cally, N3 algorithm [43] is employed to correct the intensity inho- 

ogeneity after anterior commissure-posterior commissure corre- 

ation performed. For MRI data, the gray matter (GM) is segmented 

y FAST [44] and then the GM tissue volume of each region ob- 

ained according to a 93 manual labels template is chosen as a 

http://www.loni.usc.edu
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Table 2 

Comparison of different methods for AD vs. NC classification. 

Method Accuracy (%) Sensitivity (%) Specificity (%) F1 Score AUC 

SVM 88.24 ±0.0972 91.07 ±0.1155 85.57 ±0.1591 88.61 ±0.0925 0.9471 ±0.0007 

lassoSVM 90.90 ±0.0873 90.60 ±0.1240 91.23 ±0.1233 90.71 ±0.0900 0.9460 ±0.0007 

MKSVM 91.87 ±0.0875 92.30 ±0.1249 91.63 ±0.1160 91.68 ±0.0927 0.9526 ±0.0007 

lassoMKSVM 92.33 ±0.0739 93.47 ±0.1030 91.30 ±0.1261 92.41 ±0.0726 0.9534 ±0.0007 

MTFS 92.52 ±0.0816 93.77 ±0.1115 91.37 ±0.1213 92.50 ±0.0846 0.9541 ±0.0007 

M2TFS 95.00 ±0.0707 94.67 ±0.1009 95.40 ±0.0826 94.85 ±0.0740 0.9636 ±0.0006 

ASMFS 96.76 ±0.0545 96.10 ±0.0836 97.47 ±0.0660 96.63 ±0.0573 0.9703 ±0.0006 
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eature. After alignment to the respective MRI image, the average 

ntensity of each ROI in the PET image is calculated as a feature. 

herefore, there are totally 93 features for each MRI image and 93 

eatures for each PET image. 

Validation: Z-score normalization f ′ 
i 
= ( f i − f i ) / σi is performed 

n every feature f i from MRI images and PET images separately, 

here f̄ i and σi respectively represent the mean and the standard 

eviation of the i -th feature from the training set. It is noted that 

e performed Z-score normalization on test set with f̄ i and σi cal- 

ulated from the training set. 

Performance measurements including accuracy (ACC), sensitiv- 

ty (SEN), specificity (SPE), area under receiver operating charac- 

eristic (ROC) curve (AUC) and F1 Score are utilized in the ex- 

eriments to quantify the classification performance of different 

ethods. The 10-fold cross-validation strategy is adopted due to 

he limited subjects. Specifically, the whole set of subject samples 

re equally partitioned into 10 subsets, from which 9 subsets were 

andomly selected for training and the remaining subset for test- 

ng. The above procedure was repeated 10 times to avoid any bias 

aused by the partition. 

Hyper-parameters: In our method, there are three hyper- 

arameters, i.e., the sparsity regularization coefficient μ, the adap- 

ive similarity learning regularization coefficient λ, and the num- 

er of neighbors K. The above parameters are determined based 

n the training samples by 10-fold cross-validation. To be specific, 

n each 10-fold cross-validation used to compute the classification 

erformance, we perform another 10-fold cross-validation on the 

raining samples to determine the optimal values for these param- 

ters. λ, μ and K are searched in the range { 0 . 1 , 5 , 20 , 60 , 100 } , 
 0 , 5 , 10 , 15 , 20 } and { 1 , 3 , 5 , 7 , 9 } , respectively. Moreover, in multi- 

ernel SVM with a linear kernel, C is set as 1 and the kernel com- 

ination coefficients βMRI , βPET are chosen from 0.1 to 1.0 with step 

.1 and constrained with βMRI + βPET = 1and βMRI , βPET 0 . 

