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ABSTRACT Detection of early stages of Alzheimer’s disease (AD) (i.e., mild cognitive impairment (MCI))
is important because it can delay or prevent progression to AD. The current researches of MCI classification
are mainly based on static low-order functional connectivity network (FCN) and image information.
However, static FCN cannot reflect time-varying dynamic behavior, low-order FCN overlooks inter-region
interactions, and ignoring non-image information is not suitable especially when the size of dataset is small.
In this paper, a method based on a combined high-order network and graph convolutional network (GCN)
is proposed. The combined high-order network combines static, dynamic and high-level information to
construct FCN while GCN is used to include non-image information to improve classifier’s performance.
Firstly, dynamic FCNs and static FCN are constructed by using a sliding window approach. Secondly,
dynamic high-order FCNs and static high-order FCN based on the topographical similarity are then
constructed. Thirdly, a novel combination method is proposed to utilize dynamic high-order FCNs and static
high-order FCN to form a combined high-order FCN. Fourthly, features of the combined high-order FCNs
are extracted by using a recursive feature elimination method. Lastly, after inputting extracted features into
the GCN, in which MClI-graph establishes interactions between individuals and populations by using non-
image information, the GCN outputs the binary classification results. Experimental results on Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset (adni.loni.ucla.edu) show that our framework has good
performance.

INDEX TERMS Mild cognitive impairment, binary classification, combined high-order network, graph
convolutional network.

I. INTRODUCTION MCT has developed to AD, there are no effective therapies so

Alzheimer’s disease (AD), the most common type of
dementia (accounting for 60%-80%), is a very serious and
irreversible brain disorder [1], [2]. As the early stage of
AD, mild cognitive impairment (MCI), has annual 10%-15%
conversion rate and more than 50% conversion rate within
5 years turn to AD [3]. In MCI stages, with certain cognitive
training and pharmacological treatment, the deterioration
process can be delayed or stopped [4], [5]. Nevertheless, once
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far. Due to high conversion rate and severity of deterioration,
the diagnosis and then classification of MCI are very impor-
tant and therefore have drawn much attention during recent
years [6]-[8].

The accurate diagnosis of MCI stages is a very challeng-
ing task due to its mild and subtle clinical symptoms [9].
It becomes even more challenging to differentiate between
the early MCI (EMCI) and late MCI (LMCI). Current
researches mainly focus on aided diagnosis or classification
of MCI by using neuroimaging data. An effective neuroimag-
ing modality is resting-state functional magnetic resonance
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imaging (rs-fMRI). It is based on the blood-oxygenation-
level-dependent (BOLD) signal that measures changes of
blood flow velocity and oxygen levels caused by brain activ-
ities. The rs-fMRI has been widely used to classify MCI/AD
in recent years [10]-[14]. Based on rs-fMRI, functional con-
nectivity network (FCN), which describes the correlation of
BOLD signals between different brain regions, can be mea-
sured and then used as main biomarker to classify MCI.

Modelling FCN is the first key step to guarantee classifi-
cation performance. In literature, there are two popular FCN
modeling methods, including Pearson’s correlation coeffi-
cient (PCC) [15]-[17] and sparse representation [18]-[20].
PCC method is the first and most widely used algorithm
due to its simplicity and computation efficiency. In contrast,
sparse representation method is more complicated and has
more computational cost, however, it can construct networks
with better discriminability. The two modeling methods are
both for the whole time series to reveal stationary nature.
Recently it is showed in a typical resting-state fMRI exper-
iment that the connectivity between different brain regions
exhibits meaningful variations on top of correlational pat-
terns of spontaneous fMRI signal fluctuations [21], [22].
As a consequence, many studies have been devoted to asses
and characterize dynamic FCN (dFCN) in many related
fields [23]-[27]. Static FCN (sFCN) aims to reveal global
stationary nature and dFCN aims to real local dynamic nature.
For MCI classification in existing research, the combinations
of sFCN and dFCN is ignored. In this view, we propose to
combine dynamic and static FCNs based on PCC to classify
MCT stages.

Apart from FCN modeling methods, the classifier is also a
key step to determine classification performance. The widely
used traditional classifiers include random forest (RF), gra-
dient boosting decision tree (GBDT), multi-layer perceptron
classifier (MLP), and support vector machine (SVM). These
classifiers treat each feature individually and ignore the rela-
tionship between individuals and populations. In recent years,
the graph networks have received extensive attention as they
can provide a powerful and intuitive way of establishing rela-
tionship between individuals and populations. For a graph,
vertices represent features of every individual’s image and
edges are used to capture the similarities between each pair of
vertices. The earliest work on graph neural networks (GNN)
was proposed by Scarselli in 2009 [28], which extends exist-
ing neural network methods and maps graphs into Euclidean
space for processing data. This work is considered the foun-
dation for the development of graph networks. Afterwards,
graph networks get extensive studies [29]-[33], particularly
the graph convolutional network (GCN) was proposed by
Kipf in 2017 [34]. The GCN mainly applies the convolu-
tion of Fourier transform and Taylor’s expansion formula
into graph networks to achieve good filtering performance.
As its excellent performance, GCN has received popular
recognition and has been successfully used to perform classi-
fication [35]-[37]. In general, the advantage of graph-based
models is that, they can contain pairwise interactions and
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integrate both image and non-image information. Based on
the fact that the image information is acquired at different
equipment, diverse imaging protocols and scanners are used.
Therefore, the image information shows a better comparable
relationship between features acquired from same type of
equipment. At the same time, gender also provides a valuable
information as different gender can result in differences in
images. In this paper, we propose to use GCN to include
gender and equipment type information to improve the per-
formance of classifier.

