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Summary: We develop a Bayesian bivariate spatial model for multivariate regression analysis applicable to studies

examining the influence of genetic variation on brain structure. Our model is motivated by an imaging genetics study

of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), where the objective is to examine the association between

images of volumetric and cortical thickness values summarizing the structure of the brain as measured by magnetic

resonance imaging (MRI) and a set of 486 SNPs from 33 Alzheimer’s Disease (AD) candidate genes obtained from

632 subjects. A bivariate spatial process model is developed to accommodate the correlation structures typically

seen in structural brain imaging data. First, we allow for spatial correlation on a graph structure in the imaging

phenotypes obtained from a neighbourhood matrix for measures on the same hemisphere of the brain. Second, we

allow for correlation in the same measures obtained from different hemispheres (left/right) of the brain. We develop a

mean-field variational Bayes algorithm and a Gibbs sampling algorithm to fit the model. We also incorporate Bayesian

false discovery rate (FDR) procedures to select SNPs. We implement the methodology in a new a release of the R

package bgsmtr. We show that the new spatial model demonstrates superior performance over a standard model in our

application. Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database (https://adni.loni.usc.edu).
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1. Introduction

We consider multivariate multiple regression modeling within the context of imaging genetics

where interest lies in uncovering the associations between genetic variations and neuroimag-

ing measures as quantitative traits (QTs). This problem has received a great deal of attention

recently and is challenging because it combines the analysis of neuroimaging data with genetic

data (see e.g., Vounou et al., 2010; Stein et al., 2010; Silver et al., 2010; Inkster et al., 2010;

Hibar et al., 2011; Ge et al., 2012; Thompson et al., 2013; Stingo et al., 2013; Zhu et al.,

2014; Hibar et al., 2015; Huang et al., 2015; Huang et al., 2017; Lu et al., 2017). Recent

reviews of statistical issues in this area are discussed in Liu and Calhoun (2014) and Nathoo

et al. (2018).

In our work, we consider the setting where interest lies in assessing the association between

a moderate number of brain imaging phentoypes (e.g., 111 ROIs in Vounou et al., 2010; 12

ROIs in Wang et al., 2012; 93 ROIs in Zhu et al., 2014; 56 ROIs in Greenlaw et al., 2017)

and with the number of SNPs ranging from between a few hundred to a few thousand.

Within this setting a multivariate model with regression matrix jointly characterizing the

associations between all ROIs and genetic markers is feasible.

Greenlaw et al. (2017) propose a Bayesian group sparse multi-task regression model where

the primary focus is the use of a shrinkage prior based on a product of multivariate Laplace

kernels developed following the ideas of Park and Casella (2008) and Kyung et al. (2010).

The specific prior developed is motivated by the penalized multi-task regression estimator

proposed by Wang et al. (2012). This development is an effort to move from point estimation

to Bayesian credible intervals and fully Bayesian inference.

While these authors demonstrate the advantage of characterizing posterior uncertainty

in their imaging genetics application to the ADNI study, their model makes a simplifying

assumption for the covariance matrix of the imaging phenotypes, where the first level of the
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model assumes:

y` |W, σ2 ind∼ MVNc(W
Tx` , σ

2Ic) ` = 1, . . . , n, (1)

where y` = (y`1, . . . ,y`c)
T denotes the vector of imaging phenotypes for subject ` and c is

the dimension of the imaging phenotype, where ` = 1, . . . , n; AT denotes transpose of matrix

A, W is the regression matrix; x` = (x`1, . . . ,x`d)
T , where x` denotes the vector of genetic

markers for subject ` and d is the number of such markers. The assumed covariance structure

ignores spatial correlation as well as bilateral correlation across brain hemispheres.

We develop a new model that allows for this type of correlation by adopting a proper

bivariate conditional autoregressive process (BCAR; see, e.g., Gelfand and Vounatsou, 2003;

Jin et al., 2005) for the errors in the regression model. While spatial models for functional

magnetic resonance imaging (fMRI) and other neuroimaging modalities have been developed

to a large extent (see, e.g., Penny et al., 2005; Bowman, 2005; Bowman et al., 2008; Derado et

al., 2013; Teng et al., 2018a; Teng et al., 2018b), to our knowledge there has been very little

development of explicitly spatial models for imaging genetics. One exception is the mixture

model developed by Stingo et al. (2013) where an Ising prior, a binary Markov random field,

is used for Bayesian variable selection. Our model is rather different in both its aims and

structure as it is based on a continuous bivariate Markov random field that is specified at

the first level of the model for the imaging phenotype directly.