.2. Classification results 

In order to assess the classification performance, the proposed 

ethod is compared with six existing multimodal classification 

ethods including (1) standard SVM with linear kernel (denoted as 

VM) [40] , (2) standard SVM with linear kernel and LASSO feature 

election (denoted as lassoSVM) [45] , (3) multi-kernel SVM (de- 

oted as MKSVM) [39] , (4) multi-kernel SVM with LASSO feature 

election performed independently on single modality (denoted as 

assoMKSVM) [55] , (5) multi-kernel SVM using multi-modal fea- 

ure selection method (denoted as MTFS) [46] , and (6) multi-kernel 

VM with manifold regularized multitask feature learning (denoted 

s M2TFS) [29] . Please note that all methods above use the same 

VM classifier. 

.2.1. AD vs. NC classification 

Table 2 lists the results on the AD vs. NC classification task 

roduced by our proposed method (ASMFS) and other six SVM- 

ased methods. The standard deviations are given and the best re- 

ults are denoted in bold in Table 2 . As observed, our proposed 
7 
ethod (ASMFS) consistently achieves the best performance com- 

ared with other methods. Specifically, ASMFS achieves the accu- 

acy of 96.76%, the sensitivity of 96.1%, the specificity of 97.47%, 

he AUC of 0.9703 and the F1 Score of 96.63. The lowest accuracy 

f 88.24% is achieved by SVM since that SVM does not perform fea- 

ure selection but directly uses the raw feature vectors for classifi- 

ation. lassoSVM achieves better performance than SVM because 

t adopts LASSO as feature selection which can remove redun- 

ant features and noise. Comparing the results between MKSVM 

nd SVM, it can be found that utilizing complementary informa- 

ion from different modalities greatly promotes the accuracy (3%), 

ndicating the necessity of jointly considering multiple modalities 

or AD classification. By incorporating LASSO to MKSVM for fea- 

ure selection, the accuracy of lassoMKSVM is further boosted to 

2.33%. Among the three multi-modality feature selection meth- 

ds, i.e., MTFS, M2TFS and ASMFS, we can find that over 95% ac- 

uracy is achieved by M2TFS and ASMFS, indicating that main- 

aining inter-modality information is effective for feature selection. 

urthermore, compared with M2TFS which adopts fixed similarity, 

he better performance achieved by ASMFS indicates that adaptive 

imilarity is of great help to depict more accurate data distribu- 

ion after feature selection. Moreover, our method achieves both 

he highest sensitivity and specificity, indicating that our method 

arely overlooks an AD patient or misclassifies a normal individual 

s the diseased. Besides, ASMFS keeps the lowest standard devia- 

ion, indicating the proposed method is more stable. 

Fig. 3 plots the corresponding ROC curves of all methods for AD 

s. NC classification, from which we can see the proposed method 

btains the best performance with the largest AUC with high true 

ositive rate (TPR) at low false positive rate (FPR) when compared 

ith other methods. 

.2.2. MCI vs. NC classification 

Table 3 shows the performance of our method compared with 

ther six SVM-based methods on the MCI vs. NC classification task. 

s observed, the proposed method gets the best performance in 

ccuracy, specificity, F1 Score and AUC, while M2TFS achieves the 

est sensitivity of 86.73%. Nevertheless, ASMFS is only 0.75% lower 

han M2TFS. Note that the accuracy of M2TFS and ASMFS is much 

igher than other methods. This is probably because the selected 

tructural features play a pivotal role in the improvement of clas- 

ification performance. 

In addition, the results listed in Table 3 are generally lower than 

hose in AD vs. NC classification. It is because the changes occur- 

ing in the brain of MCI patients are less than those of AD patients. 

or instance, MCI patients have much less contraction in the hip- 

ocampus than AD patients. Hence, MCI classification is a more 

hallenging task. Fig. 4 plots the corresponding ROC curves which 

eflect the classifier performance of the above methods. Similarly, 

ur method still surrounds larger area than other methods. 

.2.3. MCI-C vs. MCI-NC classification 

The classification results for MCI-C vs. MCI-NC are shown in 

able 4 . As observed, our proposed method achieves the best clas- 
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Fig. 3. ROC curves of seven multi-modality based methods for classification of AD vs. NC. 