In view of above status, a method based on a combined
high-order network and GCN is proposed. In the proposed
method, a combined high-order network is used to include
static and dynamic high-level information. Non-image infor-
mation is included in the GCN to establish interactions
between individuals and populations to improve the perfor-
mance of classifier. Overall, the main contributions of this
paper are as follows:

1) Propose a novel combined high-order FCN that com-
bines static, dynamic and high-level characteristic to con-
struct FCN for MCI classification.

2) A MClI-graph construction strategy is used to include
gender and equipment type information to better establish the
relationship between individuals and populations.

3) Perform extensive experiments on relatively big dataset
from ADNI dataset (rs-fMRI) including 184 subjects. Our
experiments show that the proposed method based on com-
bined high-order network and GCN leads to significant
improvement of the classification performance superior to
the-state-of-the-art methods.

The reminder of this paper is organized as follows: The
proposed methodology is introduced in details in Section II.
In Section III, experiments and results are given with com-
parisons to other competing methods. Discussion and perfor-
mance analysis are given in Section IV. Finally, conclusions
are summarized in Section V.

Il. METHODOLOGY

The method proposed in this paper is mainly based on two
points. First, by constructing a combined high-order FCN,
we can include global static nature and local dynamic nature.
Second, by establishing the MCI-graph using non-image
information, the extracted features can be corrected and the
performance of classifier can be improved. In addition, data
preprocessing and feature extraction method are also included
in whole process. The overview of the proposed method
is shown in Fig. 1. In this figure, image information of
every subject is represented by the combined high-order FCN
which is described in subsection B.

A. DATA PREPROCESSING

The GRETNA toolbox [38] is used in this work to prepro-
cess the rs-fMRI data. Our preprocessing follows the fol-
lowing steps. 1) The first 10 acquired rs-fMRI volumes of
each subject are discarded, then the remaining 170 volumes
are corrected by matching all time points to intermediate
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FIGURE 1. Overview of the proposed method for MClI classification. Image information of every subject is represented by the combined

high-order FCN.

time points. 2) Apply head movement correction to
remove the head-motion artifacts in rs-fMRI time-series.
3) Perform spatial normalization with DARTEL [39] to nor-
malize volumes to the MNI atlas space, then resample the
voxel size to 3 x 3 x 3 mm. 4) Perform smooth filtering
by employing the Gaussian kernel with 4 mm full width half
maximum to remove low-frequency drift and high-frequency
noise. 5) Regress regional mean time series to eliminate the
influence of white matter signal, cerebrospinal fluid signal,
and head movement signal. 6) Use the automated anatomical
labelling (AAL) [40] to segment brain space into 90 region of
interests (ROIs). Finally, we obtain the time series of 90 ROIs
for each individual.

B. COMBINED HIGH-ORDER NETWORK CONSTRUCTION
Traditional low-order FCN overlooks inter-region interac-
tions and dynamic characteristics, which limits its application
for brain disease classification. In this paper, we combine
dynamic and static high-order networks. As traditional static
network is an extreme case where window length is max-
imized to the entire time scale, only dynamic high-order
network is described in this subsection. A sliding window
correlation method [41], [42] is employed, which uses a
certain size window to intercept signal along the time direc-
tion and finally a series of functional connections results
varying in time are obtained. These functional connections
construct dynamic high-order FCNs. The detailed description
is described as follows:

Firstly, the entire rs-fMRI time series are segmented into
multiple sub-series by using a sliding window approach [43].
Given a matrix X = {x1,%2,...,xy} € RN where
N denotes the number of subjects, x = [x(1),x(2),...,
x(R)] € RM*R R denotes the total number of ROIs, and
M denotes the length of rs-fMRI time series. Then we can
get sub-series with a number D = [(M — L)/s] + 1, where
M denotes the length of time series, L denotes the length of
the sliding window, s denotes the size of moving step.

Secondly, PCC is used to construct the functional
connectivity between each ROI pairs. For every sub-
series, we can calculate PCC by using the formula:
cl(jd) = corr {x(d) @), x@ (j)}, where corr{-} is the pairwise
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correlation coefficient between region x@ (i) and region
x@ (j) of the d-th sub-series. By calculating PCC, we finally
get symmetric matrix ¢@ = [cffi)] € RR*R and a series of

temporal FCNs matrix c9 = c(ld), cgd), e, cl(\?) eRIXN,

Thirdly, in order to reveal high-level information, the
dynamic high-order FCNs are constructed, which are calcu-
lated as: b, = (cg,d))Tcg,d), where hﬁld) denotes high-order
dFCNs of the d-th sub-networks in the n-th subjects. The
traditional high-level sFCN is an extreme case where window
length is maximized to the entire time scale.

