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A B S T R A C T   

Deep Neural Networks (DNN) are prominent Machine Learning (ML) algorithms widely used, especially in 
medical tasks. Among them, Convolutional Neural Networks (CNN) are well-known for image-based tasks and 
have shown excellent performance. In contrast to this remarkable performance, one of their most fundamental 
drawbacks is their inability to clarify the cause of their outputs. Moreover, each ML algorithm needs to present an 
explanation of its output to the users to increase its reliability. Occlusion Map is a method used for this purpose 
and aims to find regions of an image that have a significant impact on determining the network’s output, which 
does this through an iterative process of occluding different regions of images. In this study, we used Magnetic 
Resonance Imaging (MRI) scans from Alzheimer’s Disease Neuroimaging Initiative (ADNI) and trained a 3D-CNN 
model to diagnose Alzheimer’s Disease (AD) patients from cognitively normal (CN) subjects. We tried to combine 
a genetic algorithm-based Occlusion Map method with a set of Backpropagation-based explainability methods, 
and ultimately, we found a brain mask for AD patients. Also, by comparing the extracted brain regions with the 
studies in this field, we found that the extracted regions are significantly effective in diagnosing AD from the 
perspective of Alzheimer’s specialists. Our model achieved an accuracy of 87% in 5-fold cross-validation, which 
is an acceptable accuracy compared to similar studies. We considered a 3D-CNN model with 96% validation 
accuracy (on unmasked data that includes all 96 distinct brain regions of the Harvard-Oxford brain atlas), which 
we used in the genetic algorithm phase to produce a suitable brain mask. Finally, using lrp_z_plus_fast 
explainability method, we achieved 93% validation accuracy with only 29 brain regions.   

1. Introduction 

In recent years, using deep learning algorithms to solve various 
problems has become very widespread. Their successful performance in 
many fields has made them the main subject of numerous scientific 
research. However, despite their growing use, they face various chal-
lenges (Pouyanfar et al., 2018). One of the most notable drawbacks of 
Deep Neural Networks (DNN) is lacking to provide a clear interpretation 
of their decisions due to their black-box nature (Galli et al., 2022). 
Nonetheless, nowadays, models are becoming more complex to enhance 
accuracy and other performance measurement criteria. Hence, making 
DNN more interpretable, especially in sensitive tasks, is one of the most 
significant challenges in increasing its reliability (Buhrmester et al., 
2021). 

A well-known category of DNN called Convolutional Neural Net-
works (CNN) is widely used in image analysis. By way of illustration, it is 
used for classification, segmentation, localization, and detection prob-
lems in medical image analysis. In fact, medical images such as X-ray, 
Computerized Tomography (CT), Magnetic Resonance Imaging (MRI), 
and Positron Emission Tomography (PET), instead of being analyzed by 
trained and experienced professionals, are examined by intelligent sys-
tems, and they do tasks such as abnormally detection, localization, and 
segmentation (Sarvamangala and Kulkarni, 2021). MRI is a method of 
imaging that can produce clear images of any of the internal organs of 
the body (Berger, 2002) and is one of the common modalities that is 
frequently used in neuroimaging (Bowman, 2014). In recent years, be-
sides diagnosing and classification of diseases like Alzheimer’s (Pei 
et al., 2022), Parkinson’s (Barbero-Gómez et al., 2021), Schizophrenia 
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(Hu et al., 2022), and Multiple Sclerosis (MS) (Yılmaz Acar et al., 2022; 
Narayana et al., 2020), using MRI images and CNN, making the results 
interpretable (Böhle et al., 2019; Eitel et al., 2019; Oh et al., 2019; Zhang 
et al., 2021; Organisciak et al., 2022; Lin et al., 2022) has also been 
considered. 

In our previous work (Shahamat and Saniee Abadeh, 2020), we 
presented a genetic algorithm-based explainability framework to extract 
knowledgeable brain regions in Autism and Alzheimer’s Disease (AD). 
However, one of the drawbacks is that, despite the acceptable accuracy, 
the random nature of evolutionary algorithms leads to different results 
in different experiments. In this paper, we developed our previous work 
to achieve more robust and reliable results, reduce time cost, and 
improve accuracy. We proposed a hybrid explainability method in 
which two families of explainability methods called Backpropagation- 
based methods and Occlusion Map are combined. We first trained a 
3D-CNN model on Alzheimer’s MRI data to classify AD subjects and 
cognitively normal (CN), then, using Backpropagation-based Explain-
ability methods, extracted a primary mask to use in Occlusion Map. 
Occlusion Map needs an iterative process to find a proper mask, and we 
used genetic algorithm for this purpose. Finally, the primary mask 
extracted in the previous stage was fed into the genetic algorithm to 
reach a suitable brain mask. This mask indicates those brain areas that 
are considered essential from our network’s point of view. Using 
Backpropagation-based methods to start from better initial brain masks 

leads the algorithm to better final masks. At the same time, it can lead to 
faster convergence and less time cost by limiting the search space. 

The research structure is as follows: in section 2, descriptions of 
related works are provided, and in section 3, first, the data used in this 
research are introduced, then, a comprehensive explanation of our 
framework is presented. Section 4 is devoted to experimental results, 
and finally, the research is summarized and discussed in Section 5. 

2. Related works 

This section discusses relevant works closely related to the topic 
under study. These works include eXplainable Artificial Intelligence 
(XAI) methods for deep learning visualization and AD classification. 
Several well-known works done on these topics are reviewed in this 
section. 

2.1. XAI methods for deep learning Visualization 

Due to the non-transparent nature of deep learning and its widening 
use in sensitive issues, researchers have shown huge interest in 
explainability methods in recent years. That is why deep learning 
explainability, especially in networks such as CNN, which are mainly 
used in image analysis is becoming a hot topic. From one point of view, 
explainability methods are divided into two categories: Attribution and 

Table 1 
Examples of AD-related research that used explainability methods in their work.  