Table 3 

Comparison of different methods for MCI vs. NC classification. 

Method Accuracy (%) Sensitivity (%) Specificity (%) F1 Score AUC 

SVM 70.62 ±0.1035 84.03 ±0.1176 45.20 ±0.2111 81.04 ±0.0599 0.7463 ±0.0013 

lassoSVM 73.40 ±0.1167 81.62 ±0.1358 58.00 ±0.2141 79.78 ±0.0960 0.7852 ±0.0013 

MKSVM 73.17 ±0.0983 80.69 ±0.1141 59.00 ±0.2189 79.62 ±0.0762 0.7276 ±0.0014 

lassoMKSVM 74.19 ±0.0894 86.57 ±0.1098 50.70 ±0.2703 81.44 ±0.0647 0.7539 ±0.0012 

MTFS 74.86 ±0.0911 82.19 ±0.1135 61.07 ±0.2066 80.91 ±0.0716 0.7296 ±0.0014 

M2TFS 78.97 ±0.0766 86.73 ±0.1070 64.53 ±0.2515 84.35 ±0.0561 0.7526 ±0.0014 

ASMFS 80.73 ±0.0950 85.98 ±0.1081 70.90 ±0.2135 85.30 ±0.0738 0.7875 ±0.0014 

Fig. 4. ROC curves of seven multi-modality based methods for classification of MCI vs. NC. 

Table 4 

Comparison of different methods for MCI-C vs. MCI-NC classification. 

Method Accuracy (%) Sensitivity (%) Specificity (%) F1 Score AUC 

SVM 56.45 ±0.1338 31.55 ±0.2126 75.90 ±0.2024 36.21 ±0.2195 0.6341 ±0.0017 

lassoSVM 58.76 ±0.1394 48.75 ±0.2422 66.43 ±0.2127 48.69 ±0.1972 0.5830 ±0.0017 

MKSVM 58.80 ±0.1206 54.45 ±0.2293 62.43 ±0.2202 51.74 ±0.1625 0.5753 ±0.0017 

lassoMKSVM 61.73 ±0.1369 51.10 ±0.2469 70.23 ±0.2109 51.67 ±0.2032 0.6086 ±0.0018 

MTFS 63.52 ±0.1220 59.65 ±0.2514 66.70 ±0.2108 56.63 ±0.1762 0.5894 ±0.0017 

M2TFS 67.53 ±0.1059 54.50 ±0.2629 77.47 ±0.1873 55.84 ±0.2182 0.6647 ±0.0017 

ASMFS 69.41 ±0.1194 65.30 ±0.2151 72.83 ±0.1811 63.98 ±0.1485 0.6534 ±0.0017 
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ification accuracy of 69.41%, sensitivity of 65.3% and F1 Score of 

3.98, while the best specificity and AUC are obtained by M2TFS, 

.64% and 0.0113 higher than our method, respectively. Despite so, 

ur method significantly surpasses M2TFS by 10.8% sensitivity and 

.14% F1 score, proving that our method is still superior to other 

ethods. 

Moreover, we have a similar observation to the MCI vs. NC clas- 

ification that the accuracy of M2TFS and ASMFS is much higher 

han that of other methods, which well demonstrates the im- 
8 
ortance of preserving structural information. Meanwhile, com- 

ared with the results on the classifications of AD vs. NC and 

CI vs. NC, the results on the MCI-C vs. MCI-NC classification 

re generally lower. It can be explained that the differences be- 

ween MCI-C and MCI-NC are small and the early symptoms of 

CI are also similar for MCI-C and MCI-NC. The ROC curves in 

ig. 5 also indicate the superiority of our method compared with 

thers. 
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Fig. 5. ROC curves of seven multi-modality based methods for classification of MCI-C vs. MCI-NC. 

Fig. 6. Top 10 ROIs selected by the proposed method for AD vs. NC. 

