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Abstract 

Background:  Feature selection is often used to identify the important features in 
a dataset but can produce unstable results when applied to high-dimensional data. 
The stability of feature selection can be improved with the use of feature selection 
ensembles, which aggregate the results of multiple base feature selectors. However, a 
threshold must be applied to the final aggregated feature set to separate the relevant 
features from the redundant ones. A fixed threshold, which is typically used, offers no 
guarantee that the final set of selected features contains only relevant features. This 
work examines a selection of data-driven thresholds to automatically identify the rel-
evant features in an ensemble feature selector and evaluates their predictive accuracy 
and stability. Ensemble feature selection with data-driven thresholding is applied to 
two real-world studies of Alzheimer’s disease. Alzheimer’s disease is a progressive neu-
rodegenerative disease with no known cure, that begins at least 2–3 decades before 
overt symptoms appear, presenting an opportunity for researchers to identify early 
biomarkers that might identify patients at risk of developing Alzheimer’s disease.

Results:  The ensemble feature selectors, combined with data-driven thresholds, 
produced more stable results, on the whole, than the equivalent individual feature 
selectors, showing an improvement in stability of up to 34%. The most successful 
data-driven thresholds were the robust rank aggregation threshold and the threshold 
algorithm threshold from the field of information retrieval. The features identified by 
applying these methods to datasets from Alzheimer’s disease studies reflect current 
findings in the AD literature.

Conclusions:  Data-driven thresholds applied to ensemble feature selectors provide 
more stable, and therefore more reproducible, selections of features than individual 
feature selectors, without loss of performance. The use of a data-driven threshold elimi-
nates the need to choose a fixed threshold a-priori and can select a more meaningful 
set of features. A reliable and compact set of features can produce more interpretable 
models by identifying the factors that are important in understanding a disease.
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Background
Healthcare datasets present many challenges to both machine learning and statistics 
alike. Their data are often heterogeneous, censored, high-dimensional and have missing 
information. In high-dimensional datasets, with a large number of features or variables 
and a small number of samples, typically only a small proportion of features may be rel-
evant to the condition under investigation. Feature selection is generally used to reduce 
the dimension of the data, improve understanding of the problem and produce more 
interpretable models by identifying the factors that are important in understanding a 
disease [1]. A reliable model with fewer features can also lead to the development of 
more cost-effective procedures for identifying patients at risk of a disease.

However, applying feature selection to high-dimensional datasets often produces 
unstable results [2]. Stability, or reproducibility, of feature selection can be defined as the 
robustness of the selected features to perturbations in the data [3]. One of the key prob-
lems in modelling high-dimensional data, particularly where there are many redundant 
features, is the high variance of the models and feature selectors trained on this data. 
The same feature selection algorithm may select different subsets of features when run 
on different samples of the data while achieving a similar level of predictive accuracy [4]. 
If clinicians are to have confidence in machine learning models developed on healthcare 
datasets then the results of these models must be reproducible and therefore generalis-
able to new data.

Feature selection ensembles aggregate the results of multiple base feature selectors to 
improve stability and predictive accuracy [5]. One drawback of ensemble feature selec-
tors, however, is that they do not provide a natural threshold to separate the relevant fea-
tures from the irrelevant ones. A common method of setting this threshold is to choose 
a pre-determined fixed percentage of the number of features [6], but this offers no guar-
antee that the final set of selected features contains only relevant features. A data-driven 
threshold could overcome this problem and free the user from having to select and test 
different fixed thresholds [7].

Typically, simple univariate filters have been used as the base feature selectors in fea-
ture selection ensembles because they are computationally inexpensive, but they do not 
account for the interactions between features. More recently feature selection ensem-
bles have been created from multivariate models [8, 9] and these models provide more 
opportunities for developing data-driven thresholds.

The focus of this work is to develop and test several data-driven thresholding meth-
ods in a novel context, that of ensemble feature selection using multivariate base feature 
selectors. The first method uses the 75% quartile of the feature importance scores as a 
threshold. The second method uses kernel density estimation (KDE) to cluster the fea-
ture importance scores and exclude the irrelevant features based on these clusters. The 
final method uses permutations of random probes [10], which are random features that 
have no association with the target variable, to identify the relevant features. While these 
methods have been used in other contexts, to the best of our knowledge they have not 
previously been applied to ensemble feature selection.

To demonstrate the applicability of these methods to clinical data, they are applied to 
data from two quite different real-world Alzheimer’s disease (AD) studies—the Sydney 
Memory and Ageing Study (MAS) and the Alzheimer’s Disease Neuroimaging Initiative 
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(ADNI). AD is a progressive neurodegenerative disease that results in declining cogni-
tive function, such as memory, reasoning ability and executive function, and is ultimately 
fatal. Although the cause of this disease is not completely understood, the underlying 
pathological processes begin at least two to three decades before overt symptoms appear 
[11]. This presents an opportunity for researchers to determine early biomarkers that 
might help identify patients at risk of developing AD.

Ensemble feature selection has rarely been applied outside the context of classification. 
Data in healthcare, however, are often censored, meaning that the event of interest has 
not occurred during the study period, so the final outcome is unknown. Censored data 
are particularly common in AD studies as it is a slowly developing disease. The pres-
ence of censored data precludes the use of standard classification and regression tech-
niques, but several machine learning algorithms have been adapted for survival analysis 
to handle censored data. It is these algorithms that we have chosen to investigate in this 
study, with the aim of expanding the use of ensemble feature selection to survival analy-
sis. The methods developed here are applied to three real-world AD datasets to identify 
biomarkers for AD.

