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1. INTRODUCTION

A common objective in statistical learning is the prediction of an outcome Y from a set of input
features X. For example, how can volume measurements of various brain regions be used in the
prediction of cognitive impairment? Linear regression has proven to be a simple yet effective
technique that often outperforms complicated non-linear approaches, particularly in cases of low
signal-to-noise ratios, small training sets, or sparse data (Hastie, Tibshirani & Friedman, 2001).
However, as data sets continue to increase in size, the use of conventional statistical methods
is challenged when the number of input features (explanatory variables), p, exceeds the sample
size, n. Therefore, in addition to accurate prediction, a secondary (and often inherent) objective
of many predictive models involves variable selection. In the context of a brain region volume
example, we may be interested in not only the prediction of cognitive impairment, but also the
identification of regions of the brain that are associated with cognitive function.

Regularized regression adds a penalty term (𝜷), weighted by a tuning parameter 𝜆 > 0,
to an ordinary least squares model and has been proposed as a method to improve predictive
accuracy. These models provide parameter estimates even when the matrix of predictors, X,
is not of full rank and are valid in the presence of multicollinearity or when p > n (Hastie,
Tibshirani & Friedman, 2001). Recently, Yu & Liu (2016) introduced structural sparsity among
the regression coefficients by assuming a graphical structure of the predictors and then exploiting
that structure during minimization.

Here, we introduce the doubly sparse regression incorporating graphical structure among
predictors model (DSRIG). This regularized regression model provides parameter estimates
with a finite sample error bound and is more robust to the presence of false-positive edges in
the predictor graph. The graphical structure of the predictors is first modelled independently
from the outcome and this predictor structure is then leveraged to improve prediction in the
construction of (𝜷). DSRIG allows for sparsity not only at the level of contributions of the
regression coefficients to the outcome but also at the level of individual contributions of the
predictors to 𝜷 based on a decomposed representation of the regression coefficients. Our new
model has improved prediction, is highly flexible and provides a unified framework for fitting
many available regularized linear regression models.

Section 2 motivates and introduces our new model, DSRIG, and outlines the estimation
procedure. Section 3 theoretically evaluates parameter estimates and derives the finite sample
error bound. Section 4 examines the empirical properties of the estimates through a compre-
hensive simulation study, while Section 5 presents the analysis of two real world data sets.
Lastly, Section 6 discusses our results, provides conclusions and highlights areas for future
research.

2. METHODS AND MOTIVATION

Let  represent a set of nodes defined by p predictors, labelled 1,… , p, each measured on n
individuals such that the predictor matrix X can be arranged in an n × p matrix of observations.
Assume that the p-dimensional observations on each individual are independently and identically
distributed multivariate normal, Xk ∼ MVN(𝝁,𝚺), k = 1,… , n, with the p × p precision matrix
𝛀 taking elements 𝜔i𝑗 for i, 𝑗 = 1,… , p; that is, 𝛀 =

[
𝜔i𝑗

]
p×p = 𝚺−1. Then, an undirected graph

representing the joint distribution of the variables in X will have edges between any nodes (i, 𝑗),
i ≠ 𝑗, wherever 𝜔i𝑗 ≠ 0.

Let 𝚺xy = (c1, c2,… , cp)T be the cross covariance vector between predictors in X and an
n × 1 response vector Y. Then, under the linear model Y = X𝜷 + 𝝐, 𝝐 ∼ MVN(0, 𝜎2In), the p × 1
regression coefficient vector 𝜷 may be decomposed as:

𝜷 = 𝛀𝚺xy. (1)
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FIGURE 1: (a) Undirected graph representing the joint distribution over {Y ,X1,X2,X3} and (b)
predictor graph over {X1,X2,X3} obtained after marginalizing Y out of the joint distribution

in (a).

For i, 𝑗 = 1,… , p, let V (i)
𝑗

= ci𝜔𝑗i represent the contribution of the ith predictor to the 𝑗th

regression coefficient and let V(i) = [V (i)
1 ,… ,V (i)

p ]T be a p × 1 column vector representing the
contributions of the ith predictor to 𝜷. Then, Equation (1) can be re-expressed as 𝜷 =

∑p
i=1 V(i).

Further let the neighbourhood of node i, i, be defined as the union of node i and the set of all its
neighbours, that is, the set of all other nodes 𝑗 = 1,… , p, 𝑗 ≠ i, such that 𝜔i𝑗 ≠ 0. Consequently,
the support of V(i) will simply be given by the neighbourhood i since 𝜔𝑗i = 0 whenever there
is no edge between nodes (i, 𝑗) in the predictor graph. In other words, node i only contributes
to the estimation of regression coefficients associated with its neighbours and so learning the
support of V(i) is analogous to learning the structure of the predictor graph. Yu & Liu (2016)
exploit this relation in the sparse regression incorporating graphical structure among predictors
(SRIG) model.

2.1. Sparse Regression Incorporating Graphical
The SRIG model of Yu & Liu (2016) assumes that the predictor graph structure is known. As
such, the support of V(i) is also known and estimation of the SRIG coefficients proceeds by
solving

arg min
𝜷,V(i)∶i=1,…,p

{
1
2n

‖Y − X𝜷‖2
2 + 𝜆

p∑
i=1

𝜏i‖V(i)‖2

}
, (2)

where 𝜷 =
∑p

i=1 V(i), 𝜆 ≥ 0 is a tuning parameter and 𝜏i is a weight for the ith predictor. Often,

we set 𝜏i as 𝜏i =
√

di|𝛽i|𝛾 for n ≥ p and 𝜏i =
√

di|ĉi|𝛾 for n < p, where 𝛾 > 0 is a tuning parameter

and di = |i| is the degree of node i, representing the size of its neighbourhood. Although the
tuning parameter 𝛾 may be trained via cross-validation we assume 𝛾 = 1 from here forward for
simplicity. Note that the SRIG penalty in Equation (2) has some similarity to the group-LASSO
penalty of Yuan & Lin (2006) but acts only on the vectors of contributions

{
V(i), i = 1,… , p

}
.

