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Abstract

Women show greater pathological Tau biomarkers than men along the Alzheimer’s disease (AD) continuum,
particularly among apolipoprotein ε-E4 (APOE4) carriers; however, the reason for this sex difference in unknown. Sex
differences often indicate an underlying role of sex hormones. We examined whether testosterone levels might
influence this sex difference and the modifying role of APOE4 status. Analyses included 172 participants (25
cognitively normal, 97 mild cognitive impairment, 50 AD participants) from the Alzheimer’s Disease Neuroimaging
Initiative (34% female, 54% APOE4 carriers, aged 55–90). We examined the separate and interactive effects of
plasma testosterone levels and APOE4 on cerebrospinal fluid phosphorylated-tau181 (p-Tau) levels in the overall
sample and the sex difference in p-Tau levels before and after adjusting for testosterone. A significant APOE4-by-
testosterone interaction revealed that lower testosterone levels related to higher p-Tau levels among APOE4 carriers
regardless of sex. As expected, women had higher p-Tau levels than men among APOE4 carriers only, yet this
difference was eliminated upon adjustment for testosterone. Results suggest that testosterone is protective against
p-Tau particularly among APOE4 carriers. The lower testosterone levels that typically characterize women may
predispose them to pathological Tau, particularly among female APOE4 carriers.
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Background
There are critical gaps in our understanding of sex
differences in Alzheimer’s disease (AD) including the
higher prevalence of AD [1, 2], the steeper cognitive
decline [3–5], and a stronger effect of the apolipo-
protein E ε4 allele (APOE4) on AD risk in women
versus men [6–8]. Sex differences in underlying AD
pathology have also been reported, with autopsy [9],
neuroimaging [10], and cerebrospinal fluid (CSF) [11,
12] studies reporting higher levels of pathological
tau (referred here simply as “Tau”) in women versus

men who are either diagnosed with or are at-risk for
AD by way of the APOE4 allele or clinically signifi-
cant beta-amyloid (Aβ) plaque deposition in the
brain. Because Tau topography is closely tethered to
clinical presentation [13], the higher levels of Tau in
women may be a contributing factor to the higher
prevalence and more aggressive clinical profile of
AD in women.
The reasons for higher levels of Tau in women are un-

known; however, a potential mechanism may stem from
differences in sex hormones. Animal studies report a
protective role of testosterone against the hyperpho-
sphorylation of tau (p-Tau) in both male and female rats
[14–16], suggesting that the typically lower testosterone
levels in women may be a risk factor for pathological
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Tau. In women, circulating estradiol levels experience a
substantial decline during menopause, whereas post-
menopausal women continue to demonstrate a range of
circulating testosterone levels that continue to be lower
than levels in men [17]. Despite this sex difference in
hormone levels, most studies examining links between
testosterone and AD-related outcomes have been solely
in men [18–23], and the link between testosterone and
Tau has been minimally examined in humans.
Despite some inconsistencies [24, 25], a wealth of evi-

dence indicates an association between low testosterone
levels, poorer cognitive function [26–30], and greater odds
or risk for AD [18, 20–23, 31, 32], with these associations
more clearly defined in men [18, 20–23, 26–29, 31, 32]
than in women [26, 27]. Suggestive of a more causative
than consequential role for testosterone on AD-related
outcomes, longitudinal studies have shown that low free
and/or total testosterone levels precede development of
AD dementia [23] and cognitive dysfunction on measures
of global cognition [26, 29] and episodic memory [29].
Furthermore, exogenous testosterone supplementation led
to improved performance over time in a range of cognitive
domains including global cognition [19, 33], psychomotor
speed [33], executive function [33], and spatial and verbal
memory [34, 35], although not always [36].
Animal and human studies demonstrate that the ef-

fects of testosterone may depend on APOE genotype.
The APOE4 allele is associated with lower testosterone
levels in men [31], and with downregulation of androgen
receptors in mice, resulting in reduced binding of testos-
terone [37]. Experimental manipulations of testosterone
levels in male and female mouse models relate to
changes in cognitive function more so among APOE4
carriers than APOE3 carriers [37, 38], suggesting that
APOE4 carriers are more sensitive to the effects of tes-
tosterone on the brain. In humans, the direction of the
APOE4 by testosterone interaction is less consistent,
whereby Panizzon et al. found that low testosterone
levels in men related to smaller hippocampal volumes
and poorer episodic memory among APOE4 carriers
only [39, 40], whereas Hogervorst et al. found that low
testosterone levels related to a greater likelihood of an
AD diagnosis among APOE4 non-carriers only [31]. The
APOE4 by testosterone interaction has yet to be exam-
ined either in women or in relation to hallmark AD
pathologies.
In the Alzheimer’s Disease Neuroimaging Initiative