This work overcomes the limitations of previous studies on ensemble feature selec-
tion in several ways. First, previous studies have typically applied a fixed threshold to 
determine the final set of selected features. A fixed threshold does not adapt to different 
sized datasets and may include some irrelevant features or omit some important fea-
tures. Our work overcomes this problem by developing data-driven thresholds that can 
automatically adapt to the size of the dataset under investigation and therefore eliminate 
the need to test different fixed thresholds. Second, ensemble feature selectors have often 
been constructed from simple univariate filters, which do not account for the interac-
tions between features that are common in complex biological systems. Although more 
recent works have begun to use multivariate embedded feature selectors to overcome 
this problem, our work explores a number of feature selectors that have not been used in 
an ensemble of this type before, as well as adaptations of feature selectors for censored 
data. Finally, all previous studies referenced in this work have been applied to the task of 
classification only. Our work ensures that other tasks, including regression and survival 
analysis, can benefit from the superior performance and stability achieved by ensemble 
feature selection.

Ensemble feature selection

Ensemble feature selectors apply a base feature selector to multiple subsamples of the 
training data, aggregate the results and apply a threshold to the resulting feature set. In 
the same way that bagging, boosting and stacking can improve the performance and 
reduce the variance of supervised learning methods, ensemble feature selection aims to 
improve the stability and predictive accuracy of the final subset of selected features [12]. 
The choice of the aggregation and thresholding methods are key elements that must be 
considered in the development of feature selection ensembles.

Ensemble feature selection was first proposed by Saeys et  al. [6], who constructed 
homogeneous ensembles using simple filters applied to 40 bootstrap samples of the 
data and a simple linear sum of the feature rankings as aggregator. They compared the 
stability and performance of individual feature selection techniques with those of the 
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ensembles and found that, in general, the ensemble techniques were more stable and 
had a similar predictive accuracy.

Other researchers have since conducted similar experiments, varying the feature 
selectors, the aggregators and the number of feature subsets in the ensemble [8, 9, 13–
19]. The key characteristics of these studies and their contributions are summarised in 
Table 1.

Most existing studies of feature selection ensembles use only simple filters as base 
methods, as these are the most computationally efficient methods to apply to high-
dimensional data. The filters chosen most frequently include chi-squared, information 
gain and ReliefF [9, 13, 18]. A notable exception [8] examines three sparse feature selec-
tors, which return a subset of important features, including regularised regression, a 
tree-based gradient boosting machine and a deep neural network. Pes [9] and Sechidis 
et al. [19] also investigated a range of feature selection algorithms—univariate and multi-
variate, filters and embedded methods—in homogeneous ensembles in various applica-
tion domains. But the use of multivariate feature selectors in ensemble feature selection 
is rare.

Thresholding of feature selection ensembles

Much of the research on ensemble feature selection applies one or more fixed thresh-
olds to the final feature selection in order to identify the most important features. In the 
case of gene rank aggregation, where the number of genes can run into the thousands or 
even tens of thousands, a threshold of 1% of the total number of features is common [6, 
13, 16]. Various other values have been suggested, including log2(n) where n is the total 
number of features [17], 5% [6], 10% and 20% [9] of the total number of features.

As the number of relevant features is not known a-priori, a fixed threshold could 
include some irrelevant features or alternatively reject some relevant ones. Data-driven 
thresholding can potentially overcome this problem and also free the user from having 
to select and test different fixed thresholds for each model [7].

Very little work has been reported on developing an automatic or data-driven thresh-
olding method for ensemble feature selectors and this is an open area of research. Some 
early related works used the "biggest gap" between consecutive aggregated values as a 
point of threshold [20]. While intuitively this method has merit, in practice it may result 
in a very small or a very large final feature subset and is not always reliable.

Seijo-Pardo et  al. [20] experimented with the use of three different data complexity 
measures to set automatic thresholds. However, these measures are only applicable to 
classification and not to analysis of censored data.

Other researchers have investigated how to separate the important features from the 
redundant ones in individual feature selectors that return an importance score for each 
feature, such as random forests [10, 21–23]. Many of these methods use ’random probes’ 
[21–23] to determine this boundary. A random probe is a random variable that has no 
association with the target variable and is typically created by randomly permuting the 
values of the existing features, thereby maintaining the same statistical distribution as 
the original features. Random probes are inserted as additional features into the data 
and the idea is that these features should be ranked last or at least as low as other irrele-
vant features. Features that are ranked below the probe can be discarded. The method of 
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random probes is used in the popular Boruta feature selector [23]. Huynh-Thu et al. [10] 
were the first to suggest examining random probes in the context of stability analysis.

One-dimensional clustering of the feature importance scores is another method that 
may be useful in determining a threshold. The popular K-Means clustering method [24] 
has several limitations that make it unsuitable for this application, however. It requires 
the specification of the number of clusters a-priori, cannot detect non-spherical clusters 
and does not account for cluster density [25]. MAP-DP [25] is an alternative to K-means 
and was developed to overcome the limitations of K-means. It can handle clusters of dif-
ferent shapes and determines the number of clusters from the data, but it requires many 
other parameters to be specified and so needs an in-depth knowledge of the algorithm.

Rodriguez and Liao [39] proposed a method of non-parametric clustering using kernel 
density estimation (KDE), that is able to find the correct number of clusters and detect 
non-spherical clusters. The cluster centres are defined as the local maxima in the den-
sity of data points. Once the centres have been identified, each point is assigned to the 
same cluster as its nearest neighbour of higher density. KDE overcomes the limitations 
of K-means clustering [24] and MAP-DP [25].