Research paper Explainability method Data Objectives Results 

(Bae et al., 2021) Occlusion Map sMRI - Developing a 3D-CNN to predict conversion from MCI to 
Alzheimer 
- Identifying structural brain regions that contribute to DAT 
conversion 

82.4 % Validation Accuracy 

(Tang et al., 2019) Occlusion Map/ Gradient- 
based Class Activation Map 

WSI - Proposing a CNN for amyloid plaque classification and 
localization 
- Using XAI to show that trained models learned relevant features 

99.3 % AUROC and 74.3 % AUPRC 
on Hold-out data 

(Shahamat and 
Saniee Abadeh, 
2020) 

Occlusion Map sMRI -Binary classification of Alzheimer’s and Autism using 3D-CNN 
-Identifying knowledgeable brain regions for Alzheimer’s and 
Autism using genetic algorithm 

85 % Validation Accuracy (using 
41 brain regions for Alzheimer’s 
classification) 

(Böhle et al., 2019) Layer-wise Relevance 
Propagation/ Guided 
Backpropagation 

sMRI Explaining CNNs by Computing average heatmaps across 
Alzheimer’s and healthy control patients 

91.00 % Validation Accuracy 
87.96 % Test Accuracy 

(Sudar et al., 2022) Layer-wise Relevance 
Propagation 

sMRI -Using VGG-16 for Alzheimer’s Classification 
-Identifying the stages of Alzheimer’s using XAI 

78.12 % Validation Accuracy  

(Bron et al., 2021) Guided Backpropagation sMRI -Validating the generalizability of Alzheimer’s disease 
classification in the prediction of conversion from MCI to 
Alzheimer’s Using CNN (and Support Vector Machines) 
-Visualizing the regions that contributed to the classifications 

AD/CN: 93 % Validation & 87.6 % 
Test AUC 
MCIn/MCInc: 74 % Validation & 
70 % Test AUC 

(Chakraborty et al., 
2021) 

Class Activation Map sMRI -Multi-class classification of Alzheimer’s using 3D-CNN 
-Using XAI to show that the model pays attention to the 
important regions 

95.88 % Validation Accuracy 

(Feng et al., 2018) Class Activation Map sMRI - Using longitudinal scans in classification to increase the amount 
of data 
-Using an average class activation map to evaluate learned 
features by the 2D-CNN model 

93 % Test Accuracy 

(Yang et al., 2018) Class Activation Map/ 
Gradient-based Class 
Activation Map 

sMRI Introduced approaches to produce a visual explanations of 3D- 
CNNs in Alzheimer’s classification 

79.4 % 5-fold Accuracy 

(Iizuka et al., 2019) Gradient-based Class 
Activation Map 

SPECT -Evaluating the usefulness of deep learning in diagnosing AD 
(and DLB) 
-Using XAI to evaluate learned features by the CNN 

92.39 % Validation Accuracy (CN 
vs AD) 

(Nakagawa et al., 
2020) 

Deep Taylor sMRI, 
Biomarkers 

- Assessing if deep survival analysis can predict the conversion of 
MCI to Alzheimer’s 
- Using deep Taylor to evaluate the effectiveness of each ROI in 
the prediction of Alzheimer’s disease conversion 

83.5 % concordance index 

(Tinauer et al., 2021) Deep Taylor  sMRI - Proposing a regularization technique to train CNNs using deep 
taylor 

86.19 % Validation Accuracy 

Proposed Occlusion Map and 
Backpropagation-based 
methods 

sMRI -Binary classification of Alzheimer’s using 3D-CNN 
-Combining two categories of explainability methods to extract 
the most important brain regions in Alzheimer’s (using genetic 
algorithm) 

93 % Validaion Accuracy (using 29 
brain regions) 
96.6 % Validaion Accuracy (using 
36 brain regions) 

DAT, Dementia of Alzheimer’s type; AUROC, Areas Under the Receiver Operating Characteristic; AUPRC, Areas Under the Precision Recall Curve, Whole Slide Image; 
SPECT, Single photon emission computed tomograph; DLB, Dementia with Lewy bodies. 
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Feature Visualization. Feature Visualization refers to what a network or 
part of it has learned in the training process, while Attribution methods 
focus on determining those parts of the input the network is more likely 
to make decisions based on (Yu and Shi, 2018). In the Feature Visuali-
zation category, (Erhan et al., 2009) presents the Activation Maximi-
zation method, which belongs to a family called gradient-based 
methods. The primary purpose of Activation Maximization is to under-
stand what type of image at the input causes the maximum activation of 
a particular neuron or layer of the network. (Zeiler and Fergus, 2014) 
introduces DeconvNet, in which the CNN is trained first and then, with 
the idea behind deconvolution network, reconstructs an image based on 
the heatmaps obtained in a specific layer. This reconstructed image in-
dicates which image this heatmap had the most activation for. Guided 
Backpropagation is another method presented by (Springenberg et al., 
2014). This method makes a slight change in vanilla backpropagation 
and amplifies positive gradients to make sharper output images. In the 
Attribution category, a method called Class Activation Map (CAM) was 
introduced (Zhou et al., 2016). In this method, heatmaps obtained from 
the last convolution layer are multiplied by their corresponding weights. 
In other words, by summing their weights, a heatmap is calculated for a 
specific class of objects which identifies those parts of an image that 
CNN uses to detect that particular class. Gradient-based Class Activation 
Map (Grad-CAM), which is derived from CAM, also falls into this cate-
gory (Selvaraju et al., 2017). In Saliency Map, by considering an input 
image, the gradient of the classes is calculated using backpropagation, 
and it determines which pixels of the image increase the probability of a 
particular class in a classification task. Saliency Map can also be 
computed by Guided Backpropagation, Integrated Gradient (Sundarar-
ajan et al., 2017), SmoothGrad (Smilkov et al., 2017), etc. (Simonyan 
et al., 2013). Occlusion Map blocks different parts of the input image 
through masks iteratively and attempts to find the parts that increase the 
probability of a class in classification (Zeiler and Fergus, 2014). Layer- 
wise Relevance Propagation (LRP) tries to identify the pixels that 
cause input to be placed in a particular class by making backward 
connections in the network so that neurons that have stronger connec-
tions with higher layers are more affected by these connections (Bach 
et al., 2015). Deep Taylor also applies Taylor decomposition on each 
layer of the network backward to calculate the relevances (Montavon 
et al., 2017). 

From another perspective, Visualization methods can be divided into 
Perturbation and Backpropagation methods (Joshi et al., 2021). 
Backpropagation-based methods try to find the most effective features in 
the network’s output using backpropagating the gradients in the 
network. CAM, Activation Maximization, DeconvNet, and LRP are well- 
known methods in this category. On the other hand, Perturbation is a 
family of methods that, by making modifications in the input and 
monitoring the output change, try to find effective features. Occlusion 
Map is a famous method in this category. 

Almost all explainability methods are getting attention in different 
fields, especially in medical science, and much research has applied 
them to their networks. Table 1 shows a list of research that used 
explainability methods in AD-related research. By doing so, besides 
interpreting the model, they tried to increase the accuracy or prevent it 
from decreasing. That is because there is a compromise between the 
explainability and the accuracy of the model, and generally the accuracy 
decreases as the explainability increases. More importantly, one of the 
motivations for using explainability methods is that they can detect 
overfitting and biases in the model which are important in evaluating 
the model’s performance, besides measurement criteria like accuracy. 
(Böhle et al., 2019) used LRP and Guided Backpropagation to find the 
importance of each voxel in the classification task. They compute LRP 
and Guided Backpropagation heatmap for each AD individual and then 
generate an average heatmap for each class to find out crucial atlas- 
based brain regions. (Shahamat and Saniee Abadeh, 2020) used ge-
netic algorithm and Occlusion Map to find knowledgeable atlas-based 
brain regions. Nonetheless, due to the randomness of evolutionary 

algorithms, the main problem of this framework is achieving different 
results in different experiments that decrease the reliability of the re-
sults. In this paper, we attempt to combine genetic algorithm-based 
occlusion with Backpropagation-based methods. Indeed, after extract-
ing an average heatmap for AD patients, we compared the performance 
of varying Backpropagation-based methods in extracting important 
brain regions. Moreover, the final extracted brain regions are compared 
to Alzheimer’s professionals’ perspective which shows that our model is 
well-trained and trustable. 