(ADNI), we aimed to replicate previous findings of
greater pathological Tau biomarkers in women versus
men at-risk for AD by way of the APOE4 allele, and to
extend these findings by testing the hypothesis that tes-
tosterone may contribute to this sex difference. To this
end, we examined the relationship of circulating total
and free testosterone levels and their interaction with

APOE4 with CSF levels of p-Tau across and within sex
while adjusting for amyloid-β (Aβ) biomarkers and other
covariates. Furthermore, we determined whether lower
testosterone levels in women partially account for their
higher p-Tau levels. Extrapolating from animal studies, we
hypothesized that lower testosterone levels would relate to
higher p-Tau levels across sex and more so among
APOE4 carriers versus non-carriers. Furthermore, we hy-
pothesized that the higher p-Tau levels in female versus
male APOE4 carriers will diminish upon adjustment for
testosterone. Because of a previously reported link be-
tween testosterone and Aβ pathology in a rodent model
[14] and evidence of an effect of Aβ on Tau development
[41], we also examined whether testosterone and Tau as-
sociations were independent of CSF Aβ levels.

Methods
Participants and data source
Data were extracted from ADNI, a publically accessible
dataset available at adni.loni.usc.edu. ADNI is a longitu-
dinal, multi-site, cohort study that began in 2003 as a
public-private partnership. Information about ADNI can
be found at www.adni-info.org. The primary goal of ADNI
is to test whether neuroimaging measures and other bio-
logical and clinical markers can be combined to measure
the progression of MCI and early AD. ADNI study visits
involve neuroimaging, neuropsychological, and clinical
and biomarker assessments. The general enrollment inclu-
sion/exclusion criteria for ADNI have been described else-
where [42]. This specific study was limited to ADNI1
participants with CSF p-Tau levels, as determined by the
Roche Elecsys assay, and plasma testosterone levels from
their baseline visit. The current sample consisted of 172
participants (113 men and 59 women) aged 55–90 years
including 25 (15%) cognitively normal, 97 (56%) MCI, and
50 (29%) AD dementia individuals.

Fluid biomarkers
Plasma levels of total testosterone and sex hormone
binding globulin (SHBG) were measured on the Lumi-
nex xMAP platform by Biomarkers Consortium Plasma
Proteomics Project Rules-Based Medicine multiplex
(http://www.rulesbasedmedicine.com) as part of a panel
of 190 analytes related to a diverse array of human dis-
ease. A Box-Cox transformation was applied to raw
assay values to normalize the distribution. Detail of assay
methods and normalization procedures are described in
“Biomarkers Consortium Plasma Proteomics Data Pri-
mer 02Aug2013 Final.pdf” and available for download at
http://adni.loni.usc.edu/data-samples/access-data/. We
utilized CSF concentrations of p-Tau (pg/mL), phos-
phorylated at threonine 181, and Aβ as determined by
the Roche Elecsys assay (Roche, Basel, Switzerland). De-
tailed methods and quality control procedures for p-Tau
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measures can be found at http://adni.loni.ucla.edu. In-
creased CSF p-tau181 levels occur in AD but not in other
neurodegenerative disorders. SHBG is a protein that
binds testosterone rendering it biologically unavailable.
Thus, SHBG levels were used to measure levels of bound
versus unbound or free testosterone using the following
formula: total testosterone/SHBG × 100. All analyses
were repeated substituting free for total testosterone
levels to determine whether results were driven by bio-
available testosterone.

