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Abstract—This paper presents a framework to introduce spatial and anatomical priors in SVM for brain image analysis based on

regularization operators. A notion of proximity based on prior anatomical knowledge between the image points is defined by a graph

(e.g., brain connectivity graph) or a metric (e.g., Fisher metric on statistical manifolds). A regularization operator is then defined from

the graph Laplacian, in the discrete case, or from the Laplace-Beltrami operator, in the continuous case. The regularization operator is

then introduced into the SVM, which exponentially penalizes high-frequency components with respect to the graph or to the metric and

thus constrains the classification function to be smooth with respect to the prior. It yields a new SVM optimization problem whose

kernel is a heat kernel on graphs or on manifolds. We then present different types of priors and provide efficient computations of the

Gram matrix. The proposed framework is finally applied to the classification of brain Magnetic Resonance (MR) images (based on Gray

Matter (GM) concentration maps and cortical thickness measures) from 137 patients with Alzheimer’s Disease (AD) and 162 elderly

controls. The results demonstrate that the proposed classifier generates less-noisy and consequently more interpretable feature maps

with high classification performances.

Index Terms—SVM, regularization, Laplacian, Alzheimer’s disease, neuroimaging
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1 INTRODUCTION

RECENTLY, there has been growing interest in Support
Vector Machine (SVM) methods [1], [2], [3], [4] for

brain image analysis. Theses approaches allow one to
capture complex multivariate relationships in the data and
have been successfully applied to the individual classifica-
tion of a variety of neurological and psychiatric condi-
tions, such as Alzheimer’s Disease (AD) [5], [6], [7], [8],
[9], [10], fronto-temporal dementia [6], [11], autism [12],
schizophrenia [13], and Parkinsonian syndromes [14]. In
these approaches, with the exception of [15], the specificity

of neuroimaging data is taken into account in the feature
extraction but not in the classification method per se. Brain
images are indeed a prototypical case of structured data
whose structure is governed by the underlying anatomical
and functional organization.

A lot of research has been carried out to take the structure
of the data into account in SVM approaches. For example,
graph and sequence kernels [16] have been proposed to
classify corresponding structured data such as chemical
compounds or DNA sequences [17]. On the other hand,
efforts have also been made to introduce structured priors
into classification of vectorial data. In the literature, three
main ways have been considered in order to include priors
in SVM. The first way to include prior is to directly design
the kernel function [2]. Another way is to constrain the
classifier function to be locally invariant to some transfor-
mations. This can be done 1) by directly engineering a kernel
which leads to locally invariant SVM [18], 2) by generating
artificially transformed examples from the training set to
create virtual support vectors (virtual SV) [19], 3) by using a
combination of both these approaches called kernel jittering
[20]. The last way is to consider SVM from the regularization
viewpoint [2], [21], [22], [23].

In the case of brain imaging data, defining a proper
similarity measure between individuals is challenging, and
the use of an irrelevant similarity would only plunge the
data into a higher dimensional space. As for the locally
invariant approach, it seems restricted to relatively basic
transformations, which would not be adapted to anatomical
knowledge. In this paper, we therefore adopt the regular-
ization viewpoint and show that it allows modeling various
types of priors.

Graphs are a natural and flexible framework to take
spatial information into consideration. Voxels of a brain
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image can be considered as nodes of a graph which models
the voxels’ proximity. A simple graph can be the voxel
connectivity (6, 18, or 26), allowing us to model the
underlying image structure [24]. More sophisticated graphs
can be introduced to model the specificities of brain images.
Graphs can, for example, model relational anatomy by
encoding the relations between brain structures [25]. They
are also widely used to model brain connectivity, be it
structural or functional [26].

In this paper, we propose a framework to introduce
spatial and anatomical priors into SVM using regulariza-
tion operators defined from a graph [2], [21]. The graph
encodes the prior by modeling the proximity between
image points. We also present an analogous framework for
continuous data in which the graph is replaced with a
Riemannian metric on a statistical manifold. A regulariza-
tion operator can then be defined from the graph Laplacian
or from the Laplace-Beltrami operator. By introducing this
regularization operator into the SVM, the classification
function is constrained to be smooth with respect to the
prior. This exponentially penalizes high-frequency compo-
nents with respect to the graph or to the metric. It yields a
new SVM optimization problem whose kernel is a heat
kernel on graphs or on manifolds. We then introduce
different types of spatial and anatomical priors, and
provide efficient implementations of the Gram matrix for
the different cases. Note that the framework is applicable to
both 3D image data (e.g., Gray Matter (GM) maps) and
surface data (e.g., cortical thickness maps). We apply the
proposed approach to the classification of MR brain images
from patients with Alzheimer’s disease and elderly con-
trols. The present paper extends work previously published
at conferences [27], [28]. Compared to the conference
papers, the present paper provides a comprehensive
description of all different cases, new approaches for
anatomical and combined regularization in the discrete
case, experiments on simulated data, more thorough
evaluation on real data, updated state of the art, and
proofs of some important results.

The paper is organized as follows: In the next section, we
briefly present SVM and regularization operators. We then
show that the regularization operator framework provides a
flexible approach to model different types of proximity
(Section 3). Section 4 presents the first type of regularization,
which models spatial proximity, i.e., two features are close if
they are spatially close. We then present, in Section 5, a
more complex type of constraints, called anatomical
proximity. In the latter case, two features are considered
close if they belong to the same brain network; for instance,
two voxels are close if they belong to the same anatomical or
functional region or if they are anatomically or functionally
connected (based on fMRI networks or White Matter (WM)
tracts). The two types of regularization, spatial and
anatomical, are then combined in Section 6. Then, in
Section 7, the proposed framework is applied to the analysis
of MR images using gray matter concentration maps and
cortical thickness measures from 137 patients with Alzhei-
mer’s disease and 162 elderly controls from the ADNI
database (www.adni-info.org). A discussion of the methods
and results is presented in Section 8.

2 PRIORS IN SVM

In this section, we first describe the neuroimaging data that
we consider in this paper. Then, after some background on
SVM and on how to add prior knowledge in SVM, we
describe the framework of regularization operators.

2.1 Brain Imaging Data

In this contribution, we consider any feature computed
either at each voxel of a 3D brain image or at any vertex of
the cortical surface. Typically, for anatomical studies the
features could be tissue concentration maps, such as gray
matter or white matter, the 3D case, or cortical thickness
maps for the surface case. The proposed methods are also
applicable to functional or diffusion weighted MRI.
We further assume that 3D images or cortical surfaces
were spatially normalized to a common stereotaxic space
(e.g., [29], [30]) as in many group studies or classification
methods [7], [8], [10], [13], [31], [32].

Let V be the domain of the 3D images or surfaces. v will
denote an element of V (i.e., a voxel or a vertex). Thus,
X ¼ L2ðVÞ, the set of square integrable functions on V,
together with the canonical dot product h�; �iX will be the
input space.