Aggregation of feature selection ensembles

The problem of combining several ranked lists into a single final ranked list has been 
studied in fields as diverse as information retrieval, voting theory and bioinformatics, 
and various techniques have been proposed [18]. In statistics, this is known as the con-
sensus ranking problem—"given m rankings of n objects, which ranking best represents 
the consensus opinion?" [26]. The m rankings may contain ties, be incomplete, and may 
be weighted.

Simple mathematical combinations, such as the mean, median or sum of the feature 
ranks or weights, are effective aggregation techniques and widely used [6, 13, 14, 16]. A 
count of the number of times each feature is selected by the base methods is also a com-
monly used method [16, 27]. Intuitively, if a feature is consistently given a high ranking 
in different data samples or by different methods, then it is likely to be important.

Wald et al. [18] carried out an extensive comparison of nine different rank aggrega-
tion techniques across twenty-six bioinformatics datasets and noted certain similarities 
between them. For example the Borda Count [28], a method often used in voting theory, 
is mathematically equivalent to the arithmetic mean and will rank features in the same 
order.

In some cases aggregation and thresholding are combined. Kolde et al. [29] proposed 
an algorithm called Robust Rank Aggregation (RRA) for prioritised lists of genes, that 
assigns a significance score for each gene. It determines the probability that a randomly 
generated rank list would have scored that feature more highly. The lower this probabil-
ity, the more important the feature is. This method not only ranks the features but pro-
vides a statistically relevant threshold as well.

RRA can be expressed as follows. If r is an ordered vector of ranks and r̂ is the rank 
vector generated by the null model (i.e. sampled from the uniform distribution), then 
under the null model, the probability that r̂(k) ≤ x  can be expressed as a binomial 
probability:
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Then the final score for the rank vector r is defined as the minimum of p-values:

In the field of information retrieval, the number of items being ranked is usually very 
large and so it is not feasible to access every item in the database to calculate an aggre-
gated score. More efficient techniques are needed for tasks such as the ranking of web 
search results or legal documents. The threshold algorithm (TA) is a simple yet elegant 
algorithm that allows early stopping and yields the top k features, where k must be cho-
sen in advance [30]. Elements are accessed sequentially from the ranked lists i.e. the first 
element of each list is examined first, then the second element of each list and so on. At 
each sequential access a threshold equal to the sum of the scores in that access is set. For 
any items seen in the current access, random accesses are made to sample a set of scores 
for that element and an aggregate is calculated. A list of the highest scoring k items seen 
so far is maintained and when all items in that set are greater than or equal to the thresh-
old, the algorithm terminates. Therefore, it performs both aggregation and thresholding.

Another algorithm from the domain of information retrieval that can perform both 
aggregation and thresholding is the MedRank algorithm [31]. The MedRank algorithm 
also accesses the rankings sequentially. When an element has appeared in more than half 
of the ranked lists, it is output to the aggregated ranking. The algorithm can terminate 
early if only the top k rankings are required.

This work proposes three different data-driven thresholding techniques for ensemble 
feature selection, adapted from other areas of research and applied in a novel context. 
These techniques are tested with two different real-world AD datasets and compared to 
a selection of fixed thresholds.

Stability measures

Somol and Novovičová [32] studied measures of feature selection stability and noted 
several desirable properties. The measure should be bounded by 0 and 1 where a value 
of 1 should imply a high level of stability, whereas a value of 0 should imply a low level of 
stability. The measure should also be capable of evaluating the stability of feature sets of 
varying sizes.

Kuncheva’s stability index has been used by several authors investigating the stability 
of feature selection subsets [8, 13, 16]. The index for two subsets S1, S2 is defined as:

where n is the total number of features, k is the size of the two sets and r is the size of the 
intersection of the two sets. This index can only be applied to subsets of identical size.

Lustgarten’s adjusted stability measure [33] is an improvement on Kuncheva’s measure 
in that it handles subsets of varying sizes, but does not fulfil the other desired properties. 
Lustgarten’s measure can be defined as

(1)βk ,n(x) :=

n

l=k

n
l

xl(1− x)n−l

(2)ρ(r) = min
k=1,...,n

βk ,n(r)

(3)Ic(S1, S2) =
rn− k2

k(n− k)
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Somol and Novovičová’s [32] relative weighted consistency of a set of feature subsets is 
an ideal measure as it meets the desired properties and does not overemphasise low-fre-
quency features. The relative weighted consistency CWrel(S,Y ) of system S characterised 
by N, n and for given Y is defined as:

where |Y | is the total number of features, Ff is the number of occurrences (frequency) of 
feature f ∈ Y  in system S, N is the total number of occurrences of any feature in system 
S, n is the number of feature sets and D = nmod|Y |,H = Nmodn.

Methods
Study cohort

Experiments in this work were conducted on data from two real-world AD datasets—
the Sydney Memory and Ageing Study [34] and the Alzheimer’s Disease Neuroimag-
ing Initiative [35]. The characteristics of both studies are summarised in Table 2 and a 
brief description of each is given in the sections titled "Sydney memory and ageing study 
(MAS)" and "Alzheimer’s disease neuroimaging initiative (ADNI)". Full details can be 
found in the references provided.

The two datasets are quite different in terms of their study cohorts, data collected and 
depth of investigation and as such their features are not comparable. Instead, the aim in 
applying the methods developed here to these two datasets is to demonstrate their appli-
cability to clinical data.