Finally, by combining these high-order dFCNs
{h(ld),hgb, . .h,,(d)} and a high-order sFCN, we can get

one final combined high-order FCN. In this paper, the com-
bined high-order FCN is computed by weighted averaging
high-order dFCNs and high-order sFCN, which is calculated
as below:

i=N
FCN =a x E ) 1dFCNi+N-|—(1—a)><sFCN (1)
i=

where a is a weight coefficient, and its value is set between
0 and 1.. N is the number of dFCNs. Fig. 2 illustrates the
process of dynamic high-order networks construction based
on the PCC of rs-fMRI data.

R-fMRI data FCN construction Combined high-order
AAL template o FCN
@ @1 Weighted average
sFCN ),
T @ PR w%z High-order
I 5, 8
A dFCN1 dFCN N

Sliding window

FIGURE 2. Overview of combined high-order FCN construction.

C. GRAPH CONVOLUTIONAL NETWORK CLASSIFIER

1) FEATURE EXTRACTION AND SELECTION

After constructing combined high-order FCN, we employ
a recursive feature eclimination (RFE) method for fea-
ture extraction. The RFE method can recursively remove
attributes and build the model using the remaining
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attributes [44], [45]. In details, given an external estimator
(ridge classifier in this paper) that assigns weights to features,
the goal of RFE is to select features by recursively consider-
ing smaller and smaller sets of features. First, the estimator
is trained on the initial set of features and the importance of
each feature is obtained. Then, the least important features are
pruned from current set of features. That procedure is recur-
sively repeated on the pruned set until the desired number of
features to be selected is eventually reached. In this paper,
the RFE function in (scikit-learn, python library) is used.

As demonstrated in [36], RFE is the best method to extract
features in the classification of MCI compared to the other
feature extraction algorithm (including principle component
analysis (PCA), MLP and autoencoder). Therefore, RFE is
adopted to extract features in the paper. For RFE, it is not
known in advance how many features are sufficient and
valid to distinguish diseases. In this work we investigate the
effect of different number of features on the performance in
Discussion Section.

2) MCI-GRAPH CONSTRUCTION
The MClI-graph is the key process for GCN, which estab-
lishes the interactions between individuals and populations.
Reasonable construction of graph structure can correct fea-
tures in process of features input and features dissemination.
If the construction of MClI-graph is inaccurate, the per-
formance can be worse compared to a simple classifier.
The graph includes graph edges which include non-image
information and graph vertices which represent features of
every individual’s image information. The definition of graph
edges determines the performance of MCl-graph as graph
edges play the role to filter features by using its neighbors’
features instead of treating individuals’ features individually.
The image information is acquired at different equipment,
diverse imaging protocols and scanners are used. As a result,
the image information will have a better comparable relation-
ship between features acquired from same type equipment.
Beside equipment, gender is also a valuable information
as different genders will result in some differences in
images. In this subsection, the non-image phenotypic infor-
mation, gender and acquisition equipment, is considered in
MCI-graph construction.

Thus, the population graph’s adjacency matrix W is
defined as follows:

W (v, w) = Sim (Ay, Aw) X (tg (Mp (V) , M (W)
+rg Mh (V) . Mp (W) (2)

where Sim (A,, A,,) represents image-features (extracted fea-
tures from RFE) similarity between individual v and individ-
ual w, which means high similarity will be assigned a big
weight. M), represents non-image phenotypic information.
r represents distance between phenotypic features, rg rep-
resents distance of gender, and rp represents distance of
acquisition equipment. r is the key to construct MCI-graph
that directly controls the performance. In this work, we define
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r as a unit-step function as follows:

F My ) My o) = | e

0, otherwise

3

In the Eq. 3, if the individual v and individual w have
same phenotypic information, r will be set 1, otherwise r
will be set 0. For example, if individual v and individual w
have same gender information, rg (Mp (v) , My (w)) = 1.
And if they have same acquisition equipment type,
e My (v) , My (w)) = 1. If they have different gender and
equipment type information, rg My, (v) , My (w)) = 0 and
g (Mp (V) , My (W) = 0.

The similarity measure is defined as:

[p(x (v), x(W)]?
) “)

where p represents the correlation distance, o represents the
width of the kernel. This formula is based on the fact that
subjects belonging to same classes will show much more

similarity in features than subjects belonging to different
classes [36].