Let xs 2 X be the data of a given subject s. In the case
of 3D images, xs can be considered in two different ways:
1) Since the images are discrete, xs can be considered as
an element of IRd, where d denotes the number of voxels.
2) Nevertheless, as the brain is intrinsically a continuous
object, we will also consider xs as a real-valued function
defined on a compact subset of IR3 or more generally on a
3D compact Riemannian manifold.

Similarly, in the surface case xs can be viewed either as
an element of IRd, where d denotes the number of vertices or
as a real-valued function on a 2D compact Riemannian
manifold.

We consider a group of N subjects with their corre-
sponding data ðxsÞs2½1;N � 2 XN . Each subject is associated
with a group ðysÞs2½1;N � 2 f�1; 1gN (typically his diagnosis,
i.e., diseased or healthy).

2.2 Linear SVM

The linear SVM solves the following optimization problem
[1], [2], [4]:

wopt; bopt
� �

¼ arg min
w2X ;b2IR

1

N

XN
s¼1

‘hinge ys hw;xsiX þ b½ �ð Þ

þ �kwk2
X ;

ð1Þ

where � 2 IRþ is the regularization parameter and ‘hinge is the
hinge loss function defined as

‘hinge : u 2 IR 7! ð1� uÞþ:

With a linear SVM, the feature space is the same as the input
space. Thus, when the input features are the voxels of a 3D
image, each element of wopt ¼ ðwopt

v Þv2V also corresponds to
a voxel. Similarly, for the surface-based methods the
elements of wopt correspond to vertices of the cortical
surface. To be anatomically consistent, if vð1Þ 2 V and vð2Þ 2
V are close according to the topology of V, their weights in
the SVM classifier, wopt

vð1Þ
and wopt

vð2Þ
, respectively, should be
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similar. In other words, if vð1Þ and vð2Þ correspond to two
neighboring regions, they should have a similar role in the
classifier function. However, this is not guaranteed with
the standard linear SVM (as, for example, in [7]) because
the regularization term is not a spatial regularization. The aim
of the present paper is to propose methods to ensure that
wopt is spatially regularized.

2.3 Regularization Operators

Our aim is to introduce spatial regularization of the
classifier function. This is done through the definition of a
regularization operator P . Following [2], [21], P is defined as a
linear map from a space U � X into X . When P is bijective
and symmetric, the minimization problem

min
u2U;b2IR

1

N

XN
s¼1

‘hinge ys hu;xsiX þ b½ �ð Þ þ �kPuk2
X ð2Þ

is equivalent to a linear SVM on the data ðP�1xsÞs:

min
w2X ;b2IR

1

N

XN
s¼1

‘hinge

�
ys
�
hw; P�1xsiX þ b

��
þ �kwk2

X : ð3Þ

Similarly, it can be seen as an SVM minimization problem
on the raw data with kernel K defined by Kðx1;x2Þ ¼
hP�1x1; P

�1x2iX .
One has to define the regularization operator P so as to

obtain the suitable regularization for the problem.

3 LAPLACIAN REGULARIZATION

Spatial regularization requires the notion of proximity
between elements of V. This can be done through the
definition of a graph in the discrete case or a metric in the
continuous case. In this section, we propose spatial
regularization based on the Laplacian for both of these
proximity models. This penalizes the high-frequency
components with respect to the topology of V.

3.1 Graphs

When V is finite, weighted graphs are a natural framework
to take spatial information into consideration. Voxels of a
brain image can be considered as nodes of a graph which
models the voxels’ proximity. This graph can be the voxel
connectivity (6, 18, or 26) or a more sophisticated graph.

The Laplacian matrix L of a graph is defined as
L ¼ D�A, where A is the adjacency matrix and D is a
diagonal matrix verifying

Di;i ¼
X
j

Ai;j

[33]. Note that the graph Laplacian can be interpreted, in
some cases, as a discrete representation of the Laplace-
Beltrami operator (e.g., as in Section 4).

We chose the following regularization operator:

P�: U ¼ X ! X
u 7! e

1
2�Lu:

ð4Þ

The parameter � controls the size of the regularization. The
optimization problem then becomes

min
w2X ;b2IR

1

N

XN
s¼1

‘hinge ys hw;xsi þ b½ �ð Þ þ �ke1
2 �Lwk2: ð5Þ

Such a regularization term exponentially penalizes the
high-frequency components and thus forces the classifier to
consider as similar voxels which are highly connected
according to the graph adjacency matrix. Note that the
eigenvectors of the graph Laplacian correspond to functions
partitioning the graph into clusters. They can be considered
as a soft min-cut partition of V [34]. As a result, such
regularization operators strongly penalize the components
of w which vary a lot over coherent clusters in the graph.

According to the previous section, the new minimization
problem (5) is equivalent to an SVM optimization problem.
The new kernel K� is given by

K�ðx1;x2Þ ¼ xT1 e
��Lx2: ð6Þ

This is a heat or diffusion kernel on a graph. Diffusion
kernels on graphs were also used by Kondor and Lafferty
[35] to classify complex objects which are nodes of a graph
defining the distance between them. Thus, in this approach
the nodes of the graph are the objects to classify, which is
different from our approach where the nodes are the
features. Laplacian regularization was also used in satellite
imaging [36] but, again, the nodes were the objects to
classify. Our approach can also be considered as spectral
regularization on the graph [37].

3.2 Compact Riemannian Manifolds

In this paper, when V is continuous, it can be considered as a
2D (e.g., surfaces) or a 3D (e.g., 3D euclidean or more
complex) compact Riemannian manifold ðM; gÞ, possibly
with boundaries. The metric, g, then models the notion of
proximity required for the spatial regularization. Such spaces
are complete Riemmanian manifolds; thus, on such spaces,
the heat kernel exists [38], [39]. Therefore, the Laplacian
regularization presented in the previous paragraph can be
extended to compact Riemannian manifolds [39].

Unlike the discrete case, for the continuous case, the
regularization operatorP is not defined on the whole spaceX
but on a subset U � X . Therefore, we first need to define
the domain U. In the following, let �g denote the Laplace-
Beltrami operator.1 Let ðenÞn2IN be an orthonormal basis of
X of eigenvectors of �g (with homogeneous Dirichlet
boundary conditions) [38], [40]. Let ð�nÞn2IN 2 IRþ

IN
be the

corresponding eigenvalues. We define U� for � > 0 as

U� ¼
X
n2IN

unenj unð Þn2IN 2 ‘2and
�
e

1
2 ��nun

�
n2IN
2 ‘2

( )
; ð7Þ

where ‘2 denotes the set of square-summable sequences.
Similarly to the graphs, we chose the following regular-

ization operator:

P� : U� ! X
u ¼

X
n2IN

unen 7! e
1
2 ��gu ¼

X
n2IN

e
1
2��nunen:

ð8Þ
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1. Note that, in euclidean space, �g ¼ �� where � is the Laplacian
operator.