Sydney memory and ageing study (MAS)

The Sydney Memory and Ageing Study (MAS) is a population-based cohort study 
aimed at examining the characteristics and prevalence of mild cognitive impairment 
and dementia. Full details of the study can be found [34]. The MAS data set contains a 
diverse collection of data including demographics, genetics, cognitive data, medical his-
tory, family history, medical examination, blood test results,  psychological scores and 

(4)SA
(

Si, Sj
)

=
r −

kikj
n

min
(

ki, kj
)

−max
(

0, ki + kj − n
)

(5)CWrel(S,Y ) =
|Y |

(

N − D +
∑

f ∈Y Ff
(

Ff − 1
)

)

− N 2 + D2

|Y |
(

H2 + n(N −H)− D
)

− N 2 + D2

Table 2  Study characteristics

MAS ADNI-1

Study design Population based cohort 
study

Multisite longitudinal study

Sample size (n) 873 819

Number of features (p) 140 216

Censoring rate 93% 47%

Intervals between waves 2 years After 3, 6, 12, 18, 24, 36 and 48 months

Age at baseline 70–90 years 55 – 90 years

Number of cases of AD 64 437
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functional data. Data that were used in forming a diagnosis of AD have not been used in 
the models developed here to predict AD.

The experiments reported here used only the baseline data, collected in the first wave 
of MAS. Participants from a non-English-speaking background were excluded, leaving 
873 participants from the original 1037. The event of interest in the survival analysis was 
a diagnosis of possible or probable Alzheimer’s disease, over a period of 6 years, from 
wave 1 to wave 4 of the study. During this period 64 people developed Alzheimer’s dis-
ease, indicating a censoring rate of 93%.

The Human Research Ethics Committees of the University of New South Wales and 
the South Eastern Sydney and Illawarra Area Health Service granted ethics approval for 
the MAS study and informed written consent was given by all participants and inform-
ants. The MAS study and this work were carried out in accordance with the MAS Gov-
ernance guidelines, which are based on relevant University of New South Wales and 
National Health and Medical Research Council research and ethics policies.

Alzheimer’s disease neuroimaging initiative (ADNI)

The ADNI was launched in 2003 as a public–private partnership, led by Principal Inves-
tigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether 
serial magnetic resonance imaging (MRI), positron emission tomography (PET), other 
biological markers, and clinical and neuropsychological assessment can be combined to 
measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s dis-
ease (AD).

ADNI participants were aged 55–90 years at enrolment and were recruited from 57 
sites in the United States and Canada. The ADNI data set contains data from a clini-
cal evaluation, neuropsychological tests, genetic testing, lumbar puncture, and MRI and 
PET scans. Subjects who participated in ADNI phase 1 were selected for this study. The 
event of interest in the survival analysis was a diagnosis of probable AD, over the period 
of the ADNI 1 study. A total of 200 participants with early AD were enrolled at the start 
of the study and a further 237 participants developed AD during the course of the study. 
Data that were used in forming a diagnosis of AD, have not been used in the models 
developed here to predict AD.

Experimental framework

To prepare the data for the feature selection algorithms, missing data were imputed 
using the method of multiple imputation by chained equations in the R package mice 
[36]. Imputation was performed within the cross-validation loop.

Continuous features were normalised, by subtracting the mean and dividing by the 
standard deviation, and multiple values for the same measurement, e.g. blood pressure, 
were averaged. Levels of categorical features containing only a small number of sam-
ples were combined where possible. Further details of pre-processing steps can be found 
[37].

The R [38] package mlr (Machine Learning in R) [39] was used as a basis to carry out 
the experiments, while customised code was written to construct the ensembles. All of 
the ensembles were constructed within a fivefold cross-validation framework, repeated 
5 times. Random probes were generated for each subsample of the data. Experiments 
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were performed on the computational cluster Katana, supported by Research Technol-
ogy Services at UNSW Sydney [40].

Base feature selectors

The ensemble feature selectors were constructed from six different base feature selec-
tors, each capable of selecting features from high-dimensional, heterogeneous, censored 
data. Four sparse methods, which return a subset of important features, and two filter 
methods, returning a score for each feature, were chosen. The four sparse methods were 
penalised regression for the Cox model (specifically the LASSO [41] and the ELASTIC-
NET [42]), the Cox model with gradient boosting (GLMBOOST [43]) and the Cox 
model with likelihood-based boosting (COXBOOST [44]). The two filter methods were 
the maximally selected rank statistics random forest (RANGER [45]) and a univariate 
Cox filter (UNI). Each represents a different style of feature selection algorithm. The Cox 
filter was the only univariate method—the others are all multivariate feature selectors.

The absolute values of the coefficients of the features were used as feature importance 
scores for the sparse models—the LASSO, ELASTIC-NET, GLMBOOST and COX-
BOOST. These coefficients are meaningful importance scores because the data were 
normalised within the cross-validation loop prior to modelling. The other two models 
provide a feature importance score for each feature. For the RANGER, this was cal-
culated using the method of permutation importance and for the univariate filter, the 
feature importance score was the value of the C-Index returned by a Cox Proportional 
Hazards model applied to each feature individually.

Further information about the functioning of these methods and the R packages used 
to implement them can be found [37].

Each of these feature selectors was first tested in its individual form. Within a frame-
work of 5 repeats of 5-fold cross validation, the feature selector was applied to the train-
ing data to select relevant features. Several fixed thresholds (10%, 25%, 33% of the total 
number of features) were applied to the results of the filter methods, but as the sparse 
methods already select a subset of features, no further thresholding was applied to their 
results. A Ridge survival analysis model was trained and tested on the reduced dataset 
and the performance and stability of the individual models were compared to those of 
the ensemble models. The Ridge was chosen because of its superior performance in pre-
vious experiments [37].