In Figure 1 we show several summaries of the data from our motivating application

demonstrating the need to account for correlation across brain hemispheres. For example,

the sample correlation between the volume of the right cerebral cortex and the volume of the

left cerebral cortex is 0.90, and across all 28 pairs of measurements, the median left/right

correlation between corresponding phenotypes is approximately 0.8. The bivariate CAR

structure allows us to account for this between-hemisphere correlation while also allowing
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us to account for within-hemisphere spatial correlation using a graph structure based on a

neighbourhood matrix.

[Figure 1 about here.]

Typically, models incorporating multivariate CAR specifications are used for modelling

observations (in the case of a proper CAR model) or spatially-varying parameters when

multiple observations or parameters appear at each spatial site. For our application the use

of this process is non-standard in the sense that we do not model multiple observations at each

site, but rather, we pair corresponding observations on opposite hemispheres of the brain and

use the bivariate spatial process to model a combination of the bilateral correlation across

the left and right brain hemispheres as well as potential correlation within each hemisphere.

As a matter of fact for the MRI data considered in our application the bilateral correlation

is a very strong signal in the observed data and so this feature of the model is practically

important.

For the bivariate spatial model we use a separable BCAR process as it is reasonable in

our application to assume (as it might be in other neuroimaging studies) that the spatial

covariance on the two hemispheres of the brain is similar. Non-separable multivariate spatial

models (see, e.g., Gelfand and Banerjee, 2010; MacNab 2016) could be adopted for more

flexibility allowing the spatial structure on the two hemispheres to be different; however, we

do not expect that this additional flexibility would be useful in the current context. This

spatial process is combined with a group Lasso prior for the regression coefficients, where

each group corresponds to a single row of W. Each row in this case represents the associations

between a given SNP and all of the phenotypes.

To compute the posterior distribution we develop two algorithms, both of which are

implemented in our R package bgsmtr for imaging genetics regression modelling. The package

is available for download on the Comprehensive R Archive Network (CRAN). The first
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algorithm is a Gibbs sampling algorithm and the second is a faster mean-field variational

Bayes (VB) approximation to the posterior distribution (see e.g., Ormerod and Wand, 2010).

Within the context of hierarchical models for spatial data, mean-field VB inference has

been considered by Ren et al. (2011) who make comparisons with inference from MCMC

within the context of spatial process models. In addition to the computation of the posterior

distribution, the bgsmtr package now incorporates Bayesian FDR procedures (Morris et al.,

2008) for SNP selection. This can be used alongside or as an alternative to SNP selection

based on credible intervals.

The overall contribution of our work is four-fold. First, we develop an explicitly spatial

model for imaging genetics based on the BCAR process. Second, we develop both an MCMC

algorithm and a mean-field VB algorithm for approximating the posterior distribution. Third,

we incorporate Bayesian FDR procedures for SNP selection within the new spatial model.

Fourth, our new developments are implemented in the latest version of the bgsmtr R package.

The remainder of this paper is structured as follows. In Section 2, we present our new spatial

model for imaging genetics. Section 3 presents a simulation study evaluating the performance

of the spatial model relative to a non-spatial model and inference based on MCMC relative to

that from VB. In Section 4 we apply our new model to our motivating application examining

data from the ADNI-1 study, examining 56 structural brain imaging phenotypes, 486 SNPs

from 33 genes, and 632 subjects. The paper concludes with a discussion in Section 5.

2. Bayesian Spatial Regression Model

Let y` = (y`,1, . . . ,y`,c)
T and x` = (x`,1, . . . ,x`,d)

T denote the imaging measures at c ROIs

and the genetic data respectively for subject `, ` = 1, . . . , n, where x`,j ∈ {0, 1, 2} represents

the number of minor alleles of the jth SNP for subject `. The regression model takes the

form E(y`) = W Tx`, ` = 1, . . . , n, where W has dimensions d × c and Wi,j represents the

association between the ith SNP and the jth imaging phenotype.
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Our model is developed for settings where the imaging data are symmetric with the same

measures collected on each hemisphere of the brain. This is true when the neuroimaging

data are considered at the voxel level and it is also the case for the study considered here

where we analyze MRI data from the ADNI-1 database preprocessed using the FreeSurfer V4

software (Fischl, 2012). We conduct automated parcellation to define volumetric and cortical

thickness values from the 28 ROIs considered in Shen et al. (2010), Szefer et al. (2017), and

Greenlaw et al. (2017) on each hemisphere leading to c = 56 brain measures in total.