2.2. CNN-Based Alzheimer’s Disease classification 

Earlier diagnosis of Alzheimer’s Disease before symptoms appear, 
besides timely treatment, can prevent severe and irreversible damage to 
the brain. Therefore, research on various methods of early diagnosis of 
Alzheimer’s is one of the most popular research areas in Alzheimer’s. 
Neuroimaging is one of the areas that has shown much attention to this 
issue (“Earlier Diagnosis”, 2022). On the other hand, nowadays, deep 
learning methods, especially CNN, are used in various tasks related to 
radiology (Zhu et al., 2019). Both 2D-CNN and 3D-CNN are being used 
in Alzheimer’s Disease classification. Because neuroimages are three- 
dimensional images 2D-CNNs are unable to keep the spatial relation-
ships between slices and losing these features can lead to less accurate 
decisions. Contrastingly, 3D-CNNs keep these features but are more 
complex than 2D-CNN (Ebrahimighahnavieh et al., 2020). In that re-
gard, numerous research used 3D-CNN for Binary Classification on 
structural MRI (Yagis et al., 2020), fMRI (Duc et al., 2020), PET (Jo 
et al., 2020), and Multimodal data (Huang et al., 2019). Likewise (Amini 
et al., 2021; Ding et al., 2019; Folego et al., 2020; Gao et al., 2017; 
Venugopalan et al., 2021) applied multi-class classification on Alz-
heimer’s structural MRI, functional MRI, CT, PET, and Multimodal data, 
respectively. Among the above studies, (Gao et al., 2017) implemented a 
2D-CNN as well. Moreover, (Bae et al., 2020; Liu et al., 2018; Pereira 
et al., 2020; Ying et al., 2021) used 2D-CNN in classification based on 
mentioned modalities. (Yagis et al., 2020) performed binary classifica-
tion using 3D-CNN (which is similar to this paper) on 200 MRI scans 

Table 2 
A list of Alzheimer’s classification research we reviewed.  

Research papers Data Network Task 

(Yagis et al., 2020) sMRI 3D-CNN Binary 
Classification 

(Duc et al., 2020) fMRI 3D-CNN Binary 
Classification 

(Jo et al., 2020) PET 3D-CNN Binary 
Classification 

(Shahamat and Saniee 
Abadeh, 2020) 

sMRI 3D-CNN Binary 
Classification 

(Huang et al., 2019) Multimodal 3D-CNN Binary 
Classification  

sMRI 3D-CNN Binary 
Classification 

(Amini et al., 2021) sMRI 3D-CNN Multi-class 
Classification 

(Ding et al., 2019) fMRI 3D-CNN Multi-class 
Classification 

(Folego et al., 2020) CT 3D-CNN Multi-class 
Classification 

(Venugopalan et al., 2021) Multimodal 3D-CNN Multi-class 
Classification 

(Gao et al., 2017) PET 3D-CNN / 2D- 
CNN 

Multi-class 
Classification 

(Pereira et al., 2020) sMRI 2D-CNN Multi-class 
Classification 

(Bae et al., 2020) sMRI 2D-CNN Binary 
Classification 

(Liu et al., 2018) PET 2D-CNN Binary 
Classification 

(Ying et al., 2021) Multimodal 2D-CNN Binary 
Classification  
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from ADNI (100 CE and 100 healthy control (HC) subjects) and 200 MRI 
scans from OASIS (100 CE and 100 HC subjects). They achieved 73.4 % 
accuracy on ADNI and 69.9 % on OASIS. Similarly (Shahamat and 
Saniee Abadeh, 2020) applied another 3D-CNN-based binary classifi-
cation on 140 MRI scans (70 normal controls (NC) and 70 AD) from 
ADNI and obtained 5-fold classification accuracy of 85 %. Also, used a 
bigger dataset (475 CE and 494 HC) and reached an accuracy of 77 % in 
the classification of Alzheimer’s. Table 2 shows a comparison between 
Alzheimer’s classification research we reviewed. 

3. Material and methods 

This section introduces the data used in our research, then a 
comprehensive illustration of our method is given. 

3.1. Dataset and Pre-processing 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is an as-
sociation consisting of Canadian and American universities and medical 
centers that aims to develop standardized imaging techniques and 
biomarker procedures for normal, mild cognitive impairment (MCI) and 
AD subjects (Petersen et al., 2010). A total of 145 samples (74 AD and 71 
CN) of structural MRI scans from ADNI repository (Jack et al., 2008) has 
been used in this paper. To avoid possible distribution shifts, we used 
scans from a specific range of ages. Secondly, we tried to divide the 
dataset so that the training and validation datasets are balanced in terms 
of gender and label. 

All scans are pre-processed using FSL software (Jenkinson et al, 
2012). First, using FMRIB’s Linear Image Registration Tool (FLIRT) in 
FSL each scan is taken to the standard MNI152_T1_2_mm space. These 
MRI scans, which have the size of 91 × 109 × 91, are then converted to 
the size of 80 × 80 × 80 by cropping margins that do not contain 

important information. 

3.2. Proposed method 

Our goal is first to find the most important brain regions in AD from 
our network’s perspective. Secondly, we want to examine which of the 
Backpropagation-based explainability methods generate heatmaps that 
are better able to find these areas. Fig. 1 shows the overall flowchart of 
the proposed framework. After data pre-processing and training the 
model, we use the iNNvestigate repository (Alber et al, 2019), which 
includes Backpropagation-based methods, to generate heatmaps. For 
each Backpropagation-based method, we generate heatmaps of the 
training data belonging to the AD patients (used in the network training 
phase). Then in a process that is similar to the weighted mean, we obtain 
an overall voxel-wise heatmap and call it an average heatmap, which 
identifies the most substantial areas. Using this average heatmap and 
single brain region atlases extracted from Harvard–Oxford cortical 
structural atlas, we generate an atlas-based mask for the brain areas. 
This mask is given as input to the genetic algorithm and generates a 
proper initial population (initial masks) that helps the algorithm start 
from a better location of search space. It means that many improper 
brain masks that the framework can consider are pruned from the 
beginning. Finally, with the convergence of the genetic algorithm, we 
will have an appropriate brain mask. To perceive the framework’s per-
formance, we apply the extracted brain mask to the validation data, give 
the masked validation data to the model, and compare its accuracy with 
the accuracy of the unmasked validation data (consisting of all brain 
regions). 