The optimization problem is also equivalent to an SVM
optimization problem with kernel

K�ðx1;x2Þ ¼
�
x1; e

���gx2

�
X : ð9Þ

Laferty and Lebanon [39] proposed diffusion kernels to
classify objects lying on a statistical manifold. Thus, in this
approach, the points of the manifold are the objects to
classify. On the contrary, in our case, the points of the
manifold are the features.

In this section, we have shown that that the regulariza-
tion operator framework provides a flexible approach to
model different types of proximity. One has now to define
the type of proximity one wants to enforce. In the following
sections (Sections 4 and 5), we present different types of
proximity models which correspond to different types of
graphs or distances: spatial and anatomical. We then
combine these two regularization types in Section 6.

4 SPATIAL PROXIMITY

In this section, we consider the case of regularization based
on spatial proximity, i.e., two voxels (or vertices) are close if
they are spatially close.

4.1 The 3D Case

When V are the image voxels (discrete case), the simplest
option to encode the spatial proximity is to use the image
connectivity (e.g., 6-connectivity) as a regularization graph.
Similarly, when V is a compact subset of IR3 (continuous
case), the proximity is encoded by a euclidean distance. In
both cases, the spatially regularized SVM will be obtained
in practice by preprocessing the data with a Gaussian
smoothing kernel with standard deviation � ¼

ffiffiffi
�
p

voxels
[35] before using a standard linear SVM. Therefore, the
computational complexity of the Gram matrix is

O Nd logðdÞð Þ:

4.2 The Surface Case

The connectivity graph is not directly applicable to
surfaces. Indeed, the regularization would then strongly
depend on the mesh used to discretize the surface. This
shortcoming can be overcome by reweighing the graph
with conformal weights. In this paper, we chose a
different approach by adopting the continuous viewpoint:
We consider the cortical surface as a 2D Riemannian
manifold and use the regularization operator defined by
(8). Indeed, the Laplace-Beltrami operator is an intrinsic
operator and does not depend on the chosen surface
parameterization. The heat kernel has already been used
for cortical smoothing, for example, in [41], [42], and [43].
We will therefore not detail this part. In [41] and [42], the
Finite Difference Method (FDM) or the finite element
method were used. We used the implementation described
in [43] and freely available for download online.2 It uses
the parametrix expansion [44] at the first order. Similarly
to the Gaussian case, the diffusion parameter � sets the
amount of smoothing �2 with the following relation:

� ¼
ffiffiffi
�
p

. The computational complexity of the Gram matrix
is in

OðN�dÞ:

5 ANATOMICAL PROXIMITY

In this section, we consider a different type of proximity,
which we call anatomical proximity. Two voxels are
considered close if they belong to the same brain network.
For example, two voxels can be close if they belong to the
same anatomical or functional region (defined for example
by a probabilistic atlas). This can be seen as a “short-range”
connectivity. Another example is that of “long-range”
proximity, which models the fact that distant voxels can
be anatomically (through white matter tracts) or function-
ally connected (based on fMRI networks).

We focus on the discrete case. The presented framework
can be used either for 3D images or surfaces and computed
very efficiently.

5.1 The Graph: Atlas and Connectivity

Let ðA1; . . . ;ARÞ be the R Regions of Interest (ROI) of an
atlas and pðv 2 ArÞ the probability that voxel v belongs to
region Ar. Then the probability that two voxels, vð1Þ and vð2Þ,
belong to the same region is:

PR
r¼1 pððvð1Þ; vð2ÞÞ 2 A

2
rÞ. We

assume that if vð1Þ 6¼ vð2Þ, then

p
��
vð1Þ; vð2Þ

�
2 A2

r

�
¼ p
�
vð1Þ 2 Ar

�
p
�
vð2Þ 2 Ar

�
:

Let E 2 IRd�R be the right stochastic matrix defined by

Ei;r ¼ p
�
vðiÞ 2 Ar

�
: ð10Þ

Then, for vðiÞ 6¼ vðjÞ, the ði; jÞth entry of the adjacency matrix
A ¼ EET is the probability that the voxels vðiÞ and vðjÞ

belong to the same regions.
For “long-range” connections (structural or functional),

one can consider a positive semidefinite R-by-R matrix C
with the ðr1; r2Þth entry being the probability that Ar1

and
Ar2

are connected. Then, the probability that the voxels vðiÞ

and vðjÞ are connected is Ai;j ¼
P

r1
Ei;r1

P
r2
Cr1;r2

Ej;r2
. Thus,

the adjacency matrix becomes (Fig. 1):

A ¼ ECET : ð11Þ
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2. http://www.stat.wisc.edu/~mchung/softwares/hk/hk.html.

Fig. 1. Anatomical proximity encoded by a graph. The weights of the
edges between nodes or voxels (red bullets) are represented by the blue
arcs. They are the elements of the adjacency matrix A. They are
functions of the probabilities of belonging (in green) to the regions Ar of
an atlas (matrix E) and of the links (in black) between regions (matrix C).



To compute the Gram matrix, one needs to calculate
e��L, where L is the Laplacian matrix defined as L ¼ D�A.
The matrices D and A do not commute, which prevents us
from computing the matrix exponential by multiplying e��D

and e�A. We thus chose to use the normalized version of the
Laplacian ~L:

~L ¼ Id �D�
1
2ECETD�

1
2: ð12Þ

That is to say:

~L ¼ Id � ~E ~ET ; ð13Þ

with ~E ¼ D�1
2EC

1
2. Then e��

~L ¼ e��e� ~E ~ET
.

As mentioned in Section 3, the eigenvectors of the graph
Laplacian correspond to a partition of the graph into
clusters. Using the unnormalized or normalized Laplacian
corresponds to different types of partition: With the
unnormalized Laplacian, these clusters are a min-cut
segmentation of the graph, whereas with the normalized
Laplacian, they are a normalized cut segmentation [34].

5.2 Computing the Gram Matrix

5.2.1 Formulation

General case. The matrix exponential can be computed by
diagonalizing the normalized Laplacian. However, due to
the images sizes, the direct diagonalization of the normal-
ized graph Laplacian is computationally intractable.
Nevertheless, in this case, it only comes to finding a basis
of ðker ~E ~ET Þ? of eigenvectors of ~L . This is detailed in the
following paragraph.

The matrix ~ET ~E is real symmetric. Let X be an R-by-R
orthogonal matrix and � an R-by-R diagonal matrix such as

XT ~ET ~EX ¼ �: ð14Þ

Let k be the rank of ~ET ~E. Without loss of generality, we
assumed that the sole nonzero components of � are its first
k diagonal components �1;1; . . . ;�k;k. Let ~X be the d-by-k
matrix defined as follows: The rth column of ~X, ~Xr, is
given by

~Xr ¼ �
�1

2
r;r

~EXr; ð15Þ

where Xr denotes the rth column of X. Let ~� be the k-by-k
diagonal matrix defined by

~�r;r ¼ 1� �r;r: ð16Þ

Note that ð ~XrÞr¼1;...;k is an orthonormal eigenbasis of
ðker ~E ~ET Þ? and that ð�r;rÞr¼1;...;k are the corresponding
eigenvalues.