Statistical analyses
Continuous variables that were not normally distributed
were transformed via log- or Box-Cox transformations to
improve normality. Sample characteristics by sex and
APOE4 status were assessed using independent t tests for
continuous variables and chi-square tests for categorical
variables. First, we used linear regression to examine the
separate and interactive effects of sex and APOE4 status
on p-Tau levels while adjusting for age, education, and
cardiovascular risk factors available in ADNI (i.e., body
mass index [BMI] and self-reported history of cardiovas-
cular events). Men were compared to women (reference
group) and APOE4 carriers to APOE4 non-carriers (refer-
ence group). Next, we used linear regression to examine
the effect of testosterone and its interaction with APOE4
status on p-Tau levels in the overall sample and within
sex. In addition to the previously mentioned covariates,
we adjusted for sex in analyses in the overall sample. Sig-
nificant interactions were probed via analyses stratified by
APOE4 status. Next, stepwise linear regressions were con-
ducted in the overall sample to examine sex differences in
p-Tau levels after adding testosterone (step 2) to the initial
model that adjusted for age, education, and cardiovascular
risk factors (step 1). Analyses were compared before and
after covarying for Aβ1-42 levels in order to determine the
specificity of findings to p-Tau.

Results
Among 172 participants, there were 79 APOE4 non-
carriers (25 women and 54 men) and 93 APOE4 carriers
(34 women and 59 men). The sample was 97% White,
with a mean age of 75, and mean years of education of 15.
In the overall sample, APOE4 carriers were younger,
showed poorer global cognition (lower mean MMSE
score), had higher p-Tau levels, were less likely to be cog-
nitively normal, and more likely to be AD dementia pa-
tients compared to non-carriers (ps < .05; Table 1). Mean
testosterone level was lower in APOE4 carriers versus
non-carriers, although not significantly (p = .09). When
comparing men and women by APOE4 status, female
APOE4 carriers were significantly younger than male
APOE4 carriers (p = .002). As expected, mean total and
free testosterone levels were lower in women than in men

regardless of APOE4 status (ps < .001). In replication of
previous findings, p-Tau levels were higher in women ver-
sus men but only among APOE4 carriers (p = .001).

Sex differences in p-Tau by APOE4 status
In line with hypotheses and our unadjusted analyses (Table
1), a significant sex by APOE4 interaction on p-Tau levels
(B = − 5.76, β = − 0.24, standard error [SD] = 2.96, p = .05)
when adjusting for covariates (i.e., age, education, and car-
diovascular risk factors) indicated higher p-Tau levels in
women versus men among APOE4 carriers only (B = −
11.16, β = − 0.31, SD = 3.85, p = .005). Analyses stratified
by APOE4 status actually revealed an opposing sex differ-
ence among non-carriers, whereby p-Tau levels were higher
in men versus women, although not significantly (B = 6.09,
β = 0.22, SD = 3.22, p = .06; Fig. 1).

Relationship between testosterone and p-Tau by APOE4
status
In the overall sample, there was a significant relationship
between lower total testosterone levels and higher CSF p-
Tau levels (B = − 13.26, β = − .39, p = .002; Fig. 2), but,
more importantly, there was a significant total testosterone
X APOE4 status interaction on p-Tau levels (B = − 17.78, β
= − 0.40, SD = 4.9, p < .001). Analyses stratified by APOE4
status revealed that lower total testosterone levels were as-
sociated with higher p-Tau among APOE4 carriers (B = −
17.36, β = − 0.50, SE = 5.41, p = .002) but not non-carriers
(B = − 4.45, β = − 0.15, SE = 6.4, p = .49). Results in the
overall and the APOE4-stratified analyses were unchanged
when substituting free for total testosterone and when in-
cluding Aβ levels as a covariate in the model.
In sex-stratified analyses, the range of total testosterone