Sim (Ay, Ay) = exp(

3) GCN STRUCTURE

The model architecture of GCN part is illustrated in Fig. 1.
The proposed model consists of two graph convolution lay-
ers activated by rectified linear unit (ReLU) function and
one SoftMax output layer. The strategy of GCN construc-
tion is studied in Discussion Section. In training process,
whole MCI-graph is inputted and a subset of graph nodes are
labelled in training set. In testing process, training set with
labelled graph nodes and validation set with unlabeled graph
nodes are both inputted into the trained model. Labelled train-
ing set and unlabeled validation set interact with each other
in the process of features input and features propagation of
GCN, and this makes the process become a semi-supervised
classification scheme. A cross entropy loss function is used to
evaluate the performance of recognition, and a nested leave-
one-out cross-validation method is used in the testing process.

IIl. EXPERIMENTS AND RESULTS

Our model is evaluated on the ADNI database
(adni.loni.ucla.edu) by wusing a nested leave-one-out
cross-validation method. The total number of subjects get-
ting from ADNI database is 184, which includes 40 LMCI
patients, 77 EMCI patients, and 67 normal control (NC)
as shown in Table 1. Scanning equipment includes GE,
SIEMENS and PHILIPS. GCN parameters that are used
in experiments are as follows: dropout rate is 0.1, [, reg-
ularization is 5 x 1074, learning rate is 0.002, number of
epochs is 1000, 2 GCN layers, number of neurons per layer
is 128 and number of extracted features is 100. Gender and
acquisition equipment are used to build edges, and the default
polynomial order is set to K = 3. Classification accuracy
(ACCQC), sensitivity (SEN), specificity (SPE), and area under
the receiver operating characteristic curve (AUC) are used as
evaluation metrics.
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TABLE 1. Demographic information of the subjects used in our study.

Group LMCI (40) EMCI(77)  NC(67)
Male/Female 15M/25F 38M/39F 39M/28F

Age (mean+SD) 76.0+7.6 74.816.1 76.5+4.5
GE/SIEMENS/PHILIPS 7/7/26 24/19/34 20/18/29

We divide this section into 4 parts to describe the
performance of the proposed algorithm. Firstly, we validate
the performance of static and dynamic combination strat-
egy. In this subsection, we study the effect of weighted
coefficient a in Eq. 1. Secondly, we study the influence of
sliding window’s parameters. Thirdly, we study the impact
of non-image information, including gender and acquisition
equipment. Lastly, we compare the performance of the pro-
posed method with other different well-established classifiers
to validate its outstanding performance.

A. INFLUENCE OF STATIC AND DYNAMIC COMBINATION
STRATEGY
Generally, sFCN reveals global stationary nature whereas
dynamic FCN describes local dynamic information. In this
paper, we propose to combine global stationary nature and
local dynamic information by a weighted averaging algorithm
to better construct FCN for MCI classification. In this view,
we test the performance of the proposed FCN construction
strategy, and ACC, SEN, SPE, and AUC are shown in Table 2.
The performance comparison of the proposed method with
different weighted coefficient a is shown in Fig. 3, and
the ROC curves are shown in Fig. 4. In this subsection,
GCN which includes acquisition equipment and gender infor-
mation is used to output the binary classification results.
Weighted coefficient @ in Eq. 1 is set from 0 to 1 and it
represents the proportion of high-order dFCNs.

As shown in Table 2, compared with sSFCN construction
strategy (@ = 0), combing dFCN and sFCN can improve

TABLE 2. Influence of static and dynamic combination strategy on the
performance of the proposed method.

ACC SEN SPE AUC

Task  weight (@) (%) (%) (%) (%)

0.0 65.5 49.2 85.4 85.0

0.1 80.3 73.1 89.0 88.5

0.2 74.5 62.6 89.0 88.7

0.3 76.2 65.6 89.0 88.8

EMCI 0.4 71.8 68.6 89.0 88.3
vs. 0.5 76.2 68.6 85.4 84.5
NC 0.6 81.1 74.6 89.0 87.1
0.7 71.3 56.7 89.0 88.4

0.8 81.1 74.6 89.0 88.9

0.9 82.7 71.6 89.0 88.5

1.0 71.8 68.6 89.0 88.9

0.0 87.8 85.0 92.5 93.9

0.1 88.7 83.5 97.5 91.5

0.2 83.1 76.1 95.0 96.1

0.3 87.8 85.0 92.5 93.8

LMCI 0.4 81.3 74.6 92.5 94.5
Vs. 0.5 70.0 62.6 82.5 86.1
NC 0.6 87.8 85.0 92.5 92.8
0.7 81.3 76.1 90.0 91.8

0.8 82.2 76.1 92.5 93.1

0.9 79.4 73.1 90.0 91.4

1.0 78.5 71.6 90.0 91.0

0.0 83.7 81.8 87.5 89.5

0.1 82.9 79.2 90.0 89.7

0.2 76.9 72.7 85.0 87.4

0.3 80.3 72.7 95.0 94.0

LMCI 0.4 79.4 76.6 85.0 84.9
Vvs. 0.5 79.4 74.0 90.0 90.0
EMCI 0.6 80.3 71.4 97.5 95.5
0.7 80.3 72.7 95.0 93.4

0.8 82.9 79.2 90.0 88.6

0.9 86.3 83.1 92.5 93.0

1.0 78.6 753 85.0 84.4

performance for all three classification tasks. For EMCI vs.
NC, the performance reaches the best with a set as 0.9. For
LMCT vs. NC, the performance reaches the best with a set