Table 5 

Top 10 ROIs selected by the proposed method and M2TFS for AD vs. NC clas- 

sification. Different f eatures selected by ASMFS and M2TFS are highlighted in 

bold. 

Selected ROIs of ASMFS Selected ROIs of M2TFS 

1 hippocampal formation left angular gyrus right 

2 precuneus left cingulate region left 

3 middle temporal gyrus right precuneus right 

4 inferior temporal gyrus right middle frontal gyrus left 

5 angular gyrus right precuneus left 

6 angular gyrus left precentral gyrus left 

7 precuneus right temporal pole left 

8 uncus left hippocampal formation left 

9 amygdala right uncus left 

10 lateral occipitotemporal gyrus left middle temporal gyrus right 
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Table 6 

Top 10 ROIs selected by the proposed method and M2TFS for MCI vs. NC 

classification. Different f eatures selected by ASMFS and M2TFS are high- 

lighted in bold. 

Selected ROIs by ASMFS Selected ROIs by M2TFS 

1 angular gyrus left cuneus left 

2 hippocampal formation left precuneus left 

3 entorhinal cortex left temporal pole left 

4 cuneus left entorhinal cortex left 

5 amygdala right hippocampal formation left 

6 precuneus left angular gyrus left 

7 temporal pole left hippocampal formation right 

8 occipital pole left occipital pole right 

9 hippocampal formation right occipital pole left 

10 parahippocampal gyrus left amygdala right 
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.3. Feature selection results 

The discriminability of brain regions is ranked by the regres- 

ion coefficient W . Figs. 6 –8 show the top 10 brain regions se-

ected by ASMFS in the classification of AD vs. NC, MCI vs. NC and

CI-C vs. MCI-NC, respectively. To better illustrate the superiority 

f ASMFS, we also compare the top 10 selected brain regions of 

SMFS with those of M2TFS as reported in [29] . The results are 

isted in Tables 5 –7 in the AD, MCI and MCI-C classifications, re- 

pectively. 
9 
For the AD vs. NC classification, brain regions such as hip- 

ocampus, precuneus, uncus and temporal gyrus are found sen- 

itive to AD by ASMFS. Simultaneously, the brain regions, for in- 

tance, hippocampus and amygdala, are also selected in the MCI 

s. NC classification task. There have been several studies that 

ave shown the association between these brain regions and AD. 

or example, the studies in [47 , 48 ] suggest that the hippocam- 

us is responsible for short-term memory, and in the early stage 

f Alzheimer’s disease also known as MCI, hippocampus begins 

o be destroyed, which directly results in the decline of short- 
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Fig. 7. Top 10 ROIs selected by the proposed method for MCI vs. NC. 

Fig. 8. Top 10 ROIs selected by the proposed method for MCI-C vs. MCI-NC. 

Table 7 

Top 10 ROIs selected by the proposed method and M2TFS for MCI-C vs. MCI-NC 

classification. Different f eatures selected by ASMFS and M2TFS are highlighted 

in bold. 

Selected ROIs of ASMFS Selected ROIs of M2TFS 

1 precuneus left superior frontal gyrus right 

2 perirhinal cortex left caudate nucleus right 

3 anterior limb of internal capsule left postcentral gyrus left 

4 middle temporal gyrus left inferior frontal gyrus right 

5 superior frontal gyrus right precuneus left 

6 amygdala right frontal lobe WM right 

7 lingual gyrus left middle frontal gyrus left 

8 middle occipital gyrus left cingulate region left 

9 hippocampal formation right middle occipital gyrus left 

10 fornix left middle frontal gyrus right 
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erm memory and disorientation. The study in [57] implies that 

mygdala is responsible for managing basic emotions such as fear 

nd anger. The damage for amygdala caused by MCI/AD can lead 

o paranoia and anxiety. Accordingly, the selected regions by the 

roposed method are indeed effective for AD diagnosis. Compared 
10 
ith ASMFS, however, M2TFS attaches less importance to hip- 