levels were lower in women (range = − 1.2–0.2, median = −
0.28) versus men (range − 0.6–0.7, median = 0.5), although
overlapping. Within the distribution of lower testosterone
levels in women (B = − 13.83, β = − 0.27, SE = 5.88, p = .02)
and the distribution of higher levels in men (B = − 15.85, β =
− 0.24, SE = 6.32, p = .01), there was a negative association
between testosterone and p-Tau levels suggestive of a con-
tinuous, linear relationship (Fig. 3). These associations
occurred regardless of APOE4 status as indicated by non-
significant testosterone by APOE4 interactions in women (B
= − 12.55, β = − .23, SE = 13.13, p = .34) or men (B = 10.19,
β = 0.20, SE = 13.66, p = .46). However, the testosterone by
APOE4 interaction on p-Tau in the overall sample appeared
to be mostly driven by women in that the testosterone and
p-Tau relationship was marginally significant among female
APOE4 carriers (B = − 18.06, β = − 0.34, SE = 8.89, p = .05)
but not among female non-carriers (B = − 0.27, β = − 0.01,
SE = 5.1, p = .96; Fig. 3). In contrast, the testosterone and p-
Tau relationship was a trend in both male APOE4 carriers
(B = − 13.38, β = − 0.26, SE = 6.75, p = .053) and non-
carriers (B = − 24.24, β = − 0.26, SE = 13.78, p = .08), Despite
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the specificity of a testosterone and p-Tau link to female
APOE4 carriers, we were likely underpowered to detect a
APOE4 by testosterone interaction given the smaller sample
size in female-specific analyses (n = 53). Results in both men
and women were unchanged when substituting free for total
testosterone and when adjusting for Aβ levels.

Explanatory role of testosterone in sex difference in p-
Tau
In testing the mediating role of testosterone in the sex
difference in p-Tau levels, we found that the significantly
higher p-Tau levels in female APOE4 carriers versus
male APOE4 carriers was eliminated after adjusting for
testosterone levels (B = 3.21, β = 0.09, SE = 5.78, p =
.58; Fig. 1). Conversely, the trend for higher p-Tau levels
in men versus women among APOE4 non-carriers

changed minimally after adjusting for testosterone (B =
9.47, β = 0.34, SE = 5.84, p = .10). Again, results were
unchanged when substituting free for total testosterone
and when adjusting for Aβ levels.

Discussion
In replication of previous findings, we found higher CSF
p-Tau levels in women versus men specifically among
APOE4 carriers. Our novel finding was significant rela-
tionship between low testosterone levels and higher p-
Tau among APOE4 carriers. Our hypothesis concerning
a potential mechanistic role of testosterone in the sex
difference in p-Tau was supported in that the significant
sex difference in p-Tau levels among APOE4 carriers
was eliminated when adjusting for testosterone levels.
Findings suggest that the lower testosterone levels in

Table 1 Sample characteristics by APOE4 carrier status and sex

APOE4− (n
= 79)

APOE4+ (n
= 93)

p value
(effect size)a

APOE4- APOE4+

Women n
= 25

Men n =
54

p value
(effect size)a

Women n
= 34

Men n
= 59

p value
(effect size)a

Age, Mean (SD) 76.6 (7.2) 74.0 (6.7) .02 (.37) 77.0 (6.3) 76.4 (7.7) .74 71.3 (7.4) 75.6
(5.7)

.002 (.65)

Years of education, Mean (SD) 15.9 (3.0) 15.3 (3.2) .20 15.7 (2.7) 16.0 (3.1) .64 14.7 (2.9) 15.6
(3.4)

.17

White, n (%) 76 (96.2%) 91 (97.8%) .54 25 (100%) 51
(94.4%)

.49 32
(94.1%)

59
(100%)

.06

Cognitive status < .001 (.40) .26 .65

Cognitively normal, n (%) 22 (27.8%) 3 (3.2%) 10
(40.0%)

12
(22.2%)

1 (2.9%) 2 (3.4%)

MCI, n (%) 45 (57.0%) 52 (55.9%) 12
(48.0%)

33
(61.1%)

17
(50.0%)

35
(59.3%)

AD dementia, n (%) 12 (15.2%) 38 (40.9%) 3 (12.0%) 9
(16.7%)

16
(47.1%)

22
(37.3%)

Global cognition (MMSE), Mean
(SD)

27.1 (2.2) 25.8 (2.5) < .001 (.55) 27.6 (2.2) 26.9 (2.2) .15 25.6 (2.5) 25.9
(2.5)

.56

BMI, Mean (SD) 26.5 (4.0) 25.8 (3.7) .28 25.7 (4.9) 26.8 (3.5) .24 25.5 (4.0) 26.0
(3.6)