3.2.1. Convolutional Neural network architecture 
Convolutional Neural Networks are significant feedforward net-

works that automatically extract features from data (Li et al., 2021). We 

Fig. 1. Overall flowchart of the proposed framework. The proposed framework consists of three general sections. a) The neural network is trained on pre-processed 
Alzheimer’s MRI scans. b) Using Backpropagation-based explainability methods, an early voxel-wise brain mask is generated for AD patients. c) Genetic algorithm is 
used to extract a suitable atlas-based brain mask for AD. 
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Fig. 2. Extracting Voxel-wise Brain Mask. a) Heatmaps of MRI scans of all AD patients are obtained (by each explainability method). b) With a procedure similar to 
the weighted mean, an average heatmap of AD patients’ heatmaps is calculated. c) By ignoring the insignificant parts of the average heatmap, a voxel-wise brain 
mask is obtained for AD. 

Fig. 3. Calculating the voxel scores. For each voxel, a score is computed by counting the number of AD samples’ heatmaps in which the corresponding voxels have 
non-zero values. 

Fig. 4. Calculating Average Heatmap. For each voxel of the average heatmap, first, the sum of all corresponding voxels is calculated, then the result is multiplied by 
the corresponding voxel in Scores. 
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trained a 3D-CNN using MRI scans for a binary classification task that 
diagnoses AD patients from CN ones, and then we used it to extract a 
suitable brain mask. The network consists of three 3D convolution 
layers. A dropout layer is installed before the first convolution layer, and 
one is installed between the two dense layers to prevent overfitting. 
Also, the sigmoid activation function is used in dense layers. Finally, 
CNN classifies the data into two classes. 

3.2.2. Voxel-wise brain mask extraction 
After training CNN, we generate an average heatmap that shows the 

effectiveness of each voxel in the network output. Then using this 
average heatmap, a voxel-wise brain mask is computed. Fig. 2 illustrates 
the steps of extracting this mask. First, using each Backpropagation- 
based method a set of heatmaps is generated for all AD training sam-
ples. In the obtained heatmaps, for each voxel of the input images, the 
amount of effect that the voxel has on the network output is visible. In 
the next step, after normalizing the heatmaps, an array of voxel scores 
will be calculated based on all heatmaps (Fig. 3). Each voxel score 
counts the number of heatmaps in which the corresponding voxels has 
non-zero values. As Eq. (1) shows, Let Heatmaps be a 4D tensor that 
represents the normalized heatmaps of each explainability method we 
used, n be the number of AD samples in the training data, and h indicate 
an AD patient MRI scan, then Heatmaps[h][i][j][k] is a single voxel of h-th 
AD training sample’s heatmap and Scores[i][j][k] is the number of 
heatmaps with non-zero values in the corresponding voxel. 

Scores[i][j][k] =
∑n

h = 0,
Heatmaps[h][i][j][k] ∕= 0

1 (1) 

As Fig. 4 shows, to create the average heatmap, we use the Scores 
generated in the previous step (Fig. 3). We generally assume that the 
following two cases indicate the importance of a voxel. 1) The number of 
AD samples’ heatmaps in which that voxel is considered essential 
(Scores that are equivalent to weights in a weighted mean). 2) The value 
of the corresponding voxel in each AD sample’s normalized heatmap (in 
the normalized heatmaps, the closer a voxel is to one, the more impor-
tant it is, and the closer it is to zero, the less important it is). We model 
these two factors as follows: 

Average − Heatmap[i][j][k] = Scores[i][j][k]*
∑n

h=0
Heatmaps[h][i][j][k] (2) 

As the average heatmap is calculated, we have to normalize it again. 
To generate a voxel-wise mask, we need a threshold to ignore small 
values in the normalized average heatmap. This threshold depends on 
the explainability method, and we need tunning to find the best value for 
each method. Finally, we use this threshold and normalized average 
heatmap to generate the voxel-wise mask. To do so, first, an empty mask 
will be created with the same dimensions as the normalized average 
heatmap. Then for each voxel of the mask, we compare its corresponding 
voxel in the normalized average heatmap with the threshold. Voxels 
with a value higher than the threshold change to one and others remain 

Fig. 5. Using genetic algorithm to extract a proper brain 
mask for AD patients. a) First, an initial brain mask is 
generated using explainability heatmaps and single brain 
atlases. b) Using this mask, a few other masks are generated 
for the first generation of the algorithm. c) Finally, in the 
genetic phase, we reach a proper brain mask for Alzheimer’s 
Disease. N, number of desired regions to be selected; NZi, 
number of non-zero voxels in ith masked atlas; Vi, number of 
voxels in ith single atlas; Ri, relative importance of ith atlas.   
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zero. In this way, we create a voxel-wise mask, and the farther the 
threshold is from zero, the more voxels will be pruned. 

3.2.3. Genetic algorithm Occlusion 
This section describes the main parts of the genetic algorithm used to 

extract an atlas-based brain mask. The genetic algorithm presented in 
(Shahamat and Saniee Abadeh, 2020) with some modifications has been 
used in this paper. Fig. 5 shows the general steps of applying the genetic 
algorithm. 

3.2.3.1. Chromosome encoding. Each chromosome is made up of 96 
genes, which are identified by the numbers 0 to 95. Each gene corre-
sponds to a distinct region specified in the single brain atlases of Har-
vard–Oxford cortical structural atlas. Also, each gene can have one of the 
values in the set (0, 1, 2, 3). ’0′-value genes refer to the regions that are 
not selected, and ‘1′ means that the region is selected. ‘2′ and ‘3′ values 
mean that the corresponding regions are selected, and erosion and 
dilation operators have been applied to them, respectively. Indeed, each 
chromosome is a subset of distinct brain regions; However, by applying 
morphological operators (erosion and dilation), the margins of some 
regions can be slightly sharpened or thickened. 

3.2.3.2. Initial population. First, we multiply each single brain atlas in 
the voxel-wise mask. Then we count the number of non-zero voxels in 
the multiplication result (NZi) and divide it by the total number of voxels 
of that single atlas (Vi). In this way, considering the correspondence 
between the voxel-wise mask and each single brain atlas, a ratio is ob-
tained that determines which of the single brain atlases had the most 
activated voxels in the voxel-wise mask (Eq. (3)). Let R be the ratio set, 
and N be the number of desired brain regions we are considering for the 
initial chromosome. From these 96 single atlases, we select N of them 
with the highest R and assign ‘1′ to their corresponding genes in the 
primary chromosome. 