That is, the shrinkage and selection of the SRIG model is done at the level of the V(i)’s rather than
directly on the regression coefficients in 𝜷. However, there may be situations where encouraging
sparsity within the V(i)’s is desirable.

Consider the augmented graph consisting of the union of the predictors in X and the outcome
Y . Let 0 = {i ∶ 𝛽i ≠ 0, i = 1,… , p} represent the set of nodes that are true (direct) predictors
of Y, that is, the neighbours of Y in the augmented graph (e.g., X1 and X2 of Figure 1a).
Equivalently, the set of true (direct) predictors can be thought of as the set of nodes associated
with non-zero regression coefficients in the underlying data-generating mechanism. Yu & Liu
(2016) demonstrated that the finite sample bounds derived for SRIG prediction and estimation
errors require that if any node i ∈ 0, then i ⊆ 0 (Assumption A2 of Yu & Liu (2016)).
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In other words, all neighbours of true predictors are also true predictors. This implies that
any two nodes connected by a continuous path in the predictor graph are assumed to have
associated regression coefficients that are zero or non-zero together. We too will make use of
this assumption (see Lemma 3.2).

Suppose edge (i, 𝑗) is in the predictor graph such that node i ∈ 0 but node 𝑗 ∉ 0. For
example, consider the edge between X2 and X3 of Figure 1b. SRIG would set V (3)

1 = V (1)
3 = 0

since 𝜔13 = 𝜔31 = 0. However, the vector of contributions V(3) associated with X3 may not be
shrunk to zero, thereby increasing the bias in 𝜷. Furthermore, SRIG does not provide a mechanism
to shrink V (2)

3 to 0 without (erroneously) shrinking the entire vector V(2) to 0. Therefore, SRIG
may produce a non-zero 𝛽3, which would be equivalent to adding an edge between X3 and
Y in the augmented graph of Figure 1a. Through simulation, Yu & Liu (2016) found that the
performance of SRIG decreased relative to the LASSO as the assumption that for any node
i ∈ 0, then i ⊆ 0 became increasingly challenged. By allowing small V (i)

𝑗
associated with

an edge (i, 𝑗) for which i ∈ 0 but 𝑗 ∉ 0 to shrink to zero, the effects of violations to this
assumption can be minimized.

From another perspective, in practice, the predictor graph structure is typically unknown
and estimated from data. Accordingly, (i, 𝑗) may be a false positive edge in the predictor graph
with a small V (i)

𝑗
relative to V (i)

k for some k ∈ Ni, k ≠ 𝑗. Shrinking such V (i)
𝑗

to zero would
make the estimation procedure more robust to the mis-specification of the predictor graph and
help mitigate bias in the final estimate of 𝜷. In short, a model that further encourages sparsity
within the V(i) by shrinking V (i)

𝑗
’s that take on small values to zero while retaining other larger

components can improve variable selection and predictive performance.

2.2. Doubly Sparse Regression Incorporating Graphical
In order to induce sparsity both between and within the V(i), i = 1,… , p, the new DSRIG model
adds an 𝓁1 penalty to the SRIG objective function with regression coefficients found as the
solution to

arg min
𝜷,V(i)∶i=1,…,p

(
1

2n
‖Y − X𝜷‖2

2 + 𝜆

{
p∑

i=1

[
𝜏i‖V(i)‖2 + 𝜉‖V(i)‖1

]})
, (3)

where 𝜷 =
∑p

i=1 V(i), for 𝜆 ≥ 0 and 𝜉 ≥ 0. The tuning parameter 𝜉 balances the contributions of
the 𝓁1 and 𝓁2 components of the penalty term. The penalty proposed in Equation (3) is similar
in nature to the sparse-group-LASSO (Simon et al., 2013) but performs shrinkage on the V (i)’s
rather than directly on 𝜷. The 𝓁1 component induces sparsity within V(i) by shrinking individual
contributions V (i)

𝑗
to zero, while the 𝓁2 penalty functions as in SRIG and shrinks entire vectors

of contributions, V(i), to the zero vector.
As with SRIG, DSRIG first requires estimation of the predictor graph. To further mitigate

any potential bias induced by graph mis-specification, we recommend that the predictor graph
structure estimation be incorporated in a cross-validation scheme in which the graph structure is
learned on only the training set. The optimization problem in Equation (3) can then be solved
across a grid of (𝜆, 𝜉) using the training data with the optimal tuning parameters being chosen
by an independent validation set. Since the learned predictor graphs from the training sets
would exhibit variation, the estimated model parameters would implicitly reflect some of this
uncertainty in the graph structure.

2.3. Estimation by Proximal Gradient Descent
The DSRIG regression parameters can be estimated using proximal gradient descent. First
reformulate the DSRIG optimization problem in Equation (3) such that the predictor matrix X

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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is represented in an expanded form (Obozinski, Jacob & Vert, 2011; Rao et al., 2013; Rao
et al., 2014; Yu & Liu, 2016). Let X(𝑗) represent the 𝑗th column of the original predictor
matrix X. Further let X̃ =

[
X(𝑗)] , 𝑗 ∈ i, i = 1,… , p, be an augmented predictor matrix with

columns consisting of replicates of the columns of the original predictor matrix, X(𝑗), for
each neighbourhood in which predictor 𝑗 belongs; therefore, X̃ will be of dimension n ×

∑
di.