Then, the matrix exponential is given by

e��
~L ¼ ~Xe��

~� ~XT þ e�� Id � ~X ~XT
� �

: ð17Þ

Special case of a binary atlas. When the atlas used to
define the region is binary, in other words, when
pðv 2 ArÞ 2 f0; 1g, the formulation of the matrix exponential
can be more explicit than (17). Thus, the role of the
regularization becomes more interpretable. Besides, it also
leads to a much more efficient computation of the Gram
matrix.

Let dðrÞ denote the number of voxels of region Ar. Even if

it means reindexing the voxels, we assume that the voxels

are ordered by regions. In other words, we assume that the

first dð1Þ voxels, vð1Þ; . . . ; vðd
ð1ÞÞ, belong to A1, then that voxels

vðd
ð1Þþ1Þ; . . . ; vðd

ð1Þþdð2ÞÞ belong to A2, and so on. Thus, the

adjacency matrix A is a block diagonal matrix verifying

A ¼
�
1dð1Þ1

T
dð1Þ

�
�
�
1dð2Þ1

T
dð2Þ

�
� � � � �

�
1dðRÞ1

T
dðRÞ

�
; ð18Þ

where 1dðrÞ denotes the dðrÞ-element column vector of all

ones. This leads to the following matrix exponential:

e��
~L ¼ e�� ~Lð1Þ � e�� ~Lð2Þ � � � � � e�� ~LðRÞ ; ð19Þ

with, for all r 2 ½1; R�:

e��
~LðrÞ ¼ e��IdðrÞ þ ð1� e��Þ

1

dðrÞ
�
1dðrÞ1

T
dðrÞ

�	 

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

region averaging operator

: ð20Þ

Note that, in the case � ¼ 0, this is equivalent to the
standard linear SVM with no anatomical regularization. In
the limit case � ¼ þ1, this is equivalent to replacing each
voxel with the average of its atlas region, such as in [31].
The cases � 2 IRþ� are intermediate cases.

5.2.2 Computational Complexity

The computation of the Gram matrix requires only: 1) the
computation of D�

1
2, which is done efficiently since D is a

diagonal matrix, 2) the diagonalization of an R-by-R matrix,
which is also efficient since R 	 102. The number of
operations needed to compute the Gram matrix is in

O NRdþR3
� �

:

In the special case of a binary atlas, assuming that R < d, the

computational complexity drops to OðNdÞ.

5.2.3 Setting the Diffusion Parameter �

The proposed regularization exponentially penalizes the
high-frequency components of the graph. More specifically,
each component is weighted by e���, where � is the
corresponding eigenvalue. In the previously described
approach, the eigenvalues � are known. Hence, the range
of the diffusion parameter � can be chosen according to the
range of eigenvalues �. The specific range that we used in
our experiments is given in Section 7.5.1.

The method described in this section can be directly

applied to both 3D images and cortical surfaces. Unfortu-

nately, the efficient implementation was obtained at the cost

of the spatial proximity. The next section presents a

combination of both anatomical and spatial proximity.

6 COMBINING SPATIAL AND ANATOMICAL

PROXIMITIES

In the previous sections, we have seen how to define
regularization based on spatial proximity or on anatomical
proximity. In this section, we propose to combine both
those proximities: first from a discrete viewpoint and then
from a continuous viewpoint in which the data lies on a
Riemannian manifold.
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6.1 On Graphs

6.1.1 The Optimization Problem

One of the simplest options to combine the spatial and
anatomical proximities would be to add up the two
regularization terms. In the following, when the notation
could be confusing subscripts will be added to distinguish
the spatial case (s) from the anatomical case (a). For instance,
Ls will refer to the Laplacian of the graph encoding spatial
proximity. Similarly, La will refer to the Laplacian of the
graph encoding the anatomical proximity. As a result, a
way of combining both regularization terms is to consider
the following optimization problem:

wopt; bopt
� �

¼ arg min
w2X ;b2IR

1

N

XN
s¼1

‘hinge

�
ys hw;xsi þ b½ �

�
þ �

�
ke

�s
2Lswk2 þ ke

�a
2 Lawk2�:

ð21Þ

Note that the regularization parameters (�) of the spatial
regularization and of the anatomical regularization could
have differed. We have chosen them to be equal to avoid
tuning another parameter.

The sum of definite positive matrices is a definite
positive matrix. Then, according to Section 2.3, (21) is an
SVM optimization problem with kernel

K�a;�s
ðx1;x2Þ ¼ xT1

�
e�aLa þ e�sLs

��1
x2: ð22Þ

6.1.2 Computing the Gram Matrix

General case. Note that, as mentioned in the previous
sections, e�aLaxs and e�sLsxs can be computed efficiently.
Therefore, ðe�aLa þ e�sLsÞ�1xs can be obtained following a
conjugate gradient technique [45].

In the following, we will estimate the number of
iterations needed for the conjugate gradient. If we assume
that the two Laplacian matrices are normalized graph
Laplacian, the condition number �2 of ðe�aLa þ e�sLsÞ for the
spectral norm is bounded by

�2 

e�a þ e2�s

2
: ð23Þ

When the computational complexity of the spatial term is
proportional to � (for instance for the surface case), if
�s � 1

2 �a, using the following factorization leads to a better
bound on the number of iterations:

e�aLa þ e�sLs ¼ e
�s
2Ls
�
Id þ e

��s
2 Lse�aLae

��s
2 Ls
�
e
�s
2Ls :

In this case, the bound on the condition number drops to

�2 

1þ e�a

1þ e�2�s
: ð24Þ

As a result, according to [45], the number of iterations
needed to obtained a residual error � is at most

log
�

2

� 

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�a

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�2�s

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�a

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�2�s

p
 ! !�1

2
666

3
777: ð25Þ

For instance, if one considers the regularization with a
binary atlas, the spectrum of La verifies: SpðLaÞ ¼ f1g. For

�a ranging from 0 to 6 and for a residual error � lower than

10�4, the number of iterations will not exceed 100 iterations.

In practice, with our data the number of iterations did not

exceed 43.
Special case of Gaussian spatial regularization. Note

that, in the 3D case, if the spatial proximity is encoded with

the image connectivity (6-connectivity), then Ls is diagona-

lizable by a symmetric orthogonal matrix Q which is the

imaginary part of a submatrix of the Discrete Fourier

Transform (DFT) matrix. Therefore, multiplying a vector by

Q requires only Oðd logðdÞÞ operations using the Fast Sine

Transform. Let S be the diagonal matrix such that:

Ls ¼ QSQ. Then, according to (17):

e�aLa þ e�sLs ¼ e�sQSQ þ ~X
�
e�a

~� � e�aIR
�

~XT þ e�aId: ð26Þ

Using the Woodbury matrix identity [45], the inverse matrix

ðe�aLa þ e�sLsÞ�1 is equal to

D�D ~X
��
e�a

~� � e�aIR
��1
þ ~XTD ~X

��1 ~XTD; ð27Þ

with

D ¼ Q e�sS þ e�aId
� ��1

Q:

In terms of computational complexity, the most costly

steps are the computation of ~� and the multiplication by D.