ocampus and temporal gyrus for AD vs. NC and MCI vs. NC clas- 

ifications. And amygdala is ignored by M2TFS in the AD vs. NC 

lassification task. What’s more, because of the subtle differences 

etween MCI-C and MCI-NC, it is reasonable to observe that most 

f the features selected by M2TFS in Table 7 are not as discrimina- 

ive as the features obtained in AD/MCI classifications. Neverthe- 

ess, the top 10 features from ASMFS are still close to the features 

elected in the AD and MCI classification task, including hippocam- 

us, precuneus, temporal gyrus and amygdala. This observation in- 

icates that ASMFS can still select distinct features in the MCI-C 

s. MCI-NC task, demonstrating the effectiveness and robustness of 

ur method. 

.4. Effect of hyper-parameters 

Regularization parameters: In ASMFS, there are three hyper- 

arameters, i.e., λ, μ and K. Specifically, the adaptive similarity 

earning regularization coefficient λ and the group sparsity regular- 

zation coefficient μ control the relative contribution of those reg- 

larization terms. K is the number of neighbors in adaptive simi- 
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Fig. 9. The classification accuracy with respect to regularization parameters λ and μ on (a) AD vs. NC classification task, (b) MCI vs. NC classification task, and (c) MCI-C vs. 

MCI-NC classification task. 

Fig. 10. The classification accuracy with respect to regularization parameters K and μ on (a) AD vs. NC classification task, (b) MCI vs. NC classification task, and (c) MCI-C 

vs. MCI-NC classification task. 
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arity learning. As aforementioned, the above parameters are deter- 

ined by another 10-fold cross-validation. λ, μ and K are searched 

n the range { 0 . 1 , 5 , 20 , 60 , 100 } , { 0 , 5 , 10 , 15 , 20 } and { 1 , 3 , 5 , 7 , 9 } , 
espectively. It is worth mentioning that when μ = 0 , the group 

parsity will cease to work. Although inherent similarity informa- 

ion can still be captured after optimizing the objective function, 

he most discriminative features cannot be selected without group 

parsity. Then, all the features are retained for the subsequent clas- 

ification. Hence, the subsequent classification method in this sce- 

ario degenerates to a multi-modality classification method with- 

ut feature selection which is the same as the method proposed in 

14] . 

Fig. 9 shows the classification results with regard to differ- 

nt values of λ and μ when K is fixed to 5. The X-axis indi- 

ates λ, Y-axis indicates classification accuracy and the curves with 

ifferent colours represent different values of μ ranging among 

 0 , 5 , 10 , 15 , 20 } , respectively. As observed, with the increase of λ
rom 0.1 to 20, the curves corresponding to different values of μ
how a rising trend, whereas the downtrend of accuracy is ob- 

erved when λ is larger than 20. Through analysis, we believe that 

conducts a less effective guide when it is relatively small because 

almost performs no constraint on the item of adaptive similarity 

earning. 

Besides, as can be seen, when λ is fixed, μ has a greater impact 

n classification accuracy than λ, which is because μ affects the 

parsity of W and determines the number of discriminative fea- 

ures. Also, as we can see from Fig. 9 (a), when μ = 0 which sug-

ests that no feature is selected, the corresponding accuracy curve 

ies below other curves. The similar phenomenon can be seen in 

ig. 9 (b), (c) as well. Such result demonstrates the effectiveness of 
eature selection. i

c

11 
Fig. 10 shows the classification results with different values of 

and μ when λ is fixed to 20. As observed, the classification per- 

ormance with feature selection ( μ = 5 , 10 , 15 , 20 ) is better than

hat without feature selection ( μ = 0 ). Most of the curves reach 

heir peak when K = 5 but go down when K is beyond 5. Such re-

ult suggests that maintaining the local manifold structure of data 

elps to select discriminative features. What’s more, Fig. 10 shows 

he similar profile of curves with different values of μ when com- 

ared with Fig. 9 . According to the above experimental results, we 

etermine the hyper-parameters μ, λ, and K as 5, 20, 5, respec- 

ively. 