When i = {i} for i = 1,… , p (no edges in the predictor graph), then X̃ = X. If Ṽ is defined
as the

∑
di × 1 column vector formed by concatenating all the non-zero elements of the

V(i), i = 1,… , p, then the expected value of Y is 𝔼 [Y|X] = X𝜷 = X̃Ṽ, and Equation (3) in its
re-expressed expanded form is given by

arg min
𝜷,V(i)∶i=1,…,p

(
1

2n
‖Y − X̃Ṽ‖2

2 + 𝜆

{
p∑

i=1

[
𝜏i‖Ṽ(i)‖2

]
+ 𝜉||Ṽ‖1

})

= arg min
𝜷,V(i)∶i=1,…,p

(
(𝜷) + 𝜆(𝜷)

)
, (4)

where 𝜷 =
∑p

i=1 V(i), Ṽ(i) represents the non-zero components in V(i), (𝜷) is a smooth loss
function, and (𝜷) is a non-smooth penalty function.

Note that Ṽ(i) contains the contributions from the neighbourhood of i, i. In fact, the
predictor graph can be viewed as a set of neighbourhoods that may overlap. Consequently, the
optimization in Equation (4) is analogous to the multi-task set-up in Rao et al. (2013) in which
the neighbourhoods represent a set of overlapping groups and the optimization induces sparsity
both among and within groups (neighbourhoods). Accordingly, we can utilize proximal point
methods that alternate between taking a gradient step in the negative direction of (𝜷) followed
by subsequent application of the proximal operator of (𝜷) to do the optimization (Rao et al.,
2014).

The gradient of (𝜷) with respect to Ṽ is ∇(𝜷) = 1
n
X̃′ (X̃Ṽ − Y

)
, yielding the parameter

estimates for iteration r + 1 as Ṽ{r+1} = Prox
[
Ṽ{r} − t∇

(
Ṽ{r})], for some step size t, where

Prox[⋅] is the proximal operator of (𝜷). Let Ṽ∇ be the intermediary found after taking a gradient
step, but before applying the proximal operator. This proximal operator can be divided into two
steps: (i) a soft thresholding of the individual elements Ṽ𝑗 , 𝑗 = 1,… ,

∑p
i=1 di, to address the 𝓁1

component

Ṽ∗
𝑗
=

{
sign(Ṽ∇𝑗) − 𝜆𝜉 for |Ṽ∇𝑗| > 𝜆𝜉

0 otherwise
; (5)

and (ii) a group soft thresholding of each of the Ṽ(i), i = 1,… , p, to address the 𝓁2 component

(
Ṽ(i)){r+1} =

{
Ṽ(i)∗‖Ṽ(i)∗‖2

(‖Ṽ(i)∗‖2 − 𝜆𝜏i
)

for ‖Ṽ(i)∗‖2 > 𝜆𝜏i

0 otherwise
. (6)

From the proximal operator steps in Equations (5) and (6), it is easy to see the hierarchical
structure of our proximal operator where shrinkage and selection is first performed element-wise
for the Ṽ𝑗 and then performed group-wise for the Ṽ(i). In applications, we actually implemented
the fast iterative shrinkage-thresholding algorithm (FISTA) with backtracking to choose the step
size t (Beck & Teboulle, 2009) in order to accelerate convergence.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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3. ESTIMATOR PROPERTIES

Since DSRIG is designed to accommodate the p > n problem, standard consistency of the
DSRIG estimator cannot be obtained. Instead, we derive an explicit finite sample error bound
that holds with a high probability. Finding such a bound is not straightforward. The derivation of
the consistency rate in Yu & Liu (2016) is not easily extended to the case where (𝜷) includes
an 𝓁1-penalty term. While we may borrow the ideas from Rao et al. (2013), our bound makes
different assumptions on the tuning parameters and is derived for the undirected predictor graph.
In the derivation of a finite sample error bound, Rao et al. (2013) required equal group weights,
𝜏i, i = 1,… , p; and an equal contribution of the 𝓁1 and 𝓁2 penalties to (𝜷) with 𝜏i = 𝜉 = 1 for
i = 1,… , p. Here we derive a bound without requiring these assumptions.

Negahban et al. (2012) provided a framework for deriving finite sample error bounds
for convex optimization problems like that in Equation (3) when 𝜆 > 0 and (𝜷) is a norm.
Fortunately, several of the results needed here are corollaries of the results proven by Negahban
et al. (2012); for self-containment purposes, we provide these results without proof, as needed.
This framework hinges on two key properties of the objective function to be minimized: (i) the
regularizer, or penalty function, (𝜷) is decomposable; and (ii) the loss function (𝜷) meets a
restricted strong convexity condition.

Section 3.1 provides definitions of decomposability and restricted strong convexity and
proves that the DSRIG optimization problem in Equation (3) exhibits these properties. Section
3.2 then derives the finite sample error bound. The assumptions required for the derivation of
this bound can be found in the Appendix, while all proofs and intermediary results are contained
in Section B of the Supplementary Information.

3.1. Properties of (𝜷) and (𝜷)
Assume Assumption (A2) in the Appendix, that for any node i ∈ 0 we have i ⊆ 0. Let 

and  be two subspaces such that  ⊆  ∈ ℝp and let 
⟂

be the orthogonal complement
of . In what follows, we choose  to be the model subspace, which reflects the constraints
imposed by DSRIG. Define the cardinality of the set of true predictors 0 as |0| = s such that
s ≪ p and assume 𝜷 is exactly sparse, that is, 𝜷 ∈  where  can now be further defined as

the s-dimensional model subspace spanned by the coordinates indexed by 0. Then 
⟂
= ⟂

may be defined as the subspace spanned by the remaining p − s coordinates indexed in  c
0 .

Similarly, define A0 = {i ∶ V(i) ≠ 0, i = 1,… , p}, with cardinality |A0| = a, where a ≪ p, to be
the set of active V(i) in our decomposition of 𝜷. If dmax is defined to be the maximum degree
across all nodes, then the vectors V(i) themselves are sparse with at most dmax non-zero elements,
as stated in Assumption (A3) in the Appendix. Further note that 0 must lie within the union of
the supports across all active V(i), that is, 0 =

⋃
i∈A0

supp(V(i)). These assumptions will be used
in many of our subsequent results.