.55

Self-reported history of
cardiovascular events, n (%)

61 (77.2%) 62 (66.7%) .13 16
(64.0%)

45
(83.3%)

.06 23
(67.6%)

39
(66.1%)

.88

Pulse pressureb, Mean (SD) 61.0 (18.1) 59.1 (14.7) .41 61.9 (23.9) 60.8
(15.0)

.80 58.9 (15.8) 59.2
(14.1)

.93

Plasma total testosterone levelc

(ng/mL), Mean (SD)
0.2 (0.4) 0.1 (0.5) .09 − 0.3 (0.4) 0.5 (0.1) < .001 (2.74) − 0.4 (0.4) 0.4 (0.2) < .001 (2.53)

Plasma free testosterone levelc

(ng/mL), Mean (SD)
13.4 (24.8) 6.5 (27.7) .09 − 16.9

(19.5)
27.5 (9.8) < .001 (2.9) − 22.0

(22.7)
23.0
(13.0)

< .001 (2.4)

CSF p-Tau181 level (pg/mL), Mean
(SD)

26.8 (13.1) 35.9 (17.2) < .001 (.59) 23.5 (8.6) 28.3
(14.5)

.13 43.7 (22.6) 31.5
(11.1)

.001 (0.68)

CSF Aβ1-42 level (pg/mL), Mean
(SD)

1240.4
(702.9)

639.1
(292.2)

< .001 (1.12) 1286.7
(765.1)

1218.9
(678.7)

.69 658.7
(627.8)

627.8
(327.0)

.63

aEffect sizes are provided for significant differences; Cohen’s d is provided for mean differences (0.2 = small, 0.5 = medium, 0.8 = large) and a phi coefficient is
provided for differences in proportions (0.1 = small, 0.3 = medium, 0.5 = large)
bPulse pressure = systolic − diastolic blood pressure
cTestosterone levels were normalized based on a Box-Cox transformation. MCI mild cognitive impairment, AD Alzheimer’s disease, APOE4 apolipoprotein E ɛ4
allele, MMSE Mini Mental Status Examination, BMI body mass index, CSF cerebrospinal fluid
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women are a significant contributor to their higher levels
of p-Tau compared to men. Previous animal and cell
culture studies have described a protective role of testos-
terone against Tau pathology [15, 16, 43]; however, to
the best of our knowledge, we are the first to report a
testosterone and Tau link in a human sample.
Testosterone offers a number of neuroprotective effects

including improvements in synaptic plasticity [44, 45] and
synaptic density in hippocampal neurons [46–49], height-
ened cerebral blood flow and glucose metabolism [50], re-
ductions in inflammation and oxidative stress [51, 52],
and prevention against Aβ plaque deposition and their
neurotoxic effects [14, 53, 54]. Although the biological
basis underlying the testosterone and tau link is unclear,
most relevant to Tau pathogenesis may be testosterone’s
anti-inflammatory actions [55]. A role for gliosis and neu-
roinflammation in Tauopathy is evidenced by greater
microglial activity and altered inflammatory pathway
markers (e.g., interleukin-6, tumor necrosis factor-α) cor-
relating with Tau burden [56–59] as well as
inflammation-related AD risk factors that contribute to
Tauopathy such the genetic factors of TREM2 [60] and
APOE4 [61] and the environmental factors of traumatic
brain injury [62, 63] and viral infection [64, 65]. Evidence
suggests bidirectional effects between neuroinflammation
and Tau propagation whereby inflammation can initiate

and propagate Tau pathology while Tau aggregates can
directly activate microglia and secretion of pro-
inflammatory cytokines [66–68]. In early AD, Aβ plaques
stimulate microgliosis and release of inflammatory cyto-
kines [69] suggesting that testosterone’s protection against
Aβ plaque deposition may contribute to its anti-
inflammatory properties and, in turn, decreased p-Tau.
However, our results were unchanged after adjusting for
Aβ suggesting that the mechanisms underlying the testos-
terone and p-Tau link are independent of Aβ. Research
into the potential mediating role of neuroinflammation in
the testosterone and Tau link is warranted.
Prior studies have also reported a testosterone by