Ensemble construction

Homogeneous feature selection ensembles were constructed by applying the same fea-
ture selector to 50 bootstrapped samples of the training data, producing 50 subsets of 
features, as shown in Fig. 1. An aggregator was used to combine these feature subsets 
into a single set and the resulting feature set was used as input to a machine learning 
model, in this case a survival analysis model, to assess its accuracy.

Five different aggregators were used to combine the feature subsets into a final feature 
set. Three of these aggregators also perform thresholding:

1.	 Mean rank (MR): The features in each subset were ranked according to their fea-
ture importance scores or weights and the mean of these ranks across all subsets was 
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taken as the final aggregated score. The features were again ranked by this aggregated 
score.

2.	 Mean weight (MW): The weights or feature importance scores were averaged across 
all feature subsets and the features were ranked by the aggregated score.

3.	 Robust Rank Aggregation (RRA) [29]: This method calculates a p-value, a statistically 
significant threshold, for each feature. A range of different p-values was tested and 
in each case only features with a p-value less than that being tested were selected. 
The abbreviations RRA05, RRA10, RRA15, RRA20 and RRA25 refer to the RRA 
method tested with p-values of 0.05, 0.1, 0.15, 0.2, 0.25 respectively. This method 
performs both aggregation and thresholding, so no other thresholding techniques 
were applied.

4.	 Threshold Algorithm (TA): In each fold of the training data, the number of items to 
be returned, k, was set as the mean length of the 50 feature subsets generated by 
the ensemble. Elements were accessed sequentially from the ranked lists. At each 
sequential access a threshold equal to the sum of the scores in that access was set. A 
list of the highest scoring k items seen so far was maintained. When all items in that 
set were greater than or equal to the threshold, the algorithm terminated. This algo-
rithm performs both aggregation and thresholding, so no other thresholding tech-
niques were applied

5.	 Medrank Algorithm (MA): In each fold of the training data, the number of features to 
be returned, k, was set as the mean length of the 50 feature subsets generated by the 
ensemble. Features were accessed sequentially from the ranked lists. When a feature 
appeared in more than 20% of the ranked lists, it was output to the aggregated list. 
(Here we used 20% rather than 50% as in the original algorithm because the signal 
is weak and very few features appear in more than half the lists). If the length of the 
aggregated list reached k, the algorithm terminated early.

A mixture of fixed and data driven thresholds were tested for comparison. Three dif-
ferent fixed thresholds were chosen—10%, 25% and 33% of the total number of features, 
applied after aggregation.

Three different data-driven thresholds were also tested. The first method used the 75% 
quartile of the feature importance scores as a threshold. In preliminary testing the 25% 
and 50% quartiles were also examined, but the 75% quartile provided consistently better 
results, and so only that method has been included here.

Fig. 1  A homogeneous feature selection ensemble. Sample1, Sample 2 … Sample n are randomly sampled 
subsets of the training data. The same feature selector is applied separately to each sample, generating n sets 
of selected features. An aggregator is applied to combine these feature sets into a single set, a threshold is 
applied and the resulting feature set is used as input to a survival model to assess its accuracy
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The second method used kernel density estimation (KDE) to cluster the 1-dimensional 
importance scores, and this is the first time KDE has been used as a threshold in the 
context of ensemble feature selection. The cluster centres are defined as the local max-
ima in the density of data points. Each point is assigned to the same cluster as its near-
est neighbour of higher density. In the case of 1-dimensional data, KDE can be plotted, 
as shown in Fig. 2. The green dots show the local maxima or cluster centres. The red 
dots show the local minima, which are the boundaries between clusters. A key assump-
tion of the method proposed here is that the majority of features are irrelevant, which is 
often the case in high-dimensional data. Then the maximum peak in the kernel density 
plot will be the cluster centre for the irrelevant features. Therefore, any features with an 
importance score higher than the upper boundary of that cluster (i.e. higher than the 
next local minimum), are the relevant features.

KDE determines the number of clusters from the data but still requires a bandwidth 
(also called a smoothing parameter) to be selected. Here the well-known rule of thumb, 
Silverman’s rule, was used to select the bandwidth [46]. If the selected bandwidth was 
too large and produced only a single local maximum, and no local minima, a smaller 
value was generated by multiplying the original value by a factor of 0.75, and the density 
estimation was repeated. If a valid value was not found, no thresholding was performed.

The final method of data-driven thresholding tested used random probes to determine 
the boundary between the relevant and irrelevant features [10, 21–23]. A random probe 
is a random variable that has no association with the target variable and is typically cre-
ated by randomly permuting the values of the existing features, thereby maintaining the 
same statistical distribution but breaking the correlation with the target variable. The 
values of the probes were randomly permuted on each of the 50 iterations. Any feature 
that was ranked below the rank of the highest random probe rank was considered irrele-
vant. This is the first time that random probes have been used in the context of ensemble 
feature selection, although a similar idea was suggested by Huynh-Thu et al. [10].