Therefore, based on the complexity of the anatomical

framework, ((5.2.2)), the computational complexity of the

Gram matrix is

O ðN þRÞd log2ðdÞ þR3
� �

:

6.1.3 Setting the Parameters �s and �a

The parameters �s and �a can be set using the previous two

sections.

6.2 On Statistical Manifolds

Another way to combine spatial and anatomical information

is to consider such a combination as a modification of the

local topology induced by the spatial information with

respect to some given anatomical priors. Since the brain is

intrinsically a continuous object, it seems more interesting to

describe local behaviors from the continuous viewpoint. So,

in this section we proposed a single continuous framework

to naturally integrate various prior information such as

tissue information, atlas information, and spatial proximity.

We first show that this can be done by considering the

images or surfaces as elements of a statistical manifold

together with the Fisher metric. We then give some details

about the computation of the Gram matrix.

6.2.1 Fisher Metric

Let v 2 IR3 be some position in the image. The images are

registered in a common space. Thus the true location is

known up to the registration errors. Such spatial informa-

tion can be modeled by a probability density function:

x 2 IR3 7! plocðxjvÞ. A simple example would be plocð�jvÞ 	
N ðv; �2

locÞ. It can be seen as a confidence index about the

spatial location at voxel v.
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We further assume that we are given an anatomical or a

functional atlas A composed of R regions: fArgr¼1���R.

Therefore, in each point v 2 V, we have a probability

distribution patlasð�jvÞ 2 IRA which informs about the atlas

region in v.
As a result, in each point v 2 IR3, we have some

information about the spatial location and some anatomical

information through the atlas. Such information can be

modeled by a probability density function pð�jvÞ 2 IRA�IR3

.

Therefore, we consider the parametric family of probability

distributions

M¼ pð�jvÞ 2 IRA�IR3
n o

v2V
:

In other words, in this section, instead of considering the

voxels as such, each voxel is described by a probability

distribution informing us about the atlas regions to which

the voxel could belong and the certainty about the spatial

location. In the following, we further assume that ploc and

patlas are independent. Thus, p verifies

pððAr;xÞjvÞ ¼ patlasðArjvÞplocðxjvÞ; 8ðAr;xÞ 2 A � IR3:

In the following, we assume that p is sufficiently smooth

in v 2 V and that the Fisher information matrix is definite at

each v 2 V. Then the parametric family of probability

distributions M can be considered as a differential

manifold [46]. A natural way to encode proximity on M
is to use the Fisher metric since the Fisher information

metric is invariant under reparameterization of the mani-

fold. M with the Fisher metric is a Riemmanian manifold

[46]. V is compact; therefore, M is a compact Riemannian

manifold. For clarity, we present this framework only for

3D images, but it could be applied to cortical surfaces with

minor changes. The metric tensor g is then given for all

v 2 V by

gijðvÞ ¼ IEv
@ log pð�jvÞ

@vi

@ log pð�jvÞ
@vj

	 

; 1 
 i; j 
 3: ð28Þ

If we further assume that plocð�jvÞ is isotropic we have

gijðvÞ ¼ gatlas
ij ðvÞ

þ �ij
Z
u2V

plocðujvÞ
@ log plocðujvÞ

@vi

� �2

du;
ð29Þ

where �ij is the Kronecker delta and gatlas is the metric

tensor when pð�jvÞ ¼ patlasð�jvÞ.
When plocð�jvÞ 	 N ðv; �2

locI3Þ, we have

gijðvÞ ¼ gatlas
ij ðvÞ þ

�ij
�2

loc

: ð30Þ

Note that the second term,

�ij
�2

loc

;

ensures that the Fisher information matrix, gijðvÞ, is

definite, which is necessary for the statistical model to be

geometrically regular [46].

6.2.2 Computing the Gram Matrix

Equivalence with the heat equation. Once the notion of
proximity is defined, one has to compute the Gram matrix.
The computation of the kernel matrix requires the computa-
tion of e���gxs for all the subjects of the training set. The
eigendecomposition of the Laplace-Beltrami operator is
intractable since the number of voxels in a brain image is
about 106. Hence, e���gxs is considered as the solution at
time t ¼ � of the heat equation with the Dirichlet homo-
geneous boundary conditions of unknown u:

� @u

@t
þ�gu ¼ 0

uðt ¼ 0Þ ¼ xs:
ð31Þ

The Laplace-Beltrami operator is given by [38]

�gu ¼
�1ffiffiffiffiffiffiffiffiffiffi
det g
p

X3

j¼1

@

@vj

X3

i¼1

hij
ffiffiffiffiffiffiffiffiffiffi
det g

p @u

@vi

 !
;

where h is the inverse tensor of g.
Solving the heat equation. In this paragraph, s is fixed.

To solve (31), one can use a variational approach [47]. We
used the rectangular finite elements f	ðiÞg in space and the
explicit finite difference scheme for the time discretization.

x and 
t denote the space step and the time step,
respectively. Let UðtÞ denote the coordinates of uðtÞ. Let
Un denote the coordinates of uðt ¼ n
tÞ and U0 denote those
of xs. This leads to(

M
dU

dt
ðtÞ þKUðtÞ ¼ 0

Uðt ¼ 0Þ ¼ U0;
ð32Þ

with K the stiffness matrix and M the mass matrix. The
stiffness matrix K is given by

Ki;j ¼
Z
v2V

�
rM	ðiÞðvÞ;rM	ðjÞðvÞ

�
Md�M: ð33Þ

The mass matrix M is given by

Mi;j ¼
Z
v2V

	ðiÞðvÞ	ðjÞðvÞd�M: ð34Þ

The trapezoidal rule was used to approximate K and M; in
particular: Mi;j � �ij det gðvðiÞÞ.

The explicit finite difference scheme is used for the time
discretization, thus Unþ1 is given by

MUnþ1 ¼ M� 
tKð ÞUn: ð35Þ


x is fixed by the MRI spatial resolution. 
t is then chosen so
as to respect the Courant-Friedrichs-Lewy (CFL) condition,
which can be written in this case as


t 
 2ðmax�iÞ�1;

where �i are the eigenvalues of the general eigenproblem:
KU ¼ �MU . Therefore, the computational complexity is in

O
�
N�ðmax

i
�iÞd

�
:

To compute the optimal time step 
t, we estimated the
largest eigenvalue with the power iteration method [45].
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For our problem, for �loc ¼ 5, �max � 15:4 and, for �loc ¼
10, �max � 46:5.