R(i) =
NZi

Vi
(3) 

To generate the initial population, unlike our previous work (Sha-
hamat and Saniee Abadeh, 2020), which does it randomly (using the 
roulette wheel selection method), we have done this more intelligently 
using Backpropagation-based heatmaps. For this purpose, we consider 
the primary chromosome and randomly replace its k genes with a value 
from the set (0, 1, 2, 3). We repeat this step until reaching the initial 
population. 

3.2.3.3. Genetic operators. Fitness: The fitness function that measures 
the quality of a chromosome consists of two parts. As mentioned, each 
chromosome is a subset of the brain regions that together form a mask. 
From one aspect, the quality of this chromosome is related to the 
model’s accuracy after applying this mask to the data. In contrast, 
paying attention to the number of selected regions is also essential. Let f1 
indicate the accuracy of the model, f2 be the inverse of the number of 
selected regions, and α and β be the coefficients of f1 and f2, respectively 
to balance them, then: 

Fitness = αf1 + βf2 (4) 

To obtain f1, the accuracy of the 3D-CNN is measured on the training 
data using Eq. (5). 

f1 =
TP + TN

TP + TN + FP + FN
(5) 

We also calculate f2 as follows: 

f2 =
1

∑96
i=0,chromosome[i]∕=01

(6) 

Selection: Although generating the initial population has become 

more intelligent using Backpropagation-based explainability methods, 
the selection operation to transfer the chromosomes to the next gener-
ation is done with roulette wheel selection. i.e., the probability of 
selecting each member of the population is commensurate with that 
member’s fitness which is shown in Eq. (7). 

Prob(i) =
Fitness(i)

∑n
j=1Fitness(j)

(7) 

Crossover: The single-point crossover is used. A random point in the 
parent chromosomes is considered the pivot, and the crossover opera-
tion is performed to generate new chromosomes. 

Mutation: A gene is randomly selected from a chromosome and 
replaced with a new value from the set (0, 1, 2, 3). 

Important parameters: population size is 20, mutation and crossover 
probabilities are 0.6 and 0.4, respectively. α is 0.02, which makes β be 
0.98. also, generation number is at most 2000 with early stopping in case 
the algorithm reaches one region. 

4. Experimental results 

In this section, we comprehensively discuss our results. Section 4.1 is 
devoted to the Alzheimer’s classification and its results. We compare the 
final result of the proposed method with previous research. We have also 
examined the important factors in training our 3D-CNN model. In sec-
tion 4.2, we assess the various explainability methods used for the initial 
brain mask generation and discuss the results and crucial parameters of 
this part of the work as well. We also compare the proposed framework’s 
results with our previous work in which the genetic algorithm starts 
randomly. 

4.1. CNN model for Alzheimer’s classification 

The designed CNN in our previous work (Shahamat and Saniee 
Abadeh, 2020) with some changes has been trained on our new dataset. 
For example, we added Batch Normalization to our CNN, and in addi-
tion, the activation function of the final layer has changed too. Table 3 
summarizes the network architecture and model parameters. We have 
the network input in the first layer, which takes MRI scans in 80 * 80 * 
80 dimensions and gives them to a dropout layer with a keep probability 
of 95 %. The application of this layer is to prevent overfitting during 
training. Then we have three convolution layers, after each of which we 
first apply a ReLU activation. Next, a max-pooling with a window size of 
2 * 2 * 2 halves each dimension of scans after each convolution layer. In 
the first convolution layer, we have eight filters with a kernel size of 5 * 
5 * 5. In the second convolution layer, we have 16 filters with a kernel 

Table 3 
Summary of our 3D-CNN layers and parameters.  

Layer (type) Output Shape Param # 

Input (None, 80, 80, 80, 1) 0 
Dropout (None, 80, 80, 80, 1) 0 
Conv3D (None, 80, 80, 80, 8) 1008 
MaxPooling3D (None, 40, 40, 40, 8) 0 
BatchNormalization (None, 40, 40, 40, 8) 32 
Conv3D (None, 40, 40, 40, 16) 3472 
MaxPooling3D (None, 20, 20, 20, 16) 0 
BatchNormalization (None, 20, 20, 20, 16) 64 
Conv3D (None, 20, 20, 20, 32) 13,856 
MaxPooling3D (None, 10, 10, 10, 32) 0 
BatchNormalization (None, 10, 10, 10, 32) 128 
Flatten (None, 32000) 0 
Dense (None, 512) 16,384,512 
Dropout (None, 512) 0 
Dense (None, 1) 513 
Total params: 16,403,585 

Trainable params: 16,403,473 
Non-trainable params: 112  
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size of 3 * 3 * 3, and in the third one, we have 32 filters with a 3 * 3 * 3 
kernel size. Then we come to the flattening layer, which prepares the 
data for the upcoming dense layer. The network has two dense layers 
with sigmoid activation functions. The first one has 32,000 inputs and 
512 outputs, and the second one has 512 inputs and one output, which 
determines the classification result in one of the two classes based on the 
distance of the output value from zero and one. There is another dropout 
layer between these two dense layers with a keep probability of 95 %. 
The binary cross-entropy loss function and Adam optimizer with a 
learning rate of 0.00055 have been used to train the model. The batch 
size is four, and we trained the model for 100 epochs (2900 iterations); 
however, the training stopped after 90 epochs due to early stopping. It 
should also be mentioned that these hyperparameters were obtained by 
trial and error. We augmented the data using rotation to increase the 
number of MRI scans. We also used 5-fold cross-validation to evaluate 
the network and the model, which reached an accuracy of 87 %. 

For the second part of the work, given in Section 4.2 (Extracting 
proper brain masks), we need to train a model that firstly we use to 
extract heatmaps using explainability methods and secondly use its train 
accuracy during the genetic process as a part of the fitness function. Out 
of 145 MRI scans, we used 116 scans as train data and the remaining 29 
scans for validation in the training phase. Fig. 6 shows the accuracy and 
loss of both train and validation data during training. This model 
reached an accuracy of 96 %, precision of 94 %, recall of 100 %, and area 
under the curve (AUC) of 95.8 % on validation data. 

Table 4 compares the results of the proposed work with some of the 
outstanding similar research on ADNI data. We presented the results of 

three other studies. For (Shahamat and Saniee Abadeh, 2020), we have 
shown the results with unmasked data. The proposed method’s 5-fold 
accuracy is 87 %, which is higher than similar studies presented here. 