—a=0.0 —3:0.0‘ —a=0.0
=10 a=1.0 - a=1.0
SEN 190 @ SEN 490 SEN 459
—a=0.9 ——a=0.1 —a=09
SPE ACC ACC SPE ACC
BAC BAC
EMCl vs. NC LMClvs. NC LMCI vs. EMCI

FIGURE 3. In three classification problems, the performance comparison of the proposed method with different weighted
coefficient a. In every classification task, the red line represents the performance of the method with optimal weighted coefficient.
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FIGURE 4. ROC curves of the proposed method with different weighted coefficient a for different classification tasks.

as 0.1. For LMCI vs. EMCI, the performance reaches the best
with a set as 0.9.

In general, by using the proposed method, ACC can get
improved 17.2% for EMCI vs. NC, 0.9% for EMCI vs. NC,
and 2.6% for EMCI vs. LMCI compared with that of sSFCN
construction strategy. Besides ACC, SEN, SPE and AUC also
get improved. Therefore, we will use the best combination
strategy (a = 0.9 for EMCI vs. NC and EMCI vs. LMCI,
a = 0.1 for LMCI vs. NC) in the following sections.

In the process of experiment, we change the sample amount
distribution among different categories, and the results show
that the optimal combination strategy has a little fluctuation.
For our dataset, the combination strategy (¢ = 0.9 for
EMCI vs. NC and EMCI vs. LMCI, a = 0.1 for LMCI vs.
NC) reaches the optimal performance. We get the optimal
combination strategy by testing all weighted coefficient a,
but the dynamic information how to affect performance is
unknown. In future works, we will study which and how
dynamic information affect efficiency. In addition, we will
collect more datasets for better training and validation.

B. INFLUENCE OF THE SLIDING WINDOW'S PARAMETERS
The parameters of sliding window including step size s and
window size L are very important, which can affect the per-
formance of the proposed method. In this subsection, we test
the performance with setting s = 5, 10, 15 and L = 10,
20, 30, 40, 50, 60, 70, 80. The experimental results are
summarized in Table 3, Table 4 and Table 5.

As shown in Table 3, Table 4 and Table 5, the proposed
method reaches the best performance with setting window
size L = 30 and step size s = 5 for all three classification
tasks. Thus in other experiments in this paper, the window
size L and step size s are set to 30 and 5, respectively.

C. INFLUENCE OF THE NON-IMAGE INFORMATION

The MClI-graph is the main component of graph networks,
which establishes the interactions between individuals and
populations. Graph edges include non-image information
and graph vertices represent features of every individual’s
image information. As different types of acquisition equip-
ment and different gender cause differences in image quality,
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TABLE 3. Influence of window size | with step size s = 5.

ACC SEN SPE AUC

Task L 6 (%) (%) (%)
10 78.6 70.1 89.0 89.6

20 85.2 82.0 89.0 89.6

30 82.7 77.6 89.0 88.5

El\\//i.CI 40 74.5 62.6 89.0 7.4
NC 50 79.5 73.1 87.2 88.2
60 67.2 49.2 89.0 86.7

70 72.9 61.1 87.2 85.5

80 77.0 71.6 83.6 82.6

10 84.1 79.1 92.5 94.9

20 87.8 85.0 92.5 94.1

30 88.7 83.5 97.5 97.5

L]\\/ZCI 40 81.3 74.6 92.5 93.8
Né 50 90.6 88.0 95.0 96.0
60 82.2 76.1 92.5 93.2

70 87.8 85.0 92.5 93.9

80 81.3 74.6 92.5 93.9

10 71.7 64.9 85.0 75.1

20 72.6 63.6 90.0 87.5

30 86.3 83.1 92.5 93.0

L]\\//;CI 40 85.4 81.8 92.5 94.8
EMCI 50 72.6 59.7 97.5 95.1
60 76.9 68.8 92.5 93.5

70 70.9 64.9 82.5 83.6

80 78.6 72.7 90.0 90.3

the non-image information is considered as given in Eq. 2.
In this subsection, the influence of acquisition equipment and
gender information is evaluated.

The results of the test are shown in Table 6. The perfor-
mance comparison of the proposed method with different
non-image information is shown in Fig. 5, and the corre-
sponding ROC curves are shown in Fig. 6. In Table 6, ‘S’ rep-
resents Sim (A, Ay), ‘G’ represents rg (M}, (v) , M), (w)), and
‘E’ represents rg (M), (v) , M), (w)), respectively in Eq. 2.
Also, ‘SG’ means that Sim (A,, A,,) and rg (My, (v) , M, (w))
are included in Eq. 2. ‘SGE’ means that Sim (A,,A),
r¢ My (v) , My (w)) and rg (My (v), My (w)) are included
in Eq. 2.

As shown in Table 6, for all three classification tasks with-
out applying gender and acquisition equipment information
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FIGURE 5. In three classification problems, the performance comparison of the proposed method with different non-image information.