6.2.3 Setting the Diffusion Parameter �

We chose the same values for � as in the spatial-only case
(4.1). For the metric tensor to be comparable with the
spatial-only case, we normalized g with

1

jVj

Z
u2V

1

3
tr
�
g

1
2ðuÞ

�
du

� �2

:

7 EXPERIMENTS AND RESULTS

Alzheimer’s disease is the most frequent neurodegenerative
dementia and a growing health problem. Many group
studies using structural MR images based on volumetric
measurements of regions of interest (e.g., [48]), voxel-based
morphometry (e.g., [48], [49]) or group comparison of
cortical thickness (e.g., [50], [51]) have shown that brain
atrophy in AD is spatially distributed over many brain
regions. Recently, several approaches have been proposed
to automatically classify patients with AD from anatomical
MRI (e.g., [6], [7], [9], [10], [52], [53], [54]).

In this section, we first evaluate the proposed framework
on simulated data. Then, it is applied to the analysis of MR
images using gray matter concentration maps and cortical
thickness measures from patients with Alzheimer’s disease
and elderly controls.

7.1 Simulated Data

To generate the simulated data, we constructed a template
composed of two concentric circles (Fig. 2), with multi-
plicative white noise. From this template, we then generated
two groups of 100 subjects each as follows: For each subject
of the first group, we added a simulated lesion in the inner
circle with angular position defined randomly between �5
and 10 degrees, and size between 1 and 4 degrees. For each
subject of the second group, we added a simulated lesion in
the outer circle with the same range of parameters. White
noise was then added to all subjects.

We compared the classification performances of three
different approaches: spatial regularization (with � corre-
sponding to an FWHM of 8 mm), combined spatial and
anatomical regularization (same �), no spatial regularization
(standard SVM). Classification accuracy was computed using
Leave-One-Out Cross-Validation (LOOCV). This experiment
was repeated 100 times (i.e., we generated 100 populations of
200 subjects).

Classification performances for the three approaches
are presented on Fig. 3. The combined regularization
approach was consistently more accurate than the spatial
regularization, which was in turn more accurate than the
standard SVM.

7.2 Real Data: Material

Data used in the preparation of this paper were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.ucla.edu). The ADNI was
launched in 2003 by the National Institute on Aging
(NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies, and nonprofit
organizations as a $60 million, 5-year public-private
partnership. The primary goal of ADNI has been to test
whether serial Magnetic Resonance Imaging (MRI), Posi-
tron Emission Tomography (PET), other biological mar-
kers, and the progression of Mild Cognitive Impairment
(MCI) and early Alzheimer’s disease. Determination of
sensitive and specific markers of very early AD progres-
sion is intended to aid researchers and clinicians to
develop new treatments and monitor their effectiveness,
as well as lessen the time and cost of clinical trials. The
Principal Investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of
California, San Francisco. ADNI is the result of efforts of
many coinvestigators from a broad range of academic
institutions and private corporations, and subjects have
been recruited from over 50 sites across the US and
Canada. The initial goal of ADNI was to recruit 800 adults,
ages 55 to 90, to participate in the research—approximately
200 cognitively normal older individuals to be followed for
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Fig. 2. Synthetic data. (a) Template composed of two concentric circles.
(b) Template with multiplicative white noise. (c) Simulated lesion in the
inner circle. (d) Simulated lesion in the outer circle. (e) and (f) Simulated
subjects from each group after addition of white noise.

Fig. 3. Classification accuracy for each of the 100 experiments on
synthetic data. In red: Combined spatial and anatomical regularization.
In blue: Spatial regularization only. In black: Standard SVM.



3 years, 400 people with MCI to be followed for 3 years,

and 200 people with early AD to be followed for 2 years.

For up-to-date information, see www.adni-info.org.

7.2.1 Participants

We used the same study population as in [10]. We selected
all the cognitively normal subjects and AD patients used in
our previous paper [10]. As a result, 299 subjects were
selected: 162 cognitively normal elderly controls (CN) and
137 patients with AD. Demographic characteristics of the
studied population are presented in Table 1.

7.2.2 MRI Acquisition

The MR scans are T1-weighted MR images. MRI acquisition
had been done according to the ADNI acquisition protocol
in [55]. For each subject, we used the MRI scan from the
baseline visit when available and from the screening visit
otherwise. We only used images acquired at 1.5 T. To
enhance standardization across sites and platforms of
images acquired in the ADNI study, preprocessed images
that have undergone some postacquisition correction of
certain image artifacts are available [55].

7.2.3 Features Extraction

Gray matter concentration maps. For the 3D image
analyses, all T1-weighted MR images were segmented into
gray matter, white matter, and Cerebrospinal Fluid (CSF)
using the Statistical Parametric Mapping (SPM5), London,
United Kingdom, unified segmentation routine [56] and
spatially normalized using the DARTEL diffeomorphic
registration algorithm [30] with the default parameters.
The features are the GM probability maps in the MNI space.
All maps were then modulated to ensure that the overall
tissue amount remains constant.

Cortical thickness. Cortical thickness measures were
performed with the FreeSurfer image analysis suite
(Massachusetts General Hospital, Boston, Massachusetts),
which is documented and freely available for download
online (http://surfer.nmr.mgh.harvard.edu/). The techni-
cal details of this procedure are described in [57] and [58].

7.3 Classification Experiments

We performed the classification of MR images from AD and

controls for each regularization type presented in the

previous sections. We used both the GM concentration

maps and cortical thickness measures. As a result we tested

the following regularization types.

7.3.1 Spatial Regularization

We tested the spatial regularization (Section 4) for both the
3D and the surface case. In the following, they will be
referred to as Voxel-Regul-Spatial and Thickness-Regul-
Spatial, respectively.

7.3.2 Anatomical Regularization

For the anatomical regularization (Section 5), we used the
Automatic Anatomical Labeling (AAL) binary atlas [59] for
the 3D case. This atlas is composed of 116 regions of interest.
This approach will be referred to as Voxel-Regul-Atlas in the
following.

As for the surface case, we used the binary cortical atlas
of Desikan et al. [60]. This atlas is composed of 68 gyral-
based regions of interest. This approach will be referred to
as Thickness-Regul-Atlas in the following.

7.3.3 Combination of Spatial and Anatomical

Regularization

As for the combination of the spatial and anatomical
regularization described in Section 6, we tested both the
graph-based (Section 6.1) and the manifold-based ap-
proaches (Section 6.2).

The graph-based approaches, Voxel-Regul-CombineGraph
and Thickness-Regul-CombineGraph, also used the AAL atlas
and the atlas of Desikan et al. [60] for the surface case.

We then illustrate the regularization on a statistical
manifold. The atlas information used was only the tissue
types. We used gray matter, white matter, and cerebrosp-
inal fluid templates. This approach will be referred to as
Voxel-Regul-CombineFisher in the following.

7.3.4 No Regularization

To assess the impact of the regularization we also
performed two classification experiments with no regular-
ization: Voxel-Direct and Thickness-Direct.

Namely, Voxel-Direct refers to an approach which
consists of considering the voxels of the GM probability
maps directly as features in the classification. Similarly,
Thickness-Direct consists of considering cortical thickness
values at every vertex directly as features in the classifica-
tion with no other preprocessing step.