As described in Szefer et al. (2017), potential confounders in the analysis are population

stratification and APOE genotype. Since true population structure is not observed, a set

of principal coordinates from multidimensional scaling are used to derive proxy variables

for population stratification in the data. We also adjust for APOE genotype, since it can

account for the population stratification in the data, over and above the principal components

or principal coordinates (Lucotte et al. 1997).

The response imaging measures at each brain ROI are first adjusted for the ten principal

coordinates, as well as for dummy variables representing APOE genotype, using weighted

ordinary least squares regression. The residuals from each regression are then used as the

adjusted neuroimaging phenotypes (Szefer et al., 2017).

Let y`,i = (y
(L)
l,i , y

(R)
l,i )′ be the brain summary measures obtained at the ith ROI in the left

hemisphere (L) and the right hemisphere (R). Then y` = (y′`,1, . . . ,y
′
`,c/2)

′ is the imaging

data ordered so that left-right imaging phenotype pairs are adjacent in the response vector.

There are thus c/2 ROIs on each hemisphere and we let A denote a c/2 × c/2 symmetric

neighborhood matrix which in the simplest case can have binary elements, where Ai,j = 1

indicates that ROI i and j are neighbors i 6= j, or more generally Ai,j > 0 and Ai,i = 0,

i = 1, . . . , c/2. A user input is thus a neighborhood matrix A or in the absence of user input

our software implementation takes Ai,j to be the average of the absolute value of the sample
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correlation between phenotype/ROI i and phenotype/ROI j, where the average is taken over

left/right hemisphere. The regression model then takes the form

y` = W Tx` + ε` (2)

and the model for the errors ε` is a mean-zero multivariate normal distribution of dimension

c, which can be specified through a set of c/2 compatible bivariate conditional distributions

for εl,i = (ε
(L)
l,i , ε

(R)
l,i )′, specified as follows:

εl,i|εl(−i), ρ,Σ ∼ BVN
( ρ
Ai.

c/2∑

j=1

Ai,jεl,j ,
1

Ai.
Σ
)

where, εl(−i) denotes the rest after removing εl,i from εl, Ai. =
∑ c

2
j=1Ai,j, ρ ∈ [0, 1)

characterizes spatial dependence with ρ = 0 corresponding to independence across all ROI

pairs and Σ is a 2 × 2 matrix where κ = Σ12/
√

Σ11Σ22 ∈ (−1, 1) quantifies within pair

dependence, and with κ = 0 corresponding to independence across hemispheres.

As far as we are aware, this spatial model for neuroimaging data is one of the first to

explicitly model dependence across brain hemispheres in addition to accounting for local

dependence. Often, this left/right bilateral dependence is ignored with neuroimaging data.

In the ADNI-1 data it is a very clear and strong signal as is evident in Figure 1. As the

parameter Σ is free in the model it can be informed by the data. Therefore, we expect that

the posterior will reflect some degree of between hemisphere correlation when it is present

to a sufficient degree, and will remain at roughly a diagonal form when it is not, in diseases

that have major differences across hemispheres, for example. The prior for Σ is chosen so

that it is centered on a diagonal matrix.

Under this new specification the first level of the regression model takes the following form:

y`|W ,Σ
ind∼ MVNc(W

Tx`, (DA − ρA)−1 ⊗Σ), l = 1, . . . , n, (3)

where MVNc denotes a c-dimensional multivariate normal distribution, ⊗ is the kronecker

product, DA = diag{Ai., i = 1, ..., c/2} and as before Ai. =
∑ c

2
j=1Ai,j. For the regression
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coefficients, we let W̃i,j∗ = (Wi,j,Wi,j+1), j = 2j∗−1, j∗ = 1, ..., c
2
, and we adopt a shrinkage

prior based on a bivariate Gaussian scale mixture W̃i,j∗|ω2
i ,Σ

ind∼ BVN(0, ω2
i Σ), ω2

i |λ2
iid∼

Gamma, ( c+1
2
, λ2/2), Σ ∼ Inv-Wishart(v,S), where ρ and λ2 are tuning parameters control-

ling spatial dependence and regression sparsity respectively. Through the bivariate mixture,

this prior also encourages shrinkage across brain hemispheres.

Posterior computation can be implemented using Gibbs sampling. The derivation and

update steps for this algorithm are listed in Algorithm 1 in the Supplementary Material

(Web Appendix A). As a faster alternative approach to computing the posterior distribution,

we also develop a mean-field VB algorithm that is based on maximizing an evidence lower

bound (ELBO). The derivations and VB algorithm are presented as Algorithm 2 in the

Supplementary Material (Web Appendix A). To initialize the variational Bayes algorithm,

we use a ridge regression estimator obtained separately for each column of W obtained by

fitting ridge regression with individual scalar-valued phenotypes as the response. The output

of VB is then used to initialize the MCMC sampling algorithm. After the algorithms have

converged, we base SNP selection on the Bayesian FDR procedure developed in Morris et al.