Definition 3.1 (Negahban et al., 2012). Given the pair of subspaces (,
⟂
), a norm-based

regularizer (⋅) is decomposable if (𝜷 + 𝜷∗) = (𝜷) +(𝜷∗) for all 𝜷 ∈  and 𝜷∗ ∈ 
⟂

.

Lemma 3.2. Assume Assumptions (A1)–(A3) in the Appendix. Then (𝜷) is a norm and
decomposable with respect to the subspace pair

(
,⟂).

Similar to previous work on decomposed regression coefficients (Obozinski, Jacob & Vert,
2011; Rao et al., 2013; Rao et al., 2014; Yu & Liu, 2016), we require that our decomposition is
optimal in the sense that there is no other decomposition for which the associated penalty (𝜷)
is smaller. See Definition S.2 in Section A of the Supplementary Information. Optimality of the
decomposition is needed to show that (𝜷) is a decomposable norm. Rao et al. (2013) noted that

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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if (𝜷) is convex and coercive, which is also the case here, an optimal decomposition exists for
any 𝜷.

We now concentrate on properties of the loss function (𝜷) and specify the RSC condition
needed to establish a finite sample bound. These conditions ensure that there is sufficient
curvature in (𝜷) around its optimum to allow for parameter estimation. In particular, consider
𝜹(𝚫,𝜷), the error term in a first-order Taylor series expansion of (𝜷) in some direction 𝚫.
Since p > n, it suffices to show that 𝜹(𝚫, 𝜷) is lower bounded by 𝜅‖𝚫‖2, for some 𝜅 > 0 for
all 𝚫 in a restricted direction. The estimation error, �̂� = �̂� − 𝜷, is the appropriate direction of
interest here. Lemma 3.3 shows that �̂� falls in a cone set for regularizers with dual norms that
bound 𝜆. This cone set is the appropriate space in which strong convexity is needed. Definition
3.4 states the restricted convexity condition.

Lemma 3.3. Suppose(⋅) is a convex and differentiable loss function and consider any optimal
solution �̂� to the optimization problem in Equation (3) with a strictly positive regularization
parameter satisfying 𝜆 ≥ 2∗(∇(𝜷)), where ∗(⋅) is the dual norm of (⋅) and ∇(𝜷) is the
gradient of the loss function. Assume Assumptions (A1)–(A3) in the Appendix and let Π(⋅)
represent the projection onto the subspace . Then, the error, �̂� = �̂� − 𝜷, belongs to the set

ℂ(,⟂, 𝜷) ∶= {𝚫 ∈ ℝp|(Π⟂𝚫) ≤ 3[Π(𝚫)]}. (7)

Definition 3.4. The loss function (𝜷) satisfies an RSC condition with curvature parameter
𝜅 if it is convex, differentiable and

𝜹(𝚫, 𝜷) ∶= (𝜷 + 𝚫) − (𝜷) − ⟨∇(𝜷),𝚫⟩ ≥ 𝜅‖𝚫‖2
2,

for any 𝚫 ∈ ℂ(,⟂, 𝜷), where ⟨⋅, ⋅⟩ represents the inner product of two vectors and ℂ(⋅) is
as defined in Equation (7).

Assumption (A5) in the Appendix simply states that the loss function meets this RSC condition.
Note that Negahban et al. (2012) provided an RSC condition that involves a tolerance parameter,
but since 𝜷 ∈ , this tolerance parameter is equal to zero and the corresponding term in their
lower bound can be ignored.

3.2. Finite Sample Error Upper Bound
Negahban et al. (2012) provided a general error bound (see Theorem S.1 in Section B of
the Supplementary Information) for regularized models whenever Lemma 3.2 and Definition
3.4 hold. In what follows, we tailor this bound to the specific optimization problem in
Equation (3).

Our RSC condition is needed for a regularizer (⋅) that is not too large relative to the error
norm. The subspace compatibility constant formalizes this notion by explicitly relating the error
norm and the regularizer (see Definition S.3 in Section A of the Supplementary Information).
Establishing a concrete error upper bound requires: (i) bounding the subspace compatibility
constant 𝜓(⋅), as in Lemma 3.5; and (ii) bounding the dual norm ∗(∇(𝜷)), as in Lemma 3.6,
which in turn provides a tighter bound on 𝜆.

Lemma 3.5. The subspace compatibility constant associated with the optimization in
Equation (3) is bounded by:

𝜓() ≤
(
𝜏max + 𝜉

√
dmax

)√
a.
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Lemma 3.6. Assume Assumptions (A4) and (A6) in the Appendix. Then

∗ (∇(𝜷))2 ≤
𝜎2𝜎max (log(p) + dmax)

4
(
𝜏min

)2n
,

with probability greater than or equal to 1 − c1 exp(−c2
√

n) for some c1, c2 > 0.

Finally, we present our main result.

Theorem 3.7. Assume Assumptions (A1)–(A6) in the Appendix for the optimization problem
in Equation (3) and define 𝜎∗

i to be the maximum singular value of XT
i

Xi
and 𝜎∗max =

maxi=1,…,p(𝜎∗
i ). Then for 𝜆2 ≥

𝜎2𝜎max(log(p)+dmax)

(𝜏min)2n
, any optimal solution, �̂�, will satisfy

‖�̂� − 𝜷‖2
2 ≤

9(
𝜏min

)2

𝜎2𝜎∗max
(
𝜏max + 𝜉

√
dmax

)2
a(log(p) + dmax)

n𝜅
, (8)

with probability greater than or equal to 1 − c1 exp(−c2
√

n) for some c1, c2 > 0.

The bound presented in Equation (8) can be found by substituting our bound on 𝜓(⋅) derived
in Lemma 3.5 into Theorem S.1. If we assume that 𝜆 ≥ 2∗(∇(𝜷)), then from Lemma 3.6,
𝜆2 ≥

𝜎2𝜎max(log(p)+dmax)

(𝜏min)2n
.