APOE4 interaction on cognitive function in animal
models [37, 38] and on AD risk [31] and hippocampal
volume [39] in humans. Similar to the majority of these
studies, the pattern of interactive effects indicated an as-
sociation between testosterone and p-Tau only among
APOE4 carriers. In fact, the inclusion of APOE4 non-
carriers, particularly women, in our analyses across
APOE4 status weakened the relationship observed be-
tween testosterone and p-Tau among APOE4 carriers.
In the sex-stratified analyses, the testosterone and p-Tau
relationship is stronger in men versus women when
combining APOE4 carriers and non-carriers; however,
this relationship is stronger in female versus male

Fig. 1 Sex differences in CSF p-Tau by APOE4 status before and after adjusting for testosterone levels. Using multiviariable linear regression, we
found a significant sex by APOE4 status interaction on p-Tau levels revealing higher p-Tau levels in women versus men among APOE4 carriers
(women: n = 34, mean = 43.16, SD = 2.97; men: n = 59, mean = 32.00, SD = 2.23) but not among APOE4 non-carriers (women: n = 25, mean =
22.61, SD = 2.65; men: n = 54, mean = 28.70, SD = 1.76). The significant sex difference in p-Tau levels among APOE4 carriers was eliminated when
adjusting for testosterone levels in addition to relevant covariates. CSF cerebrospinal fluid, p-Tau phosphorylated Tau, APOE4 apolipoprotein E ε4
allele. Relevant covariates were age, education, BMI, and self-reported history of cardiovascular events. Testosterone represents plasma-based total
testosterone levels
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APOE4 carriers. These findings underscore the import-
ance of accounting for APOE4 status when examining
testosterone and tau links.
There is biological plausibility for a testosterone by

APOE interaction. In the brain, the APOE protein is a
key transporter of lipoproteins. Given testosterone’s role

in triglyceride and high-density lipoprotein cholesterol
metabolism [70, 71], the shared role of APOE and tes-
tosterone in this lipoprotein pathway offers possibilities
for interaction. The APOE4 allele is associated with an
increased susceptibility to inflammation [61]. Thus, it is
possible that APOE4 carriers are the most likely to

Fig. 2 Relationship between plasma testosterone levels and CSF p-Tau levels overall (a) and by APOE4 status (b). Using multivariable linear
regression, we found a significant total testosterone X APOE4 status interaction on p-Tau levels that revealed an association between lower total
testosterone levels and higher p-Tau levels among APOE4 carriers (n = 93) but not among APOE4 non-carriers (n = 79). CSF cerebrospinal fluid, p-
Tau phosphorylated Tau, APOE4 apolipoprotein E ε4 allele. Analyses covaried for age, sex, education, BMI, and self-reported history of
cardiovascular events
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benefit from the testosterone’s protective actions against
inflammation and, in turn, Tau. In animal studies,
APOE4 is associated with a reduction in cytosolic andro-
gen receptor (AR) levels in the neocortex [37] leading to
the possibility that the adverse effects of low testosterone
levels are further amplified in APOE4 carriers that have
fewer or less efficient AR to support testosterone signal-
ing. We extend pervious findings by demonstrating tes-
tosterone by APOE4 interactive effects on p-Tau and
their potential specificity to women.
Our results suggest that higher levels of p-Tau in

women versus men are likely capturing an association

between the low testosterone levels that are commonly
seen in women and higher p-Tau. In fact, we found that
the higher p-Tau levels in female APOE4 carriers versus
male APOE4 carriers was eliminated when adjusting for
testosterone suggesting that differences in testosterone
between men and women is a central mechanism under-
lying this sex difference. These findings may have impli-
cations for the well-evidenced higher AD risk in women
considering that Tau pathology is closely tied to neuro-
degeneration and clinical symptomology. Our findings
also challenge the concept that testosterone is a “male
hormone” in which the implications of low levels on