(2008) based on a posterior probability cut-off value of c∗ > 0. Adapted to our model, the

procedure is described in th Supplementary Material (Web Appendix B). To compare the

spatial and non-spatial models and to choose values for the tuning parameters, one option is

the use of the WAIC (Vehtari et al., 2017) which can be computed from posterior samples,

and with lower values being preferred. An alternative approach to tuning the model is to use

a simple moment estimator based on the ridge regression estimator. This estimator implicitly

uses cross-validation (CV) in the sense that CV is used to tune the ridge estimator and is

much faster than applying CV directly to our Bayesian model. The details for model tuning

and selection are provided in Supplementary Material (Web Appendix C).
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3. Simulation Studies

We conduct a simulation study where the dimension of the data is the same as that in

our motivating application with 56 structural brain imaging phenotypes, 486 SNPs from

33 genes, and 632 subjects. The data are simulated from the spatial model with parameter

values set at the estimates obtained from the real data.

We use 100 simulation replicates and run the MCMC algorithms for both the spatial

model and the non-spatial model for 10000 iterations with 5000 iterations used as burn-in

for each replicate, and we run the variational Bayes algorithm to convergence of the ELBO,

where convergence is declared when the absolute relative change in the ELBO is smaller

than ε = 10−4 for K = 2 consecutive iterations. The tuning parameters are chosen using the

WAIC over a coarse grid for the spatial model implemented via MCMC; set using the default

approach in the R package for the model of Greenlaw et al. (based on five-fold cross-validation

over a grid of possible values with out-of-sample prediction based on an approximate posterior

mode, the estimator of Wang et al. (2012), that can be computed quickly) and using our

moment based approach to obtain λ2 for VB, while the spatial parameter is held fixed at the

default value of ρ = 0.95 for VB (the true value set when simulating the data is ρ = 0.8).

Five measures are used for comparison in this study and are listed in Table 1. For the

best overall estimation performance, our spatial model implemented using MCMC has an

average mean-squared error (MSE) of 0.0055, followed by the non-spatial model with an

average MSE of 0.012 and finally the spatial model implemented with VB with an average

MSE of 0.043. Here, the average is taken over the 27,216 regression coefficients in the model.

Next, we examine the correlation between the posterior mean estimates of vec(W) and the

true values averaged over simulation replicates. The spatial model implemented using MCMC

has the best performance (0.69), followed by the non-spatial model implemented via MCMC

(0.67) and then the spatial model implemented using VB (0.65). The average-squared bias
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is lowest for the non-spatial model (3.29×10−4), followed by the spatial model implemented

with MCMC (4.70×10−3) and finally the spatial model implemented using VB (9.10×10−3)

has the highest average-squared bias. Both the non-spatial and spatial models appear to

exhibit adequate coverage probability overall when implemented with MCMC while the

variational Bayes implementation of the spatial model exhibits coverage of 95% equal-tail

credible intervals that is slightly lower at 0.91. The average posterior standard deviation

obtained from the spatial model (MCMC) is slightly larger than that obtained from the

non-spatial model perhaps indicating that the spatial model is adequately accounting for

the dependence. As is typical with VB, the posterior standard deviation is underestimated.

This arises from the Kullback-Leibler objective function that VB is based on which under-

penalizes approximations that are under-dispersed.

To evaluate the empirical FDR of the Bayesian FDR approach when the expected Bayesian

FDR is controlled with α = 0.05, leading to the threshold for posterior probabilities φα=0.05,

we conduct an additional 100 simulation replicates where the error structure underlying the

simulated data is again set to that obtained from the real data application. All but 100

SNPs have their 56 coefficients set to exactly zero, while 50 rows of W have coefficients

set to Wij = 1, 25 rows have coefficients set to Wij = 2 and the remaining 25 rows have

coefficients set to Wij = 3. Here we evaluate the empirical FDR for the spatial model and

both of its implementations. Both the VB and MCMC algorithms use the moment estimate

for λ2. The empirical proportion of false discoveries averaged over simulation replicates is

reported in the Supplementary Material (Web Appendix D) for both VB and MCMC as

a function of the threshold c∗. We note that these c∗ values are based on each simulated

response matrix Y having its columns centered and scaled. The empirical FDR appears to

drop to 0 with increasing c∗ faster with the MCMC implementation which is consistent with

the VB implementation being more liberal in selecting SNPs.
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Finally, we have conducted a simulation study investigating the performance of the spatial

model under a misspecified model setting where data are generated without spatial corre-

lation or bilateral correlation. The results of this study are reported in the Supplementary

Material (Web Appendix E) and show that the performance of our model is adequate in

this case, though as expected the non-spatial model outperforms our proposed model in this

setting both with respect to estimation and also with respect to SNP selection and true and

false positive rates summarized with ROC curves in the Supplementary Material (Figure 1).