.5. Adaptive similarity learning 

To better demonstrate the reasonability of the similarity ma- 

rix shared by all modalities in adaptive similarity learning, we fur- 

her conduct a comparison experiment. Specifically, in contrast to 

he proposed method with shared similarity matrix (denoted as 

ASMFS-shared”), we additionally devise a method which learns 

imilarity matrix in different modalities separately (denoted as 

ASMFS-separated”). Then we compare these two methods on the 

D vs. NC, MCI vs. NC and MCI-C vs. MCI-NC classification tasks, 

espectively. The experimental settings are the same to those in 

ection 3.1 . 

As shown in Table 8 , compared with ASMFS-shared, the ac- 

uracies of ASMFS-separated degrade by 2.83%, 2.45%, and 1.79% 

or AD, MCI and MCI-C classification, respectively. Such results are 

n line with our assumption that the different modality data col- 

ected from the same subject share the similar intrinsic character- 

stics which essentially show the impact of AD to brain. By learn- 

ng the relationship between samples across diverse modalities, we 

an bridge these modalities to capture the inherently complemen- 
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Fig. 11. Algorithm convergence of ATMFS. 

Table 8 

Classification accuracy of different similarity learning mechanisms for 

AD classification. 

Method AD vs. NC MCI vs. NC MCI-C vs. MCI-NC 

ASMFS-separated 93.93% 78.28% 67.62% 

ASMFS-shared 96.76% 80.73% 69.41% 
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ary information from them, thus boosting the performance of AD 

lassification. Particularly, we can observe a slighter degradation 

f ASMFS-separated on the MCI-C vs. MCI-NC classification task, 

hich can be explained that the differences between MCI-C and 

CI-NC are subtle, making it a challenging task to distinguish MCI- 

 from MCI-NC. 

.6. Algorithm convergence and robustness 

Algorithm convergence: The optimization is performed in an al- 

ernative manner. The convergence of this optimization algorithm 

s guaranteed by the proof provided by [38 , 56] . We also con-

uct an experiment to investigate the convergency of the proposed 

ethod. As we can observe from Fig. 11 , the proposed optimiza- 

ion algorithm has a good convergence, since the algorithm has 

asically converged after about 10 iterations on all the three tasks. 

esides, the average training time for the proposed model to con- 

erge is less than 5 s, which is obtained by 10 runs. 

Algorithm robustness: In order to evaluate the robustness of the 

roposed method, we add zero-mean Gaussian white noise with 

ariance of 0.01, Poisson noise and Salt and Pepper noise with 

oise density of 0.05 to the input data, respectively, and compare 

he accuracy of our method with that of MTFS and M2TFS on the 

D vs. NC classification task. Moreover, we also measure the degra- 

ation ratio to investigate how much the noise influences the clas- 

ification accuracy. 

Table 9 shows the accuracy and the degradation ratio (denoted 

s Deg. Ratio) of classification for AD vs. NC under three different 

inds of noise. As can be seen, our proposed ASMFS successfully 

voids being misguided by all kinds of noise, achieving the highest 

ccuracies of 95.56%, 96.31% and 94.76% with the lowest degrada- 

ion ratios of 1.24%, 0.46% and 2.06% under Gaussian white noise, 

oisson noise and Salt and Pepper noise, respectively, demonstrat- 

ng the robustness of our method. On the contrary, MTFS and 

2TFS are perturbed significantly by noise with accuracies below 

0%. Accordingly, it is easy to infer that our ASMFS, which adopts 

he adaptive similarity learning, can well handle the noise, proving 

he robustness of our method. 