7.4 OMH Coefficient Maps

The classification function obtained with a linear SVM is the
sign of the inner product of the features with wopt, a vector
orthogonal to the optimal margin hyperplane (OMH) [1],
[2]. Therefore, if the absolute value of the ith component of
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Values are indicated as mean 
 standard-deviation [range].



wopt, jwopt
i j, is small compared to the other components

ðjwopt
j jÞj 6¼i, the ith feature will have a small influence on the

classification. Conversely, if jwopt
i j is relatively large, the ith

feature will play an important role in the classifier. Thus,
the optimal weights wopt allow us to evaluate the
anatomical consistency of the classifier. In all experiments,
the C parameter of the SVM was fixed to one (� ¼ 1

2NC [2]).
As an illustration of the method, we present, for some

of the experiments presented in Section 7.3, the maps
associated to the OMH varying the regularization para-
meter �. The optimal SVM weights wopt are shown in
Figs. 4 and 6. For regions in warm colors, tissue atrophy
increases the likelihood of classification into AD. For
regions in cool colors, it is the opposite.

7.4.1 Spatial Regularization

Fig. 4a shows the wopt coefficients obtained with Voxel-
Direct. When no spatial or anatomical regularization has
been carried out, the wopt maps are noisy and scattered.
Figs. 4b and 4c show the results with spatial proximity for

the 3D case, Voxel-Regul-Spatial. The wopt map becomes
smoother and spatially consistent. However, it mixes tissues
and does not respect the topology of the cortex. For
instance, it mixes tissues of the temporal lobe with tissues
of the frontal and parietal lobes (Figs. 5b and 5c).

7.4.2 Anatomical Regularization

Fig. 6 shows the OMH coefficients obtained with Thickness-
Regul-Atlas. When no anatomical regularization has been
added (� ¼ 0), Thickness-Regul-Atlas corresponds to Thick-
ness-Direct. The maps are then noisy and scattered (Fig. 6a).
When the amount of regularization is increased, voxels of
the same region tend to be considered as similar by the
classifier (Figs. 6b, 6c, and 6d). Note how the anatomical
coherence of the OMH varies with �.

The regions in which atrophy increases the likelihood of
being classified as AD are mainly: the hippocampus, the
amygdala, the parahippocampal gyrus, the cingulum, the
middle and inferior temporal gyri, and the superior and
inferior frontal gyri.
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Fig. 4. Normalized wopt coefficients for: (a) Voxel-Direct, (b) Voxel-Regul-Spatial (FWHM = 4 mm), (c) Voxel-Regul-Spatial (FWHM = 8 mm), (d)
Voxel-Regul-CombineFisher (FWHM	4 mm, �loc ¼ 10), and (e) Voxel-Regul-CombineFisher (FWHM	8 mm, �loc ¼ 10).

Fig. 5. Gray probability map of a control subject: (a) original map, (b) preprocessed with a 4 mm FWHM Gaussian kernel, (c) preprocessed with

an 8 mm FWHM Gaussian kernel, (d)-(e) preprocessed with e�
�
2�g , where �g is the Laplace-Beltrami operator of the statistical manifold and �

corresponds to a 4 mm FWHM and to an 8 mm FHWM, respectively.



7.4.3 Combining Spatial and Anatomical Regularization

The results with both spatial proximity and tissue maps,
Voxel-Regul-Fisher, are shown in Figs. 4d and 4e. The OMH
is much more consistent with the brain anatomy. Compared
to Voxel-Regul-Spatial, it respects the topology of the cortex
more (Fig. 5).

The main regions in which atrophy increases the
likelihood of being classified as AD are very similar to
those found with the anatomical prior: the medial temporal
lobe (hippocampus, amygdala, parahippocampal gyrus),
the inferior and middle temporal gyri, the posterior
cingulate gyrus, and the posterior middle frontal gyrus.

We analyzed the stability of the obtained hyperplanes
using bootstrap for the approach Voxel-Regul-Fisher. We
drew 75 percent of each subject group to obtain a training
set on which classification approaches were trained and
the corresponding OMH estimated. The procedure was
repeated 1,000 times and thus 1,000 corresponding OMH
were obtained for each approach. We compared the
standard SVM to the proposed regularization (with �
corresponding to FWHM of 4 mm and 8 mm). For each
approach, we computed the average of the 1,000 OMH. To
estimate the stability of the OMH, we computed the norm
of the difference between any of the 1,000 normalized
OMH and the average normalized OMH. The norm was
significantly lower (Student t test, p < 0:001) with the
proposed regularization (0.64 for 8 mm, 0.65 for 4 mm)
than with the standard SVM (0.68). The spatially regular-
ized approach thus resulted in more stable hyperplanes.

7.5 Classification Performances

7.5.1 Evaluation

We assessed the classification accuracies of the different
classifiers the same manner as in [10] and on the same
images. As a result, in order to obtain unbiased estimates
of the performances, the set of participants was randomly
split into two groups of the same size: a training set and a
testing set (Table 1). The division process preserved the age
and sex distribution. The training set was used to
determine the optimal values of the hyperparameters of
each method and to train the classifier. The testing set was
then only used to evaluate the classification performances.
The training and testing sets were identical for all methods,

except for those four cases for which the cortical thickness

pipeline failed. For the cortical thickness methods, as

mentioned in [10], four subjects were not successfully

processed by the FreeSurfer pipeline. Those subjects could

not be classified with the SVM and were therefore

excluded from the training set. As for the testing set, since

those subjects were neither misclassified nor correctly

classified, they were considered as 50 percent misclassified.
The optimal parameter values were determined using a

grid-search and leave-one-out cross validation on the

training set. The grid search was performed over the ranges

C ¼ 10�5; 10�4:5; . . . ; 103 for the cost parameter of the

C-SVM (� ¼ 1
2NC ), � 2 f�=�j� 2 f0; 0:25; . . . ; 6g; � 2 SpðLÞg,

FWHM ¼ 0; 2; . . . ; 8 mm and �loc ¼ 5; 10 mm.
For each approach, the optimized set of hyperparameters

was then used to train the classifier using the training

group; the performance of the resulting classifier was then

evaluated on the testing set. In this way, we achieved

unbiased estimates of the performances of each method.

7.5.2 Classification Results

The results of the classification experiments are summar-

ized in Table 2. The accuracies ranged between 87 and

91 percent for the 3D case. The highest accuracy was

obtained with Voxel-Regul-CombineFisher and the lowest

with Voxel-Regul-CombineGraph. With no regularization, the

classification accuracy was 89 percent.
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Fig. 6. Normalized wopt coefficients for Thickness-Regul-Atlas. From (a) to (d), � ¼ 0; 2; 4; 6.

TABLE 2
Classification Performances in Terms of Accuracies,

Sensitivities (Sens), and Specificities (Spec)



As for the surface case, Thickness-Direct reached 83 per-
cent accuracy. As for the spatially and anatomically
regularized approaches, the obtained accuracies were 84
and 85 percent with Thickness-Regul-Spatial and Thickness-
Regul-Atlas, respectively.