4.2. Extracting proper brain masks 

Twenty-five methods available in the iNNvestigate analyzer have 
been used to produce primary heatmaps. Each time, considering the AD 
training samples, one of these methods is applied to the base model (the 
model that is used in the genetic algorithm phase), and the heatmaps are 
obtained. After producing the average heatmap, we have to prune some 
low-effect voxels to reach the voxel-wise mask, which is done by setting 
a pruning threshold. For each of these explainability methods, this 
threshold must be obtained through tunning. In this way, voxels are 
pruned to the extent that in the next step, which is the conversion of this 
voxel-wise mask into an atlas-based mask, we attain the desired number 
of brain regions; therefore, these methods can be compared better. For 
this purpose, we have set this threshold so that each method reaches 60 
to 70 regions. After producing an early atlas-based mask, we get to the 
point where we need to encode this mask into our genetic chromosome 
to generate the primary chromosome (a chromosome with 96 genes with 
gene values of 0 or 1, which indicates the selection or non-selection of 
the corresponding region). In this step, given that we want to select a 
specific number of brain regions, several regions may be pruned again. 
After many trials, we preferred to have 60 non-zero regions for the initial 
chromosome. Accordingly, if after ignoring some regions using the 
threshold filter, the number of regions is still more than 60, some of the 
less effective ones will be pruned again to reach 60 regions. This initial 
chromosome enters the production phase of the initial population. To 
generate the initial population, the chromosome is duplicated to the 
number of the population size, which has been considered 20. In each 
duplicate, we randomly replace the k genes with one value from the set 
(0, 1, 2, 3). In all our experiments, k is six; however, for a larger pop-
ulation size, a larger value of k should be used to further the diversity in 
the population. 

After generating the initial population, the genetic algorithm starts, 
and if the algorithm reaches one region, the genetic phase ends. The 
maximum generation number of the genetic algorithm is 2000, which is 
usually only reached if the algorithm is located in a local optimum with a 
certain number of regions. The α and β values that control the fitness and 
convergence of the algorithm are 0.02 and 0.98, respectively. Larger α 
values will lead to later convergence. 

Table 5 provides a complete report of the proposed framework 
applying various explainability methods. An initial chromosome with 60 
regions has been created for all these experiments; however, since six (k) 
genes of each duplicate chromosome are changed to yield the initial 
population, the number of regions selected in each chromosome of the 
initial population is in the range of 54 to 66. Therefore, the number of 
selected regions in the fittest chromosome of the first generation of each 
experiment is in this range. The train and validation data used in the 
base model training are reused here. Before entering the genetic phase, 
the primary mask is produced using the AD training samples. In the 
genetic phase, according to the changes that occur in the mask in each 

Fig. 6. Our 3D-CNN model accuracy (a) and loss (b) on train and validation 
data during training. This model is used as a part of fitness function in the 
genetic algorithm. 

Table 4 
Comparison of the proposed method with some outstanding previous research on similar data.  

Reference Method Modality #MRI 
Scans 

Computational 
complexity 

Network 
parameters 

Accuracy 

Proposed 3D-CNN (5-fold) MRI 145 O(n5) ≈ 16 Million 87 % (AD vs CN) 
(Shahamat and Saniee Abadeh, 

2020) 
3D-CNN (5-fold) MRI 140 O(n5) ≈ 32 Million 85 % (AD vs CN) 

(Yagis et al., 2020) 3D-CNN (5-fold) MRI 200 O(n5) ≈ 1.8 Million 73.4 % (AD vs 
HC) 

(Pan et al., 2020) 123 distinct 2D-CNN (5-fold) + Ensemble 
Learning 

MRI 299 O(n5) ≈ 1.2 Million per 2D- 
CNN 

84 % (AD vs HC) 

AD, Alzheimer Disease; CN, Cognitively Normal; HC, Healthy Control. 
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generation, all training samples are masked again, and the fitness is 
calculated (by counting the number of selected regions and the accuracy 
of the base model on the masked training samples). Then, the fittest 
mask (chromosome) is applied to the validation data to see its perfor-
mance on the unseen data. 

The last four columns of Table 5 contain information on the best 
brain masks extracted from each explainability method. Several exper-
iments have been able to show outstanding performances. lrp_z_plus_fast 
method achieved 93 % validation accuracy with only 29 regions. Like-
wise, lrp_alpha_2_beta_1, integrated_gradients, gradient_baseline, and 

Table 5 
Comparison of using different explainability methods in the proposed framework to extract proper brain masks for AD patients. The number of regions in the first 
generation (RINFG) indicates the number of regions that our genetic algorithm started with.  

Row Method Pruning Threshold RINFG Best Results 
#Generation #Region Train Accuracy Validation Accuracy 

1 gradient  0.02 59 135 41 97.4 % 96.6 % 
2 gradient_baseline  0.02 61 161 38 97.4 % 93 % 
3 input_t_gradient  0.022 61 290 29 96.6 % 82.8 % 
4 deconvnet  0.42 59 339 29 93 % 86.2 % 
5 guided_backprop  0.03 57 213 31 94 % 89.7 % 
6 integrated_gradients  0.19 62 382 31 96.6 % 93 % 
7 smoothgrad  0.024 59 431 23 86.2 % 89.7 % 
8 lrp_z  0.006 64 180 40 94.8 % 93 % 
9 lrp_z_IB  0.008 63 1089 37 88.8 % 86.2 % 
10 lrp_epsilon  0.0066 64 249 41 94.8 % 93 % 
11 lrp_epsilon_IB  0.007 62 260 40 92.2 % 82.8 % 
12 lrp_w_square  0.51  58 547 20 79.2 % 86.2 % 

13 lrp_flat  0.66 60 293 29 90 % 82.8 % 
14 lrp_alpha_2_beta_1  0.0038 61 455 30 94 % 93 % 
15 lrp_alpha_2_beta_1_IB  0.002 59 446 30 95.7 % 89.7 % 
16 lrp_alpha_1_beta_0  0.0045 58 239 36 93 % 96.6 % 
17 lrp_alpha_1_beta_0_IB  0.0061 63 455 34 96.6 % 89.7 % 
18 lrp_z_plus  0.0065 59 244 30 88.8 % 89.7 % 
19 lrp_z_plus_fast  0.0008 61 256 29 94 % 93 % 
20 lrp_sequential_preset_a  0.003  63 384 38 97.4 % 93 % 

21 lrp_sequential_preset_b  0.002 58 331 35 98.3 % 89.7 % 
22 lrp_sequential_preset_a_flat  0.019 60 74 47 94.8 % 89.7 % 
23 lrp_sequential_preset_b_flat  0.015 62 420 28 96.6 % 89.7 % 
24 lrp_sequential_preset_b_flat_until_idx  0.015 59 463 18 75.9 % 86.2 % 
25 deep_taylor  0.012 60 329 30 94.8 % 89.7 %  