4. SIMULATION STUDY

Through a simulation study we investigate the empirical properties of the DSRIG estimates. Not
only does DSRIG have a predictive benefit and decreased bias when compared to SRIG, but
results demonstrate that DSRIG also exhibits robustness to both errors in graph estimation and
certain violations of assumptions.

4.1. Simulation Study Design
Our simulation study considered two predictor graph structures: (i) random (sparse); and (ii)
scale-free. A scale-free structure comprises relatively few hub-nodes of high degree that connect
the rest of the lesser connected nodes in the graph (Figure 2), as is commonly seen in biological
network models (Jeong et al., 2000). For each predictor graph structure, we generated the
precision matrix (𝛀) for 30 parent graphs, each with p = 100 nodes as follows. Random parent
graphs were generated following Yu & Liu (2016) whereby 𝛀 = B + 𝛿Ip. The diagonal entries
of B were initialized to zero while the off diagonal entries of B took on a value of 0.5 with
probability 0.05 and 0 with probability 0.95; therefore the probability of an edge between any
pair of nodes (i, 𝑗) was 0.05. The value of 𝛿 was chosen such that the condition number of 𝛀 was
equal to p and 𝛀 was subsequently standardized to have unit diagonals. Scale-free parent graphs
were generated by first generating a data set with 1,000,000 observations from a scale-free graph
using the huge.generator function of the huge package (Zhao et al., 2015) for R (R Core
Team, 2016). The empirical precision matrix, 𝛀, of these data was then taken to be the true
parent precision matrix. From each parent graph, 100 independent n × p predictor sets, X, were
generated (Figure 2) using the rmvnorm function of the mvtnorm package (Genz et al., 2017;
Genz & Bretz, 2009) for R (R Core Team, 2016).

Nodes were sorted according to their respective degrees. Then, for the random graph scenario,
ci = 4 for those nodes i that corresponded to the nodes with the four largest degrees. For the
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Parent Graph

Data Set 1 Data Set 100

. . .

FIGURE 2: Estimated predictor graphs from independent data sets generated from the same
scale-free parent graph.

scale-free graph, instead ci = 4 for those nodes i that corresponded to nodes with the second
through fifth largest degrees. The value of ci for all other nodes was assigned to be 0. We
considered two scenarios for generating the true regression parameter 𝜷.

In Scenario 1, we wanted to ensure that, for the most part, neighbours of covariates correlated
with Y were also correlated with Y. We simply set 𝜷 = 𝛀𝚺xy. While this calculation does not
ensure Assumption (A2) will be met, the number of edges that violate this assumption will be
minimized. To guarantee Assumption (A2) is violated, in Scenario 2 we took half of the original
non-zero 𝛽’s and switched them with 𝛽’s that were originally calculated as zero. Covariate data
were generated for n = 480 and n = 560 subjects, for a total of 30 × 100 = 3, 000 independent
data sets for each predictor graph structure and sample size combination. The response variable,
Y, was then calculated from the classical linear model, Y = X𝜷 + 𝝐, 𝝐 ∼ MVN(0, 𝜎2In), with
𝜎 = 5.

Each data set was partitioned into a training set to learn the model, a validation set to choose
the optimal value of the tuning parameter(s) and a test set to compare the predictive accuracy
among the candidate models. For n = 480, the data were partitioned into train/validation/test
set sample sizes of 40/40/400, while for n = 560, the sample sizes were 80/80/400. For each
data set the LASSO (Tibshirani, 1996), SRIG (Yu & Liu, 2016) and DSRIG models were fit
and compared. Furthermore, the SRIG and DSRIG models were fit under the best case scenario,
which used the true graphical structure (SRIG-True, DSRIG-True) and the more realistic
scenario in which the graphical structure was estimated from only the training data (SRIG-Est,
DSRIG-Est).

For each data set, the predictor graph for the SRIG and DSRIG models was estimated using
the huge and huge.select functions of the huge package (Zhao et al., 2015) in R (R Core
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Team, 2016), which are based on the Meinshausen-Bühlmann (MB) (Meinshausen & Bühlmann,
2006) method with the stability approach to regularization selection (STARS) criterion (Liu,
Roeder & Wasserman, 2010). The optimal value of the tuning parameter 𝜆 was chosen from
a grid of 100 equally spaced values on a logarithmic scale. The maximum, 𝜆max, was chosen
such that it was the minimum value for which �̂� = 0 when 𝜉 = 0, while the minimum was set
at 𝜆min = 0.01 × 𝜆max. Similarly, the optimal 𝜉 was chosen out of a grid of 100 equally spaced
values, but between 0 and 𝜉max, where 𝜉max was chosen to be just large enough such that the
upper bound was never selected. Lastly, 𝜏i was calculated using the sample covariance with
𝛾 = 1.

For each model the final estimated regression parameter vector, �̂�, was chosen to be that
which minimized the prediction error of the validation set (i.e., minimized the Euclidean distance
between the observed Y and predicted values Ŷ). The 𝓁2-distance between the estimated and true
regression parameter vectors (‖�̂� − 𝜷‖2) was used to compare the bias between the candidate

models. The relative prediction error (RPE), calculated as RPE = 1
𝜎2Ntest

(
𝜷 − 𝜷

)T (
XT

testXtest
)(

𝜷 − 𝜷
)

was used to compare predictive accuracy, where Xtest is the predictor matrix for the
test set and Ntest is the size of the test set. For the case where the predictor graphs were estimated,
we also recorded the proportion of times for which DSRIG was preferred, SRIG was preferred,
or for which the models were equivalent (i.e., DSRIG parameter 𝜉 = 0). The absolute median
difference of both 𝓁2-distance and RPE between the two models was also recorded. The proximal
gradient methods to estimate the SRIG and DSRIG models were implemented in MATLAB
version 2016b (MATLAB, 2016) using code adapted from Cox (2014), while the LASSO was
fit using the MATLAB function in the Statistics Toolbox. MATLAB code for the fitting of the
DSRIG model, along with a sample data set and results, are contained in the Supplementary
Information.