On the whole there were no statistically significant
differences in terms of classification accuracies, even
though classification performances were slightly improved
by adding spatial and/or anatomical regularization in
most cases.

7.5.3 Influence of �

In this section, we further assess the influence of the
� parameter on the classification performances. The
C parameter of the SVM was fixed to one. The accuracies
functions of � are reported in Fig. 7. It mainly yielded
hump-shaped curves. The spatial or anatomical regulariza-
tion improved the classification. However, a too-large
amount of regularization can lead to a decrease in the
classification performances.

8 DISCUSSION

In this contribution, we proposed using regularization
operators to add spatial and anatomical priors into SVM
for brain image analysis. We show that this provides a
flexible approach to model different types of proximity
between the features. We proposed derivations for both 3D
image features, such as tissue concentration maps, or
surface characteristics, such as cortical thickness.

8.1 Different Proximity Models

We first considered the case of regularization based on
spatial proximity, which results in spatially consistent
OMH making their anatomical interpretation more mean-
ingful. We then considered a different type of proximity
model which allows modeling higher level knowledge,
which we call anatomical proximity. In this model, two

voxels are considered close if they belong to the same brain
network. For example, two voxels can be close if they
belong to the same anatomical region. This can be seen as a
“short-range” connectivity. Another example is that of
“long-range” proximity, which models the fact that distant
voxels can be anatomically connected, through white matter
tracts, or functionally connected, based on fMRI networks.
This approach can be directly applied to both 3D images
and cortical surfaces. Unfortunately, the efficient imple-
mentation was obtained at the cost of the spatial proximity.
We thus propose to combine the anatomical and the spatial
proximities. We consider two different types of formula-
tions: a discrete viewpoint in which the proximity is
encoded via a graph, and a continuous viewpoint in which
the data lies on a Riemannian manifold.

8.2 Combining Spatial and Anatomical
Regularization

There are two different viewpoints to combine the spatial
and anatomical regularization. The first one is to consider
the different types of proximity as two separate concepts.
The combination can thus be done by just adding the two
different regularization terms up. This is appropriate when
the anatomical proximity models “long-range” proximity
or connectivity. This is less appropriate for local anatomical
information such as the tissue types.

Another way to combine spatial and anatomical in-
formation is to consider such a combination as a modifica-
tion of the local topology induced by the spatial information
with respect to some given anatomical priors. In the discrete
case, local behaviors could have been encoded using
histogram distances such as the �2 distance or the Kull-
back-Leibler divergence, which is in fact closely related to
the Fisher metric (e.g., [39]). In this paper, we chose to
describe local behaviors from the continuous viewpoint.

We propose a single framework to naturally integrate
various priors such as tissue information, atlas information,
and spatial proximity. In this approach, instead of con-
sidering the voxels as such, each voxel is described by a
probability distribution informing us about the atlas regions
to which the voxel could belong, the tissue types, and some
information about the spatial location. As for the spatial
information, it can be seen as a confidence index about the
spatial location at each voxel and could be adapted to a
specific registration algorithm. The distance between two
voxels is then given by the Fisher metric.

The first limitation of this approach is that, in its current
formulation, this framework is not very appropriate for
binary atlases for two reasons. The first reason is the
smoothness assumptions on the probability family. The
second reason is the discretization. The metric tensor is
evaluated at each voxel. As a result, as the norm of the
metric tensor is very large at the frontier between two
regions, the diffusion process is therefore stopped on a two-
voxel-wide band along the frontier, which is very wide
compared to the brain structures or the cortical thickness.
Upsampling the image to avoid this effect is not an option
due to the image size. Another limitation is that the
continuous framework does not allow modeling long-range
connections. This is left for future work.
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Fig. 7. Accuracies in function of the diffusion parameter (C ¼ 1). (a)
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�loc ¼ 5, dashed: �loc ¼ 10). (b) Voxel-Regul-Atlas. (c) Thickness-Regul-
Spatial. (d) Thickness-Regul-Atlas.



8.3 Penalty Function

In this study, we forced the classifier to consider as
similar voxels highly connected according to the graph
adjacency matrix or close according to the given metric.
This was done by penalizing the high-frequency compo-
nents of the Laplacian operator. The penalty used in this
study was exponential and thus led to the diffusion
kernel. Many other penalty functions, such as the
regularized Laplacian, the p-Step Random Walk, or the
Inverse Cosine [37], for instance, could have been used
instead of the diffusion process.

Nevertheless, using the diffusion process as a penalty
function extends the mostly used framework which consists
of smoothing the data with a Gaussian smoothing kernel as
a preprocessing step.

8.4 Evaluation

Evaluation on simulated data showed that, in the presence of
noise, the proposed spatial and anatomical regularization
can achieve higher classification accuracies than the stan-
dard SVM. Moreover, when anatomical prior is added (using
the combined regularization), one avoids mixing different
regions (for example, different tissues in the context of brain
imaging), which also leads to increased classification
performances. Thus the proposed approach seems attractive
for irregular data. On the other hand, in cases where the data
would be smooth, an alternative approach could consist of
placing a smoothing norm on the input space rather than on
the weight space. The study of such an alternative approach
is beyond the scope of this paper.

Evaluation of our approaches was then performed on
299 subjects from the ADNI database: 137 patients with
Alzheimer’s disease and 162 elderly controls. The results
demonstrate that the proposed approach achieves high
classification accuracies (between 87 and 91 percent). These
performances are comparable and even often slightly higher
than those reported in previously published methods for
classification of AD patients. We have compared them on
the same group of subjects in [10] using the same features.
A linear SVM without any spatial regularization reached
89 percent accuracy. The methods STAND-score [8] and
COMPARE [13] reached 81 percent accuracy and 86 percent
accuracy, respectively, whereas the regularized approaches
presented in this study ranged between 87 and 91 percent.

Moreover, the proposed approaches allow obtaining
spatially and anatomically coherent discrimination pat-
terns. This is particularly attractive in the context of
neuroimaging in order to relate the obtained hyperplanes
to the topography of brain abnormalities. In our experi-
ments, the obtained hyperplanes were largely consistent
with the neuropathology of AD, with highly discriminant
features in the medial temporal lobe, as well as lateral
temporal, parietal associative, and frontal areas. These areas
are known to be implicated in pathological and structural
abnormalities in AD (e.g., [48], [61]).

9 CONCLUSION

In conclusion, this paper introduces a general framework to
introduce spatial and anatomical priors in SVM. Our
approach allows integrating various types of anatomical

constraints and can be applied to both cortical surfaces and

3D brain images. When applied to the classification of

patients with Alzheimer’s disease, based on structural

imaging, it resulted in high classification accuracies. More-

over, the proposed regularization allows obtaining spatially

coherent discriminative hyperplanes, which can thus be

used to localize the topographic pattern of abnormalities

associated to a pathology. Finally, it should be noted that

the proposed approach is not specific to structural MRI, and

can be applied to other pathologies and other types of data

(e.g., functional or diffusion-weighted MRI).
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