Random probes were originally developed for use with continuous numeric data and 
feature selectors that return a score for each feature, so some adjustment was necessary 
to use them with heterogeneous data and sparse feature selectors. First, it is possible 
that a sparse feature selector may not select any of the random probes, meaning that 
none are given a feature importance score, and therefore a comparison cannot be made 
between the importance of the probes and the importance of the features. In this case 

Fig. 2  Example plot of kernel density estimate for one-dimensional clustering. The green dots show the local 
maxima, which are the cluster centres. The red dots show the local minima, which are the cluster boundaries. 
The maximum of the local maxima is the cluster centre for the irrelevant features
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all of the features selected by the sparse feature selector were considered relevant. Sec-
ond, randomly permuting Boolean features (with values limited to TRUE or FALSE) and 
categorical features (with values limited to a small set of possible values) can leave some 
values in the same position, and so some of the random probes can achieve quite high 
importance scores, potentially eliminating truly important features. The random probes 
generated from Boolean features were excluded from the dataset for this reason. How-
ever, the random probes generated from categorical features were retained as the larger 
number of possible values ensured a more random permutation.

Performance metrics

The prediction accuracy of the feature selection ensembles was assessed by the value of 
the Concordance Index (C-Index) achieved by a RIDGE survival model trained on the 
features selected by the ensemble. The Ridge model was chosen for its superior perfor-
mance and stability in prior experiments [37]. The C-Index measures the proportion of 
pairs where the observation with the higher actual survival time has the higher probabil-
ity of survival as predicted by the model [47]. The performance score for the ensemble 
was the mean of the performance scores over five repeats of 5-fold cross validation.

Each ensemble feature selector or individual method generated 25 final feature subsets 
from the 5 repeats of 5-fold cross validation. The stability of each ensemble was meas-
ured by applying Somol and Novovičová’s relative weighted consistency [32] to these 25 
feature subsets. This metric was chosen as it is capable of evaluating feature selectors 
that yield subsets of varying size.

Results
The aim of this work is to develop and test a variety of data-driven thresholds for use 
with homogeneous feature selection ensembles, so as to free the user from having to 
select a fixed threshold. Three methods of data-driven thresholding were applied in a 
novel context and evaluated—the 75% quartile of the feature importance scores, KDE 
and the best random probe score. Three existing methods of thresholding, that combine 
thresholding with aggregation, were also tested—the RRA, and the Medrank (MA) and 
Threshold (TA) algorithms from the field of information retrieval. Three fixed thresholds 
were included for comparison. The thresholding methods were applied to homogeneous 
feature selection ensembles constructed from six different base feature selectors, capable 
of handling high-dimensional, right-censored data, and the stability and predictive accu-
racy of the ensembles were compared to their equivalent individual form. The six base 
feature selectors were penalised regression for the Cox model (specifically the LASSO 
[41] and the ELASTIC-NET [42]), the Cox model with gradient boosting (GLMBOOST 
[43]), the Cox model with likelihood-based boosting (COXBOOST [44]), the maximally 
selected rank statistics random forest (RANGER [45]) and a univariate Cox filter (UNI). 
The features selected by these models were also examined as possible biomarkers for 
Alzheimer’s disease.

Following the method of Song et  al. [8], the predictive accuracy of the models was 
plotted against their stability in the graphs in Fig. 3 for the MAS dataset and Fig. 4 for 
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the ADNI dataset. Values further to the right of the graph indicate more stable models 
and values higher on the graph indicate models with a higher predictive accuracy.

Note that the sparse feature selectors are designed to select a subset of the most useful 
features, therefore in their individual form no further thresholding is applied and there 
is only a single result for the individual form of the model (represented by a pale blue 
star). However, in the case of the filter methods, which return a score for each feature, a 
threshold must always be applied, even in the individual form, to select the most useful 
features. Therefore, the filter methods have multiple results for the individual form of 
the model, one for each fixed threshold and for KDE.

Song et  al. [8] compared the overall performance of the models using the Euclid-
ean distance from the origin in the plots of predictive accuracy vs stability. Using this 
method, the best ensemble model overall for the MAS dataset was the RANGER model 
with the RRA threshold using a p-value of 0.15, and the best ensemble model for the 
ADNI dataset was the UNI model with the TA threshold. Both of these models use a 
data-driven threshold.

The graphs in Figs. 3 and 4 show that most of the ensemble models are more stable 
than the individual form of the same model, with a value further to the right on the 

Fig. 3  Experimental results from the MAS dataset. Each plot shows performance vs stability of one feature 
selector. The different shapes represent different aggregators, with a star shape representing the individual 
form, where the model is run only once and there is no aggregation of results. The different colours represent 
the different thresholds applied to the models. The abbreviations RRA05, RRA10, RRA15, RRA20 and RRA25 
refer to the RRA method tested with p-values of 0.05, 0.1, 0.15, 0.2, 0.25 respectively
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graph. In the MAS dataset, the greatest improvement in the Euclidean distance from 
the origin is once again seen in the RANGER model with the RRA threshold using 
a p-value of 0.15. In this case the ensemble shows an increase of 0.29 or 34% over 
the least stable individual model. In the ADNI dataset, the UNI model with the TA 
threshold shows the greatest improvement, with an increase of 0.32 or 32% over the 
least stable individual model. These improvements are mainly due to improved stabil-
ity, which can be observed in the graphs in Figs. 3 and 4.

The best threshold overall was determined by taking the average Euclidean distance 
from the origin for all models using each threshold. These results can be seen in the 
graph in Fig. 5 and in Table 3 where the thresholds are listed in order of performance. 
In the MAS dataset the top four performing thresholds (including all variations of 
RRA as one threshold) are data-driven thresholds, and these outperform the three 
fixed thresholds, while in the ADNI dataset the 10% fixed threshold is the top per-
forming threshold, but the other two fixed thresholds are the worst performing. The 
RRA aggregator showed similar performance across the range of p-values tested.