.7. Comparison with the state-of-the-art methods 

We further compare the results achieved by our ASMFS with 

1) the results achieved by several traditional machine learning 
12 
ased works reported in the literature studying multi-modality 

eature selection, including the works in [15 , 28 , 29 , 31 , 53–55] , and

2) the results achieved by several recent state-of-the-art deep 

earning based methods for AD classification, including the works 

n [23–25] which used CNN for AD diagnosis and [26] which ap- 

lied generative model GAN to classification task. The details of 

ach method and the corresponding results are listed in Table 10 . 

s observed, our proposed method achieves the best performance 

ith 96.76% accuracy on AD vs. NC classification. Compared with 

he method in [53] which gains the second-best performance, our 

ethod still boosts the accuracy by 0.81%. In addition, compared 

ith [28 , 29 , 31 , 53] using the same amount of data (i.e., 51 AD + 99

CI + 52 NC), our method still yields the best performance with 

0.73% accuracy on MCI vs. NC classification and the comparable 

erformance on MCI-C vs. MCI-NC classification. For those deep- 

earning-based methods, although they generally produce higher 

ccuracy than our method on MCI-C vs. MCI-NC, such results can 

e attributed to the more MCI and NC data involved in their train- 

ng stage. In summary, we can draw a conclusion that our pro- 

osed ASMFS is more effective and efficient under the same con- 

ition. 

. Discussion 

Multi-modality learning, a recently developed technique in ma- 

hine learning field which can jointly learn multiple modalities via 

 shared representation, has been successfully used across many 

pplications of machine learning, from natural language process- 

ng [49] and speech recognition [50] to computer vision [51] and 

rug discovery [52] . Recently, multi-modality learning has been 

ntroduced into medical imaging field. However, the problem of 

mall number of subjects and high feature dimensions limits fur- 

her performance improvement of the multimodal classification 

ethods. Our work aims to provide a novel multi-modality fea- 

ure selection method which not only reduces irrelevant and re- 

undant features but also considers the local similarity across dif- 

erent imaging modalities. Although the idea of jointly selecting 

eatures from multi-modality neuroimaging data has been seen in 

revious studies [30 , 46 , 53] , these methods do not consider the po-

ential relationship across different modalities. Besides, underlying 

ata structure in the low-dimensional space may not be revealed 

n these methods since the neighbors and similarity of the original 

igh-dimensional data are obtained separately from each individ- 

al modality. 

In this paper, we apply an adaptive similarity learning method 

o address the above issues. The similarity measured from single- 

nd multi-modality data is learned with the change of low- 

imensional representation after feature selection. As can be ob- 

erved from the experimental results in Section 3.2 , our multi- 

odality feature learning method which adopts adaptive similarity 

earning method shows better performance than those with fixed 
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Table 9 

Classification accuracy and degradation ratio for AD vs. NC under different noises. 

Noise ASMFS MTFS M2TFS 

Accuracy Deg. Ratio Accuracy Deg. Ratio Accuracy Deg. Ratio 

Gaussian 95.56% 1.24% 86.31% 6.71% 86.02% 9.45% 

Poisson 96.31% 0.46% 87.14% 5.81% 86.99% 8.43% 

Salt and Pepper 94.76% 2.06% 86.60% 6.40% 87.18% 8.23% 

Table 10 

Comparison of classification accuracy of different multi-modality methods. 

Methods Subjects Modalities AD vs. NC MCI vs. NC MCI-C vs. MCI-NC 

Traditional 

machine learning 

based methods 

Hinrichs et al. [54] 48 AD + 66 NC MRI + PET 87.6% – –

Huang et al. [55] 49 AD + 67 NC MRI + PET 94.3% – –

Gray et al. [15] 37 AD + 75 MCI + 35 NC MRI + PET + CSF + genetic 89.0% 74.6% 58.0% 