4.2. Simulation Study Results
Table 1 records the 𝓁2-distance between the estimated and true regression parameters as well as
the RPE for each of the candidate models. As expected, both DSRIG and SRIG fit under the true
graphical structure have decreased bias and RPE when compared to the corresponding models
fit under an estimated predictor graph. However, DSRIG typically offers improved performance
over SRIG both in terms of predictive accuracy and bias, particularly in the estimated predictor
graph setting. DSRIG outperformed the LASSO in Scenario 1 while remaining competitive to
the LASSO in Scenario 2. However, while SRIG outperformed the LASSO in Scenario 1, it
suffered from decreased predictive accuracy and increased bias compared to both DSRIG and
the LASSO in Scenario 2.

Table 2 records the proportion of runs for which each method (DSRIG, SRIG) was preferred,
as well as the absolute median difference between the two models when the predictor graphs
were estimated. DSRIG was preferred in a majority of runs and, when chosen, had a larger
performance benefit (larger absolute median difference) than those runs for which SRIG was
preferred. A greater discrepancy between the two models can be seen in Scenario 2, both
in the proportion of runs preferred and in the absolute median difference. Figure 3 plots the
difference (SRIG–DSRIG) for both the 𝓁2-distance and RPE across all runs for the random
graph scenario under Scenario 2 with sample sizes of 40/40/400. Plots with similar characteristics
were obtained for all other combinations of the study parameters. Points above the horizontal
zero line correspond to the models for which DSRIG outperformed SRIG; points below the line
correspond to the models for which DSRIG was outperformed by SRIG. Again, it can be seen
that not only does DSRIG outperform SRIG more frequently, but DSRIG also provides a greater
performance benefit.
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TABLE 1: The 𝓁2-distance and relative prediction error of model fits under two different cross-validation
splits for training/validation/test for random and scale-free graphs.

Scenario 1 Scenario 2

40/40/400 80/80/400 40/40/400 80/80/400

Method ‖�̂� − 𝜷‖2 RPE ‖�̂� − 𝜷‖2 RPE ‖�̂� − 𝜷‖2 RPE ‖�̂� − 𝜷‖2 RPE

Random graph

LASSO 10.654 2.882 8.659 2.197 8.873 3.550 6.567 1.750

SRIG-True 9.237 2.446 5.969 1.236 9.068 3.707 6.904 1.994

DSRIG-True 9.087 2.365 6.013 1.225 8.324 3.091 6.567 1.777

SRIG-Est 9.669 2.600 6.663 1.484 9.148 3.783 7.086 2.090

DSRIG-Est 9.440 2.486 6.619 1.417 8.454 3.191 6.698 1.840

Scale-free graph

LASSO 13.225 3.279 8.574 1.628 9.742 2.953 6.577 1.356

SRIG-True 11.864 3.009 6.393 1.080 10.396 3.428 6.855 1.504

DSRIG-True 11.734 2.847 6.463 1.074 9.679 2.953 6.629 1.383

SRIG-Est 12.955 3.348 7.706 1.488 10.500 3.476 6.955 1.535

DSRIG-Est 12.567 3.084 7.760 1.424 9.789 2.988 6.739 1.414

TABLE 2: Proportion of runs where each method had the lowest 𝓁2-distance or relative prediction error
when the predictor graph is estimated from the training data. The median difference between SRIG and

DSRIG for the 𝓁2-distance and RPE is shown in brackets.

Scenario 1 Scenario 2

40/40/400 80/80/400 40/40/400 80/80/400

Method ‖�̂� − 𝜷‖2 RPE ‖�̂� − 𝜷‖2 RPE ‖�̂� − 𝜷‖2 RPE ‖�̂� − 𝜷‖2 RPE

Random graph

DSRIG 0.513 0.535 0.347 0.482 0.797 0.793 0.753 0.778

(0.351) (0.174) (0.245) (0.116) (0.764) (0.624) (0.457) (0.266)

Equivalent 0.302 0.300 0.361 0.361 0.145 0.145 0.163 0.163

SRIG 0.186 0.165 0.292 0.157 0.058 0.062 0.084 0.058

(0.158) (0.093) (0.212) (0.055) (0.123) (0.098) (0.104) (0.064)

Scale-free graph

DSRIG 0.513 0.613 0.245 0.482 0.719 0.745 0.572 0.660

(0.673) (0.357) (0.219) (0.103) (0.834) (0.512) (0.325) (0.135)

Equivalent 0.263 0.262 0.376 0.376 0.185 0.185 0.244 0.244

SRIG 0.224 0.125 0.379 0.142 0.096 0.0700 0.184 0.096

(0.274) (0.095) (0.235) (0.034) (0.210) (0.076) (0.118) (0.030)
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FIGURE 3: Difference (SRIG–DSRIG) for 100 simulations from each of 30 random parent
graphs under Scenario 2 with sample sizes of 40/40/400 for (a) 𝓁2-distance and (b) RPE. Points

above the zero line indicate when DSRIG performed better.

5. APPLICATION

We demonstrate DSRIG on two real data sets and compare performance with the LASSO
and SRIG. The description and results for the second data set, which includes predictors that
violate the multivariate normality assumption, can be found in Section C of the Supplementary
Information. All data were initially scaled such that each column of the predictor matrix (X) and
the outcome vector (Y) had a mean of 0 and standard deviation of 1. The data were then split
into 10 roughly equal segments: 8 segments on which to train the model, 1 segment to validate
the model and choose the optimal value of the tuning parameter(s) and 1 segment to test the
model and compare prediction accuracy across various candidate models. We fit and compared
the results for all 90 possible permutations of training/validation/test sets.