4. ADNI-1 Study of MRI and Genetics

We apply our spatial model as well as the group sparse multi-task regression model of

Greenlaw et al. (2017) to MRI and genetic data collected from n = 632 subjects from the

ADNI-1 database. The genetic data comprise SNPs belonging to the top 40 Alzheimer’s

Disease (AD) candidate genes listed on the AlzGene database as of June 10, 2010. The data

presented here are queried from the genome build as of December 2014, from the ADNI-1

data. After quality control and imputation steps, the genetic data used for this study include

486 SNPs from the 33 targeted genes discussed in Szefer et al. (2017). The freely available

software package PLINK (Purcell et.al., 2007) is used for genomic quality control. Subjects

are included if their genotyping data is available, they have a baseline MRI scan, and they

have at least one additional follow-up baseline scan. Among all SNPs, only SNPs belonging to

the top 40 AD candidate genes listed on the AlzGene database (https://www.alzgene.org) as

of June 10, 2010, are selected after the standard quality control (QC) and imputation steps.

The QC criteria for the SNP data include (i) call rate check per subject and per SNP marker,

(ii) gender check, (iii) sibling pair identification, (iv) the Hardy-Weinberg equilibrium test,

(v) marker removal by the minor allele frequency and (vi) population stratification. Our

thresholds for SNP and subject exclusion are the same as in Wang et al. (2012) with three

exceptions. In the data quality control step, we used a stricter minimum call rate of 95% on



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

11

SNPs vs. Wang et al.’s call rate of 90%. To assign SNPs to genes, we use a genome build

(Build GRCh38.p2) from December 2014 whereas these authors use a genome build (Build

36.2) from September 2006, and use all subjects with a baseline measurement whereas we

choose subjects with a baseline MRI scan and a scan at at least one additional time point

in the longitudinal study.

The response measures are obtained by preprocessing the MRI data using the FreeSurfer V4

software which conducts automated parcellation to define volumetric and cortical thickness

values from the 28 ROIs considered in Szefer et al. (2017) and Greenlaw et al. (2017) on each

hemisphere of the brain, leading to c = 56 brain measures in total. These ROIs are chosen

based on prior knowledge that they are related to Alzheimer’s Disease. Each of the response

variables are adjusted for age, gender, education, handedness, baseline total intracranial

volume (ICV), potential population stratification and APOE genotype and centered to have

zero-sample-mean and unit-sample-variance.

We fit our spatial model to these data using both Gibbs sampling and VB. In addition, we

fit the non-spatial model of Greenlaw et al. (2017) using the MCMC sampler derived therein,

with the tuning parameters for the non-spatial model set at λ21 = 1000 and λ22 = 1000 based

on the values selected in Greenlaw et al. (2017). In all cases, MCMC sampling is run for 10,000

iterations with the initial 5,000 iterations discarded. The required computation time for the

spatial model (MCMC) is 50 hours on a single core (2.66-GHz Xeon x5650) with 20GB of

RAM, while the computation for the non-spatial model is 5hrs. Some trace plots and MCMC

convergence diagnostics are presented in the Supplementary Material (Web Appendix F) and

these demonstrate rapid convergence and good mixing of the MCMC sampling chains. The

VB algorithm is run to convergence and requires 45 minutes with the ELBO converging in

approximately 16 iterations. The tuning parameter λ2 is set based on the moment estimator
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and we set ρ = 0.95 for VB. The convergence of VB based on successive values of the ELBO

is depicted in Figure 2.

[Figure 2 about here.]

The Supplementary Material (Figure 4) presents the WAIC computed for a number of

different choices of the tuning parameters ρ and λ2. For the values of ρ = 0.8 and λ2 =

10, 000, the value of the WAIC is 83, 170. While the WAIC is able to identify a value for

ρ, it is monotone decreasing as a function of λ2. We will thus summarize the results over

several values of λ2. The WAIC obtained for the non-spatial model with value of the tuning

parameters used in Greenlaw et al. (2017) (λ21 = 1000 and λ22 = 1000) is 108, 745.