Jie et al. [29] 51 AD + 99 MCI + 52 NC MRI + PET 95.03% 79.27% 68.94% 

Liu et al. [28] 51 AD + 99 MCI + 52 NC MRI + PET 94.37% 78.80% 67.83% 

Zu et al. [53] 51 AD + 99 MCI + 52 NC MRI + PET 95.95% 80.26% 69.78% 

Zhu et al. [31] 51 AD + 99 MCI + 52 NC MRI + PET 95.50% 79.70% 71.20% 

Deep learning 

based methods 

Lin et al. [23] 93 AD + 204 MCI + 101 NC MRI + PET 88.79% – 73.04% 

Huang et al. [24] 465 AD + 567 MCI + 480 NC MRI + PET 90.10% 82.58% 72.22% 

Liu et al. [25] 93 AD + 204 MCI + 101 NC MRI + PET 93.26% 74.34% –

Lin et al. [26] 362 AD + 416 MCI + 308 NC MRI + PET 89.26% – 72.84% 

Proposed 51 AD + 99 MCI + 52 NC MRI + PET 96.76% 80.73% 69.41% 
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imilarity based methods, thus the superiority of adaptive similar- 

ty learning for feature selection is fully demonstrated. Besides, we 

ist the top 10 brain regions selected by our method and M2TFS 

n Section 3.3 . The results show that our method can identify the 

rain regions with high clinical relevance. In contrast, the brain 

egions selected by M2TFS are less effective. Through the experi- 

ents in Section 3.4 , we can prove that keeping the local manifold 

tructure of data is beneficial to feature selection. To validate the 

ffectiveness of adaptive similarity learning, we construct another 

ramework which learns similarity matrix in different modalities 

eparately in Section 3.5 , and compare it with our method. The 

esults prove the positive effect of our proposed adaptive similar- 

ty learning on the multi-modality AD classification task. Finally, 

e investigate the convergence and robustness of our method in 

ection 3.6 and demonstrate the superiority of our method against 

everal state-of-the-art AD classification methods in Section 3.7 . 

. Conclusion 

This paper proposes a novel Adaptive-Similarity-based Multi- 

odality Feature Selection (ASMFS) method for AD classification. 

ifferent from previous methods, our proposed ASMFS consid- 

rs the similarity among multi-modality data and enables a joint 

earning of feature selection and similarity learning. Specifically, 

n the one hand, an adaptive learning strategy is developed to 

elp the proposed ASMFS capture the intrinsic data structure of 

ifferent modality data in the low-dimensional space, thus obtain- 

ng the more informative similarity matrix and more discriminative 

eatures. On the other hand, the proposed method can fully ex- 

lore the relationships across modalities and subjects through min- 

ng and fusing discriminative features from multi-modality data for 

D/MCI classification. Experimental results on the ADNI database 

emonstrate that our proposed method outperforms the state- 

f-the-art methods with respect to multimodal classification of 

D/MCI. 

Despite that we have demonstrated the superiority and effec- 

iveness of our method in AD classification, there are several limi- 

ations which should be further considered in future studies. First, 

n this paper, we only consider two-class classification problems 

i.e., AD vs. NC, MCI vs. NC, and MCI-C vs. MCI-NC), and do not test

he ability of our proposed method for the multi-class classifica- 

ion of AD, MCI and NC. Although multi-class classification is more 
13 
hallenging than two-class classification, it is more practical in the 

linic since it can diagnose different stages of dementia, which is 

elpful for doctors to suit the remedy to the case. Second, the pro- 

osed method requires the same number of features from different 

odalities. However, the feature number could be variable in other 

odality data in the ADNI database, such as CSF and genetic data, 

hich may limit the further application of these modalities in our 

ethod. We believe that exploring a method adaptive to the num- 

er of features could involve more available modalities and collect 

ore useful information from them, thus enhancing the classifica- 

ion performance. Third, in this work, features are generated from 

 93 manual labels template, which may not be sufficient to rep- 

esent the underlying information from original data. Therefore, it 

s an interesting future direction to investigate how to make a bet- 

er choice of template. Finally, we will also investigate the effect of 

on-handcrafted features using current deep learning techniques 

nd the longitudinal image data on the AD classification task in 

he future work. 
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