As in the simulation study, the predictor graph for the SRIG and DSRIG procedures was
learned on the training data using the huge and huge.select functions of the huge package
(Zhao et al., 2015) in R (R Core Team, 2016) using the MB method (Meinshausen & Bühlmann,
2006) and based on optimization of the STARS criterion (Liu, Roeder & Wasserman, 2010).
The mean square prediction error for the model chosen by the validation set applied to the
independent test set was calculated as MSPE = 1

NTest
‖Y − Ŷ‖2

2. The identities of covariates with

associated non-zero regression coefficient estimates (abs(𝛽i) > 0.01) were also tracked.

5.1. Alzheimer’s Disease Data
Data used in this analysis were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). In this analysis, patients collected under all three ADNI
protocols (ADNI1, ADNI2 and ADNIGO) with cross-sectional MRI were included. The objective
of the analysis was two-fold: (i) to predict cognitive function from measured volumes of brain
regions; and (ii) to identify which regions of the brain best contribute to this prediction. The
primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers and clinical and neuropsychological
assessment can be combined to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org.
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Cortical reconstruction and volumetric segmentation was performed with the FreeSurfer 5.1
image analysis suite, which is documented and freely available for download online (http://
surfer.nmr.mgh.harvard.edu/). The processing of the MRI images was conducted by Hartig et al.
(2012). The technical details of these procedures are described in prior publications (Dale, Fischl
& Sereno, 1999; Dale & Sereno, 1993; Fischl, Sereno & Dale, 1999a,b; Fischl & Dale, 2000,
2001; Fischl et al., 2002, 2004a,b; Han et al., 2006; Jovicich et al., 2006; Ségonne et al., 2004).
Briefly, this processing includes motion correction and averaging (Reuter, Rosas & Fischl, 2010)
of multiple volumetric T1 weighted images (when more than one is available), removal of
non-brain tissue using a hybrid watershed/surface deformation procedure (Ségonne et al., 2004),
automated Talairach transformation, segmentation of the subcortical white matter and deep gray
matter volumetric structures (including hippocampus, amygdala, caudate, putamen, ventricles)
(Fischl et al., 2002, 2004a) intensity normalization (Sled, Zijdenbos & Evans, 1998), tessellation
of the gray matter white matter boundary, automated topology correction (Fischl, Liu & Dale,
2001; Ségonne, Pacheco & Fischl, 2007) and surface deformation following intensity gradients
to optimally place the gray/white and gray/cerebrospinal fluid borders at the location where the
greatest shift in intensity defines the transition to the other tissue class (Dale & Sereno, 1993;
Dale, Fischl & Sereno, 1999; Fischl & Dale, 2000). The longitudinal processing capabilities
of the Freesurfer software were used in the processing of sequential scans for a single patient
(Reuter et al., 2012).

The mini-mental state exam (MMSE) is a tool used by clinicians in the evaluation of
cognitive functioning of psychiatric patients (Folstein, Folstein & McHugh, 1975). This exam,
scored on a 30-point scale, consists of 11 questions and attempts to isolate and assess cognitive
functioning from other mental functions such as mood. Higher MMSE scores correspond to
higher functioning cognitive abilities. Scores greater than 27 are typically associated with
normal cognitive function, whereas scores of 19–24 (mild), 10–18 (moderate), or ≤ 9 (severe)
correspond to varying degrees of cognitive impairment (Kukull et al., 1994; Mungas, 1991). Yu
& Liu (2016) applied the SRIG model to predict the MMSE scores of 103 subjects from the
ADNI database, based on the volume measurements of 93 brain regions.

We considered 135 volume measurements (mm3) obtained from the Freesurfer segmented
data and restricted analysis to data available at the month 6 visit post-baseline. Of the available
696 subjects, 177 had measurements that did not pass the study’s overall quality control and
a further 197 subjects did not have complete data. We included the remaining 322 subjects in
our analysis, along with their p = 135 brain region measurements and MMSE scores (range:
15–30). While these data do not represent a high-dimensional scenario where p > n, many of the
predictors are highly correlated and the predictor matrix X is not of full rank. Therefore, ordinary
least squares would not be expected to perform well and the problem is well-suited to using
regularized regression. Figure 4 contains the predictor graph from a single data segmentation.
Note that a continuous path can be traced between all nodes in the graph, which suggests a
potential violation of Assumption (A2) if sparsity among the regions that predict cognitive
impairment is assumed.

5.2. Results of Data Analysis
Table 3 summarizes model performance in terms of mean MSPE and model complexity (number
of non-zero coefficients found in the final model) across all 90 data permutations for the ADNI
data set. DSRIG had the smallest mean MSPE followed by SRIG and then the LASSO. LASSO
typically chose the most sparse model with the least variability in the number of non-zero
predictors, while SRIG resulted in the least sparse regression models and was the most variable
in the number of non-zero coefficients selected. Our new DSRIG model fell between the
LASSO and SRIG both in terms of sparsity and in the variability of the number of non-zero
coefficients.
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FIGURE 4: Estimated predictor graph for a single training segmentation of the ADNI data.

TABLE 3: Average mean square error in prediction and mean and standard deviation for the number of
non-zero regression coefficients for 90 permutations of the ADNI and blood brain barrier data.

LASSO SRIG DSRIG

ADNI

Mean MSPE 0.722 0.717 0.707

Non-zero coefficients

Mean number 30.967 40.122 38.600

Standard deviation 20.269 25.947 23.643

Figure 5 shows the differences, SRIG–DSRIG, between the MSPEs across each of the 90
permutations for the ADNI data. Values above the horizontal line correspond to the 27 models
for which DSRIG outperformed SRIG; values below the line correspond to the 12 models for
which DSRIG was outperformed by SRIG. We can see that not only did DSRIG perform better
more often than SRIG, but also had a larger performance improvement (absolute mean difference
0.037 vs. 0.010).