Figure 3 presents the number of SNPs chosen by the spatial model for each ROI using

Bayesian FDR (based on a critical value of c∗ = 0.044) as a function of the tuning parameter

λ2 for both Gibbs sampling and VB. As expected, the curves are monotone decreasing but

we note that their shapes differ when comparing the algorithms. In particular, VB selects

a larger number of SNPs at all values of λ2. We suggest that the VB algorithm be used

for obtaining starting values to initialize the MCMC as well as a tool to gain some initial

insight into the data while the MCMC sampler runs to completion. This is useful because

the MCMC sampler requires a relatively long run time, and the VB algorithm can be used

initially (requiring 45 minutes in our study) while the MCMC sampler runs (requiring 50

hrs in our study).

[Figure 3 about here.]

For the values of the tuning parameters ρ = 0.8, λ2 = 10, 000, the average number of SNPs

selected per ROI is 2, while more than half of the ROIs have no SNPs selected. In total,

75 SNPs across all 56 ROIs are selected and these are listed in the Supplementary Material

(Web Appendix G) along with the corresponding phenotypes that they are associated with.

With the VB approximation, 150 SNPs are selected, and the set of SNP-ROI pairs selected
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by MCMC is a proper subset of the set selected by VB. In addition, the subset of SNPs

and phenotypes also selected by the approach of Greenlaw et al. (2017) where the marginal

posterior 95% credible interval is used for SNP selection are also highlighted in bold in Table

3 of the Supplementary Material.

Considering all three approaches, a consistent signal is found at the APOE gene, where

all three methods select SNP rs405509 and the Bayesian FDR procedure selects this SNP

for four phenotypes, namely, the middle temporal gyrus thickness on the right hemisphere,

supramarginal gyrus thickness on the right hemisphere, mean thickness of the caudal mid-

frontal, rostral midfrontal, superior frontal, lateral orbitofrontal, and medial orbitofrontal

gyri and frontal pole on the right hemisphere, and the mean thickness of the inferior temporal,

middle temporal, and superior temporal gyri on the right hemisphere. We note that the

selected associations for this SNP all correspond to ROIs in the right brain hemisphere. The

associations between the genetic signal represented in our analysis by APOE SNP rs405509

with phenotypes on the right hemisphere of the brain may be of potential interest for further

investigation.

The associated point estimates and 95% equal-tail credible intervals for all 56 phenotypes

and APOE SNP rs405509 are presented in the Supplementary Material (Web Appendix H)

and a subset of these results for 26 phenotypes is presented in Table 2. Overall, there is broad

agreement based on the overlap of the interval estimates, though, we also see a number of

examples where the 95% interval estimate obtained from the spatial model includes the

value 0 while the corresponding interval estimate for the non-spatial model does not include

zero. The higher bias arising from VB in the simulation studies may also be apparent in the

results presented in Table 2. The interval estimates arising from VB appear to be slightly

more narrow than those obtained from MCMC, but not to a large degree, and this may also

be reflected in the selection rates depicted in Figure 3 which are slightly higher.
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Another consistent signal is found at the ACE gene with SNP rs4311, which is found

associated with 12 ROIs. We note that all but one of these ROIs is in the right hemisphere,

and three of these ROIs (all of which are in the right hemisphere) are in common with the

ROIs selected for this SNP by Greenlaw et al. (2017). In Figure 4 we indicate the SNPs

chosen for each ROI, where the SNPs are grouped on the x-axis by gene and the ROIs are

grouped in left/right pairs on the y-axis. The selected SNPs for each ROI are shown for

tuning parameter values λ2 = 1000 and λ2 = 10, 000. In both cases the value of the spatial

tuning parameter for the CAR model is set at ρ = 0.8 as suggested by Supplementary

Material Figure 4.

[Figure 4 about here.]

Examining Figure 4, two ROIs stand out has having a relatively broad genetic signal that

persists even as the tuning parameter increases from λ2 = 1000 to λ2 = 10, 000. These are

Left-Supramarg (thickness of the left supramarginal gyrus) and Left-SupTemporal (thickness

of the left superior temporal gyrus). For the case where λ2 = 1000, phenotype Left-Supramarg

is associated with 188 SNPs (top panel of Figure 4) and this decreases to 24 SNPs (bottom

panel of Figure 4) when λ2 = 10, 000. When λ2 = 1000 phenotype Left-SupTemporal is

associated with 188 SNPs and this decreases to 23 SNPs when λ2 = 10, 000. This is to be

compared with the average number of SNPs selected over all ROIs when λ2 = 10, 000 which

is just 2. The regularization paths for these two regions are shown in the Supplementary