Fig. 3 The sex-stratified relationship between plasma testosterone levels and CSF p-Tau levels overall (a, b) and by APOE4 status (c, d). Using
multivariable linear regression, we found negative associations between testosterone and p-Tau levels in both women and men. Although the
testosterone X APOE4 status interactions were not significant in either sex, the significant testosterone X APOE4 interaction in the overall sample
appeared to be driven by women. When analyses were stratified by sex, we found that the testosterone X APOE4 status interaction on p-Tau
levels was driven by women. CSF cerebrospinal fluid, p-Tau phosphorylated Tau, APOE4 apolipoprotein E ε4 allele. Analyses adjusted for age,
education, BMI, and self-reported history of cardiovascular events
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AD-related outcomes are mostly circumscribed to men
despite women having lower testosterone levels than
men overall as well as age-related declines.
Our results offer a potential mechanism for the

strongly, yet not consistently [72] supported finding of a
stronger effect of APOE4 in women versus men on AD
risk [6–8, 72]. If APOE4 has a stronger effect on AD-
related outcomes in the context of low testosterone
levels, as suggested by our data, then this would lead to
a greater susceptibility of women to these effects. Our
findings may also help to explain inconsistencies in the
literature regarding an effect of APOE4 on Tau. Other
biomarker [73], neuroimaging [74], and autopsy [75]
studies found a more robust association between APOE4
and Tau in women versus men, whereas studies that did
not compare by sex have shown inconsistent findings in
the APOE4 and Tau link [73, 76–80]. If the Tau and
APOE4 relationship is dependent on testosterone, as our
results suggest, the presence of this relationship may be
related to the proportion of men versus women in a
sample. In non-sex-stratified analyses, an association be-
tween APOE4 and Tau may be obscured in samples that
are predominantly male and, thus, likely characterized
by higher testosterone levels.
This study has limitations. Our smaller sample size

likely limited statistical power particularly when examin-
ing the testosterone and APOE4 interaction in sex-
stratified analyses. Levels of circulating estradiol were not
available in the ADNI, which precluded us from examin-
ing whether it is testosterone or the aromatization of tes-
tosterone to estradiol that is responsible for the observed
association. However, previous animal work found testos-
terone’s neuroprotective effects against Aβ [81] and p-Tau
[16] to be independent of estradiol levels suggesting that
androgenic mechanisms are implicated in these effects
[81]. CSF levels of testosterone may be more reflective of
testosterone activity in the brain; however, only plasma-
based levels were available to us. Because of our cross-
sectional design, we were precluded from determining the
temporal relationship between testosterone and Tau. Al-
though previous findings suggest that testosterone’s effects
predate AD outcomes, there is potential for bidirectional
given evidence that AD pathology may negatively feedback
on testosterone levels by hindering production of sex ster-
oid hormones [82, 83]. Lastly, ADNI is a convenience
sample of mostly white and well-educated volunteers
compared with the general US population, which limits
generalizability of results.
In conclusion, we found a relationship between lower

testosterone levels and higher CSF p-Tau that was spe-
cific to APOE4 carriers. The specificity of this relation-
ship to APOE4 carriers seemed to be driven by women.
We replicated a consistent finding of higher p-Tau levels
in women versus men at-risk for AD; however, this

difference was eliminated after adjusting for testoster-
one. Results suggest that testosterone has a protective
role against Tau particularly among APOE4 carriers, and
that low testosterone levels that are more characteristic
of women than men may predispose one to Tau.

Perspectives and significance
Our findings inform a knowledge gap in our understand-
ing of greater Tauopathy in women versus men on the
AD trajectory and in the repeated demonstration of a
stronger APOE4 effect in women. Our findings may also
help to enlighten disparities in the literature regarding an
APOE4 and Tau relationship. This study represents a call
to researchers and clinicians that it is equally important to
examine the effects of testosterone on AD-related out-
comes in women as it is in men, if not more. Our findings
stress the need to examine the effects of testosterone on
AD-related outcomes in women in addition to men. Our
findings have clinical relevance in that low testosterone is
a potentially modifiable risk factor. Although numerous
studies have investigated the effects of testosterone sup-
plementation on cognitive function and AD risk with
mixed findings (Wolf et al. 1999), very few studies have
examined the effects of testosterone supplementation in
women and with regard to APOE4 status. Follow-up stud-
ies should investigate (a) the association between testos-
terone levels and cortical Tau as measured by PET, (b) the
effect of testosterone supplementation on Tau burden,
and (c) the mediating role of neuroinflammation in the
testosterone and Tau link.
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