Table 4 records the identity of predictors with non-zero regression coefficient estimates in at
least 80 of the final models for the ADNI data. Interestingly, across the LASSO models, there
was only one brain region, the right inferior lateral ventricle, that consistently was selected.
There was a large overlap between the predictors commonly chosen by both DSRIG and SRIG
with both models choosing three right hippocampal subfields, the right temporal pole and third
ventricle. This is similar to the analysis performed by Yu & Liu (2016) which also found the
right temporal pole and hippocampus to be associated with MMSE score. In our analyses, SRIG
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FIGURE 5: Difference in MSPE (SRIG–DSRIG) for 90 permutations of ADNI data. Points
above the zero line indicate when DSRIG performed better.

TABLE 4: Predictors found to be non-zero in at least 80 models for the ADNI data.

Predictora LASSO SRIG DSRIG

R Temporal Pole ✓ ✓

Third Ventricle ✓ ✓

L Hipp ✓

L Inf Lateral Ventricle ✓

R Hipp ✓

R Inf Lateral Ventricle ✓ ✓ ✓

R Hipp Subfield 1 ✓ ✓

2 ✓ ✓

3 ✓ ✓

4 ✓

a Hipp, hippocampus; Inf, inferior; L, left; R, right.

often identified a fourth right hippocampal subfield, as well as the right hippocampus, left
hippocampus and left inferior lateral ventricle in at least 80 of the 90 final models fit.

6. DISCUSSION AND FUTURE WORK

We have introduced the DSRIG model, which performs shrinkage and selection on components
of a decomposed representation of the regression coefficients. We have also derived a proximal
gradient descent algorithm for parameter estimation and identified a finite sample error bound.
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Like the SRIG model of Yu & Liu (2016), the predictor graph structure was exploited to improve
the performance of regularized regression. Our model improves upon SRIG by encouraging
sparsity both within and among the V(i). This additional level of sparsity makes DSRIG more
robust to predictor graph mis-specification and to violations of Assumption (A2), particularly
when the predictor graph is unknown and estimated from the data.

The results presented do not enforce the restriction maxi=1,…,p(𝜏i) ≤ 𝜉 (Assumption (A4))
because we found that prediction error was improved without it. For the ADNI data, we gained
a 0.3% improvement through its removal. Recall that Assumptions (A1)–(A6) were required to
find a finite sample error bound. Assumption (A2) is used to prove the decomposability of (𝜷)
while Assumption (A4) is used to bound the dual norm of (𝜷). When these assumptions are
not met, it does not mean DSRIG is invalid, or that a finite error bound does not exist, but rather
that we are not able to derive one at this time.

DSRIG is a highly flexible model that provides a unified framework for fitting several
regularized regression models. When 𝜉 = 0 our DSRIG model is equivalent to SRIG. Whenever
all nodes in the graph are singletons and 𝜏i = 𝜏 for i = 1,… , p, we get the LASSO. When the
predictor graph consists of a series of complete disconnected subgraphs (where each subgraph
represents a group) and 𝜉 = 0, the method is equivalent to the group-LASSO. Lastly, when the
predictor graph is complete and 𝜉 = 0, DSRIG is equivalent to ridge regression.

We implemented DSRIG using an expanded form of the predictor matrix. For dense graphs
with many edges, this approach can become computationally intensive. For the ADNI data,
using a 2013 Mac Pro with a 6 Core 3.5 GHz Intel Xeon processor running on a single core,
the average computation time for a single data split was 6.1 s for the LASSO, 2.1 s for SRIG
and 52.8 s for DSRIG. For all three models, we considered 100 possible tuning parameter values
for 𝜆. However, DSRIG has an additional tuning parameter 𝜉 which resulted in 100 × 100
possible combinations of (𝜆, 𝜉). Accordingly, part of the additional computation time was due
to the additional tuning parameter rather than the expanded predictor set representation. We are
working on a more efficient estimation algorithm that better scales to large data sets.

APPENDIX: Assumptions

The following assumptions are needed in Section 3 to establish that the DSRIG regularizer
defined in Equation (3) is decomposable and that the loss function meets a restricted strong
convexity condition.

(A1) The decomposition of our regression coefficients into the set of vectors V(i), i = 1,… , p,
is an optimal decomposition.

(A2) For any node i ∈ 0, then i ⊆ 0.
(A3) The true regression parameter vector 𝜷 is exactly sparse with s non-zero components that

can be decomposed into a set of a active vectors V(i) with at most dmax = maxi=1,…,p(di)
non-zero elements.

(A4) 𝜏max = maxi=1,…,p(𝜏i), is upper bounded by 𝜉 and 𝜏min = mini=1,…,p(𝜏i), is lower bounded
by 1.

(A5) The loss function (𝜷) satisfies the restricted strong convexity (RSC) conditions with
curvature parameter 𝜅L (see Definition 3.4).

(A6) The design matrix X is fixed; the observation errors 𝜖k, k = 1,… , n, are additive, indepen-

dent of X and 𝜖k
i.i.d.∼ Normal(0, 𝜎).

Based on these assumptions, we can obtain a finite sample error bound for the 𝓁2 error
between any optimal solution, �̂�, of Equation (3) and the true parameter vector 𝜷. Assumption
(A4) explicitly states 𝜏min ≥ 1; however, X and Y are typically scaled to have columnwise
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standard deviations of 1 and therefore, |ci| ≤ 1, di ≥ 1 and for 𝜏i =
√

di|ĉi| , we have 𝜏min ≥ 1.
Although Assumption (A4) is needed to obtain the theoretical results presented, we found that
prediction improved when the restriction max(𝜏i) ≤ 𝜉, i = 1,… , p, is not enforced. All analysis
results reported here are with this restriction removed.
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