Material (Figure 5) where the SNPs having the most persistent signal across values of λ2 are

highlighted. These include SNP rs10868609 for the thickness of the left supramarginal gyrus

and rs10501426 for the thickness of the left superior temporal gyrus.
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5. Conclusion

We have developed a spatial multi-task regression model for relating genetic data to imaging

phenotypes. The error structure for the imaging phenotype is based on a computationally

convenient proper bivariate conditional autoregressive model, which allows us to account for

bilateral correlation across brain hemispheres while also allowing us to account for within-

hemisphere correlation using a graph structure. In our case it is clear that a model accounting

for correlation is indeed required (see, e.g., Figure 1) for bilateral correlation. Examination

of alternative spatial models and comparisons with respect to estimation, inference and

robustness relative to that currently implemented under different settings will be part of

future work. Future work investigate more general settings under which the addition of

spatial correlation will prove useful in comparison to fitting a non-spatial model.

Future developments may also incorporate the Bayesian false discovery probability pro-

posed by Wakefield et al. (2007) which allows the user to account explicitly for the cost of

false discoveries and the cost of false non-discovery. With regards computation algorithms, we

recommend that the approximate VB procedures be used to initialize the MCMC algorithm

and also to obtain an initial insight into the data while the MCMC sampler runs. It appears

that VB combined with Bayesian FDR tends to be more liberal in the selection of SNPs,

and in our application the SNP-ROI pairs selected by MCMC + Bayesian FDR are a proper

subset of that selected by VB + Bayesian FDR. Nevertheless, Figure 3 suggests that the

approximation can be reasonable when good initializations are used.
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Table 1: Summaries from Simulation Study I. The table entries are average mean-

squared error (MSE), average correlation (Corr.) between the posterior mean and the

true value, average squared-bias (Bias2), average coverage probability (Cov. Prob.) of 95%

equal-tail credible intervals, average posterior standard deviation (P. SD). The averages

are taken over the 27,216 regression coefficients in all but ’Corr.’ where the average of

Corr(vec(Ŵ), vec(Wtrue)) is taken over 100 simulation replicates and Ŵ = E[W|Y].

Model MSE Corr. Bias2 Cov. Prob. P. SD.

Non-Spatial MCMC 0.012 0.67 3.29×10−4 0.96 0.087

Spatial Model MCMC 0.0055 0.69 4.70×10−3 0.97 0.10

Spatial Model VB 0.043 0.65 9.10×10−3 0.91 0.037

Table 2: ADNI-1 Study: posterior means and 95% equal-tail credible intervals for a subset

of the ROIs and their association with APOE SNP rs405509.

Spatial Model (MCMC) Spatial Model (MFVB) Non-Spatial Model (MCMC)

Region Mean 95% CI Mean 95% CI Mean 95% CI

Amygdala volume (L) 0.09 [-0.03,0.22] 0.17 [0.08,0.28] 0.12 [0.02,0.23]

Cerebral white matter vol-

ume (L)

0.09 [-0.04,0.22] 0.19 [0.10,0.28] 0.13 [0.03,0.23]

Inferior lateral ventricle vol-

ume (L)

-0.13 [-0.24,-0.01] -0.14 [-0.24,-0.05] -0.08 [-0.18,0.02]

Inferior parietal gyrus thick-

ness (R)

0.11 [0.01,0.21] 0.20 [0.11,0.29] 0.13 [0.03,0.23]

Fusiform, parahippocampal,

and lingual gyri, temporal

pole and transverse tempo-

ral pole mean thickness (L)

0.12 [0.01,0.24] 0.22 [0.13,0.32] 0.14 [0.04,0.24]

Continued on next page
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Table 2 – Continued from previous page

Spatial Model (MCMC) Spatial Model (MFVB) Non-Spatial Model (MCMC)

Region Mean 95% CI Mean 95% CI Mean 95% CI

Inferior temporal, middle

temporal, superior tempo-

ral, fusiform, parahippocam-

pal, and lingual gyri, tempo-

ral pole and transverse tem-

poral pole mean thickness

(L)

0.11 [0.01,0.22] 0.20 [0.11,0.28] 0.13 [0.03,0.23]

Postcentral gyrus thickness

(L)

0.13 [0.03,0.24] 0.23 [0.13,0.33] 0.14 [0.03,0.23]

Superior frontal gyrus thick-

ness (R)

0.12 [0.02,0.22] 0.19 [0.11,0.28] 0.14 [0.04,0.24]

Supramarginal gyrus thick-

ness (L)

0.13 [0.02,0.23] 0.21 [0.13,0.29] 0.14 [0.04,0.25]

Supramarginal gyrus thick-

ness (R)