Fig. 4  Experimental results from the ADNI dataset. Each plot shows performance vs stability of one feature 
selector. The different shapes represent different aggregators, with a star shape representing the individual 
form, where the model is run only once and there is no aggregation of results. The different colours represent 
the different thresholds applied to the models. The abbreviations RRA05, RRA10, RRA15, RRA20 and RRA25 
refer to the RRA method tested with p-values of 0.05, 0.1, 0.15, 0.2, 0.25 respectively
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The fixed thresholds show varying performance across the two datasets, showing 
that a fixed threshold must be tailored to the data at hand and carefully selected. 
In the MAS dataset, the performance of the three fixed thresholds is in the mid-
dle of the range, while in the ADNI dataset, which has a different number of fea-
tures and samples, the fixed thresholds exhibit both the best and worst performance. 
It is clear that a fixed threshold must be carefully chosen to suit the dataset under 
investigation.

Fig. 5  Average Euclidean distance from the origin for each threshold for the MAS and ADNI datasets

Table 3  Average Euclidean distance from the origin for each threshold in the ADNI and MAS 
datasets, ordered from best to worst in each dataset, to show the relative performance of the 
methods

MAS ADNI

RRA15 0.973 0.1 1.125

RRA25 0.972 Best Probe 1.116

RRA10 0.971 Threshold 1.106

RRA05 0.971 RRA05 1.103

RRA20 0.970 RRA10 1.102

Threshold 0.968 RRA15 1.100

75% quantile 0.960 RRA20 1.098

Medrank 0.947 RRA25 1.097

0.33 0.939 Medrank 1.094

0.25 0.939 KDE 1.086

0.1 0.933 75% quantile 1.082

None 0.920 None 1.069

KDE 0.881 0.25 1.069

Best Probe 0.852 0.33 1.064
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Interpreting the features selected

The features selected by the ensemble feature selectors may be indicative biomarkers for 
AD. However, because of the stochastic nature of machine learning, even with improved 
stability each combination of feature selector, aggregator and threshold can still return a 
slightly different set of features. So, a decision must be made as to which is the optimal 
set of selected features.

Here the optimal features have been identified as those selected in at least half of the 
top 10 performing models. In the case of the MAS dataset, this metric was restricted 
further to features selected in at least 80% of the top performing models, as a large num-
ber of features were selected. Features that are selected consistently by models that per-
form well are likely to be important features. Using this method, the features selected 
using data-driven thresholding from the MAS dataset are described in Table 4 and from 
the ADNI dataset in Table 5. The AD literature supports the findings from both datasets 
and references are given in Tables 4 and 5 to demonstrate this.

It should be noted that there are significant differences between the ADNI and MAS 
datasets. MAS is a population-based study which recruited non-demented individuals 
randomly from the community, while ADNI recruited people with a diagnosis of AD 
or cognitively healthy individuals as volunteers. There are also differences in the data 
collected by these studies. ADNI had a strong focus on neuroimaging (structural MRI 
and PET) and biomarkers from cerebrospinal fluid (CSF) and plasma. In contrast, MRI 

Table 4  Features selected from the MAS dataset by the best models using data-driven thresholding

MAS feature descriptions AD biomarker evidence

Participant age at time of testing The most important predictor of dementia [48]

Status of the epsilon4 allele of the APOE gene Increases the risk of late-onset AD [11]

Waist to hip ratio Obesity and cardiovascular risk factors have been linked 
to dementia [49]Framingham cardio-vascular risk score

General Practitioner Assessment of Cognition score 
(GPCOG)

Designed to identify dementia [50]

Mini Mental State Exam score (MMSE) Designed to identify dementia [51]

Informant Questionnaire on Cognitive Decline in the 
Elderly (IQCODE)

Designed to identify dementia [52]

Informant subjective cognitive complaints – total 
score

Increasingly being recognised as predictors of progres-
sion to mild cognitive impairment and dementia [53]

Participant subjective cognitive complaints – total 
score

Composite variable encoding the number of major 
and minor at fault motor vehicle accidents in the past 
18 months

Evidence exists that atypical changes in driving behav-
iours may be early signs of mild cognitive impairment 
(MCI) and dementia [54] [55]

Normal or abnormal posture Abnormal posture or gait can be related to increasing 
frailty, which is associated with dementia [56]Normal or abnormal gait

Urinary tract infection Urinary tract infections are known to exacerbate 
dementia symptoms

Arthritis A recent review highlighted the link between rheu-
matoid arthritis and dementia [57] although other 
researchers have reported a negative link with AD rather 
than dementia generally [58]

Urate Studies have found a link between low serum uric acid 
levels and AD [59]Uric acid
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imaging was performed on only a subset of MAS patients, PET imaging was not per-
formed, no CSF was collected, and fewer blood tests were performed in the baseline 
waves of MAS. MAS had a stronger focus on medical history and examination, psycho-
logical and neuro-psychological assessment, and self-administered lifestyle question-
naires. Therefore, the features selected in the two datasets differ to some extent.

Discussion
The development of a data-driven threshold that can be applied to ensemble feature 
selectors for both censored and uncensored data is a distinct advantage. A fixed thresh-
old that is appropriate for one data set may be quite inappropriate for another, espe-
cially when those datasets vary greatly in terms of the number and type of features they 
contain. The successful use of a fixed threshold involves testing of a wide range of fixed 
thresholds during the development of each model and can be quite time consuming.