TABLE 4. Influence of window size L with step size s = 10.

ook B ACC___SEN ___SPE___ AUC
(%) (%) (%) (%)

10 844 805 890 889

20 8§19 746 909 902

30 754 641 890 883

Elxa 40 754 641 890 884
e 50 754 641 890 885
60 795 746 854 851

70 795 716 890 873

80 770 671 890 875

10 813 776 875 888

20 803 746 900 929

L&CI 30 822 761 925 940
e 40 766 656 950 966
50 887 835 975 972

60 803 746 900 914

70 822 776 900 924

80 80 7901 950 959

10 880 883 875 801

20 760 701 875 867

30 76 649 875 870

Ufs?l 40 769 701 900  90.0
ey 50 743 636 950 956
60 803 753 900 903

70 905 883 950  95.1

80 786 727 900 899

in MCI-graph construction, the performance is very low,
especially SPE is 0. The performance of applying only gender
information are better than that applying only equipment
information, and this shows that gender has a greater impact
than equipment on performance.

In general, gender and acquisition equipment are signifi-
cant non-image information for MClI classification. Including
the non-image information, we can construct better relation-
ship between individuals and populations, and eventually
improve performance of MCI classification.
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TABLE 5. Influence of window size L with step size s = 15.

Task B ACC___SEN _ SPE__ AUC
(%) (%) (%) (%)

10 82.7 77.6 89.0 88.7

20 80.3 71.6 90.9 89.9

30 81.9 76.1 89.0 88.9

El\\//iCI 40 754 641 89.0 873
e 50 78.6 74.6 83.6 84.1
60 81.1 77.6 85.4 84.7

70 81.9 77.6 87.2 86.2

80 70.4 55.2 89.0 88.7

10 86.0 85.0 900 925

20 88.7 88.0 9.0 927

30 85.0 80.5 92.5 93.1

LMCI 40 87.8 83.5 950 952
IYISC 50 85.0 79.1 95.0 96.0
60 86.9 83.5 92.5 93.1

70 82.2 74.6 950  96.0

80 77.5 68.6 92.5 92.1

10 777 74.0 85.0 85.0

20 78.6 70.1 950  91.0

30 79.4 71.4 950 926

UXLCI 40 82.0 79.2 87.5 88.8
vl 50 84.6 80.5 92.5 92.3
60 72.6 64.9 87.5 85.5

70 66.6 57.1 85.0 85.4

80 76.0 68.8 9.0 914

D. CLASSIFIERS COMPARISON

We further compare results of the proposed method with
other different well-established classifiers. As GCN has been
demonstrated to have excellent performance for MCI classi-
fication, methods in papers [36], [37] did not consider com-
bination strategy of sSFCN and dFCN which is investigated
by caparisons in this subsection. Beside GCN, SVM, REF,
GBDT and MLP classifiers are also included. For fair com-
parisons, the cross-entropy loss function is employed as the
loss function for all classifiers in this subsection. For the MLP

VOLUME 8, 2020



X. Song et al.: Classification of MCI Based on a Combined High-Order Network and GCN

IEEE Access

EMCI vs, NC LMCI vs. NC LMCI vs. EMCI
1 ~ 1 J=|;,_,_.-4
0.8 0.8
2 & &
] © ]
o -3 [
206 206]|| 2
= = H =
w [ [
o o o
o 04 o 04 o
@ Q Q
3 2 E]
= = =
0.2 ——SGE, AUC=0.885 0.2 —— SGE, AUC=0.975 0.2 —— SGE, AUC=0.930
. —— SE, AUC=0.922 ; —— SE, AUC=0.948 21 —— SE, AUC=0.953
——SG, AUC=0.910 B ——S5G, AUC=0.966 ——8G, AUC=0.978
o | ——S, AUC=0.465 oHl ——S, AUC=0.540 o ——S. AUC=0.681
0 0.2 0.4 0.6 0.8 1 0 0.2 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

False Positive Rate

False Positive Rate

False Positive Rate

FIGURE 6. ROC curves of the proposed method with different non-image information for different classification tasks.

TABLE 6. Influence of gender and acquisition equipment information on
the performance of the proposed method.

ACC__ SEN __ SPE__ AUC
Task Strategy (%) (%) (%) (%)
SGE 82.7 776 89.0 88.5

EMCI SE 65.5 38.8 98.1 922
vs. NC SG 86.8 83.5 90.9 91.0
S 54.9 100 0 46.5

SGE 83.7 835 975 975

LMCI SE 65.4 477 95.0 94.8
vs. NC SG 78.5 68.6 95.0 96.6
S 62.6 100 0 54.0

SGE 863 83.1 925 93.0

Ui’ia SE 735 61.0 97.5 95.3
vl SG 88.8 85.7 95.0 97.8
S 658 100 0 68.1

method, the parameters are set to the same settings with the
GCN implementation, including number of epochs, number
of features, number of hidden layers, dropout, learning rate,
seed and regularization. For SVM, penalty parameter is 10,
kernel is ’linear’, and gamma is 0.1. For RF, number of trees
in the forest is 1000, maximum depth of the tree is 3, and
random seed is 0. For GBDT, learning rate is 0.01, number
of epochs is 200, and maximum depth of the tree is 5. The
comparison results of different classifiers (Ours, GCN, SVM,
RF, GBDT and MLP) are shown in Table 7. Fig. 7 provides
the histograms and Fig. 8 provides the ROC curves of these
methods. The comparison results of the proposed method
with other methods are shown in Table 8.