0.14 [0.04,0.24] 0.24 [0.17,0.33] 0.15 [0.05,0.25]

Fusiform gyrus thickness (L) 0.11 [-0.02,0.23] 0.19 [0.09,0.28] 0.13 [0.03,0.23]

Hippocampus volume (L) 0.12 [-0.02,0.26] 0.22 [0.14,0.34] 0.15 [0.05,0.26]

Caudal midfrontal, rostral

midfrontal, superior frontal,

lateral orbitofrontal, and

medial orbitofrontal gyri

and frontal pole mean

thickness (L)

0.10 [-0.02,0.22] 0.18 [0.10,0.27] 0.13 [0.03,0.23]

Inferior temporal, middle

temporal, and superior tem-

poral gyri mean thickness

(L)

0.10 [-0.01,0.21] 0.17 [0.08,0.26] 0.12 [0.02,0.22]

Inferior temporal, middle

temporal, and superior tem-

poral gyri mean thickness

(R)

0.10 [-0.01,0.21] 0.20 [0.11,0.30] 0.13 [0.02,0.22]

Continued on next page



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

24 Biometrics, xxxx xxx

Table 2 – Continued from previous page

Spatial Model (MCMC) Spatial Model (MFVB) Non-Spatial Model (MCMC)

Region Mean 95% CI Mean 95% CI Mean 95% CI

Fusiform, parahippocampal,

and lingual gyri, temporal

pole and transverse tempo-

ral pole mean thickness (R)

0.10 [-0.01,0.21] 0.20 [0.11,0.29] 0.12 [0.02,0.22]

Inferior and superior

parietal gyri, supramarginal

gyrus, and precuneus mean

thickness (L)

0.09 [-0.02,0.21] 0.16 [0.07,0.25] 0.12 [0.02,0.22]

Precentral and postcentral

gyri mean thickness (R)

0.09 [-0.02,0.20] 0.17 [0.09,0.26] 0.12 [0.01,0.22]

Precentral and postcentral

gyri mean thickness (L)

0.10 [-0.01,0.20] 0.16 [0.08,0.25] 0.12 [0.02,0.22]

Middle temporal gyrus

thickness (L)

0.08 [-0.03,0.19] 0.15 [0.06,0.23] 0.11 [0.01,0.21]

Middle temporal gyrus

thickness (R)

0.09 [-0.01,0.20] 0.18 [0.11,0.27] 0.12 [0.02,0.22]

Postcentral gyrus thickness

(R)

0.09 [-0.01,0.20] 0.18 [0.08,0.28] 0.11 [0.01,0.21]

Precentral gyrus thickness

(R)

0.08 [-0.03,0.19] 0.15 [0.06,0.25] 0.11 [0.01,0.21]

Precuneus thickness (R) 0.09 [-0.01,0.19] 0.17 [0.08,0.25] 0.11 [0.01,0.21]

Superior parietal gyrus

thickness (R)

0.08 [-0.02,0.18] 0.14 [0.06,0.22] 0.11 [0.01,0.21]

Superior temporal gyrus

thickness (R)

0.10 [-0.01,0.22] 0.22 [0.14,0.31] 0.13 [0.03,0.23]
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Figure 1: The correlation plot for left and right brain measures showing the bilateral
correlation between 28 brain measurements across brain hemispheres for 632 subjects.
Panel (a) presents the boxplot of all of the pairwise bilateral correlations for the 28 brain
measurements across left and right hemispheres. Panel (b) presents a scatter plot showing
mean thickness of left/right frontal with correlation 0.91. Panel (c) presents a scatter plot
showing the volume of left/right cerebral cortex with correlation 0.90. Panel (d) presents
a scatter plot between volume of left/right cerebral white matter with correlation 0.90.
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Figure 2: Variational Bayes - convergence of the evidence lower bound (ELBO) for the
ADNI MRI and genetic data considered in the application.
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Figure 3: ADNI-1 Data - Relationship between the number of selected SNPs in each
region and λ2. Each region is represented with a curve in each panel of the figure. The left
panel shows this relationship for MCMC combined with Bayesian FDR (α = 0.05) while
the right panel shows the same relationship for VB with Bayesian FDR (α = 0.05).
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Figure 4: ADNI-1 Data: SNPs chosen with the spatial model fit using Gibbs sampling
and Bayesian FDR (α = 0.05) are highlighted in red for each phenotype. The black ticks
on y-axis indicate the phenotypes from the left/right hemisphere, and the SNPs from
same gene are indicated by the ticks on x-axis. The top panel corresponds to the case
λ2 = 1000 while the bottom panel corresponds to the case λ2 = 10, 000.
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