The data-driven thresholds tested here performed well, being amongst the top per-
forming thresholds in both datasets. The RRA threshold has the added advantage that 
it provides a p-value—a statistically relevant threshold, and so its use is highly recom-
mended, particularly with clinical data. The RRA threshold was tested with a range of 
different p-values, but there was little to differentiate the performance of the different 
p-values in either dataset.

The disadvantage of the KDE threshold is that it requires that the data contain a large 
number of irrelevant features to be successful. The KDE threshold performs better in the 
ADNI dataset than in the MAS dataset. This is because the ADNI dataset contains more 
features and so it is likely that it also has more irrelevant features.

The Best Probe threshold with the mean value aggregator did not perform well with 
the LASSO or ELASTICNET in either dataset. On investigation it was found that a ran-
dom probe was often one of the most important features selected by the LASSO, thereby 

Table 5  Features selected from the ADNI dataset by the best models using data-driven 
thresholding

ADNI feature descriptions AD biomarker evidence

Mini Mental State Exam score (MMSE) Designed to identify dementia [51]

Instrumental activities of daily living (IADL) score Often used to determine the cognitive function of an indi-
vidual [60]

Status of the epsilon 4 allele of the APOE gene Increases the risk of late-onset AD [11]

42-amino-acid-long beta amyloid peptide 
(abeta42) level in CSF

Thought to be a biomarker for AD [61]

Plasma neurofilament light level Increased concentrations of CSF and plasma levels of the 
neurofilament light chain have been identified as potential 
biomarkers of AD [62] [63]

CSF neurofilament light level

CSF tau level The presence of tau and phosphorylated tau in CSF accurately 
detects Alzheimer’s disease pathology [64]CSF phosphorylated tau level

Neuropsychiatric Inventory – total score Can be used to detect behavioural changes in AD [65]

CSF neurogranin concentration Patients with AD show an increase in CSF neurogranin con-
centration and this is not seen in other neuro- degenerative 
diseases [66]

Geriatric depression scale – total score Depression has been linked to AD and cognitive decline [67]

Percentage of neutrophils People with AD have a higher blood neutrophil–lymphocyte 
ratio (NLR), a marker of inflammation, than healthy controls 
[68]
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eliminating other truly important features. This could be the result of correlations in the 
data as the Lasso is known to select one feature at random from a group of correlated 
features. Further investigation is warranted to clarify this.

The Medrank and Threshold algorithms are primarily aggregators, and both output 
a fixed number of features, set in this case as the mean length of the ranked lists of fea-
tures. Therefore, varying this number could affect their performance. Despite this, both 
perform well in these experiments, demonstrating the importance of an effective aggre-
gation strategy.

As well as investigating different thresholds, a number of different feature selectors 
were examined in this work, including simple filters, penalised regression, random for-
ests and boosted models. Although most previous works on ensemble feature selection 
have used only filters, it is clear from these results that multivariate feature selectors can 
also benefit by being used in an ensemble.

The ADNI dataset exhibited better performance and stability than the MAS dataset, 
which was to be expected. ADNI is an observational cohort study, where the number of 
patients with AD was carefully controlled at the start. Not only are there more cases of 
AD in ADNI, giving it a much lower censoring rate than MAS, but participants with AD 
at baseline were accepted into the study. In contrast, MAS is a population-based cohort 
study, where participants were excluded if they had AD at baseline, and so the number of 
AD cases cannot be controlled and there are fewer cases of AD than in ADNI.

In future it would be of interest to train the models on one AD dataset and apply them 
to another AD dataset with a comparable cohort and set of features, but the aim here 
was to demonstrate the applicability of the methods to different datasets, albeit in the 
same area. The methods were applied to a third dataset, which had few events and fewer 
samples than the other datasets. The results were mixed and have not been included 
here but they demonstrate the need for an adequate amount of data for these methods 
to succeed.

Future work could investigate the use of the Knockoffs method for variable selection 
[69], rather than random probes. Like random probes, knockoffs are random variables 
that have no association with the target variable. Whereas random probes maintain the 
same statistical distribution as the original variables, knockoffs maintain the same cor-
relation structure between the original variables and the target variable.

Future work could also apply the techniques developed here to heterogeneous ensem-
bles of feature selectors, where a different feature selector is applied to each sample of 
the training data. Using different feature selectors would introduce more diversity into 
the ensemble and so may produce enhanced results.

Conclusions
This study has demonstrated the use and validity of data-driven thresholding meth-
ods applied to ensemble feature selectors, to provide more stable, and therefore more 
reproducible, selections of features than individual feature selectors, without loss of 
performance. Several methods of data-driven thresholding have been used in a novel 
context and have been shown to perform well. The use of a data-driven threshold 
eliminates the need to choose a threshold a-priori and can select a more meaningful 
set of features. A reliable and compact set of features can produce more interpretable 
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models by identifying the factors that are important in understanding a disease [1] 
and can also lead to the development of more cost-effective procedures for identify-
ing patients at risk of a disease.

A number of multivariate feature selectors were tested for use in feature selection 
ensembles, in contrast to the univariate filters that are typically employed in this con-
text. Issues arising from the application of the data-driven thresholds to heterogene-
ous data and multivariate feature selectors, particularly those that select a subset of 
features rather than returning a score for each feature, were overcome, allowing these 
methods to be used in feature selection ensembles.

The ability to produce more stable selections of features means that clinicians can 
have more confidence in the results produced by machine learning models. Features 
that are predictive of Alzheimer’s disease have been selected from the models devel-
oped here and these are in keeping with findings in the AD literature.
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