Apart from the proposed method, GCN has better perfor-
mance than the other methods which is shown in Table 7.
The excellent performance of GCN demonstrates the effec-
tiveness of non-image information whereas other methods do
not include non-image information. Establishing the interac-
tions between individual elements to correct features, which
use neighbors’ features based on weighted average method
instead of treating features individually, can improve classi-
fication performance significantly. Based on the fact that the
connectivity between different brain regions exhibits mean-
ingful variations on top of correlational patterns of sponta-
neous fMRI signal fluctuations, we propose our combined
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TABLE 7. Experimental results of different classifiers and their effect on
the performance.

ACC SEN __ SPE AUC
Task Method (%) (%) (%) (%)
Ours 82.7 776 89.0 88.5

GCN 65.5 492 854 85.0

EMCI RF 517 43 748 55.5
vs.NC  GBDT 55.7 020 674 53.8
SVM 58.1 497 710 64.6

MLP 57.4 464 685 54.8

Ours 88.7 835 975 975

GCN 87.8 850 925 93.9

LMCI RF 662 292 817 603
vs.NC  GBDT 61.1 028 802 50.3
SVM 56.0 385 782 61.0

MLP 59.0 402 802 545

Ours 863 83.1 925 93.0

GCN 83.7 818 875 89.5

Li’fl RF 663 545 777 56.0
e GBDT 527 25 620 53.5
SVM 60.3 54.1 78.0 59.0

MLP 632 554 734 56.8

high-order network that includes static and dynamic infor-
mation to construct FCN. Compared with GCN, the proposed
method can achieve better performance with ACC and AUC
improved by 17.2% and 3.5% for EMCI vs. NC, 0.9%, and
3.6% for LMCI vs. NC, 2.6% and 3.5% for LMCI vs. EMCI.
These results prove that the combined high-order network,
which includes static and dynamic high-order information,
can better construct FCN and eventually result in significant
performance improvement. Table 8 shows the comparison
of the proposed method in this paper with other methods
in corresponding papers. We can observe that our proposed
method achieves quite promising performance for MCI clas-
sification. By using core-i7-8700K and PyCharm, the average
running time of our method for one classification task is about
12.5 minutes, average running time of GCN method and MLP
method is about 11.2 minutes and average running time of
other methods is about 3 minutes. The main running time of
our method, GCN method and MLP method is used to train
system as the optimal number of epochs is 1000 whereas
optimal number of epochs of other methods are about 200.
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TABLE 8. Performance evaluation of proposed method against other competing methods.
Study Subjects Methods, # ROIs Tasks ACC (%) SEN (%) SPE (%)
40 LMCI, 77 Combined high-order Network and EMCI vs. NC 82.7 776 89.0
Ours EMCL 67 NC GCN. 90 LMCI vs.NC 88.7 83.5 97.5
> i LMClIvs. EMCI  86.3 83.1 92.5
Wee et al. [46] 29 EMCI, 30 NC Fused multiple graphical lasso, 90 EMCI vs. NC 79.6 75.8 70.0
Yu et al. [47] 50 MCL 49 NC Weighted ~~ Sparse Group \rervs. NC 84.8 91.2 78.5
Representation, 90
Guo et al. [18] 33 EMCI, 32 Multiple Features of Hyper-Network, ~EMCIvs. NC 72.8 78.2 67.1
) LMCI, 28 NC 90 LMCI vs.NC 78.6 82.5 72.1
Li et al. [48] 36McL, 37Nc  Ultra-Group Constrained Orthogonal  yroy o e 80.8 80.5 81.0

Forward Regression, 90

Compared with GCN method and MLP method, the running
time of our method is acceptable.

In this section, we studied the performance of static and
dynamic combination strategy, studied the influence of slid-
ing window’s parameters, studied the impact of non-image
information and compared the performance of the proposed
method with other different well-established classifiers. The
results show the following conclusions: Combing dFCN and
SsFCN can improve performance for all three classification
tasks. Optimal window size L is 30 and optimal step size s
is 5 for all classification tasks. Including gender and acquisi-
tion equipment information can improve the performance of
classification. Our proposed method achieves quite promising
performance for MCI classification. In next section, we fur-
ther analysis and discuss other parameters.
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IV. DISCUSSION

In this paper, a novel method based on a combined high-
order network (combining static and dynamic high-order
networks) and GCN (including non-image information) is
proposed. For FCN construction, the whole rs-fMRI series
are segmented by a sliding window approach to generate a
certain number of rs-fMRI sub-series. Through a number of
experiments, we find the best performance is achieved when
window size and sliding size are set to 30 and 5, respectively.
These rs-fMRI sub-series are then used to generate a series
of dynamic high-order FCNs, which aims to explore dynamic
characteristics and reveal high-level information. To take the
advantages of both static and dynamic information, dynamic
high-order FCNs and static high-order FCN are combined by
weighted average method. In this paper, weighting coefficient
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FIGURE 9. Brain FCNs of the proposed method.

is set as a constant value according to experimental results.
For the three classification tasks, the performance of these
four evaluation metrics (ACC, SEN, SPE, and AUC) can get
improvement by combining static and dynamic information.