Fig. 7. Results of using lrp_z_plus_fast initial mask in 
genetic algorithm to generate a proper brain mask for 
Alzheimer’s. a, b) show the genetic fitness value and 
the number of regions in the fittest mask of each 
generation, respectively. c, d) show the train and 
validation accuracy of the model on the masked data 
using the fittest brain mask of each generation. e, f) 
Specify the best train and validation accuracy for each 
number of regions reached by the algorithm, respec-
tively. Fewer regions mean that the model is more 
explainable, and generally, with making a model 
more explainable, the accuracy decreases. Hence, 
these charts can provide a fair approximation of the 
model explainability so that we can choose a mask 
with fewer regions and higher model accuracy.   
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lrp_sequential_preset_a reached 93 % accuracy with 30, 31, 38, and 38 
regions, respectively. lrp_alpha_1_beta_0 method even has achieved 96 
% accuracy with 36 regions. Since in the explainability topics, the aim is 
to reduce the factors influencing the network’s output, it is essential to 
consider methods that with a small number of input regions do not have 
a decrease in accuracy or at least have a slight reduction. For example, 
the smoothgrad method reached 89.7 % accuracy with only 23 regions, 
which is excellent considering this number of brain regions. Further-
more, since evolutionary algorithms are known to have high time costs, 
another crucial factor is the time required to run the genetic algorithm 
(number of generations) to get the desired output. For example, gra-
dient_baseline achieved 93 % accuracy for 38 regions only with 161 
generations. Also, for lrp_z_plus_fast, which its genetic phase is shown in 
Fig. 7, we reached 93 % accuracy for 29 regions in the 256 generations. 
However, in our previous work, by starting the genetic randomly and 
without considering suitable initial solutions (masks) often, took more 
time to achieve a proper brain mask. 

In addition to the ability of the proposed framework to extract the 
most important brain regions, it has also been able to partially solve 
another problem of our previous work. Since randomness is an inherent 
and inseparable feature of evolutionary algorithms (Kromer et al., 
2013), its different experiments lead to different results, which makes it 
a little harder to trust the results. It means that different experiments, 
even with acceptable accuracy, may extract brain regions with a small 
overlap. In this framework, because we force the algorithm to reduce its 
randomness factors (using explainability heatmaps) if we repeat each of 
the experiments in Table 5 several times, the extracted regions have 
slight differences, which will increase the reliability of the framework. 

Another subject that demonstrates the reliability of our framework is 
the number of areas shared between the optimal mask and the initial 
mask generated by each average heatmap. As Fig. 8 shows 26 regions of 
the optimal mask generated by our framework were also considered in 
the first generation of the genetic algorithm. It means that even without 
any optimization we extracted the most important regions by the initial 

Fig. 8. Venn diagram of the brain regions in the initial mask and the optimal 
mask extracted by the genetic algorithm. 

Table 6 
Significant brain regions, extracted from the proposed framework.  

Region 
ID 

Brain Region Reference 

7 Left Frontal Orbital Cortex (Qian et al., 2019; Tekin et al., 2001) 
8 Left Frontal Pole (Cajanus et al., 2019; Finger et al., 

2017) 
28 Left Parahippocampal Gyrus, 

anterior division 
(Braak and Braak, 1990; Echávarri 
et al., 2011; Wang et al., 2016) 

33 Left Postcentral Gyrus (Peters et al., 2009; Yang et al., 
2019) 

47 Left Temporal Pole (Arnold et al., 1994; Nag et al., 
2018) 

56 Right Frontal Pole (Cajanus et al., 2019; Finger et al., 
2017) 

76 Right Parahippocampal Gyrus, 
anterior division 

(Braak and Braak, 1990; Echávarri 
et al., 2011; Wang et al., 2016) 

95 Right Temporal Pole (Arnold et al., 1994; Nag et al., 
2018)  

Table A1 
Regions of Harvard-Oxford Atlas and their corresponding IDs.  

ID Region Name ID Region Name 

0 Left Angular Gyrus 48 Right Angular Gyrus 
1 Left Central Opercular Cortex 49 Right Central Opercular Cortex 
2 Left Cingulate Gyrus, anterior 

division 
50 Right Cingulate Gyrus, anterior 

division 
3 Left Cingulate Gyrus, posterior 

division 
51 Right Cingulate Gyrus, posterior 

division 
4 Left Cuneal Cortex 52 Right Cuneal Cortex 
5 Left Frontal Medial Cortex 53 Right Frontal Medial Cortex 
6 Left Frontal Operculum Cortex 54 Right Frontal Operculum Cortex 
7 Left Frontal Orbital Cortex 55 Right Frontal Orbital Cortex 
8 Left Frontal Pole 56 Right Frontal Pole 
9 Left Heschl’s Gyrus (includes H1 

and H2) 
57 Right Heschl’s Gyrus (includes H1 

and H2) 
10 Left Inferior Frontal Gyrus, pars 

opercularis 
58 Right Inferior Frontal Gyrus, pars 

opercularis 
11 Left Inferior Frontal Gyrus, pars 

triangularis 
59 Right Inferior Frontal Gyrus, pars 

triangularis 
12 Left Inferior Temporal Gyrus, 

anterior division 
60 Right Inferior Temporal Gyrus, 

anterior division 
13 Left Inferior Temporal Gyrus, 

posterior division 
61 Right Inferior Temporal Gyrus, 

posterior division 
14 Left Inferior Temporal Gyrus, 

temporooccipital part 
62 Right Inferior Temporal Gyrus, 

temporooccipital part 
15 Left Insular Cortex 63 Right Insular Cortex 
16 Left Intracalcarine Cortex 64 Right Intracalcarine Cortex 
17 Left Juxtapositional Lobule 

Cortex (formerly Supplementary 
Motor Cortex) 

65 Right Juxtapositional Lobule 
Cortex (formerly Supplementary 
Motor Cortex) 

18 Left Lateral Occipital Cortex, 
inferior division 

66 Right Lateral Occipital Cortex, 
inferior division 

19 Left Lateral Occipital Cortex, 
superior division 

67 Right Lateral Occipital Cortex, 
superior division 

20 Left Lingual Gyrus 68 Right Lingual Gyrus 
21 Left Middle Frontal Gyrus 69 Right Middle Frontal Gyrus 
22 Left Middle Temporal Gyrus, 

anterior division 
70 Right Middle Temporal Gyrus, 

anterior division 
23 Left Middle Temporal Gyrus, 

posterior division 
71 Right Middle Temporal Gyrus, 

posterior division 
24 Left Middle Temporal Gyrus, 

temporooccipital part 
72 Right Middle Temporal Gyrus, 

temporooccipital part 
25 Left Occipital Fusiform Gyrus 73 Right Occipital Fusiform Gyrus 
26 Left Occipital Pole 74 Right Occipital Pole 
27 Left Paracingulate Gyrus 75 Right Paracingulate Gyrus 
28 Left Parahippocampal Gyrus, 

anterior division 
76 Right Parahippocampal Gyrus, 

anterior division 
29 Left Parahippocampal Gyrus, 

posterior division 
77 Right Parahippocampal Gyrus, 

posterior division 
30 Left Parietal Operculum Cortex 78 Right Parietal Operculum Cortex 
31 Left Planum Polare 79 Right Planum Polare 
32 Left Planum Temporale 80 Right Planum Temporale 
33 Left Postcentral Gyrus 81 Right Postcentral Gyrus 
34 Left Precentral Gyrus 82 Right Precentral Gyrus 
35 Left Precuneous Cortex 83 Right Precuneous Cortex 
36 Left Subcallosal Cortex 84 Right Subcallosal Cortex 
37 Left Superior Frontal Gyrus 85 Right Superior Frontal Gyrus 
38 Left Superior Parietal Lobule 86 Right Superior Parietal Lobule 
39 Left Superior Temporal Gyrus, 

anterior division 
87 Right Superior Temporal Gyrus, 

anterior division 
40 Left Superior Temporal Gyrus, 

posterior division 
88 Right Superior Temporal Gyrus, 

posterior division 
41 Left Supracalcarine Cortex 89 Right Supracalcarine Cortex 
42 Left Supramarginal Gyrus, 

anterior division 
90 Right Supramarginal Gyrus, 

anterior division 
43 Left Supramarginal Gyrus, 

posterior division 
91 Right Supramarginal Gyrus, 

posterior division 
44 Left Temporal Fusiform Cortex, 

anterior division 
92 Right Temporal Fusiform Cortex, 

anterior division 
45 Left Temporal Fusiform Cortex, 

posterior division 
93 Right Temporal Fusiform Cortex, 

posterior division 
46 Left Temporal Occipital Fusiform 

Cortex 
94 Right Temporal Occipital 

Fusiform Cortex 
47 Left Temporal Pole 95 Right Temporal Pole  
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mask generated from average heatmaps. In addition, as the optimization 
proceeded most of the less important regions were pruned and only 
three regions were added to the optimal mask. 

5. Discussion and Conclusion 

One of the critical issues in CNN explainability is finding the input 
regions which are more crucial in decision-making. More importantly, in 
professional topics such as medicine, where ordinary people cannot 
discern whether attention to a part of the image has been logical or not, 
the results need to be examined more closely. In this framework, using 
several outstanding experiments, a series of regions is extracted, which 
can be judged by an artificial intelligence expert only according to the 
accuracy of their output. To examine the results more accurately, it is 
necessary to compare the extracted regions with several studies in this 
field and see if our framework can identify the effective areas. Table 6 
shows brain regions extracted based on several experiments performed. 
Firstly, we extracted the anterior Parahippocampal Gyrus, and it is 
shown that the earliest neuropathological changes in AD appear in the 
anterior part of the Parahippocampal Gyrus (Braak and Braak, 1990). 
Also, studies show that in the early stages of Alzheimer’s healthy aging, 
aMCI, and mild AD patients are more distinguishable from Para-
hippocampal volume than Hippocampal volume (Echávarri et al., 
2011). (Wang et al., 2016) too indicate that Parahippocampal Gyrus is 
one of the most vulnerable brain regions to Alzheimer’s disease. Two 
other regions are the left and right Frontal Pole, which severely 
degenerate in Alzheimer’s patients (Finger et al., 2017) and are related 
to aberrant motor behavior (Cajanus et al., 2019). Temporal Pole is 
another highly affected region (Arnold et al., 1994) and is among the 
most frequently involved areas with Alzheimer’s (Nag et al., 2018). 

Moreover, it is confirmed that agitation and aberrant motor behavior in 
AD patients are associated with changes in the left Frontal Orbital Cortex 
(Tekin et al., 2001). Besides, one region which is almost regularly 
associated with delusions in Alzheimer’s patients is Frontal Orbital 
Cortex (Qian et al., 2019). The left Postcentral Gyrus is one of the left 
hemisphere regions that is significantly reduced in Alzheimer’s (Yang 
et al., 2019), and it is among the frontal regions that in verbal short-term 
memory tasks has less activation in AD patients compared to normal 
controls (Peters et al., 2009).Table A1. 

The fact that despite the random nature of the genetic algorithm, the 
proposed framework agreed on significant regions even for different 
methods shows its appropriate performance. Moreover, as has been 
shown in Fig. 8 the average heatmap generated directly after applying 
explainability methods on the model (without any optimization using 
genetics) was consisting of all these 8 regions which shows that despite 
using a small dataset our model learned the important features. The 
results reported in Table 6 can be seen from another aspect in Fig. 8. This 
Venn diagram indicates the number of regions that were jointly selected 
in the experiments we used to extract brain regions. Also, Fig. 9 shows 
all these eight brain regions individually and together.Fig. 10.Fig. A1. 

Conclusion: In this paper, we aimed to identify significant brain 
regions in diagnosing Alzheimer’s Disease using a combination of 
explainability methods and genetic algorithm, and see if they can extract 
meaningful regions. To do so, we first trained a 3D-CNN with brain MRI 
scans. Then, we generated a primary Occlusion Map mask using 
Backpropagation-based explainability heatmaps and tried to improve it 
through genetic algorithm. This primary mask helps our genetic algo-
rithm prune some inappropriate solutions (brain masks) and start from a 
better location of the search space. As a result, our algorithm reaches 
more accurate and reliable solutions with a lower time cost. In fact, not 

Fig. 9. Venn diagram of the number of brain regions extracted in five outstanding explainability methods consists of integrated_gradients, gradient_baseline, 
lrp_alpha_2_beta_1, lrp_alpha_1_beta_0, lrp_z_plus_fast. Intersected regions are ’Right Parahippocampal Gyrus, anterior division’, ’Left Postcentral Gyrus’, ’Right 
Temporal Pole’, ’Left Parahippocampal Gyrus, anterior division’, ’Left Frontal Pole’, ’Left Temporal Pole’, ’Right Frontal Pole’, ’Left Frontal Orbital Cortex’. 
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only genetic algorithm is used to help XAI, but we have also used XAI 
methods to improve search in evolutionary algorithms. Our network 
reached a 5-fold accuracy of 87 % (on unmasked data). We used a 3D- 
CNN model with 96 % accuracy (on unmasked data), and by obtaining 
a proper mask of 29 regions using lrp_z_plus_fast, it reached 93 % ac-
curacy. We extracted Parahippocampal Gyrus (anterior division), Left 

Postcentral Gyrus, Temporal Pole, Frontal Pole and, Left Frontal Orbital 
Cortex as the most significant brain regions related to Alzheimer’s Dis-
ease, and we also showed that these extracted regions are meaningful. 

Fig. 10. Brain regions extracted from the proposed framework. a) shows each region individually. b) shows all extracted brain regions together.  
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