Extensive experiments show that there are differences
among individuals’ static brain FCNs whereas almost no
difference between individuals’ dynamic brain FCNs, and
combined brain FCNs have better stability. In Fig. 5, com-
bined brain FCNs with 100 top features, which are con-
structed according to all subjects’ top features, are shown.
And Fig. 9 shows that the top 100 features of different stages
of MCI are consistent.

Representative features of constructed FCN are then
extracted by using RFE method. Since sample size is limited,
number of features need to be set to a reasonable value
as excessive number will increase the burden on system
and insufficient number is not abundant to represent the
individual’s information. We test the influence of number
of extracted features through experiments. The performance
of less than 100 features for classification of EMCI vs.
NC is not satisfactory, and performance increases along with
the number of extracted features increases. Once reaching
about 100 features, the performance becomes stable with
the number of extracted features varies from 100 to 1600.
More than 1600 features also yield low performance. For
the classification of LMCI vs. NC, the performance of
less than 50 features increases along with the number of
extracted features increases, and the performance maintains
stable with the number of extracted features varies from
50 to 600. Eventually more than 600 features will result in
performance deterioration. Finally, for the classification of
LMCI vs. EMCI, the performance is stable with the number
of extracted features varies from 100 to 1600, and more than
1600 features will result in performance deterioration. For
different classification tasks, required minimum number of
features is a little different with the range from 50 to 100.
Meanwhile, after the classification performance remains sta-
ble within a reasonable range, performance deteriorates when
the number of extracted feature excel one big value. In view
of experimental results of different classification tasks, we set

VOLUME 8, 2020

the number of extracted features to 100 for all classification
tasks in the paper. This number can satisfy the demand of
classification accuracy and ensure the operational efficiency.

For classifier, we design the GCN to complete classifica-
tion. The information of acquisition equipment and gender is
considered in MCI-graph construction. We test the influence
of the non-image information, and experimental results show
that, by including the non-image information, the perfor-
mance of MCI classification can make great improvement.
The results demonstrate that there are much differences
between image information getting from different gender and
acquisition equipment. By contrasting the performance of
different graph construction strategies, it shows single-layer
GCN and three-layer GCN are performing worse than two-
layer GCN network. Single-layer GCN network cannot fully
express classification system and three-layer GCN network
is redundant and inefficient. To validate the performance
of the proposed method, we compare the results of the
proposed method with that of other different well-established
classifiers. Comparing experimental results show that GCN
has better performance than RF, GBDT, SVM, and MLP
classifiers. This demonstrates that non-image information
is good supplement to image information for MCI classi-
fication. By comparing the results of our proposed method
with the results of GCN, it shows that ACC, SEN, SPE, and
AUC can be improved. The performance improvement shows
that combining time-varying dynamic information can better
describe changes in brain FCN and eventually improve the
MCI classification performance.

For the loss function in the proposed method, we computed
SoftMax cross-entropy and L, loss. The convergence curve of
loss function are shown in Fig. 10. As shown, the proposed
method has good convergence performance. And the number
of epochs in all experiments is set 1000.

Although combining dynamic information in FCN can
improve performance of MCI classification, the dynamic
information which takes effect is unknown, and this results
in insufficient study on combination strategies. In the
future work, we will study which and how dynamic infor-
mation affect efficiency. In addition, we will collect more
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FIGURE 10. Convergence curve of the loss function.

datasets for better training and validation. The accurate diag-
nosis of MCI stages is a very challenging task and it becomes
even more challenging to differentiate between the EMCI and
LMCI. So far as we known, all works of MCI classification
based on neuroimaging data are limited to two-classification
task. As shown in TABLE 8, the performance of MCI two-
classification is not good enough to study multi-classification
task. In future work, we will try to study multi-classification
task.

V. CONCLUSION

In this paper, we introduce a novel method based on a com-
bined high-order network and GCN for MCI classification.
The proposed method utilizes a combined high-order net-
work to contain time-varying dynamic information and utilize
GCN to contain image information (rs-fMRI image) and
non-image information (gender and acquisition equipment).
Experimental results show that, two-layer GCN network
including acquisition equipment and gender information with
100 extracted features, has the best performance. In general,
combining dynamic FCNs and sFCN can better describe
dynamic and static characteristics in FCN. In addition, estab-
lishing interactions between individuals and populations by
using non-image information can significantly improve the
performance of classifier.
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